On the moments of torsion points modulo primes and their applications

Amir Akbary* and Peng-Jie Wong ${ }^{\dagger}$
Department of Mathematics and Computer Science
University of Lethbridge
Lethbridge, Alberta T1K 3M4, Canada
*amir.akbary@uleth.ca
${ }^{\dagger}$ pengjie.wong@uleth.ca

Received 7 November 2019
Accepted 17 August 2020
Published 30 September 2020

Let $\mathbb{A}[n]$ be the group of n-torsion points of a commutative algebraic group \mathbb{A} defined over a number field F. For a prime \mathfrak{p} of F, we let $N_{\mathfrak{p}}(\mathbb{A}[n])$ be the number of $\mathbb{F}_{\mathfrak{p}}$-solutions of the system of polynomial equations defining $\mathbb{A}[n]$ when reduced modulo \mathfrak{p}. Here, $\mathbb{F}_{\mathfrak{p}}$ is the residue field at \mathfrak{p}. Let $\pi_{F}(x)$ denote the number of primes \mathfrak{p} of F such that $N(\mathfrak{p}) \leq x$. We then, for algebraic groups of dimension one, compute the k th moment limit

$$
M_{k}(\mathbb{A} / F, n)=\lim _{x \rightarrow \infty} \frac{1}{\pi_{F}(x)} \sum_{N(\mathfrak{p}) \leq x} N_{\mathfrak{p}}^{k}(\mathbb{A}[n])
$$

by appealing to the Chebotarev density theorem. We further interpret this limit as the number of orbits of the action of the absolute Galois group of F on k copies of $\mathbb{A}[n]$ by an application of Burnside's Lemma. These concrete examples suggest a possible approach for determining the number of orbits of a group acting on k copies of a set.

Keywords: Number of torsion points on reduction mod p; group action; Burnside Lemma; Chebotarev density theorem.

Mathematics Subject Classification 2020: 11N45, 11G05, 11N13, 11R18

1. Introduction

Let \mathbb{A} be a commutative algebraic group defined over a number field F. We let $\mathbb{A}[n]$ be the group of n-torsion points of \mathbb{A} and $F(\mathbb{A}[n])$ be the field generated by adding the coordinates of $\mathbb{A}[n]$ to F. For a prime \mathfrak{p} of F that is unramified in $F(\mathbb{A}[n]) / F$, let $\mathbb{F}_{\mathfrak{p}}$ denote the residue field at \mathfrak{p}, and let $N_{\mathfrak{p}}(\mathbb{A}[n])$ be the number of $\mathbb{F}_{\mathfrak{p}}$-solutions of the system of polynomial equations defining $\mathbb{A}[n]$ when reduced modulo \mathfrak{p}. If \mathfrak{p} ramifies, we set $N_{\mathfrak{p}}(\mathbb{A}[n])=0$. In order to investigate the average size of $N_{\mathfrak{p}}(\mathbb{A}[n])$, we set

$$
\begin{equation*}
M(\mathbb{A} / F, n)=\lim _{x \rightarrow \infty} \frac{1}{\pi_{F}(x)} \sum_{N(\mathfrak{p}) \leq x} N_{\mathfrak{p}}(\mathbb{A}[n]), \tag{1.1}
\end{equation*}
$$

where $\pi_{F}(x)$ denotes the number of primes \mathfrak{p} of F whose norm $N(\mathfrak{p})$ do not exceed x.

In [2], Chen and Kuan investigated the average size of the arithmetic function $N_{\mathfrak{p}}(\mathbb{A}[n])$ by determining $M(\mathbb{A} / F, n)$ as the number of orbits of the group $\operatorname{Gal}(F(\mathbb{A}[n]) / F)$ acting on the n-torsion points $\mathbb{A}[n]$ (see [2, Theorem 1.2]). Moreover, they showed that for commutative algebraic groups of dimension one other than \mathbb{G}_{a}, the value of $M(\mathbb{A} / F, n)$ is given by a divisor function. More precisely, it is known that a commutative algebraic group of dimension one over F is either the additive group \mathbb{G}_{a}, the multiplicative group \mathbb{G}_{m}, an algebraic torus of dimension one, or an elliptic curve. For \mathbb{G}_{a} we have $M\left(\mathbb{G}_{a} / F, n\right)=1$. For other cases, the following assertions are proved in [2, Corollaries 1.3, 1.5 and Theorems 1.4, 1.6]. Here, ζ_{n} denotes a primitive nth root of unity and $d(n)$ is the number of positive divisors of n.

Theorem 1.1 (Chen-Kuan). (i) Assume that $F \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}$. Then $M\left(\mathbb{G}_{m} /\right.$ $F, n)=d(n)$.
(ii) Let \mathbb{T} denote a one-dimensional torus over \mathbb{Q}. Then there is a positive constant $C:=C(\mathbb{T})$, depending only on \mathbb{T}, such that for n with $(n, C)=1$, one has $M(\mathbb{T} / \mathbb{Q}, n)=d(n)$.
(iii) Assume that E is a non-CM elliptic curve defined over F. Then there is a positive constant $C:=C(E, F)$, depending only on E and F, such that for n with $(n, C)=1$, one has $M(E / F, n)=d(n)$.
(iv) Assume that E is an elliptic curve defined over F which has complex multiplication by an order in an imaginary quadratic field K. Assume $F K \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}$. Then there is a positive constant $C:=C(E, F)$, depending only on E and F, such that for n with $(n, 2 C)=1$, one has

$$
M(E / F, n)= \begin{cases}d_{K}(n) & \text { if } K \subseteq F \\ \frac{1}{2}\left(d_{K}(n)+d(n)\right) & \text { if } K \nsubseteq F\end{cases}
$$

Here, $d_{K}(n)$ denotes the number of ideal divisors of the ideal $n \mathcal{O}_{K}$ in \mathcal{O}_{K}, the ring of integers of K. The conditions $F K \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}$ and $(n, 2)=1$ only apply to the case that $K \nsubseteq F$.

Remark 1.2. (i) In [2], the function $N_{\mathfrak{p}}(\mathbb{A}[n])$ is defined, for a prime \mathfrak{p} of good reduction of \mathbb{A}, as the number of n-torsion points in the group of $\mathbb{F}_{\mathfrak{p}}$-rational points of the reduction modulo \mathfrak{p} of \mathbb{A}. Our definition of $N_{\mathfrak{p}}(\mathbb{A}[n])$ may differ from that definition only at finitely many prime ideals \mathfrak{p}, and thus it will not affect the assertions of Theorem 1.1.
(ii) Parts (iii) and (iv) of Theorem 1.1 are also stated and proved in 6, Corollaries 1,3 , and 4].
(iii) The conditions $F K \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}$ and $(n, 2)=1$ in part (iv) of Theorem 1.1 is not clearly stated in [2, Theorem 1.6]; however, these conditions are used in the proof of Theorem 1.6 in [2].
(iv) In [2, Theorem 1.4], it is also proved that the constant C in part (ii) of Theorem 1.1 can be taken as 1 if $m>0$ and as D_{m} if $m<0$, where m is
the square-free integer in the equation $x^{2}-m y^{2}=1$ defining \mathbb{T}, and D_{m} is the discriminant of the quadratic field $\mathbb{Q}(\sqrt{m})$. Also, it is shown, for $F=\mathbb{Q}$, that in part (iv) of Theorem 1.1 the constant C can be taken as $6 \Delta_{E}$, where Δ_{E} is the discriminant of E (see [2, Theorem 1.6]). In addition, the extensions of Theorem 1.1 to the case of function fields are given in 3 .

The proof of the first three parts of Theorem 1.1 can be unified and simplified considerably if one interprets the limit (1.1) as the number of the orbits of $\mathrm{GL}_{m}(\mathbb{Z} / n \mathbb{Z})$, the group of invertible $m \times m$ matrices with entries in $\mathbb{Z} / n \mathbb{Z}$, acting on the product of m copies of $\mathbb{Z} / n \mathbb{Z}$, when $m=1$ or 2 . In this direction, the following can be considered as a generalization of the underlying result in parts (i), (ii), and (iii) of Theorem 1.1

Theorem 1.3. Let L be a number field of class number 1. Then the number of orbits of $\mathrm{GL}_{m}\left(\mathcal{O}_{L} / n \mathcal{O}_{L}\right)$ acting on $\left(\mathcal{O}_{L} / n \mathcal{O}_{L}\right)^{m}$ is $d_{L}(n)$, where $d_{L}(\cdot)$ is the number field analogue of the divisor function.

In another direction, as a consequence of the results of this paper, we give a generalization of Theorem 1.1 by considering the k th moment limit

$$
M_{k}(\mathbb{A} / F, n)=\lim _{x \rightarrow \infty} \frac{1}{\pi_{F}(x)} \sum_{N(\mathfrak{p}) \leq x} N_{\mathfrak{p}}^{k}(\mathbb{A}[n])
$$

Note that, for every $k \geq 1, M_{k}\left(\mathbb{G}_{a} / F, n\right)=1$. In order to state our result for other algebraic groups of dimension one, we need to introduce the following notation. For $k \in \mathbb{Z}^{\geq 0}$ and $n \in \mathbb{N}$, let

$$
M_{k}(n):=\sum_{\substack{d, e \\ d e \mid n}} \frac{d^{k} \mu(e)}{\varphi(d e)},
$$

where μ is the Möbius function, and φ is the Euler function. Observe that for $a, b \in \mathbb{N}$ and integer $k \geq 0$, by letting

$$
P_{k}(a, b)=\frac{a^{k}-b^{k}}{a-b}
$$

we have

$$
M_{k}(n)=\prod_{\ell^{s} \| n}\left(\sum_{e=1}^{s} P_{k}\left(\ell^{e}, \ell^{e-1}\right)+1\right)
$$

Note that $M_{0}(n)=1$ and $M_{1}(n)=d(n)$. Thus, $M_{k}(n)$ can be considered as a generalization of the divisor function.

We have the following generalization of Theorem 1.1
Theorem 1.4. (i) Assume that $F \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}$. Then $M_{k}\left(\mathbb{G}_{m} / F, n\right)=M_{k}(n)$.
(ii) Let \mathbb{T} be a one-dimensional torus defined over \mathbb{Q}. Then there is a positive constant $C:=C(\mathbb{T})$, depending only on \mathbb{T}, such that for n with $(n, C)=1$, we have $M_{k}(\mathbb{T} / \mathbb{Q}, n)=M_{k}(n)$.
(iii) Assume that E is a non-CM elliptic curve defined over F. Then there is a positive constant $C:=C(E, F)$, depending only on E and F, such that for square-free n with $(n, C)=1$, we have

$$
M_{k}(E / F, n)=\prod_{\ell \mid n} \frac{\ell^{2 k-1}+\ell^{k-1}\left(\ell^{3}-2 \ell-1\right)+\ell^{3}-2 \ell^{2}-\ell+3}{(\ell-1)^{2}(\ell+1)}
$$

(iv) Assume that E is an elliptic curve defined over \mathbb{Q} that has complex multiplication by \mathcal{O}_{K}. Then there is a positive constant $C:=C(E)$, depending only on E, such that for prime ℓ with $(\ell, 2 C)=1$, we have

$$
M_{k}(E / \mathbb{Q}, \ell)=\frac{\ell^{2 k}+\left(d_{K}(\ell)-1\right)\left(\ell^{k+1}+\ell^{k}\right)+2 \ell^{2}-\left(d_{K}(\ell)-1\right) \ell-\left(d_{K}(\ell)+2\right)}{2\left(\ell^{2}-1\right)} .
$$

Remark 1.5. For $k \geq 3$, the ℓ-factor in the product expression for $M_{k}(E / F, n)$ in part (iii) of Theorem 1.4 is a polynomial function of degree $2 k-4$ of ℓ with integral coefficients. For $k=1$ (respectively, $k=2$), the ℓ-factor is 2 (respectively, $\ell+3$). The expression in part (iv) is a polynomial function of degree $2 k-2$ of ℓ with half-integral coefficients.

Theorem [1.4 similarly to Theorem [1.1, is intimately related to a group theory result. In order to describe the connection, we introduce a more general setup.

Let \bar{F} denote the algebraic closure of a number field F. Let Y be an algebraic set (affine or projective), given as the set of \bar{F}-solutions of a finite family of polynomial equations E_{Y} defined over the ring of integers \mathcal{O}_{F} of F. (If Y is projective, "polynomial equations" means "homogeneous polynomial equations" and " $\mathbb{F}_{\mathfrak{p}}$-solutions" means "projective $\mathbb{F}_{\mathfrak{p}}$-solutions"). For an unramified prime ideal \mathfrak{p} in the extension $F(Y) / F$, we let

$$
N_{\mathfrak{p}}(Y):=\#\left\{\text { solutions of } E_{Y}(\bmod \mathfrak{p}) \text { in } \mathbb{F}_{\mathfrak{p}}\right\}
$$

If Y is the set of \bar{F}-solutions of a single polynomial f, we also denote $N_{\mathfrak{p}}(Y)$ by $N_{\mathfrak{p}}(f)$.

Remark 1.6. Theorem 1.2(c) of [15] provides a generalization of Theorem 1.1] and another interpretation for the limit (1.1) for the case $F=\mathbb{Q}$. For an algebraic set Y defined over \mathbb{Z}, let $N_{p}(Y)$ be as defined above. Then if the dimension $\operatorname{dim} Y(\mathbb{C}) \leq d_{0}$, one has

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi\left(x^{d_{0}+1}\right)} \sum_{p \leq x} N_{p}(Y)=r_{0}(Y)
$$

where $r_{0}(Y)$ is the number of \mathbb{Q}-irreducible components of dimension d_{0} of Y over \mathbb{Q}. Here, $\pi(x):=\pi_{\mathbb{Q}}(x)$. Note that for $d_{0}=0$, the above limit is analogous to the one evaluated in Theorem 1.1 For example, for the algebraic set Y defined by $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$, where $\Phi_{d}(x)$ is the d th cyclotomic polynomial, we have $r_{0}(Y)=d(n)$.

We now assume that Y has dimension zero (so it is finite) and let $M_{k}(G, Y)$ be the number of orbits of $G=\operatorname{Gal}(F(Y) / F)$ acting on k copies of Y. Since there are only finitely many prime ideals that ramify in $F(Y) / F$, for a ramified prime ideal \mathfrak{p} we define $N_{\mathfrak{p}}(Y)=0$ for convenience. The following main result represents $M_{k}(G, Y)$ as an asymptotic average of the values $N_{\mathfrak{p}}^{k}(Y)$ as \mathfrak{p} varies over the set of primes of F.

Theorem 1.7. Let Y be an algebraic set of dimension zero defined over $F, G=$ $\operatorname{Gal}(F(Y) / F)$, and $M_{k}(G, Y)$ as defined above. Then, for $k \in \mathbb{N}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi_{F}(x)} \sum_{N(\mathfrak{p}) \leq x} N_{\mathfrak{p}}^{k}(Y)=M_{k}(G, Y)
$$

The above theorem can be considered as a generalization of a classical result due to Frobenius and Kronecker (see [14, p. 436]).

Theorem 1.8 (Frobenius-Kronecker). For an irreducible polynomial $f \in \mathbb{Z}[x]$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}(f)=1
$$

Indeed, let $F=\mathbb{Q}, Y=$ the set of roots of f in $\overline{\mathbb{Q}}, k=1$, and $G=\operatorname{Gal}(F(Y) / F)$ in Theorem 1.7. Then, observing that the action of the Galois group on the set of roots of f is transitive, we obtain Theorem 1.8 as a corollary of Theorem 1.7. Note that although the action of G on Y in Theorem 1.8 is transitive, the action on $k \geq 2$ copies of Y is not transitive if $|Y|>1$. Thus, determining $M_{k}(G, Y)$ appears to be a nontrivial problem for $k \geq 2$, even when Y is defined by an irreducible polynomial.

As a direct consequence of Theorem 1.7, we establish the existence of an asymptotic distribution function for the arithmetic function $N_{\mathfrak{p}}(Y)$.

Corollary 1.9. Let Y be an algebraic set of dimension zero defined over F. Then the arithmetic function $N_{\mathfrak{p}}(Y)$ possesses an asymptotic distribution function. In other words, the sequence

$$
H_{n}(z)=\frac{\#\left\{\mathfrak{p} ; N(\mathfrak{p}) \leq n \text { and } N_{\mathfrak{p}}(Y) \leq z\right\}}{\pi_{F}(n)}
$$

converges weakly to a distribution function H, as $n \rightarrow \infty$ (i.e. there is a distribution function H where $H_{n}(z)$ converges point-wise to $H(z)$ at any continuity point z of $H)$. Moreover, for complex t-values with $|t|<1$,

$$
\varphi_{H}(t)=\lim _{n \rightarrow \infty} \frac{1}{\pi_{F}(n)} \sum_{N(\mathfrak{p}) \leq n} e^{i t N_{\mathfrak{p}}(Y)}=\sum_{k=0}^{\infty} M_{k}(G, Y) \frac{(i t)^{k}}{k!}
$$

where $G=\operatorname{Gal}(F(Y) / Y)$, and $\varphi_{H}(t)$ is the characteristic function of H.
We next describe that how Theorem 1.7 can be exploited to answer some pure group-theoretic questions. A fundamental question regarding the action of a group
G on a set X is to determine the number of orbits in X under the action of G. Moreover, if the number of orbits in X under the action of G is known, one may further ask whether there exists a formula for $M_{k}(G, X)$, the number of orbits in k copies of X under the action of G. Indeed, both are deep questions. Here, we show that how Theorem 1.7 can be employed in computing $M_{k}(G, X)$. The following definition describes our setup.

Definition 1.10. An action of a finite group G on a finite set X is called "arithmetically realizable over a number field $F^{\prime \prime}$, if there is a set Y of solutions of a finite family of equations defined over \mathcal{O}_{F}, a bijection ψ from X to Y, and a group isomorphism ϕ from G to $\operatorname{Gal}(F(Y) / F)$ such that $\psi(g x)=\phi(g) \psi(x)$.

Inspiring by this definition, we can rewrite Theorem 1.7 as the following.
Theorem 1.7 (Second Version). Suppose that the finite group G has an action on a finite set X that is arithmetically realizable over F. Let Y be as given in Definition 1.10. Then, for any $k \in \mathbb{N}$, we have

$$
M_{k}(G, X)=\lim _{x \rightarrow \infty} \frac{1}{\pi_{F}(x)} \sum_{N(\mathfrak{p}) \leq x} N_{\mathfrak{p}}^{k}(Y)
$$

This formulation of Theorem 1.7 provides a line of approach in computing $M_{k}(G, X)$ for an arithmetically realizable action. Of course, more generally, one can consider the problem of computing $M_{k}(G, X)$ for an action of a group G on a set X. In this generality, the problem appears to be difficult, and we refer the reader to Cameron's survey [1] for results regarding the computation of $M_{k}(G, X)$ when the action of a permutation group G (finite or not) on a set X is oligomorphic (i.e. G has only finitely many orbits in X^{k} for all k).

Our purpose here is to demonstrate by some examples that for arithmetically realizable actions a number-theoretic approach via Theorem 1.7 and the Chebotarev density theorem might help one to compute $M_{k}(G, X)$. For instance, as a consequence of Propositions 1.12 and 1.13 we have the following explicit values for $M_{k}(G, X)$. (In all cases below, the actions are considered multiplicatively and in (ii) also componentwise.)

Theorem 1.11. (i) If $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$and $X=\mathbb{Z} / n \mathbb{Z}$, we have $M_{k}(G, X)=M_{k}(n)$.
(ii) Let

$$
\begin{aligned}
& \quad \qquad\left\{\left(\left(\begin{array}{ll}
1 & 0 \\
b & d
\end{array}\right) ; b \in \mathbb{Z} / n \mathbb{Z} \text { and } d \in(\mathbb{Z} / n \mathbb{Z})^{\times}\right\} \simeq(\mathbb{Z} / n \mathbb{Z})^{\times} \ltimes \mathbb{Z} / n \mathbb{Z} .\right. \\
& \\
& \quad \text { If } X=(\{1\} \times \mathbb{Z} / n \mathbb{Z}) \times(\{0\} \times \mathbb{Z} / n \mathbb{Z}) \text {, then } M_{k}(G, X)=M_{2 k-1}(n) . \\
& \text { (iii) } \text { For prime } \ell \text {, if } G=\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z}) \text { and } X=\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z} \text {, then }
\end{aligned}
$$

$$
M_{k}(G, X)=\frac{\ell^{4}-2 \ell^{3}-\ell^{2}+3 \ell}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{k} \frac{\ell^{3}-2 \ell-1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{2 k} \frac{1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}
$$

The proof of Theorem 1.11relies on explicit computations of the moment limit in Theorem 1.7for certain algebraic sets Y via the prime number theorem in arithmetic progressions and more generally by the Chebotarev density theorem. We summarize these concrete evaluations in Propositions 1.12 and 1.13 . For $n \in \mathbb{N}$ and integer $a \in \mathbb{Z}$, let

$$
f_{n, a}(x):=x^{n}-a .
$$

We have the following.
Proposition 1.12. Let n be a natural number. Let a be a square-free positive integer if n is odd, and let a be a square-free positive integer such that $a \nmid n$ if n is even. Then the following estimates hold:
(i) For $k \in \mathbb{Z}^{\geq 0}, n \in \mathbb{N}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}\left(f_{n, 1}\right)=M_{k}(n)
$$

(ii) For $k \in \mathbb{N}, n \in \mathbb{N}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}\left(f_{n, a}\right)=M_{k-1}(n)
$$

(iii) For any $k_{1} \in \mathbb{N}, k_{2} \in \mathbb{Z}^{\geq 0}$, we have

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k_{1}}\left(f_{n, a}\right) N_{p}^{k_{2}}\left(f_{n, 1}\right)=M_{k_{1}+k_{2}-1}(n)
$$

We next let E be an elliptic curve defined over \mathbb{Q}. For prime ℓ let $E[\ell]$ denote the group of ℓ-torsion points of E. The following assertions hold.

Proposition 1.13. (i) Assume that $\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \simeq \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$. Then

$$
\begin{aligned}
\lim _{x \rightarrow \infty} & \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}(E[\ell]) \\
& =\frac{\ell^{4}-2 \ell^{3}-\ell^{2}+3 \ell}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{k} \frac{\ell^{3}-2 \ell-1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{2 k} \frac{1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}
\end{aligned}
$$

(ii) Let E have complex multiplication by \mathcal{O}_{K}, the ring of integers of an imaginary quadratic field K. For a fixed odd prime ℓ, assume that $\operatorname{Gal}(K(E[\ell]) / K) \simeq$ $\mathrm{GL}_{1}\left(\mathcal{O}_{K} / \ell \mathcal{O}_{K}\right)$. Then

$$
\begin{aligned}
\lim _{x \rightarrow \infty} & \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}(E[\ell]) \\
& =\frac{2 \ell^{2}-\left(d_{K}(\ell)-1\right) \ell-\left(d_{K}(\ell)+2\right)}{2\left(\ell^{2}-1\right)}+\ell^{k} \frac{d_{K}(\ell)-1}{2(\ell-1)}+\ell^{2 k} \frac{1}{2\left(\ell^{2}-1\right)}
\end{aligned}
$$

where $d_{K}(\ell)$ is the number field analogue of the divisor function. More precisely, $d_{K}(\ell)=4,3,2$ if ℓ splits, ramifies, or remains inert in K, respectively.

In the rest of this paper, we prove our results. The structure of this paper is as follows. In Sec. 2, we give a proof of Theorem 1.3. Section 3 provides a proof of our general result, Theorem 1.7, and Corollary 1.9 In Sec. 4. we compute some concrete examples of the k th moment in Theorem 1.7 by appealing to the prime number theorem in arithmetic progressions and the Chebotarev density theorem (Propositions 1.12 and 1.13). Combining the results proved in Secs. 3 and 4 in Sec. 5, by proving Theorem 1.11, we compute the number of orbits of certain finite groups acting on the product of k copies of certain finite sets. Finally, in Sec. 6 by applying the group-theoretic results proved in Sec. 5 and also Proposition 1.13 (ii), we prove Theorem 1.4.

2. Proof of Theorem 1.3

Proof. We first give a proof for $L=\mathbb{Q}$ and then we show how the proof can be adjusted to the case of a number field L of class number one. We let $\mathrm{M}_{m \times 1}(\mathbb{Z} / n \mathbb{Z})$ be the collection of $m \times 1$ column vectors with entries in $\mathbb{Z} / n \mathbb{Z}$.

For $r \mid n$, a positive divisor r of n, the orbit of $\mathbf{r}=(r 0 \cdots 0)^{T} \in \mathrm{M}_{m \times 1}(\mathbb{Z} / n \mathbb{Z})$ is $\langle\mathbf{r}\rangle=\left\{A \mathbf{r} ; A \in \mathrm{GL}_{m}(\mathbb{Z} / n \mathbb{Z})\right\}$. (By abuse of notation here we used r both as an integer and also as an element of $\mathbb{Z} / n \mathbb{Z}$.) Note that if $A \mathbf{r}=\mathbf{s}$, where $\mathbf{s}=\left(s_{1} s_{2} \cdots s_{m}\right)^{T}$, then $(r, n) \mid\left(s_{1}, \ldots, s_{m}, n\right)$. Also since $A^{-1} \mathbf{s}=\mathbf{r}$, we have $\left(s_{1}, \ldots, s_{m}, n\right) \mid(r, n)$. So, $A \mathbf{r}=\mathbf{s}$ implies that $(r, n)=\left(s_{1}, \ldots, s_{m}, n\right)$.

The above observation shows that for two distinct positive divisors of n like r_{1} and r_{2} the orbits $\left\langle\mathbf{r}_{1}\right\rangle$ and $\left\langle\mathbf{r}_{2}\right\rangle$ are disjoint. Indeed, if the two orbits intersect, for instance $A \mathbf{r}_{1}=B \mathbf{r}_{2}=\mathbf{s}$ for some $A, B \in \mathrm{GL}_{m}(\mathbb{Z} / n \mathbb{Z})$, then $\left(r_{1}, n\right)=\left(r_{2}, n\right)=$ $\left(s_{1}, \ldots, s_{m}, n\right)$, and thus $r_{1}=r_{2}$.

Next, we note that the two elements $A \mathbf{r}$ and $B \mathbf{r}$ in $\langle\mathbf{r}\rangle$ are equal if and only if $(n / r) \mid a_{i 1}-b_{i 1}$ for $1 \leq i \leq m$. Since the map sending $A \in \mathrm{GL}_{m}(\mathbb{Z} / n \mathbb{Z})$ to $A \in \mathrm{GL}_{m}(\mathbb{Z} /(n / r) \mathbb{Z})$ is onto, then for $r \neq n$ with $r \mid n$ the cardinality of $\langle\mathbf{r}\rangle$ is

$$
\begin{aligned}
& \Psi(n / r) \\
& \quad:=\#\left\{\left(\begin{array}{c}
a_{11} \\
\vdots \\
a_{m 1}
\end{array}\right) \in \mathrm{M}_{m \times 1}(\mathbb{Z} /(n / r) \mathbb{Z}) ;\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m m}
\end{array}\right) \in \mathrm{GL}_{m}(\mathbb{Z} /(n / r) \mathbb{Z})\right\} .
\end{aligned}
$$

For $r=n$, we have $\langle\mathbf{r}\rangle=1$, and so we define $\Psi(1)=1$. Observe that, for a prime p, since the $p^{m}-1$ possibilities for the first column of matrices in $\mathrm{GL}_{m}(\mathbb{Z} / p \mathbb{Z})$ lift to $\left(p^{\alpha}\right)^{m}-\left(p^{\alpha-1}\right)^{m}$ possibilities for the first column of matrices in $\mathrm{GL}_{m}\left(\mathbb{Z} / p^{\alpha} \mathbb{Z}\right)$, we have $\Psi\left(p^{\alpha}\right)=\left(p^{\alpha}\right)^{m}-\left(p^{\alpha-1}\right)^{m}$.

We claim that $\sum_{r \mid n} \Psi(n / r)=n^{m}$. Since Ψ is multiplicative, in order to show this, it would suffice to show it for $n=p^{\alpha}$, a prime power. We have

$$
\sum_{r \backslash p^{\alpha}} \Psi\left(p^{\alpha} / r\right)=\left(\left(p^{\alpha}\right)^{m}-\left(p^{\alpha-1}\right)^{m}\right)+\cdots+\left(p^{m}-1\right)+1=\left(p^{\alpha}\right)^{m}
$$

Now, since $\sum_{r \mid n} \Psi(n / r)=n^{m}$, we conclude that the sets $\langle\mathbf{r}\rangle$ as r varies over distinct divisors of n form a partition of $(\mathbb{Z} / n \mathbb{Z})^{m}$, and thus the number of orbits is equal to $d(n)$.

Next, for a number field L of class number one, we note that for any integral ideal $\mathfrak{r} \mid(n)$ of \mathcal{O}_{L}, we may choose a representative r so that $\mathfrak{r}=(r)$. To process the argument as the case $L=\mathbb{Q}$, it suffices to note that if $r^{\prime}=u r$ for some unit $u \in \mathcal{O}_{L}$, there is a matrix $A \in \operatorname{GL}_{m}\left(\mathcal{O}_{L} / n \mathcal{O}_{L}\right)$ whose $(1,1)$-entry is u such that $A \mathbf{r}=\mathbf{r}^{\prime}$, where $\mathbf{r}=\left(\begin{array}{llll}r & 0 & \cdots & 0\end{array}\right)^{T}$ and $\mathbf{r}^{\prime}=\left(\begin{array}{llll}r^{\prime} & 0 & \cdots & 0\end{array}\right)^{T}$. This, in particular, implies that

$$
\left\{A \mathbf{r} ; A \in \mathrm{GL}_{m}\left(\mathcal{O}_{L} / n \mathcal{O}_{L}\right)\right\}=\left\{A \mathbf{r}^{\prime} ; A \in \mathrm{GL}_{m}\left(\mathcal{O}_{L} / n \mathcal{O}_{L}\right)\right\}
$$

Remark 2.1. For $L=\mathbb{Q}$ and $k=1$, a short proof of Theorem 1.3 can be obtained by noticing that the group action can be realized as the action of the Galois group of $x^{n}-1$ on the nth roots of unity. Now, the result follows since the roots of the d th cyclotomic polynomial $\Phi_{d}(x)$ are those roots of unity that have exactly order d, the cyclotomic polynomials $\Phi_{d}(x)$ are irreducible over \mathbb{Q}, and $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$.

3. Proofs of Theorem 1.7 and Corollary 1.9

To prove Theorem 1.7 we require "Burnside's Lemma" stated as follows.
Lemma 3.1 (Burnside's Lemma). Let G be a finite group acting on a finite set X, and let $\chi(g)$ be the number of fixed points of g on X. Then the number of orbits of G in X is equal to

$$
\frac{1}{|G|} \sum_{g \in G} \chi(g)
$$

Proof. See [16, Proposition 1.1].

Now, we are in a position to prove Theorem 1.7
Proof of Theorem 1.7. Write $L=F(Y)$. Let \mathfrak{p} denote an unramified prime in L / F, and let \mathfrak{P} be a prime above \mathfrak{p}. Let E_{Y} be the family of polynomial equations defining Y. For any prime \mathfrak{p} (respectively, \mathfrak{P}) of F (respectively, L), we let $S_{Y, \mathfrak{p}}$ (respectively, $\left.S_{Y, \mathfrak{P}}\right)$ denote the set of solutions of $E_{Y}(\bmod \mathfrak{p})$ (respectively, $\left.E_{Y}(\bmod \mathfrak{P})\right)$ in the residue field $\mathcal{O}_{F} / \mathfrak{p}\left(\right.$ respectively, $\left.\mathcal{O}_{L} / \mathfrak{P}\right)$.

For any prime $\mathfrak{P} \mid \mathfrak{p}$, we write $\operatorname{Frob}_{\mathfrak{P}}$ for the generator of $\operatorname{Gal}\left(\left(\mathcal{O}_{L} / \mathfrak{P}\right) /\left(\mathcal{O}_{F} / \mathfrak{p}\right)\right)$. Then we have

$$
N_{\mathfrak{p}}(Y)=\left|S_{Y, \mathfrak{p}}\right|=\#\left\{y \in S_{Y, \mathfrak{P}} ; y \text { is fixed by Frob } \mathfrak{P}\right\}
$$

where the last quantity is independent of the choice of \mathfrak{P}.
Now, let $\sigma_{\mathfrak{P}}$ be the lift of $\operatorname{Frob}_{\mathfrak{P}}$ to $\operatorname{Gal}(F(Y) / F)$ and $\sigma_{\mathfrak{p}}=\left\{\sigma_{\mathfrak{P}} ; \mathfrak{P} \mid \mathfrak{p}\right\}$ be the Artin symbol at \mathfrak{p}. For each m, let $G(m)$ stand for the set of elements in
$G=\operatorname{Gal}(F(Y) / F)$ that fixes exactly m points in Y. Then for any unramified \mathfrak{p}, we have that $N_{\mathfrak{p}}(Y)=m$ if and only if $\sigma_{\mathfrak{p}} \subseteq G(m)$. As one has

$$
\sum_{N(\mathfrak{p}) \leq x} N_{\mathfrak{p}}^{k}(Y)=\sum_{m=0}^{|Y|} \sum_{\substack{N(\mathfrak{p}) \leq x \\ \sigma_{\mathfrak{p}} \subseteq G(m)}} m^{k}=\sum_{m=1}^{|Y|} m^{k} \sum_{\substack{N(\mathfrak{p}) \leq x \\ \sigma_{\mathfrak{p}} \subseteq G(m)}} 1,
$$

the Chebotarev density theorem yields that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi_{F}(x)} \sum_{N(\mathfrak{p}) \leq x} N_{\mathfrak{p}}^{k}(Y)=\sum_{m=1}^{|Y|} m^{k} \frac{|G(m)|}{|G|} \tag{3.1}
\end{equation*}
$$

We note that $\chi^{k}(g)$ is the number of points in $Y \times \cdots \times Y$, the k copies of Y, fixed by g. Thus, we can rewrite the sum on the right of (3.1) as

$$
\sum_{m=1}^{|Y|} m^{k} \frac{|G(m)|}{|G|}=\frac{1}{|G|} \sum_{g \in G} \chi^{k}(g)
$$

Now, we conclude the proof by applying Burnside's Lemma that asserts that the above average is the number of orbits of G in the k copies of Y.

Proof of Corollary 1.9, The proof follows the method of moments as described on [5, pp. 59-61]. We observe that by Theorem 1.7 we have

$$
\alpha_{k}:=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} z^{k} d H_{n}(z)=\lim _{n \rightarrow \infty} \frac{1}{\pi_{F}(n)} \sum_{N(\mathfrak{p}) \leq n} N_{\mathfrak{p}}^{k}(Y)=M_{k}(G, Y)
$$

Note that

$$
\alpha_{k} \ll|Y|^{k}
$$

Thus, for complex t-values with $|t|<1$, the series

$$
\sum_{k=0}^{\infty} \alpha_{k} \frac{(i t)^{k}}{k!}
$$

converges absolutely. Hence, from [5, Lemmata 1.43 and 1.44], it follows that the α_{k} determine a unique distribution function H that satisfies the conditions given in Corollary 1.9

4. Proofs of Propositions 1.12 and 1.13

Proof of Proposition 1.12, (i) As there are only finitely many primes p with $(p, n)>1$, we may assume that $(p, n)=1$. In particular, all summations below are over primes p with $(p, n)=1$.

Since \mathbb{F}_{p}^{\times}is a cyclic group of order $p-1$, we have

$$
N_{p}\left(f_{n, 1}\right)=(p-1, n)
$$

Thus,

$$
\sum_{p \leq x} N_{p}^{k}\left(f_{n, 1}\right)=\sum_{\substack{p \leq x \\ d=(p-1, n)}} d^{k}=\sum_{d \mid n} d^{k} \sum_{\substack{p \leq x \\ d=(p-1, n)}} 1=\sum_{d \mid n} d^{k} \sum_{\substack{p \leq x \\ d \left\lvert\, p-1 \\\left(\frac{p-1}{d}, \frac{n}{d}\right)=1\right.}} 1,
$$

which, by the Möbius inversion, is

$$
\sum_{d \mid n} d^{k} \sum_{\substack{p \leq x \\ d \mid p-1}} \sum_{e \left\lvert\,\left(\frac{p-1}{d}, \frac{n}{d}\right)\right.} \mu(e)=\sum_{\substack{d, e \\ d e \mid n}} d^{k} \mu(e) \sum_{\substack{p \leq x \\ d e \mid p-1}} 1 .
$$

Now, by the prime number theorem for arithmetic progressions, the last inner sum is asymptotic to

$$
\frac{1}{\varphi(d e)} \pi(x)
$$

as $x \rightarrow \infty$, which completes the proof.
(ii) We may assume that $(p, n a)=1$. In particular, all summations below (and also in (iii)) are over primes p with $(p, n a)=1$.

It is known that $N_{p}\left(f_{n, a}\right) \neq 0$ if and only if

$$
a^{\frac{p-1}{d}} \equiv 1 \quad(\bmod p)
$$

where $d=(p-1, n)$. Moreover, if $N_{p}\left(f_{n, a}\right) \neq 0$, then $N_{p}\left(f_{n, a}\right)=(p-1, n)$ (see [7, Proposition 4.2.1]). Thus, we have

$$
\begin{aligned}
& \sum_{p \leq x} N_{p}^{k}\left(f_{n, a}\right) \\
& \quad=\sum_{\substack{p \leq x \\
d=(p-1, n) \\
a^{\frac{p-1}{d}} \equiv 1(\bmod p)}} d^{k}=\sum_{d \mid n} d^{k} \sum_{\substack{p \leq x \\
d=(p-1, n) \\
a^{p-1} d} 1(\bmod p)} 1=\sum_{d \mid n} d^{k} \sum_{\substack{p \leq x \\
d \left\lvert\, p-1 \\
\left(\frac{p-1}{d}, \frac{n}{d}\right)=1\right.}}^{a^{\frac{p-1}{d} \equiv 1(\bmod p)}} \boldsymbol{\sum} 1 .
\end{aligned}
$$

Again, the Möbius inversion yields

$$
\sum_{p \leq x} N_{p}^{k}\left(f_{n, a}\right)=\sum_{d \mid n} \sum_{\substack{p \leq x \\ d \mid p-1}} \sum_{\substack{e \left\lvert\,\left(\frac{p-1}{d}, \frac{n}{d}\right)\right.}} \mu(e)=\sum_{\substack{d, e \\ d e \mid n}} d^{k} \mu(e) \sum_{\substack{p \leq x \\ d e \left\lvert\, p-1 \\ a^{\frac{p-1}{d}} \equiv 1(\bmod p)\right.}} 1 .
$$

Now, we analyze the last inner sum in (4.1). For $d=1$, the sum is equal to

$$
\sum_{\substack{p \leq x \\ d e \mid p-1}} 1
$$

since the condition $a^{p-1} \equiv 1(\bmod p)$ is always valid by Fermat's little theorem. This contributes

$$
\begin{equation*}
\frac{1}{\varphi(d e)} \pi(x) \tag{4.2}
\end{equation*}
$$

as $x \rightarrow \infty$. For $d \geq 2$, on the one hand, $d e \mid p-1$ implies that $d \mid p-1$, which together with the condition

$$
a^{\frac{p-1}{d}} \equiv 1 \quad(\bmod p)
$$

asserts that p splits completely in $\mathbb{Q}\left(\zeta_{d}, a^{1 / d}\right) / \mathbb{Q}$. On the other hand, the condition $d e \mid p-1$ tells us that the prime $p(\neq 2)$ splits completely in $\mathbb{Q}\left(\zeta_{d e}\right) / \mathbb{Q}$. Thus, for $d \geq 2$, the last inner sum in (4.1) is

$$
\begin{equation*}
\#\left\{p \leq x ; p \text { splits completely in } \mathbb{Q}\left(\zeta_{d e}, a^{1 / d}\right) / \mathbb{Q}\right\} \sim \frac{1}{d \varphi(d e)} \pi(x) \tag{4.3}
\end{equation*}
$$

as $x \rightarrow \infty$, where the asymptotic behavior is assured by the Chebotarev density theorem for the Galois extension $\mathbb{Q}\left(\zeta_{d e}, a^{1 / d}\right) / \mathbb{Q}$, and the fact that under given conditions on $a,\left[\mathbb{Q}\left(\zeta_{d e}, a^{1 / d}\right): \mathbb{Q}\right]=d \varphi(d e)$ (see [10, Lemma 1]). Applying (4.2) and (4.3) in (4.1) and observing that $d^{k-1}=1$ if $d=1$, we conclude the proof.
(iii) It suffices to note that the sum is, in fact, equal to

$$
\sum_{\substack{p \leq x \\ d=(p-1, n)}} d^{k_{1}} d^{k_{2}}
$$

Now, the result follows from part (ii).

Proof of Proposition 1.13. During the proof, we assume that $p \geq 5$ is a prime such that $p \nmid \ell N_{E}$, where N_{E} is the conductor of E.
(i) Let $E_{p}\left(\mathbb{F}_{p}\right)$ be the set of \mathbb{F}_{p}-points of E_{p} (the reduction modulo p of E). Observe that $N_{p}(E[\ell])=\left|E_{p}\left(\mathbb{F}_{p}\right)[\ell]\right|$, where $E_{p}\left(\mathbb{F}_{p}\right)[\ell]$ is the set of ℓ-torsion points of $E_{p}\left(\mathbb{F}_{p}\right)$. Note that since $E_{p}\left(\mathbb{F}_{p}\right)[\ell] \subseteq E_{p}[\ell] \simeq \mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}, E_{p}\left(\mathbb{F}_{p}\right)[\ell]$ has either 1 , ℓ, or ℓ^{2} elements. Moreover, it is known that $N_{p}(E[\ell])=\left|E_{p}\left(\mathbb{F}_{p}\right)[\ell]\right|=\ell^{2}$ if and only if p splits completely in the ℓ-division field $L=\mathbb{Q}(E[\ell])$ of E (see [11, Lemma 2]).

If $N_{p}(E[\ell])=\ell$, then for a prime $\mathfrak{P} \mid p$ we can conclude that $\sigma_{\mathfrak{P}}$ (the lift of Frob \mathfrak{B} to $\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}))$ can have a representation in the form

$$
\left(\begin{array}{ll}
1 & b \tag{4.4}\\
0 & c
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) \backslash\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

for some $b \in \mathbb{F}_{\ell}$ and $c \in \mathbb{F}_{\ell}^{\times}$. Thus, $N_{p}(E[\ell])=\ell$ if and only if the Artin symbol σ_{p} considered as a conjugacy class of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ has an element of the form (4.4). By the Jordan canonical form, a matrix of the form (4.4) is conjugate to either

$$
\left(\begin{array}{ll}
1 & 1 \tag{4.5}\\
0 & 1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & c
\end{array}\right)
$$

for some $c \in \mathbb{F}_{\ell}^{\times} \backslash\{1\}$. Now, from the classification of conjugacy classes of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ (see [9, Table 12.4, p. 714]), it may be computed that the number of elements of such forms in $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ is $\ell^{3}-2 \ell-1$. (Indeed, the "unipotent" instance in (4.5)
contributes $\ell^{2}-1$ conjugate elements, and the "rational not central" instances in (4.5) contribute $(\ell-2)\left(\ell^{2}+\ell\right)$ elements.)

Let $\pi_{E}(x ; \ell, i)$ for $0 \leq i \leq 2$ be defined as

$$
\begin{equation*}
\pi_{E}(x ; \ell, i)=\#\left\{p \leq x ; N_{p}(E[\ell])=\ell^{i}\right\} . \tag{4.6}
\end{equation*}
$$

The above discussion, together with the Chebotarev density theorem and the fact that by our assumption $[\mathbb{Q}(E[\ell]): \mathbb{Q}]=\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)$, yields that, as $x \rightarrow \infty$,

$$
\pi_{E}(x ; \ell, 1) \sim \frac{\ell^{3}-2 \ell-1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)} \pi(x) \quad \text { and } \quad \pi_{E}(x ; \ell, 2) \sim \frac{1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)} \pi(x)
$$

Hence, as $x \rightarrow \infty$,

$$
\pi_{E}(x ; \ell, 0) \sim \frac{\ell^{4}-2 \ell^{3}-\ell^{2}+3 \ell}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)} \pi(x)
$$

Clearly, it follows from (4.6) that

$$
\sum_{p \leq x} N_{p}^{k}(E[\ell])=1^{k} \cdot \pi_{E}(x ; \ell, 0)+\ell^{k} \cdot \pi_{E}(x ; \ell, 1)+\ell^{2 k} \cdot \pi_{E}(x ; \ell, 2)
$$

Therefore, $\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}(E[\ell])$ equals to

$$
\frac{\ell^{4}-2 \ell^{3}-\ell^{2}+3 \ell}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{k} \frac{\ell^{3}-2 \ell-1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{2 k} \frac{1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}
$$

(ii) We have

$$
\begin{equation*}
\sum_{p \leq x} N_{p}^{k}(E[\ell])=\sum_{\substack{p \leq x \\ p \text { splits in } K}} N_{p}^{k}(E[\ell])+\sum_{p \text { is inert or ramifies in } K} N_{p}^{k}(E[\ell]) . \tag{4.7}
\end{equation*}
$$

It is known that if p is inert or ramifies in K, then p is supersingular [8, Theorem 12, p. 182], which implies that (for $p \geq 5)\left|E_{p}\left(\mathbb{F}_{p}\right)\right|=p+1$ [17, Exercise 5.10(b), p. 145] and the odd part of $E_{p}\left(\mathbb{F}_{p}\right)$ is cyclic [12, Theorem 1]. So, for odd ℓ, we have $N_{p}(E[\ell])=(\ell, p+1)$. Following the proof of Proposition 1.12(i), we conclude that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{\substack{p \leq x \\ p \text { is inert or ramifies in } K}} N_{p}^{k}(E[\ell])=\frac{1}{2} M_{k}(\ell)=\frac{\ell-2}{2(\ell-1)}+\ell^{k} \frac{1}{2(\ell-1)} . \tag{4.8}
\end{equation*}
$$

For $0 \leq i \leq 2$, we let

$$
\pi_{E}^{s}(x ; \ell, i)=\#\left\{p \leq x ; p \text { splits in } K \text { and } N_{p}(E[\ell])=\ell^{i}\right\}
$$

It follows from the definition that

$$
\begin{equation*}
\sum_{\substack{p \leq x \\ \text { splits in } K}} N_{p}^{k}(E[\ell])=1^{k} \cdot \pi_{E}^{s}(x ; \ell, 0)+\ell^{k} \cdot \pi_{E}^{s}(x ; \ell, 1)+\ell^{2 k} \cdot \pi_{E}^{s}(x ; \ell, 2) \tag{4.9}
\end{equation*}
$$

Recall that $N_{p}(E[\ell])=\ell^{2}$ if and only if p splits completely in $L=\mathbb{Q}(E[\ell])$ [11, Lemma 2]. Now, let $p \mathcal{O}_{K}=\left(\pi_{p} \mathcal{O}_{K}\right)\left(\bar{\pi}_{p} \mathcal{O}_{K}\right)$, then $p \mathcal{O}_{L}$ splits completely in L if and only if $p \mathcal{O}_{K}$ splits completely in L. Also since, for odd $\ell, L=\mathbb{Q}(E[\ell])=K(E[\ell])$ [11, Lemma 6] and $[K(E[\ell]): K]=\ell^{2}-1$ (according to the assumption), by an application of the Chebotarev density theorem for the extension $K(E[\ell]) / K$, we have

$$
\begin{aligned}
\pi_{E}^{s}(x ; \ell, 2) & =\#\left\{p \leq x ; p \mathcal{O}_{K} \text { splits in } K \text { and } p \mathcal{O}_{L} \text { splits in } \mathbb{Q}(E[\ell])\right\} \\
& =\frac{1}{2} \#\left\{\mathfrak{p} \subset \mathcal{O}_{K} ; N(\mathfrak{p}) \leq x \text { and } \mathfrak{p} \text { splits in } K(E[\ell])\right\}+O\left(\frac{x^{1 / 2}}{\log x}\right) \\
& =\frac{\pi_{K}(x)}{2\left(\ell^{2}-1\right)}(1+o(1))+O\left(\frac{x^{1 / 2}}{\log x}\right) .
\end{aligned}
$$

The above asymptotic formula together with applications of the Chebotarev density theorem and the fact that $\pi_{K}(x) \sim \pi(x)$, as $x \rightarrow \infty$, result in

$$
\begin{align*}
\pi_{E}^{s}(x ; \ell, 0) & \sim \delta_{0}^{s}(\ell) \pi(x), \quad \pi_{E}^{s}(x ; \ell, 1) \sim \delta_{1}^{s}(\ell) \pi(x), \quad \text { and } \\
\pi_{E}^{s}(x ; \ell, 2) & \sim \frac{1}{2\left(\ell^{2}-1\right)} \pi(x) \tag{4.10}
\end{align*}
$$

as $x \rightarrow \infty$, where the densities $\delta_{0}^{s}(\ell)$ and $\delta_{1}^{s}(\ell)$ exist following the discussion at the beginning of (i). Hence, from (4.9) with $k=0$, we have

$$
\begin{equation*}
\delta_{0}^{s}(\ell)+\delta_{1}^{s}(\ell)+\frac{1}{2\left(\ell^{2}-1\right)}=\frac{1}{2} \tag{4.11}
\end{equation*}
$$

Also, from (4.9) with $k=1$, we have

$$
\begin{equation*}
\delta_{0}^{s}(\ell)+\ell \delta_{1}^{s}(\ell)+\frac{\ell^{2}}{2\left(\ell^{2}-1\right)}=\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{\substack{p \leq x \\ p \text { splits in } K}} N_{p}(E[\ell]) \tag{4.12}
\end{equation*}
$$

For a splitting prime p, writing $p \mathcal{O}_{K}=\left(\pi_{p} \mathcal{O}_{K}\right)\left(\bar{\pi}_{p} \mathcal{O}_{K}\right)$ and denoting the reduction $\left(\bmod \pi_{p} \mathcal{O}_{K}\right)$ of E by $E_{\pi_{p}}\left(\mathcal{O}_{K} / \pi_{p} \mathcal{O}_{K}\right)$, we have

$$
N_{p}(E[\ell])=\left|E_{p}\left(\mathbb{F}_{p}\right)[\ell]\right|=\left|E_{\pi_{p}}\left(\mathcal{O}_{K} / \pi_{p} \mathcal{O}_{K}\right)[\ell]\right|=N_{\pi_{p} \mathcal{O}_{K}}(E[\ell]) .
$$

A similar identity holds by replacing π_{p} with $\bar{\pi}_{p}$. Thus,

$$
\sum_{\substack{p \leq x \\ p \text { splits in } K}} N_{p}(E[\ell])=\frac{1}{2} \sum_{\substack{\mathfrak{p} \subset \mathcal{O}_{K} \\ N(\mathfrak{p}) \leq x}} N_{\mathfrak{p}}(E[\ell])+O\left(\frac{x^{1 / 2}}{\log x}\right) .
$$

From this and the fact that $\pi(x) \sim \pi_{K}(x)$, as $x \rightarrow \infty$, we obtain

$$
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{\substack{p \leq x \\ p \text { splits in } K}} N_{p}(E[\ell])=\lim _{x \rightarrow \infty} \frac{1}{2 \pi_{K}(x)} \sum_{\substack{\mathfrak{p} \subset \mathcal{O}_{K} \\ N(\mathfrak{p}) \leq x}} N_{\mathfrak{p}}(E[\ell]) .
$$

Now, Theorem 1.7 yields that

$$
\lim _{x \rightarrow \infty} \frac{1}{2 \pi_{K}(x)} \sum_{\substack{\mathfrak{p} \subset \mathcal{O}_{K} \\ N(\mathfrak{p}) \leq x}} N_{\mathfrak{p}}(E[\ell])=\frac{1}{2} M_{1}\left(\mathrm{GL}_{1}\left(\mathcal{O}_{K} / \ell \mathcal{O}_{K}\right), \mathcal{O}_{K} / \ell \mathcal{O}_{K}\right)
$$

We know that K has class number 1 (see [17, Appendix C, Example 11.3.1]). Therefore, by Theorem 1.3 we have

$$
M_{1}\left(\mathrm{GL}_{1}\left(\mathcal{O}_{K} / \ell \mathcal{O}_{K}\right), \mathcal{O}_{K} / \ell \mathcal{O}_{K}\right)=d_{K}(\ell)
$$

where $d_{K}(\ell)$ is the divisor function for the number field K. Applying this value in (4.12) yields

$$
\begin{equation*}
\delta_{0}^{s}(\ell)+\ell \delta_{1}^{s}(\ell)+\frac{\ell^{2}}{2\left(\ell^{2}-1\right)}=\frac{1}{2} d_{K}(\ell) . \tag{4.13}
\end{equation*}
$$

Solving the system of Eqs. (4.11) and (4.13) yields

$$
\delta_{0}^{s}(\ell)=\frac{\ell^{2}-\left(d_{K}(\ell)-2\right) \ell-d_{K}(\ell)}{2\left(\ell^{2}-1\right)} \quad \text { and } \quad \delta_{1}^{s}(\ell)=\frac{d_{K}(\ell)-2}{2(\ell-1)}
$$

Employing these values in (4.10) together with (4.9), (4.8), and (4.7) yield the result

5. Proof of Theorem 1.11

(i) Let $F=\mathbb{Q}$ and $Y=\left\{\zeta_{n}^{i} ; i=1, \ldots, n\right\}$ be the set of zeros of the polynomial $f_{n, 1}(x)=x^{n}-1$ in $\overline{\mathbb{Q}}$, where ζ_{n} denotes a primitive nth root of unity. Consider the bijection $\psi: X=\mathbb{Z} / n \mathbb{Z} \rightarrow Y$, where $\psi(i)=\zeta_{n}^{i}$ and note that $\phi: G=(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow$ $\operatorname{Gal}(F(Y) / F)$ defined by $\phi(d)=\phi_{d}$, where $\phi_{d}\left(\zeta_{n}^{j}\right)=\zeta_{n}^{j d}$, is a group isomorphism. Thus, from Theorem 1.7 and Proposition 1.12(i) we have

$$
M_{k}(G, X)=\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}\left(f_{n, 1}\right)=M_{k}(n)
$$

(ii) Let a be a square-free positive integer if n is odd, and let a be a square-free positive integer such that $a \nmid n$ if n is even. Let the number $a^{1 / n}$ be a real solution of the equation $x^{n}-a=0$. Let $F=\mathbb{Q}$ and $Y=\left\{\left(a^{1 / n} \zeta_{n}^{i}, \zeta_{n}^{j}\right) ; 1 \leq i, j \leq n\right\}$ be the set of zeros of the system of polynomials $f_{n, a}(x)=x^{n}-a$ and $f_{n, 1}(y)=y^{n}-1$ in $\overline{\mathbb{Q}} \times \overline{\mathbb{Q}}$. Consider the bijection $\psi: X=(\{1\} \times \mathbb{Z} / n \mathbb{Z}) \times(\{0\} \times \mathbb{Z} / n \mathbb{Z}) \rightarrow Y$, where $\psi(((1, i),(0, j)))=\left(a^{1 / n} \zeta_{n}^{i}, \zeta_{n}^{j}\right)$ and note that $\phi: G \rightarrow \operatorname{Gal}(F(Y) / F)$ defined by $\phi\left(\left(\begin{array}{ll}1 & 0 \\ b & d\end{array}\right)\right)=\phi_{b, d}$ is an isomorphism, where $\phi_{b, d}\left(\left(a^{1 / n} \zeta_{n}^{i}, \zeta_{n}^{j}\right)\right)=\left(a^{1 / n} \zeta_{n}^{b+i d}, \zeta_{n}^{j d}\right)$.

We note that $N_{p}(Y)$ is the number of solutions (x, y) of $x^{n} \equiv a(\bmod p)$ and $y^{n} \equiv 1(\bmod p)$, which is equal to $N_{p}\left(f_{n, a}\right) N_{p}\left(f_{n, 1}\right)$. Thus, from Theorem 1.7, we have

$$
M_{k}(G, X)=\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}(Y)=\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x}\left(N_{p}\left(f_{n, a}\right) N_{p}\left(f_{n, 1}\right)\right)^{k}
$$

where the limit on the right can be computed by Proposition 1.12 (iii).
(iii) For $\ell \neq 2$, let $E[\ell]$ be the ℓ-torsion subgroup of the elliptic curve $E_{17 a 3}$ (with Cremona label 17a3), and, for $\ell=2$, let $E[\ell]$ be corresponded to $E_{11 a 2}$ (with Cremona label 11a2). Then $\operatorname{Gal}(\mathbb{Q}(E[\ell]) / \mathbb{Q}) \simeq \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$ (see [18] for details).

For such E, let $F=\mathbb{Q}$ and $Y=E[\ell]$. Consider the bijection $\psi: X=$ $\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z} \rightarrow E[\ell]$ and note that $G=\mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z}) \simeq_{\phi} \operatorname{Gal}(F(Y) / F)$. Thus, from Theorem 1.7 and Proposition 1.13(i), we have

$$
\begin{aligned}
M_{k}(G, X) & =\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} N_{p}^{k}(E[\ell]) \\
& =\frac{\ell^{4}-2 \ell^{3}-\ell^{2}+3 \ell}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{k} \frac{\ell^{3}-2 \ell-1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}+\ell^{2 k} \frac{1}{\left(\ell^{2}-\ell\right)\left(\ell^{2}-1\right)}
\end{aligned}
$$

6. Proof of Theorem 1.4

(i) Since the corresponding action of $\operatorname{Gal}\left(F\left(\mathbb{G}_{m}[n]\right) / F\right)$ on $\mathbb{G}_{m}[n]$ is a realization of the canonical action of $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$on $X=\mathbb{Z} / n \mathbb{Z}$, the assertion follows from Theorem 1.11(i) immediately.
(ii) Let \mathbb{T} over \mathbb{Q} be defined by the equation $x^{2}-m y^{2}=1$, where m is a square-free integer. Then

$$
\mathbb{T}[n]=\left\{\left(\frac{\zeta_{n}^{i}+\zeta_{n}^{-i}}{2}, \frac{\zeta_{n}^{i}-\zeta_{n}^{-i}}{2 \sqrt{m}}\right) ; 1 \leq i \leq n\right\}
$$

is the set of n-torsion points of \mathbb{T}. By [2, Lemma 2.1], we know that there is a constant C such that for $(n, C)=1$, we have $\mathbb{Q}(\mathbb{T}[n])=\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1},\left(\zeta_{n}-\zeta_{n}^{-1}\right) / \sqrt{m}\right)$ and $[\mathbb{Q}(\mathbb{T}[n]): \mathbb{Q}]=\varphi(n)$. Thus, for $1 \leq d \leq n$ with $(d, n)=1$, the maps

$$
\sigma_{d}\left(\frac{\zeta_{n}+\zeta_{n}^{-1}}{2}, \frac{\zeta_{n}-\zeta_{n}^{-1}}{2 \sqrt{m}}\right)=\left(\frac{\zeta_{n}^{d}+\zeta_{n}^{-d}}{2}, \frac{\zeta_{n}^{d}-\zeta_{n}^{-d}}{2 \sqrt{m}}\right)
$$

give the \mathbb{Q}-automorphisms of $\mathbb{Q}(\mathbb{T}[n])$, and therefore the action of $\operatorname{Gal}(\mathbb{Q}(\mathbb{T}[n]) / \mathbb{Q})$ on $\mathbb{T}[n]$ is a realization of the action of $G=(\mathbb{Z} / n \mathbb{Z})^{\times}$on $X=\mathbb{Z} / n \mathbb{Z}$. Now, the result follows from Theorem 1.11(i).
(iii) Let E be a non-CM elliptic curve defined over F, and let $n=\prod_{\ell} \ell$ be square-free. By Serre's open image theorem [13], there exists a constant C such that for $(\ell, C)=1$, we have $\operatorname{Gal}(F(E[\ell]) / F) \simeq \mathrm{GL}_{2}(\mathbb{Z} / \ell \mathbb{Z})$. We note that

$$
\operatorname{Gal}(F(E[n]) / F) \simeq \prod_{\ell \mid n} \operatorname{Gal}(F(E[\ell]) / F)
$$

acts on $\prod_{\ell \mid n}(\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z})^{k}$ componentwise (i.e. the action is the product of the actions of $\operatorname{Gal}(F(E[\ell]) / F)$ on $\left.(\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z})^{k}\right)$. Thus, we have

$$
\begin{equation*}
M_{k}(E / F, n)=\prod_{\ell \mid n} M_{k}(E / F, \ell) \tag{6.1}
\end{equation*}
$$

Now, applying (6.1) together with Theorem 1.11 (iv) completes the proof.
(iv) The proof follows along the same lines as (iii) via employing Deuring's theorem [4] on the image of $\operatorname{Gal}(K(E[\ell]) / K)$ and Proposition 1.13(ii).

Acknowledgments

Research of the first author is partially supported by NSERC. Research of the second author is partially supported by a PIMS postdoctoral fellowship. The authors would like to thank the referee for the valuable comments and suggestions.

References

[1] P. J. Cameron, Some counting problems related to permutation groups, Discrete Math. 225 (2000) 77-92.
[2] Y.-M. J. Chen and Y.-L. Kuan, On the distribution of torsion points modulo primes, Bull. Austral. Math. Soc. 86 (2012) 339-347.
[3] Y.-M. J. Chen and Y.-L. Kuan, On the distribution of torsion points modulo primes: The case of function fields, Manuscripta Math. 148 (2015) 435-445.
[4] M. Deuring, Die typen multiplikatorenringe elliptischer funktionenkörper, Abh. Math. Sem. Univ. Hamburg 14 (1941) 197-272.
[5] P. D. T. A. Elliott, Probabilistic Number Theory I, Grundlehren der Mathematischen Wissenschaften, Vol. 239 (Springer-Verlag, New York-Berlin, 1979).
[6] H.-L. Huang, The average number of torsion points on elliptic curves, J. Number Theory 135 (2014) 374-389.
[7] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edition, Graduate Texts in Mathematics, Vol. 84 (Springer-Verlag, New York, 1990).
[8] S. Lang, Elliptic Functions, 2nd edition (Springer-Verlag, New York, 1987).
[9] S. Lang, Algebra, 3rd edition (Addison-Wesley Publishing, 1993).
[10] P. Moree, On the distribution of the order and index of $g(\bmod p)$ over residue classes-I, J. Number Theory 114 (2005) 238-271.
[11] M. R. Murty, On Artin's conjecture, J. Number Theory 16 (1983) 147-168.
[12] M. R. Murty, On the supersingular reduction of elliptic curves, Proc. Indian Acad. Sci. Math. Sci. 97 (1987) 247-250.
[13] J.-P. Serre, Propriétés galoisiennes de points d'order fini des courbes elliptiques, Invent. Math. 15 (1972) 259-331.
[14] J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc. 40(4) (2003) 429-440.
[15] J.-P. Serre, Lectures on $N_{X}(p)$, Research Notes in Mathematics, Vol. 11 (CRC Press, 2012).
[16] J.-P. Serre, Finite Groups: An Introduction (International Press, Higher Education Press, 2016).
[17] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Vol. 151 (Springer, New York, 1986).
[18] The LMFDB Collab., The L-functions and modular forms database (2013), http://www.lmfdb.org.

