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1. Introduction

Let L/K be a Galois extension of number fields with Galois group G, and let C be a 
conjugacy class in G. The celebrated Chebotarev density theorem asserts that

#{p ⊂ OK | Np ≤ x, p is an unramified prime with σp = C} ∼ |C|
|G| Li(x)

as x → ∞, where Li(x) is the usual logarithmic integral, OK is the ring of integers of 
K, N = NK/Q is the absolute norm of K, and σp denotes the Artin symbol at p.

As the Chebotarev density theorem generalizes Dirichlet’s theorem on primes in arith-
metic progressions, a natural question of finding the least (unramified) prime p with 
σp = C then arises from Linnik’s famous theorem on the least prime in an arithmetic 
progression. Under the generalized Riemann hypothesis for the Dedekind zeta function 
ζL(s) of L, Lagarias and Odlyzko [LaOd77] showed that Np � (log dL)2, where dL
denotes the absolute discriminant of L (cf. [BaSo96]).

In [LaMoOd79], Lagarias, Montgomery, and Odlyzko proved, unconditionally, that if 
L �= Q, then there is a constant B > 0 such that there is an unramified prime p of K
with σp = C and Np ≤ dBL . Recently, Zaman [Zam17] established that B = 40 is valid 
when dL is sufficiently large. This is improved by Ng and the authors in [KaNgWo19], 
who showed that B = 16 is admissible for sufficiently large dL. Also, Ahn and Kwon 
[AhKw19-1] showed that B = 12 577 is valid for all number fields. The main result of 
this article is the following theorem.

Theorem 1. Let L/K be a Galois extension of number fields with Galois group G, and 
let C be a conjugacy class in G. If L �= Q, then there exists an unramified prime p of 
K, of degree one, such that σp = C and Np ≤ dBL with B = 310.

Throughout this article, we let nL ≥ n0 ≥ 2 and dL ≥ d0 ≥ 3. In Appendix A, 
numerical verifications of the bound for the least prime, with B ≤ 1.7712, are done for 
nL = n0 with 2 ≤ n0 ≤ 20 and dL ≤ d0, as well as for nL ≥ n0 ≥ 21 and dL ≤ d0 = 10nL

(see Table 3).
In Section 3, we prove the least prime result for the remaining (n0, d0) (see Ta-

ble 2). The proof starts by establishing an explicit inequality (see Section 3.2) between 
a weighted sum over primes detecting the least one in a given class and the zeros of the 
Dedekind zeta function ζL(s). The size of the least prime then depends on how close to 
the vertical line Res = 1 these zeros are. We can establish some zero-free regions: there 
exist absolute constants A, A′ > 0 such that ζL(s) has no zeros in the region

Re(s) ≥ 1 − 1
A log dL + A′nL log(|Im(s)| + 2) ,

with the exception of at most one real zero β1. It has been proven in [Kad12, Theorem 
1.1] that for |Im(s)| ≤ 1, A = 12.74, and A′ = 0 assuming dL is sufficiently large. 
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Recently, Lee improved this to A = 12.44 in [Lee, Theorem 2]. Also, this was made 
explicit in [AhKw19-1, Proposition 6.1] with A = A′ = 29.57. We will also need a region 
with no non-exceptional zeros of the form Re(s) ≥ 1 − 1

R1 log dL
and |Im(s)| ≤ 1

R1 log dL

with some admissible R1 ≥ 1.24 as discussed in Section 2.1.
We can refine the statement of Theorem 1 depending on whether ζL(s) possesses 

an exceptional real zero β1 or not. For instance, if ζL(s) has no exceptional zero, then 
Theorem 1 is valid with B = 10.5. In the other case, we require a careful study depending 
on how close the exceptional zero β1 is to 1, and we adapt our choice of weight (see 
Section 3.1) to detect the least prime accordingly. In particular, we determine that it 
is useful to investigate the supplementary case where β1 is at a “very small” distance, 
namely (log dL)−2 � (1 − β1) � (log dL)−1.15.

It is known as the Deuring-Heilbronn phenomenon that the closer β1 is to 1, the further 
left other zeros are “repulsed”. We now describe the stronger zero-repulsion theorems we 
use instead of the one established in [AhKw19-1, Theorem 7.3]; in Section 2.2, we prove 
some versions of [KaNgWo19, Theorems 1.2 and 1.3] which are valid for all number fields.

Theorem 2. Let L �= Q be a number field of degree nL and with absolute discriminant 
dL. Assume ζL(s) admits an exceptional real zero β1. Let β′ + it be another (non-trivial) 
zero of ζL(s), and let τ = |t| +2. Then, for any η ∈ (0, 1], there exist c1 and c2 such that 
either β′ ≤ 1 − η or

β′ ≤ 1 − c2
log

(
c1

(1−β1) log(dLτnL )

)
log(dLτnL) . (1.1)

In addition, if |t| ≤ 1, then there exist c′1 and c′2 such that either β′ ≤ 1 − η or

β′ ≤ 1 − c′2

log
(

c′1
(1−β1)(log dL)

)
log dL

. (1.2)

Here (c1, c2) and (c′1, c′2) depend on η, and are respectively defined in (2.24) and (2.28).

We also investigate the case of real zeros as this case offers a stronger zero-repulsion 
phenomenon, as illustrated in the next theorem.

Theorem 3. Assume ζL(s) admits an exceptional real zero β1. Let β′ be another real zero 
of ζL(s). Then, for any η ∈ (0, 1], there exist c′′1 and c′′2 such that either β′ ≤ 1 − η or

β′ ≤ 1 − c′′2

log
(

c′′1
(1−β1) log dL

)
log dL

, (1.3)

where (c′′1 , c′′2), depend on η, are defined in (2.30). For η = 1, numerical results are listed 
in Table 1.
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The key tool to prove Theorems 2 and 3 resides in Theorem 7 where we improve lower 
bounds for some modified Turán power sums. Numerical results for η = 1 are listed in 
Table 1. For instance, we establish that c2 = 0.04233 ≈ 1

23.624 , c′2 = 0.05 = 1
20 , and c′′2 =

0.1008 ≈ 1
9.921 are admissible. This enlarges the region described in [AhKw19-1, Theorem 

7.3(2)], where c2 = 1
77 was obtained.1 In addition this extends and improves [Zam17, 

Theorem 1.2] where Zaman proved c′2 = 1
35.8 for dL sufficiently large. In [KaNgWo19], 

the repulsion constant was improved to 1
14.144 , for dL sufficiently large.

In Section 2.3 we deduce a bound for the possible exceptional zero β1 of ζL(s).

Theorem 4. Suppose L �= Q. If ζL(s) admits a real zero β1, then

1 − β1 ≥ d−c3
L with c3 = 11.7.

This improves [AhKw19-1, Corollary 7.4] where c3 = 114.72... was proven admissible. 
We note that for dL sufficiently large, the bound above was established with c3 = 16.6
in [Zam17, Corollary 1.4] and c3 = 7.072 in [KaNgWo19, Corollary 1.3.1].

At this point, we have all the key ingredients (also summarized in Section 3.6), and 
we will complete the proof of Theorem 1 in Section 3. Here is a qualitative description 
to illustrate how they impact the final result:

• a refined case analysis (in particular, adding the “very small” case) allows us to 
divide Ahn and Kwon’s constant of 12 577 by a factor of about 7;

• the choice of the weight and the strength of Deuring-Heilbronn phenomenon allow 
us to improve the result by a factor of about 3;

• finally, the numerical verifications divide the value of B by 2 (going from 620 without 
using Table 3, to the announced 310).

We let π̃C(x) denote the number of degree-one unramified primes p of K such that 
Np ≤ x and σp = C. In Section 4 we apply Theorem 4 to obtain a lower bound for 
π̃C(x).

Theorem 5. Let L/K be a Galois extension of number fields with Galois group G, and 
let C be a conjugacy class in G. If L �= Q, then for x ≥ exp(dc3L ), we have

π̃C(x) ≥ m
|C|
|G|

x

log x,

where c3 = 11.7 and m = 0.4899.

1 The labelling for our (c1, c2) was (c7, c8) in [AhKw19-1, Theorem 7.3(2)].
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This improves [AhKw19-2, Theorem 3] where Ahn and Kwon obtained instead c3 =
114.72... and m = 0.353 for all L �= Q. We also note that Thorner and Zaman [ThZa17, 
Theorem 3.1] showed that there are absolute constants κ2 and κ3 such that

π̃C(x) � 1
dκ2
L

|C|
|G| Li(x)

for x ≥ dκ3
L and dL sufficiently large. While our range for x is more restricted, we are 

able to obtain a lower bound independent of L.

Notation

We recall that L is a number field of degree nL ≥ n0 ≥ 2 and with absolute discrimi-
nant dL ≥ d0 ≥ 3. We denote

L = log dL and L0 = log d0. (1.4)

Together with Minkowski’s bound, we consider

n0 ≤ nL ≤ 2 log dL
log 3 , dL ≥ d0, and log dL ≥ L0. (1.5)

Let τ = |t| + 2. We shall define

δ = δL(τ) = log(τnL)
log dL

, (1.6)

and use various bounds for δ depending on cases. For T0 ≥ 0, we define

Δ0(T0) = Q0 log(T0 + 2), (1.7)

where

Q0 =
{

nL

L0
if 2 ≤ nL ≤ 20;

1
log 10 if nL ≥ 21.

(1.8)

Note that for |t| ≤ T0, we have

0 ≤ δ ≤ Δ0(T0). (1.9)

2. Repelling non-exceptional zeros further left

We recall [AhKw19-1, Proposition 6.1], which asserts that for any number field L, 
there are no zeros for ζL(s) in the region

Re(s) ≥ 1 − 1
, (2.1)
29.57 (L + nL log(|Im(s)| + 2))
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with the exception of at most one real zero β1. If the exceptional zero β1 exists, then 
it has to be real and simple. In addition, by [Kad12] (for dL sufficiently large) and by 
[AhKw14, Theorem 1] (for all L �= Q), we know that ζL(s) has at most one zero in the 
region

β > 1 − 1
R0L

and |γ| < 1
2L

, (2.2)

for any R0 ≥ 2. In what follows we let β1 denote the exceptional zero of ζL(s) if it 
exists. We shall split our considerations into several cases depending on the location 
(and existence) of β1.

2.1. Enlarging the region without non-exceptional zeros

We assume that there exists R1 ≤ R0 such that there is no non-trivial zeros ρ �= β1
of ζL(s) in the region

β > 1 − 1
R1L

and |γ| < 1
R1L

. (2.3)

We note that one can always take R1 = 2, but show here that we can take 1.24 and 1.7 
as admissible values for R1 for certain instances:

Proposition 6. Let L be a number field such that L �= Q, and let R0 ≥ 2. If the exceptional 
zero β1 of ζL(s) presents in (1 − 1

R0L , 1), then there is no other zeros of ζL(s) in the 
region

β > 1 − 1
1.7L

and |γ| < 1
1.7L

. (2.4)

Moreover, if R0 ≥ 3.5, then 1.7 in (2.4) can be improved to 1.24.

Proof of Proposition 6. Suppose that the exceptional zero β1 presents in (1 − 1
R0L , 1). 

Let β2 + iγ2 be another non-trivial zero of ζL(s) such that

β2 > 1 − 1
RL

and |γ2| <
1

RL
.

Following [AhKw14, Sec. 2], we assume R ≥ 1.24 and set σ = 1 + 1
rL , with 1 < σ ≤ 6.2, 

and 1
5.2 log 3 ≤ r ≤ R. As argued in [AhKw14, pp. 438–439], one has

(1
2

(
1 − 1√

5

)
+ r

)
L ≥ σ − β1

(σ − β1)2
+ σ − β2

(σ − β2)2 + γ2
2

= 1
σ − β1

+ σ − β2

(σ − β2)2 + γ2
2
,

and thus
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1
2

(
1 − 1√

5

)
+ r ≥ rR0

R0 + r
+ rR(R + r)

(R + r)2 + r2 . (2.5)

By a numerical calculation, if R0 ≥ 2 and r = 0.6, it can be checked that (2.5) fails 
for R ≥ 1.7. Also, if R0 ≥ 3.5 and r = 0.6, (2.5) fails for R ≥ 1.24. This concludes the 
proof. �
2.2. Deuring-Heilbronn phenomenon for all number fields

In this section, we prove Theorems 2 and 3, that is quantitative versions of the 
Deuring-Heilbronn phenomenon for all number fields. To do so, we employ the Turán’s 
power sum method as introduced by Lagarias, Montgomery, and Odlyzko in [LaMoOd79]
(see also Montgomery’s [Mon94, Theorem 11]). We note that Ahn and Kwon em-
ploy [LaMoOd79, Theorem 4.2] to prove their version [AhKw19-1, Theorem 7.3] of the 
Deuring-Heilbronn phenomenon for all number fields. The reader can also find a refine-
ment of [LaMoOd79, Theorem 4.2] in Zaman’s [Zam17, Theorem 2.3]. In [KaNgWo19, 
Theorem 2.2], the authors, together with Ng, appeal to Harnack’s inequality to bring 
some improvements to these results. The following is the case sj =

∑
n≥1 bnz

j
n with 

bn = 1 for all n.

Theorem 7. Let ε > 0 and z1 �= 0. Assume that for all n ≥ 1, zn is a complex number 
satisfying |zn| ≤ |z1|. For any j ∈ N, set sj =

∑
n≥1 z

j
n and M =

∑
n≥1

|zn|
|z1|+|zn| . Then 

there exists j0 with 1 ≤ j0 ≤ (8 + ε)M such that

Re(sj0) ≥
ε

4(8 + ε) |z1|j0 .

We propose here a bound for ReΓ′

Γ which is the last tool we need to prove Theorem 2. 
It improves [AhKw19-1, Lemma 5.3] and will allow for sharper estimates for Re

γ′
L

γL
than 

[AhKw19-1, Lemma 5.4], where γL is the associated gamma factor of ζL(s).

Lemma 8. Let T0 ≥ 0. For s = σ + it with σ > 0 and |t| ≤ T0, we define

g(σ, T0) = max
|t|≤T0

(
log

(√σ2 + t2

|t| + 2

)
− σ

σ2 + t2

)
+ 1

3σ2 − log 2. (2.6)

Then

Re
Γ′

Γ

(s
2

)
≤ log(|t| + 2) + g(σ, T0). (2.7)

Proof. According to [AhKw19-1, p. 1429],

Re
Γ′

(s) ≤ log |s| − σ
2 2 + 1

2 . (2.8)
Γ 2(σ + t ) 12σ
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Thus,

Re
Γ′

Γ

(s
2

)
≤ log(|t| + 2) + max

|t|≤T0

(
log

(√σ2 + t2

|t| + 2

)
− σ

σ2 + t2

)
+ 1

3σ2 − log 2

from which (2.7) follows. �
Now, we are in a position to prove Theorems 2 and 3. For both proofs, we are assuming 

(1.5) for nL and dL, and we introduce ε > 0, σ ≥ 2, and η ∈ (0, 1].

Proof of Theorem 2. We denote β1 the exceptional real zero that we assume ζL(s) pos-
sesses. We let S be the set of all non-trivial zeros of ζL(s). Let η ∈ (0, 1] and T0 ≥ 0. We 
also denote β′ + it a non-trivial zero of ζL(s) such that 1 − η ≤ β′ < 1 and |t| ≤ T0. We 
shall let σ ≥ 2 and let zn run over (σ−ρ)−2 and (σ+ it −ρ)−2 for all ρ ∈ S\{β1} in order 
that |zn| decreases (so |z1| ≥ |z2| ≥ · · · ). Thus, |z1| ≥ 1

(σ−β′)2 , and by the inequality 
log(1 + x) ≤ x, we have

|z1| ≥
1

(σ − 1)2
(σ − 1)2

(σ − β′)2 = 1
(σ − 1)2 exp

(
− 2 log

(σ − β′

σ − 1

))
≥ 1

(σ − 1)2 exp
(
− 21 − β′

σ − 1

)
. (2.9)

From [AhKw19-1, Eq. (7.2) and Lemma 7.1], it follows that

Re
∑
n≥1

zj0n ≤ 4j0(1 − β1)
(σ − 1)2j0+1 . (2.10)

Applying Theorem 7 for ε > 0, there exists j0 with 1 ≤ j0 ≤ (8 + ε)M such that

Re
∑
n≥1

zj0n ≥ ε

4(8 + ε) |z1|j0 . (2.11)

Combining (2.9), (2.10), (2.11), and the fact j0 ≤ (8 + ε)M gives

1 − β′ ≥ σ − 1
2(8 + ε)M log

( ε(σ − 1)
16M(8 + ε)2(1 − β1)

)
. (2.12)

We finalise by appealing to [KaNgWo19, p. 2294] to establish an upper bound for M :

M ≤ ASL(d− 1, t), (2.13)

where A, d, and SL(d − 1, t) are respectively defined in [KaNgWo19, Eq. (2.6), (2.11), 
and (2.12)]:
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A = A(σ, η) = (σ − 1 + η)2, (2.14)

d = d(σ, η) =
√

σ2 + A =
√

2σ2 + (1 − η)2 − 2σ(1 − η), (2.15)

SL(d− 1, t) =
∑
ρ

( 1
|d− ρ|2 + 1

|d + it− ρ|2
)
. (2.16)

Also, [Zam17, Lemma 2.5 and Eq. (2.10)] provides a bound for SL:

SL(d−1, t) ≤ log dL
d− 1 +G1(d− 1; |t|)

d− 1 r1+
G2(d− 1; |t|)

d− 1 (2r2)+
2

(d− 1)2 + 2
d(d− 1) , (2.17)

where r1 and r2 are the numbers of real and complex places, respectively, of L, and

G1(d− 1; |t|)r1 + G2(d− 1; |t|)(2r2) =r1 + r2
2

Γ′

Γ

(d
2

)
+ r1 + r2

2 Re
Γ′

Γ

(d + i|t|
2

)
+ r2

2
Γ′

Γ

(d + 1
2

)
+ r2

2 Re
Γ′

Γ

(d + 1 + i|t|
2

)
− nL log π.

(2.18)

Together with the bounds on Gamma from Lemma 8 and the fact that Γ′

Γ (x) increases 
with real values x, we obtain

r1G1(d−1; |t|)+2r2G2(d−1; |t|) ≤ log(τnL)
2 +nL

2

(Γ′

Γ

(d + 1
2

)
+ max

x=d,d+1
g(x, T0)−2 log π

)
.

(2.19)
We observe that, for δ defined in (1.6), whenever log dL ≥ L0,

log dL = 1
1 + δ

log(dLτnL), log(τnL) = δ

1 + δ
log(dLτnL),

nL ≤ δ

1 + δ

1
log 2 log(dLτnL), 1 ≤ 1

(1 + δ)
1

L0
log(dLτnL).

We combine these with (2.19) so that (2.17) becomes

SL(d− 1, t) ≤ log(dLτnL)
d− 1

(b1(d) + b2(d, T0)δ
1 + δ

)
, (2.20)

where we denote

b1(d) = 1 + 2
L0(d− 1) + 2

L0d
, (2.21)

b2(d, T0) = 1
2 + 1

2 log 2 max
{Γ′

Γ

(d + 1
2

)
+ max{g(d, T0), g(d + 1, T0)} − 2 log π, 0

}
.

(2.22)

Now, setting
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B = B(d, T0) = 1
d− 1 max

δ∈[0,Δ0(T0)]

(b1(d) + b2(d, T0)δ
1 + δ

)
, (2.23)

we see that (2.13) becomes M ≤ AB log(dLτnL). From (2.12) and (2.13), it follows that

1 − β′ ≥ σ − 1
2(8 + ε)AB

log
(

ε(σ−1)
16(8+ε)2AB

1
(1−β1) log(dLτnL )

)
log(dLτnL) = c2

log
(

c1
(1−β1) log(dLτnL )

)
log(dLτnL) ,

with

c1 = ε

8(8 + ε)c2 and c2 = σ − 1
2(8 + ε)AB . (2.24)

Now, taking T0 = ∞, we establish the first part of Theorem 2. We note that one may 
bound g(σ, ∞), trivially, by

g(σ,∞) ≤ 1
2 log

(σ2

4 + 1
)

+ 1
3σ2 − log 2.

We will use this bound to control B(d, ∞) and calculate c1 and c2 for the theorem.
On the other hand, for |t| ≤ 1 (so for T0 = 1), we may directly use (2.8) to deduce

max
x=d,d+1

Re
Γ′

Γ

(x + it

2

)
≤ max

x=d,d+1

(
log

√
x2 + 1 − x

x2 + 1 + 1
3x2

)
− log 2. (2.25)

Hence, by (2.18), we have G1(d −1; |t|)r1+G2(d −1; |t|)(2r2) ≤ nLH(d), where we denote

H(d) = 1
2

Γ′

Γ

(d + 1
2

)
+ 1

2 max
x=d,d+1

(
log

√
x2 + 1 − x

x2 + 1 + 1
3x2

)
− log 2 + 2 log π

2 .

(2.26)

Thus, whenever nL ≥ n0 and nL

log dL
≤ Q0, we obtain

SL(d− 1, t) ≤ 1
d− 1

(
log dL + nLH(d) + 4d− 2

d(d− 1)

)
≤ log dL

d− 1

(
1 + Q0 max

{
H(d) + 4d− 2

d(d− 1)n0
, 0
})

,

with Q0 as defined in (1.8). Now, setting

B′ = B′(d) =
1 + Q0 max

{
0,H(d) + 4d−2

d(d−1)n0

}
d− 1 , (2.27)

(2.13) gives M ≤ AB′ log dL. Applying (2.12), we arrive at 1 − β′ ≥ c′2
log

(
c′1

(1−β1) log dL

)
log dL

, 
where
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c′1 = c′1(ε, σ, η) = ε

8(8 + ε)c
′
2 and c′2 = c′2(ε, σ, η) = σ − 1

2(8 + ε)AB′ . (2.28)

This completes the proof of Theorem 2. �
We shall now prove the version of the Deuring-Heilbronn phenomenon that only con-

cerns the location of real zeros of ζL(s). We adapt the previous proof to the case t = 0.

Proof of Theorem 3. The proof repeats most of the argument from the previous proof, 
so we shall keep using the notation with t = 0 and the sequence zn running over (σ−ρ)−2

for all the non-trivial zeros ρ ∈ S\{β1}, with zn satisfying |z1| ≥ |z2| ≥ · · · . It follows 
from [KaNgWo19, Proof of Lemma 2.7] that 2M ≤ ASL(d − 1, 0). We observe that

SL(d− 1, 0)
2 ≤ 1

d− 1

( log dL
2 + nL

2

(Γ′

Γ

(d + 1
2

)
− log π

)
+ 2d− 1

d(d− 1)

)
.

Thus, setting

B′′ = B′′(d) = 1
d− 1

(1
2 + Q0 max

{
0, 1

2
Γ′

Γ

(d + 1
2

)
− log π

2 + 2d− 1
d(d− 1)n0

})
, (2.29)

we have M ≤ ASL(d−1,0)
2 ≤ AB′′(log dL) whenever nL ≥ n0, and nL

log dL
≤ Q0. Hence, 

arguing as before, we have 1 −β′ ≥ c′′2
log

(
c′′1

(1−β1) log dL

)
log dL

, where c′′1 , c
′′
2 depend on (8 +ε), σ, η

and are given by

c′′1 = ε

8(8 + ε)c
′′
2 and c′′2 = σ − 1

2(8 + ε)AB′′ . (2.30)

This completes the proof of Theorem 3. �
2.3. Distance of the exceptional zero to 1-line

With Theorem 3 in hand, we shall prove Theorem 4 in this section.

Proof of Theorem 4. We let η ∈ (0, 1] be a parameter to be chosen later. We consider β
a non-exceptional real zero of ζL(s). We assume β ≥ 1 − η, and we consider c3 such that

1 − β1 = d−c3
L .

By Theorem 3, whenever L ≥ L0, we have

η ≥ 1 − β ≥ c′′2
log c′′1 − log(1 − β1) − log log dL

log dL
≥ c′′2

log c′′1 + c3L − log L

L
,

where c′′1 and c′′2 are defined in (2.30). Thus,
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c3 ≤ η

c′′2
+ log L − log c′′1

L
≤ η

c′′2
+ log L0 − log c′′1

L0
, (2.31)

which completes the proof of Theorem 4. �
Remark. We note that if there are only two real zeros (i.e. β1 and 1 − β1), then we can 
only take the trivial bound β = 1 − β1 > 0 (i.e. η = 1). However, if there is a third real 
zero β′, by the symmetry of zeros of ζL(s), we may take β = β′ ≥ 1/2 (so η = 1/2 is 
admissible), which reduces the admissible value for c3 and, consequently, would push β1

away from the 1-line a bit further. In other words, while Deuring-Heilbronn describes 
how an exceptional real zero would push further left other zeros in its vicinity, the other 
real zeros also do the same to the exceptional zero. We note that this phenomenon would 
hold for Dirichlet L-functions as well.

2.4. Numerical results

As Theorems 2, 3, and 4 are “trivial” if ζL(s) does not admit the exceptional zero 
β1, it is sufficient to calculate c1, c2, c′1, c

′
2, c

′′
1 , c

′′
2 , c3 for L such that ζL(s) may admit the 

exceptional zero β1. To do so, we first summarize some cases that the non-existence of 
β1 is known.

For nL = 2, we recall that there is a (quadratic) Dirichlet character χL modulo dL
such that ζL(s) = ζ(s)L(s, χL), where ζ(s) is the Riemann zeta function, and L(s, χL)
is the Dirichlet L-function attached to χL. It is known that ζ(σ) is non-vanishing for 
σ > 0. Moreover, Platt [Pla16] showed that for any Dirichlet character χ modulo q, with 
q ≤ 400 000, L(s, χ), the Dirichlet L-function attached to χ, has no positive real zeros. 
Hence, for nL = 2, ζL(s) has no positive real zeros if dL ≤ 400 000.

For nL = 3 and dL ≤ 239, Tollis [Tol97] verified the generalized Riemann hypothesis 
for ζL(s) to |Im(s)| ≤ 92. Also, for nL = 4 and dL ≤ 320, Tollis [Tol97] verified the 
generalized Riemann hypothesis for ζL(s) to |Im(s)| ≤ 40. Consequently, ζL(s) has no 
positive real zeros whenever nL = 3 and dL ≤ 239 or nL = 4 and dL ≤ 320. Hence, for 
2 ≤ nL ≤ 4, we only need to compute c1, c2, c′1, c

′
2, c

′′
1 , c

′′
2 , c3 for L with dL ≥ d0, where 

d0 given in Table 1.
For fields L of degree nL ≥ 5, instead of trying to confirm the non-existence of 

the exceptional zero of ζL(s), we use the following lower bounds d0 of dL to calculate 
c1, c2, c′1, c

′
2, c

′′
1 , c

′′
2 , c3. For 5 ≤ nL ≤ 8, by [LMFDB], it can be checked that all the 

fields L satisfy that dL ≥ d0, where d0 is given in Table 1. For 9 ≤ nL ≤ 20, as re-
marked by Fiori, by the lower bounds for the minimal root discriminant in [DyD80], 
we know that dL ≥ d0, where d0 is given in Table 1. In addition, for nL ≥ 21, 
by [DyD80], one has dL > 10nL , and thus d0 can be taken as d0 = 10nL for these 
fields.
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Table 1
Values for (c1, c2, c′1, c′2, c′′1 , c′′2 , c3) as defined in Theorems 2, 3, and 4.
n0 d0 c1 c2 c′1 c′2 c′′1 c′′2 c3

2 400 000 5.174 · 10−5 0.04233 7.904 · 10−5 0.06466 1.581 · 10−4 0.1293 8.608
3 239 1.276 · 10−4 0.05697 1.133 · 10−4 0.05059 2.275 · 10−4 0.1015 11.69
4 320 1.047 · 10−4 0.04974 1.052 · 10−4 0.05000 2.121 · 10−4 0.1008 11.69
5 1 609 8.485 · 10−5 0.04960 8.790 · 10−5 0.05139 1.774 · 10−4 0.1037 11.08
6 9 747 7.056 · 10−5 0.05019 7.371 · 10−5 0.05243 1.488 · 10−4 0.1058 10.65
7 184 607 5.852 · 10−5 0.05397 5.802 · 10−5 0.05351 1.168 · 10−4 0.1077 10.23
8 1 257 728 5.118 · 10−5 0.05411 5.105 · 10−5 0.05397 1.028 · 10−4 0.1087 10.04
9 2.290 · 107 4.450 · 10−5 0.05620 4.321 · 10−5 0.05457 8.690 · 10−5 0.1097 9.831
10 1.560 · 108 4.008 · 10−5 0.05609 3.916 · 10−5 0.05480 7.878 · 10−5 0.1102 9.728
11 3.910 · 109 3.602 · 10−5 0.05792 3.436 · 10−5 0.05526 6.906 · 10−5 0.1110 9.579
12 2.740 · 1010 3.323 · 10−5 0.05774 3.187 · 10−5 0.05538 6.406 · 10−5 0.1113 9.517
13 7.560 · 1011 3.037 · 10−5 0.05914 2.862 · 10−5 0.05574 5.749 · 10−5 0.1120 9.410
14 5.430 · 1012 2.755 · 10−5 0.05899 2.607 · 10−5 0.05582 5.236 · 10−5 0.1121 9.370
15 1.610 · 1014 2.527 · 10−5 0.06010 2.359 · 10−5 0.05610 4.736 · 10−5 0.1126 9.288
16 1.170 · 1015 2.424 · 10−5 0.05987 2.273 · 10−5 0.05614 4.565 · 10−5 0.1127 9.261
17 3.700 · 1016 2.273 · 10−5 0.06080 2.108 · 10−5 0.05638 4.231 · 10−5 0.1132 9.196
18 2.730 · 1017 2.172 · 10−5 0.06062 2.021 · 10−5 0.05639 4.057 · 10−5 0.1132 9.177
19 9.030 · 1018 2.010 · 10−5 0.06140 1.852 · 10−5 0.05660 3.718 · 10−5 0.1136 9.123
20 6.740 · 1019 1.908 · 10−5 0.06122 1.765 · 10−5 0.05661 3.542 · 10−5 0.1136 9.109
21+ 10nL 1.819 · 10−5 0.06141 1.679 · 10−5 0.05669 3.370 · 10−5 0.1138 9.082

3. The least prime in the Chebotarev density theorem - proof of Theorem 1

3.1. Choosing a weight to detect the least prime

Let x ≥ 1. Let θ > 1 be a parameter to be chosen later. We consider the kernel

k(s) = kθ(s) =
(xθ(s−1) − xs−1

s− 1

)2
(3.1)

and recall its inverse Mellin transform is

k̂(u) = 1
2πi

2+i∞∫
2−i∞

k(s)u−sds =

⎧⎪⎪⎨⎪⎪⎩
u−1 log(x2θ/u) if xθ+1 ≤ u ≤ x2θ;
u−1 log(u/x2) if x2 ≤ u ≤ xθ+1;
0 otherwise.

(3.2)

In [AhKw19-1,LaMoOd79], θ was chosen to be 2. Note that

k̂(u) ≤ (θ − 1)(log x)
u

, (3.3)

k(1) = kθ(1) = ((θ − 1) log x)2, (3.4)

k(σ) =
(xθ(σ−1) − xσ−1

σ − 1

)2
=

(1 − x(θ−1)(σ−1)

σ − 1

)2
x2(σ−1) ≤ 1

(σ − 1)2x
2(σ−1) if σ < 1,

(3.5)

|k(σ + it)| ≤

(
xθ(σ−1) + xσ−1

)2

2 ≤ k(σ)
(1 + x(θ−1)(σ−1)

(θ−1)(σ−1)

)2 (σ − 1)2
2 2 , (3.6)
|s− 1| 1 − x (σ − 1) + t
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k(1) − k(β1) = (log x)2φθ((1 − β1) log x), where φθ(v) = (θ − 1)2 −
(e−v − e−θv

v

)2
.

(3.7)

We shall require the following lemma regarding the properties of φθ.

Lemma 9. Let θ > 1. Then

(i) φθ(v) is increasing for v > 0;
(ii) for any v > 0, we have φθ(v) ≥ (θ − 1)2(1 − e−2v).

In particular, if b > 0, then for any 0 ≤ v ≤ b, we have φθ(v) ≥ 2(θ − 1)2e−2bv.

Proof of Lemma 9. We first note that

φ′
θ(v) = −2

(e−v − e−θv

v

)
((−v−2)(e−v − e−θv) + (v−1)(−e−v + θe−θv))

= 2
(e−v − e−θv

v2

)(
e−v

(
1 + 1

v

)
− e−θv

(
θ + 1

v

))
.

We claim φ′
θ(v) ≥ 0 for v ≥ 0 and so φθ is increasing. More precisely, letting f(θ) =

e−θv(θ+ 1
v ), we claim f(1) ≥ f(θ) whenever θ > 1. This follows from f ′(θ) = −ve−θv(θ+

1
v ) + e−θv = −θve−θv ≤ 0.

Secondly, by the mean value theorem, for θ > 1, we have

∣∣∣e−v − e−θv

1 − θ

∣∣∣ = max
t∈[1,θ]

|ve−tv| ≤ ve−v,

and thus 
(
e−v−e−θv

v

)2 ≤ (θ − 1)2e−2v. Hence, we obtain

φθ(v) = (θ − 1)2 −
(e−v − e−θv

v

)2
≥ (θ − 1)2(1 − e−2v).

Lastly, for c > 0, letting gc(v) = (1 − e−cv) − cve−cb, we note that g(v) ≥ 0 for all 
v ∈ [0, b]. Indeed, as gc(0) = 0 and g′c(v) = ce−cv − ce−cb ≥ 0 for all v ≤ b, we know that 
gc(v) is non-negative and increasing. Now, the last part of the lemma follows from using 
gc(v) with c = 2. �
3.2. Explicit inequalities

Throughout our discussion (from Section 3.2 to Section 3.4), we let L/K be a Galois 
extension of number fields with Galois group G, and we let C be a conjugacy class in G. 
We let P(C) denote the set of the unramified primes p ⊂ OK of degree one such that 
σp = C. In addition, we choose d0 according to Table 2 and assume log dL ≥ L0 = log d0. 
We let x ≥ 101 and let k be a weight to be chosen later. We recall that β1 denotes the 
possible exceptional zero, appearing in (1 − 1 , 1), of ζL(s). By (2.3), we know that 
R0L
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there is at most one zero of ζL(s) in (1 − 1
R1L , 1 − 1

R0L ]; we shall denote such a zero by 
β′ if it exists.

Following [AhKw19-1] and [LaMoOd79], our goal is to show that there exists c4 > 0
such that for x = dc4L = ec4L , we have

SC =
∑

p∈P(C)

(logNp)k̂(Np) > 0, (3.8)

which implies that there is a prime p ∈ P(C) such that

Np ≤ x2θ = d2θc4
L .

Thus we want to estimate

B = 2θc4. (3.9)

Proposition 10. Let k(s) be the kernel given as in (3.1), with x = dc4L ≥ 101, and SC be 
the sum given as in (3.8). Then we have

|G|
|C|SC ≥(1 − δ(β1))(θ − 1)2(log x)2 + δ(β1)φθ((1 − β1) log x)(log x)2

− (1 − δ(β1))δ(β′)|k(β′)|

−
∑

ρ∈S\{β1,β′,1−β1}
|k(ρ)| − α3(θ − 1) |G|

|C|L
log x
x

− δ(β1)
1

(1 − 1
2L )2

x−2(1− 1
2L ) − c5L x−2,

where φθ, α3, and c5 are defined in (3.7), (3.15), and (3.20), respectively. Here δ(β1) = 1
if the exceptional zero β1 exists for ζL(s), and δ(β1) = 0 otherwise. δ(β′) is defined the 
same way for β1.

Proof. Let gC ∈ G be a representative of C, and let

ΨC(s) = −|C|
|G|

∑
χ

χ(gC)L
′

L
(s, χ, L/K), (3.10)

where the sum is over the irreducible characters χ of G = Gal(L/K), and L(s, χ, L/K)
is the Artin L-function attached to χ. It follows from the orthogonality property of 
irreducible characters of G that

IC = 1
2πi

2+i∞∫
ΨC(s)k(s)ds =

∑
p

∞∑
m=1

J(pm)(logNp)k̂(Npm), (3.11)

2−i∞
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where for ramified primes p, |J(pm)| ≤ 1, for unramified primes p, J(pm) = 1 if σm
p = C, 

and J(pm) = 0 otherwise. By (3.3), as argued in [AhKw19-1, Lemmata 3.1(1) and 3.3(1)]
(see also [LaMoOd79, Lemmata 3.1-3.3]), for x ≥ 2, one has

∑
p ramified

∑
m≥1

J(pm)(logNp)k̂(Npm) ≤ 2(θ − 1) log x
x2 log dL. (3.12)

Also, for x ≥ 101, one has

∑
p,m

J(pm)(logNp)k̂(Npm) ≤ 16.08α0(θ − 1) log x
x

nK , with α0 = 1.25506, (3.13)

where the sum is over p, m such that Npm �= p for any (rational) prime p. Hence, by 
Minkowski’s bound, for x ≥ 101, we have as in [AhKw19-1, Proposition 3.5]

|IC−SC | ≤
2(θ − 1) log x

x2 log dL+16.08α0(θ−1)nK
log x
x

≤ α3(θ−1) log x
x

log dL, (3.14)

where

α3 = 2
101 + 32.16α0

log 3 = 36.7595 . . . . (3.15)

The second step is to relate ΨC(s) to the zeros of the Dedekind zeta function ζL(s). To 
do so, we recall that by Deuring’s reduction [Deu35], denoting the fixed field of gC by 
E, one has

ΨC(s) = −|C|
|G|

∑
ψ

ψ(gC)L
′

L
(s, ψ, L/E),

where the sum is over the irreducible characters ψ of Gal(L/E). As L/E is abelian, it 
follows from Artin reciprocity that each Artin L-function L(s, ψ, L/E) corresponds to a 
Hecke L-function. This allows us to use the classical method of contour integration to 
find a lower bound of IC (in terms of k(s) and the zeros of ζL(s)). Indeed, one has

IC = |C|
|G|

∑
ψ

ψ(gC)
( 1

2πi

2+i∞∫
2−i∞

−L′

L
(s, ψ, L/E)k(s)ds

)
.

Proceeding exactly as in [AhKw19-1, Sec. 4] and [LaMoOd79, Sec. 3] (see also [LaOd77]), 
an application of Cauchy’s integral formula gives

|G|
|C|IC ≥ k(1) −

∑
ρ∈S

|k(ρ)| − nLk(0) −
∑
ψ

|V (ψ)|, (3.16)

where
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V (ψ) = 1
2πi

− 1
2+i∞∫

− 1
2−i∞

−L′

L
(s, ψ, L/E)k(s)ds.

Denoting A(ψ) = dENE/Q(fψ), where fψ is the conductor of ψ, we appeal to a bound 
for the L-term of the form as given in [LaOd77, Lemma 6.2] and as given explicitly in 
[Das21, Lemma 2.19]:∣∣∣L′

L
(−1

2 +it, ψ, L/E)
∣∣∣ ≤ logA(ψ)+nEv(t), with v(t) = log(

√
0.25 + t2+1)+4.452+ 83

5 ,

(3.17)
with 4.452 + 83

5 = 21.052. (Note this is an improvement on [Win13, Lemma 5.1] where 
instead v(t) = log(

√
0.25 + t2 + 2) + 19683

812 .)
Using the bound (3.6) for k, we have for any x ≥ 101,

∣∣∣k(− 1
2 + it

)∣∣∣ ≤ k
(
− 1

2

)(1 + 101− 3
2 (θ−1)

1 − 101− 3
2 (θ−1)

)2 9
9 + 4t2 .

Hence, we deduce

|V (ψ)| ≤ 1
2πk

(
− 1

2

)(1 + 101− 3
2 (θ−1)

1 − 101− 3
2 (θ−1)

)2
∞∫

−∞

(logA(ψ) + nEv(t))
9

9 + 4t2 dt.

Now, from (3.16) and the conductor-discriminant formula 
∑

ψ logA(ψ) = log dL,

|G|
|C|IC ≥ k(1) −

∑
ρ∈S

|k(ρ)| −W0k
(
− 1

2

)
log dL − nL

(
k(0) + W1k

(
− 1

2

))
, (3.18)

where, as before, S denotes the set of all non-trivial zeros of ζL(s),

W0 = 1
π

∞∫
0

W (t)dt, W1 = 1
π

∞∫
0

v(t)W (t)dt, W (t) =
(1 + 101− 3

2 (θ−1)

1 − 101− 3
2 (θ−1)

)2 9
9 + 4t2 ,

(3.19)
and v(t) is defined in (3.17). Together with Minkowski’s bound and (3.5), we deduce, for 
x ≥ 101,

W0k
(
− 1

2

)
log dL + nL

(
k(0) + W1k

(
− 1

2

))
≤ c5(log dL)x−2,

where

c5 = 2
log 3 + 4

909

(
W0 + 2

log 3W1

)
. (3.20)

Hence, putting (3.14) and (3.18) together, if ζL(s) has no exceptional zero, we have
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|G|
|C|SC ≥ k(1) −

∑
ρ∈S

|k(ρ)| − c5L

x2 − α3(θ − 1) |G|
|C|

log x
x

L , (3.21)

where c5 and α3 are defined in (3.20) and (3.15). We then use (3.4) to bound k(1). 
Otherwise, if ζL(s) admits an exceptional zero β1, the term k(1) − k(β1) appears. By 
(3.5) and (3.7), we know

k(1)− k(β1) = (log x)2φθ((1− β1) log x) and |k(1− β1)| ≤
x−2β1

β2
1

≤ x−2(1− 1
2L )

(1 − 1
2L )2

. (3.22)

Thus, in the case the exceptional zero β1 appears, we have

|G|
|C|SC ≥(log x)2φθ((1 − β1) log x) + 1

(1 − 1
2L )2

x−2(1− 1
2L )

−
∑

ρ∈S\{β1,1−β1}
|k(ρ)| − c5L

x2 − α3(θ − 1) |G|
|C|

log x
x

L .

(3.23)

Finally, writing the sum in (3.23) as∑
ρ∈S\{β1,1−β1}

|k(ρ)| = (1 − δ(β1))δ(β′)|k(β′)| +
∑

ρ∈S\{β1,β′,1−β1}
|k(ρ)|,

we conclude the proof. �
We now focus on controlling the size of the above sums over the zeros. This is done 

by means of zero-free regions, Deuring-Heilbronn repulsion, and zero-density estimates 
for zeros of ζL(s). First, we have some explicit estimate for NL(T ) which counts the 
number of non-trivial zeros ρ = β + iγ of ζL(s) such that |γ| ≤ T . We refer to the recent 
improvement of [HaShWo]:

Lemma 11. Let T ≥ 1. Then∣∣∣NL(T ) − T

π
log

(
dL

( T

2πe

)nL
)∣∣∣ ≤ 0.296(log dL + nL log T ) + 3.971nL + 3.969. (3.24)

In addition, we require a sharper estimate for the number of non-trivial zeros close to 
1. Denoting Z(r; s) = {ρ ∈ S | |ρ − s| ≤ r}, we consider n(r; s) = |Z(r; s)|, the number 
of non-trivial zeros ρ of ζL(s) such that |ρ − s| ≤ r.

Lemma 12. Let n0 ≥ 2, Q0 > 0, 0 < r ≤ 1, and α > 0. If n0 ≤ nL ≤ Q0L , then

n(r; 1) ≤
(1 + α

α

)2
(1 + αrω(α)L ), (3.25)

where
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ω(α) = 1
2 + Q0

2 max
{Γ′

Γ

(2 + α

2

)
− log π + 2

n0
, 0
}
. (3.26)

Proof. We let 0 < r ≤ 1 and α > 0 and set s0 = 1 + αr. Putting together the classical 
explicit formula (see, e.g., [AhKw19-1, p. 1442])

∑
ρ∈S

Re
1

s0 − ρ
= 1

2 log dL + Re

( 1
s0

+ 1
s0 − 1

)
+ Re

γ′
L

γL
(s0) + Re

ζ ′L
ζL

(s0), (3.27)

with the facts that Re
ζ′
L

ζL
(s0) = ζ′

L

ζL
(1 + αr) ≤ 0, and

γ′
L

γL
(s0) = (r1 + r2)

2
Γ′

Γ

(s0

2

)
+ r2

2
Γ′

Γ

(s0 + 1
2

)
− nL

2 log π ≤ nL

2

(Γ′

Γ

(2 + α

2

)
− log π

)
,

yields

∑
ρ∈S

Re
1

s0 − ρ
≤ 1

αr
+ 1

2 log dL + nL

2

(Γ′

Γ

(2 + α

2

)
− log π

)
+ 1.

Note that

∑
ρ∈S

Re
1

s0 − ρ
≥

∑
ρ∈Z((1+α)r;s0)

Re
1

s0 − ρ
≥ αr

((1 + α)r)2n((1 + α)r; s0)

= α

(1 + α)2rn((1 + α)r; s0).

Observing that Z(r; 1) ⊆ Z((1 + α)r; 1 + αr) = Z((1 + α)r; s0), (3.25) follows from

n(r; 1) ≤ n((1 + α)r; s0)

≤ (1 + α)2r
α

( 1
αr

+ 1
2 log dL + nL

2

(Γ′

Γ

(2 + α

2

)
− log π

)
+ 1

)
. �

In addition, we require the following result on sums over the zeros close to 1.

Corollary 12.1. Assume (1.5), α > 0, r > 0 and that 1
rL ≤ 1. If n0 ≤ nL ≤ Q0L , then

∑
1

rL ≤|ρ−1|≤1

1
|ρ− 1|2 ≤

((1 + α

α

)2
(r2 + 2rαω(α)) − n

( 1
rL

; 1
)
r2
)
L 2, (3.28)

where ω(α), depending on n0 and Q0, is defined as in (3.26).
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Proof. We start with

∑
1

rL ≤|ρ−1|≤1

1
|ρ− 1|2 =

1∫
1

rL

1
u2 dn(u; 1) = n(1; 1) − n

( 1
rL

; 1
)
(rL )2 + 2

1∫
1

rL

n(u; 1)
u3 du.

(3.29)
It follows from Lemma 12 that

n(1; 1) ≤
(1 + α

α

)2
(αω(α)L + 1), and

1∫
1

rL

1 + αuω(α)L
u3 du =

(r2

2 + αω(α)r
)
L 2 − αω(α)L − 1

2 . (3.30)

We conclude by putting together (3.29) and (3.30). �
We now control non-trivial zeros ρ = β + iγ of ζL(s) that are not equal to β1, β′, or 

1 − β1.

Proposition 13. Let k(s) be the kernel given as in (3.1), with x = dc4L , and SC be the sum 
given as in (3.8). Let R1 be defined as in (2.3). If n0 ≤ nL ≤ Q0L , then

|G|
|C|SC ≥(1 − δ(β1))(θ − 1)2c24L 2 + δ(β1)φθ

(
c4(1 − β1)L

)
c24L

2

− (1 − δ(β1))δ(β′)|k(β′)| − c6L −
∑′

1
R1L ≤|ρ−1|≤1

|k(ρ)|

− Q0α3(θ − 1)c4L 3e−c4L − δ(β1)
1

(1 − 1
2L )2

e−c4(2L−1) − c5L e−2c4L ,

where δ(β1) = 1 (resp., δ(β′) = 1) if the exceptional zero β1 (resp., real zero β′) exists 
for ζL(s), δ(β1) = 0 (resp., δ(β′) = 0) otherwise, φθ, α3, c5, and c6 are defined in (3.7), 
(3.15), (3.20), and (3.33), respectively, and, as later, the primed sum is over non-trivial 
zeros ρ �= 1 − β1 of ζL(s).

Proof. We shall note that if ρ = β + iγ is such that |ρ − 1| < 1
R1L , then 1 − β < 1

R1L

and |γ| < 1
R1L . Hence, (2.3) forces that ρ is either β1 or β′ if |ρ − 1| < 1

R1L . Thus, we 
can consider the splitting∑

ρ∈S\{β1,β′,1−β1}
|k(ρ)| =

∑′

1
R1L ≤|ρ−1|≤1

|k(ρ)| +
∑

|ρ−1|>1

|k(ρ)|. (3.31)

To bound 
∑

|ρ−1|>1 |k(ρ)|, we appeal to (3.6) to bound k:
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|k(ρ)| ≤ (xθ(β−1) + xβ−1)2

|ρ− 1|2 ≤ 4
|ρ− 1|2 . (3.32)

Recalling that n(r; 1) denotes the number of non-trivial zeros ρ of ζL(s) such that |ρ −1| ≤
r, we notice that n(r; 1) ≤ NL(r). Using (3.24), we derive

∑
|ρ−1|>1

|k(ρ)| ≤ 4
∞∫
1

1
r2 dn(r; 1) ≤ 8

∞∫
1

n(r; 1)
r3 dr ≤ c6L ,

where

c6 = 8
( 1
π

+ 0.148 + Q0 max
{

0,
∞∫
1

r
π log( r

2πe ) + 0.296 log r + 3.971 + 3.969
n0

r3 dr
})

. (3.33)

We conclude by putting together Proposition 10 with the above and the facts that 
|G|
|C| ≤ nL and x = ec4L . �

Now, it remains to bound 
∑′

1
R1L ≤|ρ−1|≤1 |k(ρ)|. We shall proceed with the argument 

by considering cases depending on the existence of the exceptional zero β1 and the 
distance of the exceptional zero β1, if it exists, to the 1-line.

3.3. Non-exceptional case

Proposition 14. Let SC be the sum given as in (3.8). Assume there is no exceptional zero 
β1 in (1 − 1

R0L , 1). If n0 ≤ nL ≤ Q0L and L ≥ L0, then

L −2 |G|
|C|SC ≥ (θ − 1)2c24 −R2

0e
− 2c4

R0 − c7(c4)e
−2c4

29.57(1+Δ0(1)) − E0(c4), (3.34)

where

E0(t) = c6
L0

+ Q0α3(θ − 1)tL0e
−tL0 + c5

L0
e−2tL0 , (3.35)

and c5, c6, and c7 are defined as in (3.20), (3.33), and (3.37), respectively.

Proof. We begin by recalling that β′ ≤ 1 − 1
R0L (if exists) and that for any non-trivial 

zero ρ = β + iγ �= β′, with |γ| ≤ 1, the zero-free region [AhKw19-1, Proposition 6.1]
gives

1 − β > (29.57 log(dLτnL))−1 ≥ (29.57L (1 + δL(3)))−1 ≥ (29.57L (1 + Δ0(1)))−1,

where δL and Δ0 are defined in (1.6) and (1.7), respectively, and the last inequality is 
due to (1.9). Therefore, by (3.5), we have
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|k(β′)| ≤ 1
(β′ − 1)2x

2(β′−1) ≤ (R0L )2x− 2
R0L ,

and by using the first bound of (3.6), we have for the other zeros that

|k(ρ)| ≤ x2(β−1)(1 + x(θ−1)(β−1))2

|ρ− 1|2

≤ x−2(29.57L (1+Δ0(1)))−1(1 + x(1−θ)(29.57L (1+Δ0(1)))−1)2

|ρ− 1|2 .

By Corollary 12.1, putting x = ec4L , we then derive

(1 − δ(β1))δ(β′)|k(β′)| +
∑′

1
2L ≤|ρ−1|≤1

|k(ρ)| ≤ (R0L )2e−
2c4
R0 + c7(c4)L 2e

−2c4
29.57(1+Δ0(1)) ,

(3.36)
where

c7(t) = 4(1 + αω(α))
(1 + α

α

)2(
1 + e

(1−θ)t
29.57(1+Δ0(1))

)2
, (3.37)

and ω(α) is defined as in (3.26). For nL ≤ Q0L , we apply Proposition 13 with R1 = 2
and (3.36) to obtain

|G|
|C|SC ≥(θ − 1)2c24L 2 − c6L − (R0L )2e−

2c4
R0 − c7(c4)L 2e

−2c4
29.57(1+Δ0(1))

− Q0α3(θ − 1)c4L 3e−c4L − c5L e−2c4L .

We conclude with the fact that L ≥ L0. �
3.4. Exceptional case

Assume that the exceptional zero β1 of ζL(s) presents such that β1 ≥ 1 − 1
R0L . 

Following Proposition 6, we take R0 = 20 and R1 = 1.24. We recall R = 29.57. We let 
ε1 > 0, σ1 ≥ 1, and η ∈ (0, 1] be parameters (to be chosen later) to compute c′1(ε1, σ1, η)
and c′2(ε1, σ1, η) defined in (2.28). These parameters will be chosen to make c4 and thus 
B as small as possible.

Proposition 15. Let SC be the sum given as in (3.8). Assume that the exceptional zero 
β1 of ζL(s) exists, that is β1 ≥ 1 − 1

R0L . Let η ∈ (0, 1] satisfying

η ≥ c′2(ε1, σ1, η)
log

(
c′1(ε1,σ1,η)
(1−β1)L

)
L

(3.38)

(with c′1(ε1, σ1, η) and c′2(ε1, σ1, η) defined in (2.28)). If n0 ≤ nL ≤ Q0L and L ≥ L0, 
then
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L −2 |G|
|C|SC ≥φθ((1 − β1)c4L )c24 − c11((1 − β1)L )2c4c8 − c6

L

− Q0α3(θ − 1)c4L e−c4L − 1
(L − 1

2 )2
e−c4(2L−1) − c5

L
e−2c4L ,

(3.39)

where α3, c5, c6, c8, and c11 are defined in (3.15), (3.20), (3.33), (3.42), and (3.45), 
respectively.

Proof. We start by estimating the sum over low-lying zeros 
∑′

1
R1L ≤|ρ−1|≤1 |k(ρ)|. Let 

ρ = β + it denote a non-exceptional zero of ζL(s) such that 1
R1L ≤ |ρ − 1| ≤ 1. We shall 

consider the following two situations:

(a) We first suppose that (1 − β1)L ≤ c′1(ε1, σ1, η)a. Applying Theorem 2, we have 
either β ≤ 1 − η or

1 − β ≥ c′2(ε1, σ1, η)
log

(
c′1(ε1,σ1,η)
(1−β1)L

)
L

≥ c9
log

(
1

(1−β1)L

)
L

,

where

c9 = c′2(ε1, σ1, η)
(
1 − 1

a

)
.

(b) Secondly, we consider the situation that (1 − β1)L > c′1(ε1, σ1, η)a. By [AhKw19-1, 
Proposition 6.1] and (1.9), we know that

1 − β > (29.57 log(dLτnL))−1 ≥ (29.57L (1 + Δ0(1)))−1

as τ = |t| + 2 and |t| ≤ 1. Thus, by choosing

c10 = 1
a · 29.57(1 + Δ0(1)) log(1/c′1(ε1, σ1, η))

,

we have

1 − β ≥ c10
1
L

log
( 1
c′1(ε1, σ1, η)a

)
≥ c10

log
(

1
(1−β1)L

)
L

.

To summarise, for any non-exceptional zero ρ = β + it such that 1
R1L ≤ |ρ − 1| ≤ 1, 

assuming (3.38), we have

1 − β ≥ D := c8
log

(
1

(1−β1)L

)
L

, with c8 = min{c9, c10}. (3.40)

We chose a such that c9 = c10, i.e.
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a = 1 + 1
29.57(1 + Δ0(1))c′2(ε1, σ1, η) log(1/c′1(ε1, σ1, η))

. (3.41)

Thus, c8 is given by

c8 = 1
1/c′2(ε1, σ1, η) + 29.57(1 + Δ0(1)) log(1/c′1(ε1, σ1, η))

. (3.42)

Applying the bounds (3.6) on k with 1 − β ≥ D gives

|k(ρ)| ≤ x2(β−1)(1 + x(θ−1)(β−1))2

|ρ− 1|2 ≤ x−2D(1 + x−(θ−1)D)2

|ρ− 1|2 . (3.43)

Recalling that we set x = dc4L , and by the definition of the exceptional zero with respect 
to the zero-free region (2.2), that D ≥ c8

logR0
L , we have

x−2D = ((1 − β1)L )2c4c8 and (1 + x−(θ−1)D)2 ≤
(
1 + e−(θ−1)c4c8 logR0

)2
.

We apply Corollary 12.1 with n( 1
R1L ; 1) = 1:

∑′

1
R1L ≤|ρ−1|≤1

1
|ρ− 1|2 ≤

((1 + α

α

)2
(R2

1 + 2R1αω(α)) −R2
1

)
L 2,

which together with (3.43), gives∑′

1
R1L ≤|ρ−1|≤1

|k(ρ)| ≤ c11L
2((1 − β1)L )2c4c8 , (3.44)

with

c11 =
(
1 + e−(θ−1)c4c8 logR0

)2
R1

((1 + α

α

)2
(R1 + 2αω(α)) −R1

)
, (3.45)

where ω(α), depending on Q0 and n0, is defined in (3.26). Note that c9, c10, and c11 all 
depend on ε1, σ1, and η. We conclude by using Proposition 13 and (3.44). �

For the rest of the article, n0 ≤ nL ≤ Q0L and L ≥ L0, with L0 and Q0 as 
defined in (1.4) and (1.8), respectively. For each (n0, d0) listed in Table 2, we choose 
ε1 > 0, σ1 ≥ 1, and η ∈ (0, 1] which give c′1(ε1, σ1, η) and c′2(ε1, σ1, η) as defined in 
(2.28). We then obtain c8 as defined in (3.42), and define

c4 = 1
2c8

+ 0.001. (3.46)

To prove Theorem 1, we shall split our consideration depending on the distance of β1 to 
1-line. We shall introduce further parameters:
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ε2 > 0, σ2 ≥ 1, κ ≥ 1, 0 < λ ≤ 1, 0 < μ ≤ 1, and 1 < ν ≤ 2.

For the rest of the article, we denote

C1 = c′1(ε2, σ2, 0.5) and C2 = c′2(ε2, σ2, 0.5), (3.47)

where c′1 and c′2 are defined in (2.28). We assume

(κC1)2

L
<

μ

c4L ν−1 <
λ

c4
<

1
R0

.

We explore the cases:

• “medium” when λ
c4

≤ (1 − β1)L < 1
R0

,
• “small” when μ

c4L ν−1 ≤ (1 − β1)L ≤ λ
c4

,
• “very small” when (κC1)2

L ≤ (1 − β1)L ≤ μ
c4L ν−1 , and

• “extremely small” when (1 − β1)L < (κC1)2
L .

For the “extremely small” case, we will use a different weight k and thus leave this for 
the end.

In each of the first three cases, we use the weight kθ as defined in (3.1), and obtain 
B = 2θc4 as given by (3.9). The choice of parameters will ensure B to be as small as 
possible while keeping the expression in the right of (3.39) positive. We note that if 
(1 − β1)L ≥ (κC1)2

L , then the condition (3.38), which is needed to apply Proposition 15, 
is satisfied when

c′2(ε1, σ1, η)
L0

(
max

{
log

(c′1(ε1, σ1, η)
(κC1)2

)
, 0
}

+ log L0

)
≤ η. (3.48)

3.4.1. “Medium” case
Assume λ

c4
≤ (1 − β1)L < 1

R0
. Lemma 9(i) yields

φθ((1 − β1)c4L )c24 − c11((1 − β1)L )2c4c8 ≥ φθ(λ)c24 − c11
(
(1 − β1)L

)2c4c8
. (3.49)

Hence, Proposition 15 gives

L −2 |G|
|C|SC ≥ φθ(λ)c24 − c11R

−2c4c8
0 − E1(c4), (3.50)

where c11 is defined in (3.45), and E1(t) is defined by

E1(t) = c6
L

+ Q0α3(θ − 1)L0te
−tL0 + 1

1 2 e
−t(2L0−1) + c5

L
e−2tL0 . (3.51)
0 (L0 − 2 ) 0
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3.4.2. “Small” case
Assume μ

c4L ν−1 ≤ (1 − β1)L ≤ λ
c4

. As (1 − β1)L ≤ λ
c4

and 2c4c8 > 1, Lemma 9(ii) 
yields

φθ((1 − β1)c4L )c24 − c11((1 − β1)L )2c4c8 ≥ 2(θ − 1)2e−2λc34(1 − β1)L

− c11

( λ

c4

)2c4c8−1
((1 − β1)L ).

Hence, by Proposition 15, we have

((1 − β1)L )−1L −2 |G|
|C|SC ≥ 2(θ − 1)2e−2λc34 − c11

( λ

c4

)2c4c8−1
− c6

c4L
ν−2
0
μ

− E2(c4),

(3.52)
with

E2(t) =
(
Q0α3(θ−1)L 2

0 c4e
−tL0 + 1

L0(1 − 1
2L0

)2
e−t(2L0−1)+c5e

−2tL0
) tL ν−2

0
μ

. (3.53)

3.4.3. “Very small” case
Assume (κC1)2

L ≤ (1 − β1)L ≤ μ
c4L ν−1 . Then Lemma 9(ii) yields

φθ((1 − β1)c4L )c24 − c11((1 − β1)L )2c4c8 ≥ 2(θ − 1)2e
− 2μ

Lν−1
0 c34(1 − β1)L

− c11

( μ

c4L
ν−1
0

)2c4c8−1
(1 − β1)L ,

which, combined with Proposition 15, yields

((1−β1)L )−1L −2 |G|
|C|SC ≥ 2(θ−1)2e

− 2μ
Lν−1

0 c34−c11

( μ

c4L
ν−1
0

)2c4c8−1
− c6

(κC1)2
−E3(c4),

(3.54)
with

E3(t) =
(
Q0α3(θ − 1)L 2

0 te
−tL0 + 1

L0(1 − 1
2L0

)2
e−t(2L0−1) + c5e

−2tL0
) 1

(κC1)2
.

(3.55)

3.4.4. “Extremely small” case
We assume 1 − β1 < (κC1)2L −2. Here we use the weight as introduced by 

[LaMoOd79], and used by [AhKw19-1]:

k(s) = xs2+s,
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with x = dc12L ≥ 1010. Thus, here B is given by2

B = 5c12.

First, we have the following explicit inequality from combining [AhKw19-1, (3.2), Propo-
sition 4.7, line 9 of p. 1453, and line -1 of p. 1452]:

|G|
|C|

∑
p∈P(C),Np≤x5

(logNp)k̂(Np) ≥k(1) − k(β1) −
∑
|γ|≤1

|k(ρ)|

− 19.17xL − 1.8292L − 5.4568x(log x) 1
2nLL ,

(3.56)

where, as later, the sum on the right is over non-trivial zeros ρ = β + iγ �= β1 of ζL(s).3
We now emphasize how to improve the estimate for k(1) − k(β1) as well as the con-

tribution of the low-lying zeros of ζL(s). As β1 is the closest to 1, we use the mean value 
theorem to deduce

k(1) − k(β1) ≥ (1 − β1)(2β1 + 1)(log x)xβ2
1+β1

= c12(1 − β1)L (2β1 + 1)e2c12L ec12(β
2
1+β1−2)L .

Since

2β1 + 1 ≥ 3 − 2(κC1)2

L 2
0

and β2
1 + β1 − 2 = (β1 + 2)(β1 − 1) ≥ −3(κC1)2

L 2 ,

we have

k(1) − k(β1) ≥ φ0(c12)
(
L (1 − β1)e2c12L

)
c12, (3.57)

where

φ0(t) = e−
3(κC1)2

L0
t
(
3 − 2(κC1)2

L 2
0

)
. (3.58)

We split the sum over the zeros ρ = β + iγ �= β1, with |γ| ≤ 1, into Σ = Σ1 + Σ2, where

∑
1

=
∑

β<1/2

+1
2

∑
β=1/2

and
∑

2
= 1

2
∑

β=1/2

+
∑

β>1/2

.

2 We observe that the power 5 seems to be the smallest real number in order to control the sum over the 
higher power norm primes. Namely in [AhKw19-2, Lemma 3.4] we can see that the bound for the sum over 

the primes satisfying Np > xa is given by the integral 
∫∞
(a−1)(logx)

( (t+log x)t
2 log x − 1

) exp
(
t− t2

4 log x

)
√

4π log x
dt. So for the 

very least, one needs a non-positive power in the exponent term, which means 1 − (a−1)
4 ≤ 0, giving a ≥ 5.

3 The values appearing in (3.56) are respectively called c20, c′15, α4 in [AhKw19-1].
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We use the bound |k(ρ)| ≤ xβ2+β ≤ x3/4 in the first part, together with the bound 
NL(1) ≤ c13L , as given in (3.24), where

c13 = 1
π

+ 0.296 + Q0

(
3.971 − log(2πe)

π

)
+ 3.969

L0
. (3.59)

Thus, Σ1 ≤ NL(1)
2 x

3
4 ≤ c13

2 L x
3
4 . Now, we assume c12 > 4

5c3 and deduce

∑
1
≤ c13

2 e(c3− 5
4 c12)L

(
(1 − β1)L e2c12L

)
≤ c13

2 e−( 5
4 c12−c3)L0

(
(1 − β1)L e2c12L

)
(3.60)

since L x
3
4 =

(
x2L (1 − β1)

)
x−5/4

(1−β1) , where x = ec12L , and 1 − β1 ≥ d−c3
L = e−c3L

according to Theorem 4.
For Σ2, we apply β2 ≤ 2β = 2 − 2(1 − β) so that

|k(ρ)| ≤ x−2(1−β)

(1 − β1)L

(
(1 − β1)L x2

)
= e−2c12(1−β)L

(1 − β1)L

(
(1 − β1)L e2c12L

)
. (3.61)

Together with Deuring-Heilbronn phenomenon, as described in Theorem 2:

(1 − β)L ≥ C2 logC1 − C2 log
(
(1 − β1)L

)
,

we obtain

e−2c12(1−β)L ≤ C−2c12C2
1 ((1 − β1)L )2c12C2 . (3.62)

Combining (3.61) and (3.62) with (1 − β1)L < (κC1)2L −1, we have

|k(ρ)| ≤ C2c12C2−2
1 κ4c12C2−2

L 2c12C2−1

(
(1 − β1)L e2c12L

)
(3.63)

provided that c12 > 1
2C2

. Thus, we derive

∑
2
≤ c13

2 κ2
(κ2C1

L0

)2c12C2−2(
(1 − β1)L e2c12L

)
, (3.64)

as long as c12 > 1
C2

. Combining (3.56), (3.57), (3.60), and (3.64) finally gives that for

c12 > max
( 1
C2

, c3

)
,

(
(1 − β1)L e2c12L

)−1 |G|
|C|

∑
p∈P(C),Np≤d

5c12
L

(logNp)k̂(Np)

≥ φ0(c12)c12 −
c13κ

2

2

(κ2C1

L0

)2c12C2−2
− E4(c12), (3.65)



728 H. Kadiri, P.-J. Wong / Journal of Number Theory 241 (2022) 700–737
where

E4(t) = c13
2 e−( 5

4 t−c3)L0 +
(
19.17 + 5.4568Q0L

3
2

0 t1/2
)
e−(t−c3)L0 + 1.8292e−(2t−c3)L0 .

(3.66)

3.5. Numerical results

We choose ε1, σ1, and η to make c4 as small as possible while (3.50), (3.52), (3.54), 
and (3.65) are satisfied.

Note that the choice for ν and η are balanced in the inequalities (3.52) and (3.54) as 
c4L ν−2

0
μ and μ

c4L ν−1
0

both have to be small enough. Similarly, the choice of κ is balanced 

by the inequalities (3.54) and (3.65) as both c6
(κC1)2 and κ2C1

L0
need to be small. The 

choice for ε2 and σ2 is to make c6
(κC1)2 as small as possible in (3.54). That choice was 

satisfactory to keep (3.65) valid. Finally, we choose θ in each case to make B as small as 
possible. We recall that

R0 = 20 and R1 = 1.24.

We detail the case when n0 = 9. From Table 3, for L ≤ log(2.29 · 107), we have

B ≤ 1.7712.

In the case where L > log(2.29 · 107), we first investigate the case where there are no 
exceptional zero. Choosing θ = 33.27 and α = 2.56 and solving in c4 so that (3.34) is 
satisfied then lead to

B = 42.3849.

In the case the exceptional zero β1 exists, we set

ε1 = 5.57, σ1 = 4.45, η = 0.025

so that

c′1(ε1, σ1, η) = 0.002509182, and c′2(ε1, σ1, η) = 0.04890427.

This gives

c8 = 0.003324331, and c4 = 150.4072.

We also take

ε2 = 5.97, σ2 = 4.5, κ = 23, λ = 0.2, μ = 0.1, and ν = 1.15,
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i.e., we work over the ranges:

0.003330581
L

<
0.0006648618

L 0.15 < 0.001329724 < 0.05.

We find in the “extremely small” case that

c3 = 9.85 . . . , c12 = 34.97 . . . , and B = 5c12 = 174.8780.

Finally, we choose α and θ in each other case and obtain 

Case Medium Small Very small
θ 1.02 1.02 1.029
α 5.85 0.17 0.67
B 306.8307 306.8307 309.5380

For all the remaining degrees nL �= 9, we then do the calculations using the same 
parameter values except for ε2 which we choose optimally for each degree.

We find all admissible values for B are no larger than the above 309.5380 (see Table 2
for the values of B for each case). This proves that for any Galois extension L/K of 
number fields with Galois group G, a conjugacy class C in G, nL = n0 and dL ≥ d0, there 
exists an unramified prime p of K, of degree one, such that σp = C and Np ≤ dBL with 
admissible (n0, d0, B) recorded in Table 2. Together with Fiori’s numerical verifications 
recorded in Table 3, this concludes the proof of Theorem 1.

3.6. A summary of key ideas

We list here what we have done differently from [AhKw19-1].

(i) For dL relatively small, the least prime is bounded numerically (see Appendix).
(ii) If the exceptional zeros exist, we have an enlarged region that contains no non-
exceptional (Proposition 6). (Cf. [AhKw19-1, Eq. (6.1)].)
(iii) We obtain a better version of the Deuring-Heilbronn phenomenon (cf. [AhKw19-1, 
Theorem 7.3]) which is due to

• the refined Turán’s power sum method established in [KaNgWo19] (cf. [LaMoOd79, 
Theorem 4.2]), and

• better estimates for Γ′

Γ , i.e., Lemma 8 and (2.25), (cf. [AhKw19-1, Lemmata 5.3 and 
5.4]).

In addition, we do not follow [AhKw19-1, Theorem 7.3]) to split our consideration into 
imaginary and non-imaginary cases but only consider the non-trivial zeros of ζL(s) (as 
the Deuring-Heilbronn phenomenon is “trivial” for the trivial zeros of ζL(s)).
(iv) Regarding the weight k:
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Table 2
Table of admissible (n0, d0, B).

n0 2 3 4 5 6
d0 1010 1010 108 108 108

B 223.2 231.7 249.1 259.8 271.1

n0 7 8 9 10 11
d0 108 107 2.29 · 107 1.56 · 108 3.91 · 109

B 280.5 303.3 309.6 309.4 303.0

n0 12 13 14 15 16
d0 2.74 · 1010 7.56 · 1011 5.43 · 1012 1.61 · 1014 1.17 · 1015

B 303.2 298.4 298.8 295.1 295.6

n0 17 18 19 20 21+
d0 3.70 · 1016 2.73 · 1017 9.03 · 1018 6.74 · 1019 10nL

B 292.5 293.0 290.4 291.0 290.2

• we change the weight k as in (3.1) for the “non-extremely-small” cases.
• we use better estimates for k(1) −k(β1), namely, (3.5) (together with Lemma 9) and 

(3.57).

(iv) Regarding the position of the exceptional zero β1 of the Dedekind zeta function:

• we consider a more refined splitting for the position of β1 (Section 3.4; cf. [AhKw19-1, 
Sec. 8]); our “small” case (when (1 −β1)L is smaller than constant size) is giving the 
worst B. Splitting this further with a “very small” case allowed further improvement.

(v) Regarding the zeros of the Dedekind zeta function:

• we use the improved zero-density estimates (3.24), established in [HaShWo], and 
(3.25) (cf. [AhKw19-1, Propositions 5.5 and 5.6]).

• we obtain a better estimate for zeros ρ with |Im(ρ)| ≤ 1 (see Propositions 13 and 
15; cf. [AhKw19-1, Lemma 8.2]) by
– noticing that there are no non-exceptional zeros close to 1 (see (3.31)), and
– balancing the use of zero-free region and zero repulsion in the comparison of (a) 

and (b) done in the proof of Proposition 15 (cf. [AhKw19-1, (i) and (ii) of the 
proof of Lemma 8.2]).

• a consequence of not over-counting low-lying zeros is to improve the value of B in 
the “medium” case.

• we realize that for the “extremely small” case the contribution of the zeros ρ, with 
Re(ρ) ≤ 1

2 , to 
∑

ρ |k(ρ)| is small (see (3.60); cf. [AhKw19-1, Lemma 8.5]). By this 
observation, we essentially half the size of the sum.

• we use the stronger repulsion of zeros ρ, with |Im(ρ)| ≤ 1, from Theorem 2 instead 
of the general one as used in [AhKw19-1, Theorem 7.3(2)].
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Lastly, as we used a different labelling for the constants from [AhKw19-1], we provide 
here the following table for comparison: 

Ahn-Kwon’s notation c7 c8 c10 c11 c12 c13 c14 c15 c16 c21 c23 č

our new notation c1 c2 c3 c9 c8 = c10 c6 c11 c5 c4 c13 c12 8 + ε

Note that in [AhKw19-1], there is no constant corresponding to our c7 as the non-
exceptional case is not treated separately there.

4. Lower bound for the Chebotarev density theorem

Proof of Theorem 5. Throughout this section, we shall adapt the notation used in 
[AhKw19-2]. We let c6 = 11.7 and 1 − β1 ≥ d−c6

L .4 We shall assume log x ≥ dc6L . Let 
a ∈ (1, 2]. We consider the kernel ka(s) defined by

ka(s) = (xs − 1)(as − 1)
s2 log a .

Recall that the inverse Mellin transform of ka(s) is

k̂a(u) = 1
2πi

2+i∞∫
2−i∞

ka(s)u−sds =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
logu
log a if 1 < u < a,

1 if a ≤ u ≤ x,
1

log a log(axu ) if x < u ≤ ax,

0 if u > ax.

By [AhKw19-2, Lemma 2.3], we know that

DC =
∑

p∈P(C)

(logNp)k̂a(Np) ≤ π̃C(ax) log x. (4.1)

Let x0 = 3c6 . Then for x ≥ exp(x0), one has

|G|
|C|DC ≥ c43(a)x, (4.2)

where

c43(a) = 0.49a− 1
log a − c41e

−c39

√
x0
2 −

(
c35x0 log x0 + c40x0

)
e−

x0
2

and c35, c39, c40, and c41 are constants, depending on x0 and a, which are defined in 
[AhKw19-2, pp. 304–306]. By (4.1) and (4.2), we have

4 c6 in this section is our c3 from Theorem 4.
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|G|
|C| π̃C(ax) log x ≥ c43(a)x.

Hence, replacing x by x/a, together with a simplification, we deduce

π̃C(x) ≥ c43(a)
a

|C|
|G|

x

log x− log a ≥ c43(a)
a

|C|
|G|

x

log x.

Finally, we conclude the proof by choosing a as close to 1 as possible. Namely, for 
a = 1.0001, we find m = c43(a)

a = 0.489975 . . .. �
Remark. Note that, for a ≈ 1, c25 = 2(50.313...) a+1

log a , c35 ≈ 2
c6 log 3c8, c39 ≈ 1√

29.57 , 
c40 ≈ √

a ≈ 1, and c41 ≈ 5.7868c39
c6

a+1
log a . Note that, as a−1

log a ≈ 1 when a ≈ 1, then 

m = c43(a)
a ≈ 0.49. This value 0.49 comes from the choice of the kernel ka(s), so this 

may be improved by using a different kernel.
Note that for a = 2 we find m = c43(a)

a = 0.353460 . . ..
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Appendix A. Numerical verification of the least prime in the Chebotarev density 
theorem - by Andrew Fiori5

A.1. Introduction

The purpose of this appendix is to document partial numerical verification of differ-
ent bounds for the least prime in the Chebotarev density theorem. There are several 
known asymptotic bounds for the least prime [BaSo96,LaMoOd79,Zam17,AhKw19-1,
KaNgWo19], the shape of these bounds depends on whether one assumes the GRH. For 
each of these bound shapes we document the worst case behaviour for fields up to some 
bound on the discriminant and the Galois type of the field. Here Galois type refers to 
the Galois closure of the field.

The numerical verification documented here involved two essential steps:

1. Obtaining proven complete tabulations of number fields up to some discriminant 
bound. We describe our methods in Section A.2.

5 The majority of computations for this work were provided on systems supported by Compute Canada. 
Additional hardware at the University of Lethbridge was purchased through an NSERC RTI grant and 
supported by funding from the University of Lethbridge.
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,

2. For each field, and each automorphism of that field, finding the least prime in the 
Chebotarev density theorem. We describe our methods in Section A.3.

A summary of our results by degree is in Section A.4. More complete tables of results are 
available from [FioWeb1]. Each step of this process made extensive use of the PARI-GP 
library [PARI].

A.2. Tabulation of number fields

Many researchers have made contributions towards the development of tabulations of 
number fields with small discriminant. In particular, we refer the reader to the follow-
ing (incomplete) list of references: [JoRo14,KlMa01,Sim98,Hun57,Poh82,Mar85,Bel97,
CoDyDOl03,ScPoDyD94,Oli90,BeMaOl90,Oli92,DyD84,DyD87,PoMaDyD90,Sel99,DJ10
Sel01,DrJo09,Voi08]. Moreover, several efforts have been made to construct reference 
databases particularly by the PARI group, Kluners and Malle, and Jones and Roberts.

The above work and databases form the basis for our own tabulations which in some 
cases extend these. The tabulations we have made are available in [FioWeb2]. Note that 
extending these tabulations is an ongoing project.

A.2.1. Methods for tabulations of number fields
For degree two fields tabulations are essentially trivial, and for degree three fields the 

work of Belabas [Bel97] provides an efficient method to obtain tabulations. For higher 
degree fields there are several strategies which may be applicable depending on the type 
of the field.

• For large degrees the Minkowski bounds provide strong lower bounds for the minimal 
root discriminant of a field, see for example [DyD80] We used this as the basis for 
completion results for degrees 9 and higher. Note that for a field of degree nL which 
is 21 or larger we have dL > 10nL .

• If the type of the field being considered is primitive then a search based on the 
geometry of numbers using ideas from [Hun57,Poh82] provides a method to obtain a 
complete tabulation up to a chosen bound on the discriminant. We used this method 
to extend the tabulations for relevant field types and in particular to improve upon 
existing tabulations in degrees 4, 5, 6, and 8.

• If the type of the field being tabulated admits an automorphism one may use Kum-
mer theory to build all possible relative extensions based on complete tabulations 
of the relevant lower degree field. PARI-GP includes complete implementations of 
the aspects of class field theory and Kummer theory necessary to implement these 
methods. We used this method to extend the tabulations for relevant field types in 
particular to improve the completion in degree 4, 6, 8.

• If the type of field being tabulated admits a subfield, over which the relative Galois 
group (of the relative Galois closure) is solvable, one can use Kummer theory in a 
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more elaborate way building off the ideas used in [CoDyDOl03]. Such strategies also 
work if the Galois group over Q is solvable. PARI-GP includes complete implementa-
tions of the aspects of class field theory and Kummer theory necessary to implement 
these methods. We used this method to extend the tabulations for relevant field 
types in particular to improve the completion in degree 6, 9.

• If the field being tabulated admits a subfield then the geometry of numbers methods 
of [Mar85] may be used to build all relative extensions. This method may be used 
even when Kummer theory can be used. Kummer theory will typically be simpler. 
We have not made use these methods in our search as none of the extension degrees 
for which we can obtain results would benefit.

A.3. Verification of least prime

We now document our method of verification.
Suppose L/Q is a fixed field with absolute discriminant dL. Let G = AutQ(L) and 

σ ∈ G.
What we verify is that there exists a small prime p of Q which is unramified in L, for 

which there exists a prime P of L over p such that

1. σ(P) = P.
2. ∀x ∈ OL, σ(x) ≡ xp (mod P),

where small means relative to one of the types of bound under consideration relative to 
the discriminant dL of L.

We note that this formulation differs from how one typically states the conditions 
on the least prime in the Chebotarev density theorem. We state the following claims 
without proof:

Claim. If K = Lσ is the fixed field of σ then p = P ∩K satisfies the usual conditions of 
the least prime in the Chebotarev density theorem if and only if P satisfies these slightly 
different conditions. Hence, we may find the smallest value of NK/Q(p) = p by finding 
the smallest value of p.

Claim. If K ⊂ Lσ is the fixed field of σ then if P satisfies these slightly different conditions 
then p = P ∩ K satisfies the conditions of the least prime in the Chebotarev density 
theorem with respect to the image of σ in AutK(L). Hence, we may find an upper bound 
for the smallest value of NK/Q(p) = p by finding the smallest value of p.

The above two claims are useful because they reduce the total number of cases that 
needed to be checked, but also because they make clear that an explicit check for any 
given field and any given automorphism is actually computationally practical. Indeed, 
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Table 3
Table of worst case bounds.

n0 = [L : Q] dmin Verification Height d0 A B C
2 3 16 1.7712 5.7997 136.0600
2 16 < dL ≤ 1010 0.8071 1.5802 1.0389
3 23 1010 0.6591 0.8803 0.5661
4 117 108 0.6098 0.9979 0.6823
5 1609 108 0.3559 0.6668 0.5297
6 9747 108 0.4335 0.6668 0.5297
7 184607 108 0.2490 0.2050 0.1890
8 1257728 107 0.2925 0.5047 0.5327
9 2.29 · 107 2.29 · 107 0.2183 0.1692 0.1658
10 1.56 · 108 1.56 · 108 0.2295 0.4319 0.5069
11 3.91 · 109 3.91 · 109 0.1228 0.1047 0.1272
12 2.74 · 1010 2.74 · 1010 0.2107 0.3269 0.3393
13 7.56 · 1011 7.56 · 1011 0.1365 0.0627 0.0690
14 5.43 · 1012 5.43 · 1012 0.1582 0.4006 0.5268
15 1.61 · 1014 1.61 · 1014 0.1206 0.0866 0.1201
16 1.17 · 1015 1.17 · 1015 0.1463 0.2769 0.3410
17 3.70 · 1016 3.70 · 1016 0.1069 0.0478 0.0689
18 2.73 · 1017 2.73 · 1017 0.1279 0.3371 0.4778
19 9.03 · 1018 9.03 · 1018 0.0909 0.0327 0.0484
20+ 6.74 · 1019 6.74 · 1019 0.1230 0.3370 0.4741

PARI-GP includes all the tools necessary to make such a check, and hence find the 
smallest p.

Remark 16. Because p is expected to be small, the runtime of this search is typically 
very small.

We remark also that PARI-GP has all the tools necessary to compute AutQ(L).

A.4. Summary of results

Table 3 summarizes the results we have obtained.
More complete tables, as well as searchable lists of all results for all fields referenced 

can be found at [FioWeb1].
There are essentially three types of bounds considered

A bound dAL which is based on the GRH-unconditional results.
B bound B(log dL)2 which is based on the GRH-conditional results.
C bound C(3eγ/π)2 (log dL)2(log(2 log log dL))2

(log log dL)2 which is based on an upper bound for the 
worst known family of fields [Fio18].

For each row of the table and each type of bound, there are no fields L with nL = n0
and dL ≤ d0, for which the least prime in the Chebotarev density theorem exceeds the 
bounds. Additionally, for each row, and each type of bound, there exists a field L, with 
nL = n0, which (up to the precision given) realizes the given bound. In many cases these 
worst case fields will have absolute discriminants larger than the verification height. One 
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can thus interpret each row as giving a lower bound on the upper bound for the least 
prime in the Chebotarev theorem. The column dmin documents a lower bound for the 
absolute discriminant of fields of that degree, so that for all L with nL = n0 we have 
dL ≥ dmin. We recall that for degrees 9+ there are in fact no fields whatsoever with 
nL = n0 and dL ≤ d0. For degree 21 and higher this verification height, and dmin can 
be taken as at least 10[L:Q].
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