
April 8, 2021 12:6 WSPC/S1793-0421 203-IJNT 2150022

International Journal of Number Theory
Vol. 17, No. 4 (2021) 1029–1045
c© World Scientific Publishing Company
DOI: 10.1142/S1793042121500226

On the moments of torsion points modulo
primes and their applications

Amir Akbary∗ and Peng-Jie Wong†

Department of Mathematics and Computer Science
University of Lethbridge

Lethbridge, Alberta T1K 3M4, Canada
∗amir.akbary@uleth.ca
†pengjie.wong@uleth.ca

Received 7 November 2019
Accepted 17 August 2020

Published 30 September 2020

Let A[n] be the group of n-torsion points of a commutative algebraic group A defined
over a number field F . For a prime p of F , we let Np(A[n]) be the number of Fp-solutions
of the system of polynomial equations defining A[n] when reduced modulo p. Here, Fp is
the residue field at p. Let πF (x) denote the number of primes p of F such that N(p) ≤ x.
We then, for algebraic groups of dimension one, compute the kth moment limit

Mk(A/F, n) = lim
x→∞

1

πF (x)

X

N(p)≤x

Nk
p (A[n])

by appealing to the Chebotarev density theorem. We further interpret this limit as the
number of orbits of the action of the absolute Galois group of F on k copies of A[n] by an
application of Burnside’s Lemma. These concrete examples suggest a possible approach
for determining the number of orbits of a group acting on k copies of a set.

Keywords: Number of torsion points on reduction mod p; group action; Burnside Lemma;
Chebotarev density theorem.
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1. Introduction

Let A be a commutative algebraic group defined over a number field F . We let A[n]
be the group of n-torsion points of A and F (A[n]) be the field generated by adding
the coordinates of A[n] to F . For a prime p of F that is unramified in F (A[n])/F , let
Fp denote the residue field at p, and let Np(A[n]) be the number of Fp-solutions of
the system of polynomial equations defining A[n] when reduced modulo p. If p rami-
fies, we set Np(A[n]) = 0. In order to investigate the average size of Np(A[n]), we set

M(A/F, n) = lim
x→∞

1
πF (x)

∑
N(p)≤x

Np(A[n]), (1.1)

where πF (x) denotes the number of primes p of F whose normN(p) do not exceed x.
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In [2], Chen and Kuan investigated the average size of the arithmetic func-
tion Np(A[n]) by determining M(A/F, n) as the number of orbits of the group
Gal(F (A[n])/F ) acting on the n-torsion points A[n] (see [2, Theorem 1.2]). More-
over, they showed that for commutative algebraic groups of dimension one other
than Ga, the value of M(A/F, n) is given by a divisor function. More precisely, it
is known that a commutative algebraic group of dimension one over F is either the
additive group Ga, the multiplicative group Gm, an algebraic torus of dimension
one, or an elliptic curve. For Ga we have M(Ga/F, n) = 1. For other cases, the
following assertions are proved in [2, Corollaries 1.3, 1.5 and Theorems 1.4, 1.6].
Here, ζn denotes a primitive nth root of unity and d(n) is the number of positive
divisors of n.

Theorem 1.1 (Chen–Kuan). (i) Assume that F ∩ Q(ζn) = Q. Then M(Gm/

F, n) = d(n).
(ii) Let T denote a one-dimensional torus over Q. Then there is a positive constant

C := C(T), depending only on T, such that for n with (n,C) = 1, one has
M(T/Q, n) = d(n).

(iii) Assume that E is a non-CM elliptic curve defined over F . Then there is a
positive constant C := C(E,F ), depending only on E and F, such that for n
with (n,C) = 1, one has M(E/F, n) = d(n).

(iv) Assume that E is an elliptic curve defined over F which has complex multiplica-
tion by an order in an imaginary quadratic field K. Assume FK ∩Q(ζn) = Q.
Then there is a positive constant C := C(E,F ), depending only on E and F,

such that for n with (n, 2C) = 1, one has

M(E/F, n) =

⎧⎨
⎩
dK(n) if K ⊆ F,

1
2
(dK(n) + d(n)) if K �⊆ F.

Here, dK(n) denotes the number of ideal divisors of the ideal nOK in OK , the
ring of integers of K. The conditions FK ∩ Q(ζn) = Q and (n, 2) = 1 only
apply to the case that K �⊆ F .

Remark 1.2. (i) In [2], the function Np(A[n]) is defined, for a prime p of good
reduction of A, as the number of n-torsion points in the group of Fp-rational
points of the reduction modulo p of A. Our definition of Np(A[n]) may differ
from that definition only at finitely many prime ideals p, and thus it will not
affect the assertions of Theorem 1.1.

(ii) Parts (iii) and (iv) of Theorem 1.1 are also stated and proved in [6, Corollar-
ies 1, 3, and 4].

(iii) The conditions FK ∩ Q(ζn) = Q and (n, 2) = 1 in part (iv) of Theorem 1.1
is not clearly stated in [2, Theorem 1.6]; however, these conditions are used in
the proof of Theorem 1.6 in [2].

(iv) In [2, Theorem 1.4], it is also proved that the constant C in part (ii) of
Theorem 1.1 can be taken as 1 if m > 0 and as Dm if m < 0, where m is
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the square-free integer in the equation x2−my2 = 1 defining T, and Dm is the
discriminant of the quadratic field Q(

√
m). Also, it is shown, for F = Q, that

in part (iv) of Theorem 1.1 the constant C can be taken as 6ΔE , where ΔE

is the discriminant of E (see [2, Theorem 1.6]). In addition, the extensions of
Theorem 1.1 to the case of function fields are given in [3].

The proof of the first three parts of Theorem 1.1 can be unified and simpli-
fied considerably if one interprets the limit (1.1) as the number of the orbits of
GLm(Z/nZ), the group of invertible m×m matrices with entries in Z/nZ, acting
on the product of m copies of Z/nZ, when m = 1 or 2. In this direction, the follow-
ing can be considered as a generalization of the underlying result in parts (i), (ii),
and (iii) of Theorem 1.1.

Theorem 1.3. Let L be a number field of class number 1. Then the number of orbits
of GLm(OL/nOL) acting on (OL/nOL)m is dL(n), where dL(·) is the number field
analogue of the divisor function.

In another direction, as a consequence of the results of this paper, we give a
generalization of Theorem 1.1 by considering the kth moment limit

Mk(A/F, n) = lim
x→∞

1
πF (x)

∑
N(p)≤x

Nk
p (A[n]).

Note that, for every k ≥ 1, Mk(Ga/F, n) = 1. In order to state our result for other
algebraic groups of dimension one, we need to introduce the following notation. For
k ∈ Z≥0 and n ∈ N, let

Mk(n) :=
∑
d,e

de |n

dkμ(e)
ϕ(de)

,

where μ is the Möbius function, and ϕ is the Euler function. Observe that for
a, b ∈ N and integer k ≥ 0, by letting

Pk(a, b) =
ak − bk

a− b
,

we have

Mk(n) =
∏
�s‖n

(
s∑

e=1

Pk(�e, �e−1) + 1

)
.

Note that M0(n) = 1 and M1(n) = d(n). Thus, Mk(n) can be considered as a
generalization of the divisor function.

We have the following generalization of Theorem 1.1.

Theorem 1.4. (i) Assume that F ∩ Q(ζn) = Q. Then Mk(Gm/F, n) = Mk(n).

(ii) Let T be a one-dimensional torus defined over Q. Then there is a positive
constant C := C(T), depending only on T, such that for n with (n,C) = 1, we
have Mk(T/Q, n) = Mk(n).
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(iii) Assume that E is a non-CM elliptic curve defined over F . Then there is a
positive constant C := C(E,F ), depending only on E and F, such that for
square-free n with (n,C) = 1, we have

Mk(E/F, n) =
∏
� |n

�2k−1 + �k−1(�3 − 2�− 1) + �3 − 2�2 − �+ 3
(�− 1)2(�+ 1)

.

(iv) Assume that E is an elliptic curve defined over Q that has complex multiplica-
tion by OK . Then there is a positive constant C := C(E), depending only on
E, such that for prime � with (�, 2C) = 1, we have

Mk(E/Q, �) =
�2k + (dK(�) − 1)(�k+1 + �k) + 2�2 − (dK(�) − 1)�− (dK(�) + 2)

2(�2 − 1)
.

Remark 1.5. For k ≥ 3, the �-factor in the product expression for Mk(E/F, n)
in part (iii) of Theorem 1.4 is a polynomial function of degree 2k − 4 of � with
integral coefficients. For k = 1 (respectively, k = 2), the �-factor is 2 (respectively,
� + 3). The expression in part (iv) is a polynomial function of degree 2k − 2 of �
with half-integral coefficients.

Theorem 1.4, similarly to Theorem 1.1, is intimately related to a group theory
result. In order to describe the connection, we introduce a more general setup.

Let F denote the algebraic closure of a number field F . Let Y be an algebraic set
(affine or projective), given as the set of F -solutions of a finite family of polynomial
equations EY defined over the ring of integers OF of F . (If Y is projective, “poly-
nomial equations” means “homogeneous polynomial equations” and “Fp-solutions”
means “projective Fp-solutions”). For an unramified prime ideal p in the extension
F (Y )/F , we let

Np(Y ) := #{solutions of EY (mod p) in Fp}.
If Y is the set of F -solutions of a single polynomial f , we also denote Np(Y ) by
Np(f).

Remark 1.6. Theorem 1.2(c) of [15] provides a generalization of Theorem 1.1 and
another interpretation for the limit (1.1) for the case F = Q. For an algebraic set Y
defined over Z, let Np(Y ) be as defined above. Then if the dimension dimY (C) ≤ d0,
one has

lim
x→∞

1
π(xd0+1)

∑
p≤x

Np(Y ) = r0(Y ),

where r0(Y ) is the number of Q-irreducible components of dimension d0 of Y over
Q. Here, π(x) := πQ(x). Note that for d0 = 0, the above limit is analogous to
the one evaluated in Theorem 1.1. For example, for the algebraic set Y defined
by xn − 1 =

∏
d | n Φd(x), where Φd(x) is the dth cyclotomic polynomial, we have

r0(Y ) = d(n).
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We now assume that Y has dimension zero (so it is finite) and let Mk(G, Y )
be the number of orbits of G = Gal(F (Y )/F ) acting on k copies of Y . Since there
are only finitely many prime ideals that ramify in F (Y )/F , for a ramified prime
ideal p we define Np(Y ) = 0 for convenience. The following main result represents
Mk(G, Y ) as an asymptotic average of the values Nk

p (Y ) as p varies over the set of
primes of F .

Theorem 1.7. Let Y be an algebraic set of dimension zero defined over F, G =
Gal(F (Y )/F ), and Mk(G, Y ) as defined above. Then, for k ∈ N, we have

lim
x→∞

1
πF (x)

∑
N(p)≤x

Nk
p (Y ) = Mk(G, Y ).

The above theorem can be considered as a generalization of a classical result
due to Frobenius and Kronecker (see [14, p. 436]).

Theorem 1.8 (Frobenius–Kronecker). For an irreducible polynomial f ∈ Z[x],
we have

lim
x→∞

1
π(x)

∑
p≤x

Np(f) = 1.

Indeed, let F = Q, Y = the set of roots of f in Q, k = 1, and G = Gal(F (Y )/F )
in Theorem 1.7. Then, observing that the action of the Galois group on the set of
roots of f is transitive, we obtain Theorem 1.8 as a corollary of Theorem 1.7. Note
that although the action of G on Y in Theorem 1.8 is transitive, the action on k ≥ 2
copies of Y is not transitive if |Y | > 1. Thus, determining Mk(G, Y ) appears to be a
nontrivial problem for k ≥ 2, even when Y is defined by an irreducible polynomial.

As a direct consequence of Theorem 1.7, we establish the existence of an asymp-
totic distribution function for the arithmetic function Np(Y ).

Corollary 1.9. Let Y be an algebraic set of dimension zero defined over F . Then
the arithmetic function Np(Y ) possesses an asymptotic distribution function. In
other words, the sequence

Hn(z) =
#{p;N(p) ≤ n and Np(Y ) ≤ z}

πF (n)

converges weakly to a distribution function H, as n→ ∞ (i.e. there is a distribution
function H where Hn(z) converges point-wise to H(z) at any continuity point z of
H). Moreover, for complex t-values with |t| < 1,

ϕH(t) = lim
n→∞

1
πF (n)

∑
N(p)≤n

eitNp(Y ) =
∞∑

k=0

Mk(G, Y )
(it)k

k!
,

where G = Gal(F (Y )/Y ), and ϕH(t) is the characteristic function of H.

We next describe that how Theorem 1.7 can be exploited to answer some pure
group-theoretic questions. A fundamental question regarding the action of a group
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G on a set X is to determine the number of orbits in X under the action of G.
Moreover, if the number of orbits in X under the action of G is known, one may
further ask whether there exists a formula for Mk(G,X), the number of orbits in k
copies of X under the action of G. Indeed, both are deep questions. Here, we show
that how Theorem 1.7 can be employed in computing Mk(G,X). The following
definition describes our setup.

Definition 1.10. An action of a finite group G on a finite set X is called “arith-
metically realizable over a number field F”, if there is a set Y of solutions of a
finite family of equations defined over OF , a bijection ψ from X to Y , and a group
isomorphism φ from G to Gal(F (Y )/F ) such that ψ(gx) = φ(g)ψ(x).

Inspiring by this definition, we can rewrite Theorem 1.7 as the following.

Theorem 1.7 (Second Version). Suppose that the finite group G has an action
on a finite set X that is arithmetically realizable over F . Let Y be as given in
Definition 1.10. Then, for any k ∈ N, we have

Mk(G,X) = lim
x→∞

1
πF (x)

∑
N(p)≤x

Nk
p (Y ).

This formulation of Theorem 1.7 provides a line of approach in computing
Mk(G,X) for an arithmetically realizable action. Of course, more generally, one
can consider the problem of computing Mk(G,X) for an action of a group G on
a set X . In this generality, the problem appears to be difficult, and we refer the
reader to Cameron’s survey [1] for results regarding the computation of Mk(G,X)
when the action of a permutation group G (finite or not) on a set X is oligomorphic
(i.e. G has only finitely many orbits in Xk for all k).

Our purpose here is to demonstrate by some examples that for arithmetically
realizable actions a number-theoretic approach via Theorem 1.7 and the Cheb-
otarev density theorem might help one to compute Mk(G,X). For instance, as a
consequence of Propositions 1.12 and 1.13, we have the following explicit values for
Mk(G,X). (In all cases below, the actions are considered multiplicatively and in
(ii) also componentwise.)

Theorem 1.11. (i) If G = (Z/nZ)× and X = Z/nZ, we have Mk(G,X) = Mk(n).
(ii) Let

G =

{(
1 0

b d

)
; b ∈ Z/nZ and d ∈ (Z/nZ)×

}
� (Z/nZ)× � Z/nZ.

If X = ({1} × Z/nZ) × ({0} × Z/nZ), then Mk(G,X) = M2k−1(n).
(iii) For prime �, if G = GL2(Z/�Z) and X = Z/�Z × Z/�Z, then

Mk(G,X) =
�4 − 2�3 − �2 + 3�
(�2 − �)(�2 − 1)

+ �k
�3 − 2�− 1

(�2 − �)(�2 − 1)
+ �2k 1

(�2 − �)(�2 − 1)
.
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The proof of Theorem 1.11 relies on explicit computations of the moment limit in
Theorem 1.7 for certain algebraic sets Y via the prime number theorem in arithmetic
progressions and more generally by the Chebotarev density theorem. We summarize
these concrete evaluations in Propositions 1.12 and 1.13. For n ∈ N and integer
a ∈ Z, let

fn,a(x) := xn − a.

We have the following.

Proposition 1.12. Let n be a natural number. Let a be a square-free positive integer
if n is odd, and let a be a square-free positive integer such that a �n if n is even.
Then the following estimates hold:

(i) For k ∈ Z≥0, n ∈ N, we have

lim
x→∞

1
π(x)

∑
p≤x

Nk
p (fn,1) = Mk(n).

(ii) For k ∈ N, n ∈ N, we have

lim
x→∞

1
π(x)

∑
p≤x

Nk
p (fn,a) = Mk−1(n).

(iii) For any k1 ∈ N, k2 ∈ Z≥0, we have

lim
x→∞

1
π(x)

∑
p≤x

Nk1
p (fn,a)Nk2

p (fn,1) = Mk1+k2−1(n).

We next let E be an elliptic curve defined over Q. For prime � let E[�] denote
the group of �-torsion points of E. The following assertions hold.

Proposition 1.13. (i) Assume that Gal(Q(E[�])/Q) � GL2(Z/�Z). Then

lim
x→∞

1
π(x)

∑
p≤x

Nk
p (E[�])

=
�4 − 2�3 − �2 + 3�
(�2 − �)(�2 − 1)

+ �k
�3 − 2�− 1

(�2 − �)(�2 − 1)
+ �2k 1

(�2 − �)(�2 − 1)
.

(ii) Let E have complex multiplication by OK , the ring of integers of an imaginary
quadratic field K. For a fixed odd prime �, assume that Gal(K(E[�])/K) �
GL1(OK/�OK). Then

lim
x→∞

1
π(x)

∑
p≤x

Nk
p (E[�])

=
2�2 − (dK(�) − 1)�− (dK(�) + 2)

2(�2 − 1)
+ �k

dK(�) − 1
2(�− 1)

+ �2k 1
2(�2 − 1)

,

where dK(�) is the number field analogue of the divisor function. More precisely,
dK(�) = 4, 3, 2 if � splits, ramifies, or remains inert in K, respectively.
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In the rest of this paper, we prove our results. The structure of this paper is
as follows. In Sec. 2, we give a proof of Theorem 1.3. Section 3 provides a proof
of our general result, Theorem 1.7, and Corollary 1.9. In Sec. 4, we compute some
concrete examples of the kth moment in Theorem 1.7 by appealing to the prime
number theorem in arithmetic progressions and the Chebotarev density theorem
(Propositions 1.12 and 1.13). Combining the results proved in Secs. 3 and 4, in
Sec. 5, by proving Theorem 1.11, we compute the number of orbits of certain finite
groups acting on the product of k copies of certain finite sets. Finally, in Sec. 6, by
applying the group-theoretic results proved in Sec. 5 and also Proposition 1.13(ii),
we prove Theorem 1.4.

2. Proof of Theorem 1.3

Proof. We first give a proof for L = Q and then we show how the proof can be
adjusted to the case of a number field L of class number one. We let Mm×1(Z/nZ)
be the collection of m× 1 column vectors with entries in Z/nZ.

For r |n, a positive divisor r of n, the orbit of r = (r 0 · · · 0)T ∈ Mm×1(Z/nZ) is
〈r〉 = {Ar;A ∈ GLm(Z/nZ)}. (By abuse of notation here we used r both as an inte-
ger and also as an element of Z/nZ.) Note that if Ar = s, where s = (s1 s2 · · · sm)T ,
then (r, n) | (s1, . . . , sm, n). Also since A−1s = r, we have (s1, . . . , sm, n) | (r, n). So,
Ar = s implies that (r, n) = (s1, . . . , sm, n).

The above observation shows that for two distinct positive divisors of n like r1
and r2 the orbits 〈r1〉 and 〈r2〉 are disjoint. Indeed, if the two orbits intersect, for
instance Ar1 = Br2 = s for some A,B ∈ GLm(Z/nZ), then (r1, n) = (r2, n) =
(s1, . . . , sm, n), and thus r1 = r2.

Next, we note that the two elements Ar and Br in 〈r〉 are equal if and only
if (n/r) | ai1 − bi1 for 1 ≤ i ≤ m. Since the map sending A ∈ GLm(Z/nZ) to
A ∈ GLm(Z/(n/r)Z) is onto, then for r �= n with r |n the cardinality of 〈r〉 is

Ψ(n/r)

:= #

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
a11

...

am1

⎞
⎟⎟⎠ ∈ Mm×1(Z/(n/r)Z);

⎛
⎜⎜⎝
a11 · · · a1m

...
. . .

...

am1 · · · amm

⎞
⎟⎟⎠ ∈ GLm(Z/(n/r)Z)

⎫⎪⎪⎬
⎪⎪⎭.

For r = n, we have 〈r〉 = 1, and so we define Ψ(1) = 1. Observe that, for a prime
p, since the pm − 1 possibilities for the first column of matrices in GLm(Z/pZ) lift
to (pα)m − (pα−1)m possibilities for the first column of matrices in GLm(Z/pαZ),
we have Ψ(pα) = (pα)m − (pα−1)m.

We claim that
∑

r |n Ψ(n/r) = nm. Since Ψ is multiplicative, in order to show
this, it would suffice to show it for n = pα, a prime power. We have∑

r | pα

Ψ(pα/r) = ((pα)m − (pα−1)m) + · · · + (pm − 1) + 1 = (pα)m.



April 8, 2021 12:6 WSPC/S1793-0421 203-IJNT 2150022

On the moments of torsion points modulo primes and their applications 1037

Now, since
∑

r |n Ψ(n/r) = nm, we conclude that the sets 〈r〉 as r varies over
distinct divisors of n form a partition of (Z/nZ)m, and thus the number of orbits
is equal to d(n).

Next, for a number field L of class number one, we note that for any integral
ideal r | (n) of OL, we may choose a representative r so that r = (r). To process the
argument as the case L = Q, it suffices to note that if r′ = ur for some unit u ∈ OL,
there is a matrix A ∈ GLm(OL/nOL) whose (1, 1)-entry is u such that Ar = r′,
where r = (r 0 · · · 0)T and r′ = (r′ 0 · · · 0)T . This, in particular, implies that

{Ar;A ∈ GLm(OL/nOL)} = {Ar′;A ∈ GLm(OL/nOL)}.

Remark 2.1. For L = Q and k = 1, a short proof of Theorem 1.3 can be obtained
by noticing that the group action can be realized as the action of the Galois group
of xn−1 on the nth roots of unity. Now, the result follows since the roots of the dth
cyclotomic polynomial Φd(x) are those roots of unity that have exactly order d, the
cyclotomic polynomials Φd(x) are irreducible over Q, and xn − 1 =

∏
d |n Φd(x).

3. Proofs of Theorem 1.7 and Corollary 1.9

To prove Theorem 1.7, we require “Burnside’s Lemma” stated as follows.

Lemma 3.1 (Burnside’s Lemma). Let G be a finite group acting on a finite set
X, and let χ(g) be the number of fixed points of g on X. Then the number of orbits
of G in X is equal to

1
|G|

∑
g∈G

χ(g).

Proof. See [16, Proposition 1.1].

Now, we are in a position to prove Theorem 1.7.

Proof of Theorem 1.7. Write L = F (Y ). Let p denote an unramified prime in
L/F , and let P be a prime above p. Let EY be the family of polynomial equa-
tions defining Y . For any prime p (respectively, P) of F (respectively, L), we let
SY,p (respectively, SY,P) denote the set of solutions of EY (mod p) (respectively,
EY (mod P)) in the residue field OF /p (respectively, OL/P).

For any prime P | p, we write FrobP for the generator of Gal((OL/P)/(OF /p)).
Then we have

Np(Y ) = |SY,p| = #{y ∈ SY,P; y is fixed by FrobP},
where the last quantity is independent of the choice of P.

Now, let σP be the lift of FrobP to Gal(F (Y )/F ) and σp = {σP; P | p} be
the Artin symbol at p. For each m, let G(m) stand for the set of elements in
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G = Gal(F (Y )/F ) that fixes exactly m points in Y . Then for any unramified p, we
have that Np(Y ) = m if and only if σp ⊆ G(m). As one has

∑
N(p)≤x

Nk
p (Y ) =

|Y |∑
m=0

∑
N(p)≤x

σp⊆G(m)

mk =
|Y |∑

m=1

mk
∑

N(p)≤x
σp⊆G(m)

1,

the Chebotarev density theorem yields that

lim
x→∞

1
πF (x)

∑
N(p)≤x

Nk
p (Y ) =

|Y |∑
m=1

mk |G(m)|
|G| . (3.1)

We note that χk(g) is the number of points in Y × · · · × Y , the k copies of Y , fixed
by g. Thus, we can rewrite the sum on the right of (3.1) as

|Y |∑
m=1

mk |G(m)|
|G| =

1
|G|

∑
g∈G

χk(g).

Now, we conclude the proof by applying Burnside’s Lemma that asserts that the
above average is the number of orbits of G in the k copies of Y .

Proof of Corollary 1.9. The proof follows the method of moments as described
on [5, pp. 59–61]. We observe that by Theorem 1.7 we have

αk := lim
n→∞

∫ ∞

−∞
zkdHn(z) = lim

n→∞
1

πF (n)

∑
N(p)≤n

Nk
p (Y ) = Mk(G, Y ).

Note that

αk � |Y |k.
Thus, for complex t-values with |t| < 1, the series

∞∑
k=0

αk
(it)k

k!

converges absolutely. Hence, from [5, Lemmata 1.43 and 1.44], it follows that the
αk determine a unique distribution function H that satisfies the conditions given
in Corollary 1.9.

4. Proofs of Propositions 1.12 and 1.13

Proof of Proposition 1.12. (i) As there are only finitely many primes p with
(p, n) > 1, we may assume that (p, n) = 1. In particular, all summations below are
over primes p with (p, n) = 1.

Since F×
p is a cyclic group of order p− 1, we have

Np(fn,1) = (p− 1, n).
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Thus, ∑
p≤x

Nk
p (fn,1) =

∑
p≤x

d=(p−1,n)

dk =
∑
d |n

dk
∑
p≤x

d=(p−1,n)

1 =
∑
d |n

dk
∑
p≤x

d | p−1

( p−1
d , n

d )=1

1,

which, by the Möbius inversion, is∑
d |n

dk
∑
p≤x

d | p−1

∑
e | ( p−1

d , n
d )

μ(e) =
∑
d,e

de |n

dkμ(e)
∑
p≤x

de | p−1

1.

Now, by the prime number theorem for arithmetic progressions, the last inner
sum is asymptotic to

1
ϕ(de)

π(x),

as x→ ∞, which completes the proof.
(ii) We may assume that (p, na) = 1. In particular, all summations below (and

also in (iii)) are over primes p with (p, na) = 1.
It is known that Np(fn,a) �= 0 if and only if

a
p−1

d ≡ 1 (mod p),

where d = (p − 1, n). Moreover, if Np(fn,a) �= 0, then Np(fn,a) = (p − 1, n) (see
[7, Proposition 4.2.1]). Thus, we have∑

p≤x

Nk
p (fn,a)

=
∑
p≤x

d=(p−1,n)

a
p−1

d ≡1 (mod p)

dk =
∑
d |n

dk
∑
p≤x

d=(p−1,n)

a
p−1

d ≡1 (mod p)

1 =
∑
d |n

dk
∑
p≤x

d | p−1

( p−1
d , n

d )=1

a
p−1

d ≡1 (mod p)

1.

Again, the Möbius inversion yields∑
p≤x

Nk
p (fn,a) =

∑
d |n

∑
p≤x

d | p−1

a
p−1

d ≡1 (mod p)

∑
e | ( p−1

d , n
d )
μ(e) =

∑
d,e

de |n

dkμ(e)
∑
p≤x

de | p−1

a
p−1

d ≡1 (mod p)

1.

(4.1)

Now, we analyze the last inner sum in (4.1). For d = 1, the sum is equal to∑
p≤x

de | p−1

1

since the condition ap−1 ≡ 1 (mod p) is always valid by Fermat’s little theorem.
This contributes

1
ϕ(de)

π(x), (4.2)
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as x→ ∞. For d ≥ 2, on the one hand, de | p−1 implies that d | p−1, which together
with the condition

a
p−1

d ≡ 1 (mod p)

asserts that p splits completely in Q(ζd, a1/d)/Q. On the other hand, the condition
de | p − 1 tells us that the prime p (�= 2) splits completely in Q(ζde)/Q. Thus, for
d ≥ 2, the last inner sum in (4.1) is

#{p ≤ x; p splits completely in Q(ζde, a
1/d)/Q} ∼ 1

dϕ(de)
π(x), (4.3)

as x → ∞, where the asymptotic behavior is assured by the Chebotarev density
theorem for the Galois extension Q(ζde, a

1/d)/Q, and the fact that under given
conditions on a, [Q(ζde, a

1/d) : Q] = dϕ(de) (see [10, Lemma 1]). Applying (4.2)
and (4.3) in (4.1) and observing that dk−1 = 1 if d = 1, we conclude the proof.

(iii) It suffices to note that the sum is, in fact, equal to∑
p≤x

d=(p−1,n)

a
p−1

d ≡1 (mod p)

dk1dk2 .

Now, the result follows from part (ii).

Proof of Proposition 1.13. During the proof, we assume that p ≥ 5 is a prime
such that p � �NE, where NE is the conductor of E.

(i) Let Ep(Fp) be the set of Fp-points of Ep (the reduction modulo p of E).
Observe that Np(E[�]) = |Ep(Fp)[�]|, where Ep(Fp)[�] is the set of �-torsion points
of Ep(Fp). Note that since Ep(Fp)[�] ⊆ Ep[�] � Z/�Z×Z/�Z, Ep(Fp)[�] has either 1,
�, or �2 elements. Moreover, it is known that Np(E[�]) = |Ep(Fp)[�]| = �2 if and only
if p splits completely in the �-division field L = Q(E[�]) of E (see [11, Lemma 2]).

If Np(E[�]) = �, then for a prime P | p we can conclude that σP (the lift of FrobP

to Gal(Q(E[�])/Q)) can have a representation in the form(
1 b

0 c

)
∈ GL2(F�)

∖{(
1 0

0 1

)}
(4.4)

for some b ∈ F� and c ∈ F×
� . Thus, Np(E[�]) = � if and only if the Artin symbol

σp considered as a conjugacy class of GL2(F�) has an element of the form (4.4). By
the Jordan canonical form, a matrix of the form (4.4) is conjugate to either(

1 1

0 1

)
or

(
1 0

0 c

)
(4.5)

for some c ∈ F×
� \{1}. Now, from the classification of conjugacy classes of GL2(F�)

(see [9, Table 12.4, p. 714]), it may be computed that the number of elements of
such forms in GL2(F�) is �3 − 2� − 1. (Indeed, the “unipotent” instance in (4.5)
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contributes �2 − 1 conjugate elements, and the “rational not central” instances in
(4.5) contribute (�− 2)(�2 + �) elements.)

Let πE(x; �, i) for 0 ≤ i ≤ 2 be defined as

πE(x; �, i) = #{p ≤ x;Np(E[�]) = �i}. (4.6)

The above discussion, together with the Chebotarev density theorem and the
fact that by our assumption [Q(E[�]) : Q] = (�2 − �)(�2 − 1), yields that, as x→ ∞,

πE(x; �, 1) ∼ �3 − 2�− 1
(�2 − �)(�2 − 1)

π(x) and πE(x; �, 2) ∼ 1
(�2 − �)(�2 − 1)

π(x).

Hence, as x→ ∞,

πE(x; �, 0) ∼ �4 − 2�3 − �2 + 3�
(�2 − �)(�2 − 1)

π(x).

Clearly, it follows from (4.6) that∑
p≤x

Nk
p (E[�]) = 1k · πE(x; �, 0) + �k · πE(x; �, 1) + �2k · πE(x; �, 2).

Therefore, limx→∞ 1
π(x)

∑
p≤xN

k
p (E[�]) equals to

�4 − 2�3 − �2 + 3�
(�2 − �)(�2 − 1)

+ �k
�3 − 2�− 1

(�2 − �)(�2 − 1)
+ �2k 1

(�2 − �)(�2 − 1)
.

(ii) We have∑
p≤x

Nk
p (E[�]) =

∑
p≤x

p splits in K

Nk
p (E[�]) +

∑
p≤x

p is inert or ramifies in K

Nk
p (E[�]). (4.7)

It is known that if p is inert or ramifies in K, then p is supersingular [8, Theo-
rem 12, p. 182], which implies that (for p ≥ 5) |Ep(Fp)| = p+1 [17, Exercise 5.10(b),
p. 145] and the odd part of Ep(Fp) is cyclic [12, Theorem 1]. So, for odd �, we have
Np(E[�]) = (�, p+ 1). Following the proof of Proposition 1.12(i), we conclude that

lim
x→∞

1
π(x)

∑
p≤x

p is inert or ramifies in K

Nk
p (E[�]) =

1
2
Mk(�) =

�− 2
2(�− 1)

+ �k
1

2(�− 1)
.

(4.8)

For 0 ≤ i ≤ 2, we let

πs
E(x; �, i) = #{p ≤ x; p splits in K and Np(E[�]) = �i}.

It follows from the definition that∑
p≤x

p splits in K

Nk
p (E[�]) = 1k · πs

E(x; �, 0) + �k · πs
E(x; �, 1) + �2k · πs

E(x; �, 2).

(4.9)
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Recall that Np(E[�]) = �2 if and only if p splits completely in L = Q(E[�])
[11, Lemma 2]. Now, let pOK = (πpOK)(π̄pOK), then pOL splits completely in L if
and only if pOK splits completely in L. Also since, for odd �, L = Q(E[�]) = K(E[�])
[11, Lemma 6] and [K(E[�]) : K] = �2 − 1 (according to the assumption), by an
application of the Chebotarev density theorem for the extension K(E[�])/K, we
have

πs
E(x; �, 2) = #{p ≤ x; pOK splits in K and pOL splits in Q(E[�])}

=
1
2
#{p ⊂ OK ; N(p) ≤ x and p splits in K(E[�])} +O

(
x1/2

log x

)

=
πK(x)

2(�2 − 1)
(1 + o(1)) +O

(
x1/2

log x

)
.

The above asymptotic formula together with applications of the Chebotarev
density theorem and the fact that πK(x) ∼ π(x), as x→ ∞, result in

πs
E(x; �, 0) ∼ δs

0(�)π(x), πs
E(x; �, 1) ∼ δs

1(�)π(x), and

πs
E(x; �, 2) ∼ 1

2(�2 − 1)
π(x),

(4.10)

as x→ ∞, where the densities δs
0(�) and δs

1(�) exist following the discussion at the
beginning of (i). Hence, from (4.9) with k = 0, we have

δs
0(�) + δs

1(�) +
1

2(�2 − 1)
=

1
2
. (4.11)

Also, from (4.9) with k = 1, we have

δs
0(�) + �δs

1(�) +
�2

2(�2 − 1)
= lim

x→∞
1

π(x)

∑
p≤x

p splits in K

Np(E[�]). (4.12)

For a splitting prime p, writing pOK = (πpOK)(π̄pOK) and denoting the reduc-
tion (mod πpOK) of E by Eπp(OK/πpOK), we have

Np(E[�]) = |Ep(Fp)[�]| = |Eπp(OK/πpOK)[�]| = NπpOK (E[�]).

A similar identity holds by replacing πp with π̄p. Thus,

∑
p≤x

p splits in K

Np(E[�]) =
1
2

∑
p⊂OK

N(p)≤x

Np(E[�]) +O

(
x1/2

log x

)
.

From this and the fact that π(x) ∼ πK(x), as x→ ∞, we obtain

lim
x→∞

1
π(x)

∑
p≤x

p splits in K

Np(E[�]) = lim
x→∞

1
2πK(x)

∑
p⊂OK

N(p)≤x

Np(E[�]).
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Now, Theorem 1.7 yields that

lim
x→∞

1
2πK(x)

∑
p⊂OK

N(p)≤x

Np(E[�]) =
1
2
M1(GL1(OK/�OK),OK/�OK).

We know that K has class number 1 (see [17, Appendix C, Example 11.3.1]). There-
fore, by Theorem 1.3, we have

M1(GL1(OK/�OK),OK/�OK) = dK(�),

where dK(�) is the divisor function for the number field K. Applying this value in
(4.12) yields

δs
0(�) + �δs

1(�) +
�2

2(�2 − 1)
=

1
2
dK(�). (4.13)

Solving the system of Eqs. (4.11) and (4.13) yields

δs
0(�) =

�2 − (dK(�) − 2)�− dK(�)
2(�2 − 1)

and δs
1(�) =

dK(�) − 2
2(�− 1)

.

Employing these values in (4.10) together with (4.9), (4.8), and (4.7) yield the result.

5. Proof of Theorem 1.11

(i) Let F = Q and Y = {ζi
n; i = 1, . . . , n} be the set of zeros of the polynomial

fn,1(x) = xn − 1 in Q, where ζn denotes a primitive nth root of unity. Consider the
bijection ψ : X = Z/nZ → Y , where ψ(i) = ζi

n and note that φ : G = (Z/nZ)× →
Gal(F (Y )/F ) defined by φ(d) = φd, where φd(ζj

n) = ζjd
n , is a group isomorphism.

Thus, from Theorem 1.7 and Proposition 1.12(i) we have

Mk(G,X) = lim
x→∞

1
π(x)

∑
p≤x

Nk
p (fn,1) = Mk(n).

(ii) Let a be a square-free positive integer if n is odd, and let a be a square-free
positive integer such that a � n if n is even. Let the number a1/n be a real solution
of the equation xn − a = 0. Let F = Q and Y = {(a1/nζi

n, ζ
j
n); 1 ≤ i, j ≤ n} be the

set of zeros of the system of polynomials fn,a(x) = xn − a and fn,1(y) = yn − 1 in
Q × Q. Consider the bijection ψ : X = ({1} × Z/nZ) × ({0} × Z/nZ) → Y , where
ψ(((1, i), (0, j))) = (a1/nζi

n, ζ
j
n) and note that φ : G → Gal(F (Y )/F ) defined by

φ
((1 0

b d

))
= φb,d is an isomorphism, where φb,d((a1/nζi

n, ζ
j
n)) = (a1/nζb+id

n , ζjd
n ).

We note that Np(Y ) is the number of solutions (x, y) of xn ≡ a (mod p) and
yn ≡ 1 (mod p), which is equal to Np(fn,a)Np(fn,1). Thus, from Theorem 1.7, we
have

Mk(G,X) = lim
x→∞

1
π(x)

∑
p≤x

Nk
p (Y ) = lim

x→∞
1

π(x)

∑
p≤x

(Np(fn,a)Np(fn,1))k,

where the limit on the right can be computed by Proposition 1.12(iii).
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(iii) For � �= 2, let E[�] be the �-torsion subgroup of the elliptic curve E17a3

(with Cremona label 17a3), and, for � = 2, let E[�] be corresponded to E11a2 (with
Cremona label 11a2). Then Gal(Q(E[�])/Q) � GL2(Z/�Z) (see [18] for details).

For such E, let F = Q and Y = E[�]. Consider the bijection ψ : X =
Z/�Z × Z/�Z → E[�] and note that G = GL2(Z/�Z) �φ Gal(F (Y )/F ). Thus,
from Theorem 1.7 and Proposition 1.13(i), we have

Mk(G,X) = lim
x→∞

1
π(x)

∑
p≤x

Nk
p (E[�])

=
�4 − 2�3 − �2 + 3�
(�2 − �)(�2 − 1)

+ �k
�3 − 2�− 1

(�2 − �)(�2 − 1)
+ �2k 1

(�2 − �)(�2 − 1)
.

6. Proof of Theorem 1.4

(i) Since the corresponding action of Gal(F (Gm[n])/F ) on Gm[n] is a realization
of the canonical action of G = (Z/nZ)× on X = Z/nZ, the assertion follows from
Theorem 1.11(i) immediately.

(ii) Let T over Q be defined by the equation x2 − my2 = 1, where m is a
square-free integer. Then

T[n] =
{(

ζi
n + ζ−i

n

2
,
ζi
n − ζ−i

n

2
√
m

)
; 1 ≤ i ≤ n

}
is the set of n-torsion points of T. By [2, Lemma 2.1], we know that there is a
constant C such that for (n,C) = 1, we have Q(T[n]) = Q(ζn +ζ−1

n , (ζn−ζ−1
n )/

√
m)

and [Q(T[n]) : Q] = ϕ(n). Thus, for 1 ≤ d ≤ n with (d, n) = 1, the maps

σd

(
ζn + ζ−1

n

2
,
ζn − ζ−1

n

2
√
m

)
=
(
ζd
n + ζ−d

n

2
,
ζd
n − ζ−d

n

2
√
m

)
give the Q-automorphisms of Q(T[n]), and therefore the action of Gal(Q(T[n])/Q)
on T[n] is a realization of the action of G = (Z/nZ)× on X = Z/nZ. Now, the
result follows from Theorem 1.11(i).

(iii) Let E be a non-CM elliptic curve defined over F , and let n =
∏

� � be
square-free. By Serre’s open image theorem [13], there exists a constant C such
that for (�, C) = 1, we have Gal(F (E[�])/F ) � GL2(Z/�Z). We note that

Gal(F (E[n])/F ) �
∏
� |n

Gal(F (E[�])/F )

acts on
∏

� |n(Z/�Z × Z/�Z)k componentwise (i.e. the action is the product of the
actions of Gal(F (E[�])/F ) on (Z/�Z × Z/�Z)k). Thus, we have

Mk(E/F, n) =
∏
� |n

Mk(E/F, �). (6.1)

Now, applying (6.1) together with Theorem 1.11(iv) completes the proof.
(iv) The proof follows along the same lines as (iii) via employing Deuring’s

theorem [4] on the image of Gal(K(E[�])/K) and Proposition 1.13(ii).
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