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The work of Green and Tao shows that there are infinitely many arbitrarily long
arithmetic progressions of primes. Recently, Maynard and Tao independently proved
that for any m ≥ 2, there exists k (depending on m) so that for any admissible
set H = {h1, . . . , hk}, there are infinitely many n ∈ N such that at least m of
n + h1, . . . , n + hk are prime. We obtain a common generalization of both these results
for primes satisfying Chebotarev conditions. We also give an improvement of the known
bound for gaps between primes in any given Chebotarev set.
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1. Introduction

A set H = {h1, . . . , hk} of distinct non-negative integers is said to be admissible if
for every (rational) prime p, there is an integer ap which is not congruent to any
element in H modulo p. In other words, |H (mod p)| < p for all primes p. In 1904,
Dickson [2] considered the following conjecture, which was also formulated later by
Hardy and Littlewood in a quantitative form.

Conjecture 1.1 (Prime k-tuples conjecture). Given any admissible set H,

there are infinitely many integers n such that n + h1, . . . , n + hk are all prime.

This conjecture generalizes the famous twin prime conjecture which asserts that
there are infinitely many primes p such that p + 2 is also a prime. This can be seen
by choosing H = {0, 2}. In their groundbreaking paper [4], Goldston, Pintz, and
Yıldırım developed what is now known as the GPY sieve method. Originating in

1651

http://dx.doi.org/10.1142/S1793042117500956


June 22, 2017 6:57 WSPC/S1793-0421 203-IJNT 1750095

1652 A. Vatwani & P.-J. Wong

the work of Selberg, this method allowed them to show that

lim inf
n

pn+1 − pn

log pn
= 0,

where pn denotes the nth prime. Considerable progress has been made since then
on this problem. In 2013, Zhang [14] obtained the remarkable result

lim inf
n

(pn+1 − pn) ≤ 7 × 107.

Moreover, his work established that a positive proportion of 2-element admissible
sets satisfy the prime 2-tuples conjecture. Within a few months of this breakthrough,
Maynard [7] and Tao (unpublished) obtained a simplified proof of bounded gaps
between primes by using a “higher rank” Selberg sieve. Their method gave much
better numerical results and also enabled them to show that for each k, the prime
k-tuples conjecture holds for a positive proportion of admissible sets of size k. In
particular, the current best (unconditional) bound is

lim inf
n

(pn+1 − pn) ≤ 246.

A crucial ingredient in these results is the Bombieri–Vinogradov theorem which
shows that the primes have a level of distribution θ for any θ < 1/2. This is discussed
in more detail in Sec. 3.

In a different vein, in 2008, Green and Tao [5] proved the existence of infinitely
many l-term arithmetic progressions in the sequence of primes for every natural
number l. Although their proof uses some ideas from the work of GPY [4], it is
mostly disjoint from the methods used to examine gaps between primes. It was
the foresight of Pintz [9] that led him to marry these two important results by
combining the methods of GPY and Green–Tao to obtain the following result in
2010.

Theorem 1.2 ([9, Theorem 5]). Let H = {h1, . . . , hk} be an admissible set. If
there exists a set S(H) and constants c1(k), c2(k) > 0 such that

P−


 k∏

j=1

(n + hj)


 ≥ nc1(k) for all n ∈ S(H) (1.1)

and

#{n ≤ x |n ∈ S(H)} ≥ c2(k)x
(log x)k

(1.2)

for all x sufficiently large, then S(H) contains l-term arithmetic progressions for
every natural number l.

This result allowed Pintz to obtain a conditional strengthening of the Green–Tao
theorem under the assumption that the primes have a level of distribution θ > 1/2.
More precisely, he proved the following.

Theorem 1.3. If the level of distribution θ of the primes exceeds 1/2, then there
exists a positive h ≤ C1(θ) so that there are arbitrarily long arithmetic progres-
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sions of primes p such that p + h is the prime following p for each element of the
progression.

Adapting the work of Zhang, Pintz [10] was able to make this result uncon-
ditional. More recently, following the work of Maynard and Tao on gaps between
primes, Pintz [11] established a common generalization of the results of Zhang,
Maynard, Green–Tao, and himself as the following.

Theorem 1.4. Let m be a natural number and H = {h1, . . . , hk} be an admissible
set of k distinct non-negative integers, where k = �Cm2e4m� with a sufficiently large
absolute constant C. Then there is an (m + 1)-element subset {h′

1, . . . , h
′
m+1} ⊆ H

such that for every natural number l, there exist infinitely many l-term (non-trivial)
arithmetic progressions of primes p = n + h′

1, such that n + h′
j is also a prime for

every 2 ≤ j ≤ m+1. Furthermore, n+h′
j is always the (j − 1)th prime following p,

for 2 ≤ j ≤ m + 1.

In this paper, we generalize this theorem for primes satisfying Chebotarev con-
ditions. A prime is said to satisfy a Chebotarev condition if it belongs to what is
known as a Chebotarev set. A subset P of the set of rational primes P is called
a Chebotarev set if there is a Galois extension K/Q of number fields with Galois
group G and absolute discriminant dK such that

P =
{

p ∈ P | p is unramified with
(

K/Q

p

)
⊆ C

}
.

Here, for p unramified (or equivalently, p � dK), (K/Q
p ) denotes the Artin symbol at

p, and C is a union of conjugacy classes of G. It is clear that a Chebotarev set P
is determined by K and C. We will denote P(K, C) as P , considering K and C to
be fixed.

With this discussion in place, one can consider the analogous problem of bounded
gaps between primes in a given Chebotarev set P . The variant of the Bombieri–
Vinogradov theorem that plays a key role in this setting is due to Murty and
Murty [8] and is discussed in Sec. 4. Adapting the method of Maynard, Thorner
[13] showed that for every Chebotarev set P , there exist infinitely many pairs of
distinct primes p, p′ ∈ P such that |p − p′| ≤ MP , with MP given by

MP = 825
( |G|2dK

|C|φ(dK )

)3

exp
( |G|2dK

|C|φ(dK)

)
.

However, Thorner did not invoke the full power of the equidistribution result of [8]
and only used a level of distribution θ = 2/|G| − δ, for some small fixed δ >

0, whenever |G| > 4. Applying a result of Arthur–Clozel [1] along with recent
numerical advances by the Polymath project [12], we improve Thorner’s bound to

MP = κ
2|G|dK

|C|θφ(dK )
exp

(
2|G|dK

|C|θφ(dK )

)
,
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where κ is a sufficiently large absolute constant and θ ≥ 2/|G|−δ whenever |G| > 4.
The precise level of distribution θ is given in Sec. 4.

We also generalize the method of Pintz to primes satisfying Chebotarev condi-
tions. In this way we obtain a common extension of Theorem 1.4 of Pintz as well as
Thorner’s result. Our result generalizes the Green–Tao theorem, giving arbitrarily
long arithmetic progressions of primes satisfying Chebotarev conditions. We state
our main result as follows.

Theorem 1.5. Let P = P(K, C) be a Chebotarev set having level of distribution θ.
Let m be a natural number and H = {h1, . . . , hk} be an admissible set of k distinct
non-negative integers hi, where

k =
⌈
κ exp

(
2|G|dKm

|C|θφ(dK )

)⌉
, κ a sufficiently large absolute constant.

Then there is an (m + 1)-element subset {h′
1, . . . , h

′
m+1} of H such that, for every

natural number l, there exist infinitely many l-term (non-trivial) arithmetic progres-
sions of primes p = n + h′

1 in P , satisfying n + h′
j ∈ P for every 2 ≤ j ≤ m + 1.

Moreover, one can impose the stricter condition that n + h′
j is the (j − 1)th prime

in P following p, for 2 ≤ j ≤ m + 1.

This result has several interesting arithmetic applications. Indeed as demon-
strated in [13], if one can associate an arithmetic object with a Chebotarev set,
then the theorem applies. In this paper, however, we emphasize the sieve theoretic
aspect and direct the interested reader to [13] for arithmetic applications.

2. Notation

For the sake of clarity, it will be convenient to introduce some notation. We let
n, N denote natural numbers, p a prime, and P the set of rational primes. The
notation n ∼ N means that N < n ≤ 2N . The greatest integer less than x and
the least integer greater than x are denoted by �x	 and �x�, respectively. The gcd
and lcm of a, b are written as (a, b) and [a, b], respectively. The functions φ, µ, and
τr(n) refer to the Euler totient function, the Möbius function, and the number of
representatives of n as a product of r natural numbers, respectively. The radical of
n is defined as rad(n) =

∏
p|n p. Throughout the paper, P−(n) denotes the least

prime divisor of n. Given a finite set S, we define the diameter of S as

diam S = max
si,sj∈S

|si − sj |.

We denote the k-tuple of integers (d1, . . . , dk) by d. A tuple is said to be square-free
if the product of its components is square-free. For a real number R, the inequality
d ≤ R means that

∏
i di ≤ R. The notion of divisibility among tuples is defined

component-wise, that is,

d |n ⇔ di |ni for all 1 ≤ i ≤ k.
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It follows that the notion of congruence among tuples, modulo a tuple, is also
defined component-wise. We define the function f(d) to mean the product of its
component (multiplicative) functions acting on the corresponding components of
the tuple, that is,

f(d) =
k∏

i=1

fi(di).

For example, if µ is the Möbius function, µ(d) =
∏k

i=1 µ(di). Furthermore, we will
use the notation [d, e] to denote the product

∏k
j=1[dj , ej ].

As before, K/Q denotes a Galois extension of number fields with Galois group
G and absolute discriminant dK . For every unramified prime p, (K/Q

p ) denotes
the Artin symbol at p. We let C denote a union of conjugacy classes of G,
and let

P = P(K, C) =
{

p ∈ P | p is unramified with
(

K/Q

p

)
⊆ C

}

be a fixed Chebotarev set. The nth prime in our Chebotarev set P is denoted by
pn. We will work with a fixed admissible set

H = {h1, . . . , hk} ⊆ N,

where k is a fixed natural number. Recall that admissibility of H means that

|H (mod p)| < p,

for every prime p. We let H denote max1≤i≤k |hi|. Any constants implied by the
asymptotic notation O, � or � may depend on k, H and the field K. We indicate
these constants whenever this is the case.

3. Small Gaps between Primes and Beyond

In this section, we recall the work of Maynard on bounded gaps between primes
and indicate the key ideas of Pintz in this setting.

The primes are said to have level of distribution θ > 0 if for any fixed A > 0,
one has ∑

q≤xθ

max
y≤x

max
(a,q)=1

∣∣∣∣π(y, q, a) − π(y)
φ(q)

∣∣∣∣�A
x

(log x)A
,

where

π(x) = #{p ∈ P | p ≤ x}, π(x, q, a) = #{p ∈ P | p ≤ x, p ≡ a (mod q)}.
The celebrated Bombieri–Vinogradov theorem asserts that the above estimate holds
when 0 < θ < 1

2 , and the Elliott–Halberstam conjecture predicts that the above
estimate holds for all 0 < θ < 1.
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For a fixed admissible set H = {h1, . . . , hk}, following the GPY approach to the
prime k-tuples conjecture, we consider the following sums:

S1(N, P) =
∑
n∼N

n≡v0 (mod W )

ωn, (3.1)

S2(N, P) =
∑
n∼N

n≡v0 (mod W )

k∑
i=1

χP(n + hi)ωn, (3.2)

where ωn are non-negative weights and χP denotes the characteristic function of P.
Here

W =
∏

p≤D0

p, (3.3)

for some large enough positive number D0 to be chosen later and ν0 is some residue
class modulo W such that (ν0, W ) = 1.

For ρ > 0, we define the difference

S(N, ρ, P) = S2(N, P) − ρS1(N, P). (3.4)

The key idea of this approach is as follows. Suppose that one can show that there
exists suitable ρ > 0 such that S(N, ρ, P) > 0. This means that the inequality

k∑
j=1

χP(n + hj) − ρ > 0

must hold for some n ∼ N . If one can do this for all sufficiently large N , one can
then obtain infinitely many n such that at least �ρ + 1	 elements in {n+hi}k

i=1 are
primes.

Clearly, this approach relies on good asymptotic formulas for S1(N, P)
and S2(N, P). We state below the asymptotic formulas obtained by Maynard
in [7].

Proposition 3.1 ([7, Proposition 4.1]). Suppose that the primes have a level of
distribution θ > 0, and let R = N

θ
2−δ for some small fixed δ > 0. Let F be a smooth

function on [0, 1]k which is supported on Rk = {(x1, . . . , xk) | ∑k
i=1 xi = 1}. We

define λd as

λd = µ(d)d
∑
d|r

(r,W )=1

µ(r)2

φ(r)
F

(
log r1

log R
, . . . ,

log rk

log R

)
,

whenever (
∏k

i=1 di, W ) = 1, and set λd = 0 otherwise. Setting weights ωn as

ωn =


∑

d|n
λd




2

, (3.5)
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and choosing D0 = log log log N, one has

S1(N, P) =
(

1 + O

(
1

D0

))
φ(W )kN(log R)k

W k+1
Ik(F ),

S2(N, P) =
(

1 + O

(
1

D0

))
φ(W )kN(log R)k+1

W k+1 log N

k∑
i=1

J
(i)
k (F ),

where

Ik(F ) =
∫

[0,1]k
F (t1, . . . , tk)dt1 . . . dk,

J
(m)
k (F ) =

∫
[0,1]k−1

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dm−1dtm+1 . . . dk.

Using this, one can conclude the following.

Theorem 3.2 ([7, Proposition 4.2]). Let P have level of distribution θ > 0
and let Rk, Ik(F ) and J

(m)
k (F ) be given as above. We let Sk denote the set of

Riemann integrable functions F : [0, 1]k → R supported on Rk with Ik(F ) �= 0 and
J

(m)
k (F ) �= 0 for each m. Set

Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
, rk =

⌈
θMk

2

⌉
.

Then there are infinitely many integers n such that at least rk elements in {n+hi}k
i=1

are primes. In particular,

lim inf
n

(pn+rk+1 − pn) ≤ max
1≤i,j≤k

|hi − hj |.

Finally, Maynard established his groundbreaking work by showing good lower
bounds for Mk. These lower bounds have subsequently been improved through
better numerical methods in [12].

We now turn our attention to Pintz’s work. Heuristically, it is expected that
sieving the sequences {n + hi}, 1 ≤ i ≤ k produces numbers which are almost
primes, in the sense that

P−(n + hi) > nc, for fixed c > 0.

In the spirit of this general principle in sieve theory, the key idea of Pintz is that
one can “overlook” all the weights

ωn =


∑

d|n
λd




2

,

in the sum S1(N, P) for which there is an i (1 ≤ i ≤ k) such that n + hi has a
“small” prime factor p. This was made precise in [10] by means of the following
result.
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Lemma 3.3 (Pintz [10]). There is a sufficiently small constant c1(k) such that

S−
1 (N, P) :=

∑
n∼N

n≡v0 (mod W )

P−(Qk
i=1(n+hi))<nc1(k)

ωn �k,H
c1(k) log N

log R
S1(N, P).

Pintz also noticed that Proposition 3.1 of Maynard holds with D0 = C∗(k) for
some sufficiently large constant C∗(k) (depending only on k). Combining these ideas
with his earlier work, namely Theorem 1.2, Pintz was able to derive a generalization
of the results of Green–Tao and Maynard, as stated in Theorem 1.4.

4. Bounded Gaps Between Primes in Chebotarev Sets

In this section, we discuss the method of Thorner [13] for bounded gaps between
primes in a Chebotarev set and obtain better bounds by applying the full power
of the equidistribution theorem in this context. As discussed earlier, Thorner [13]
adapted the work of Maynard [7] to obtain bounded gaps between primes in any
given Chebotarev set. An essential ingredient in Thorner’s work is a variant of the
Bombieri–Vinogradov theorem due to Murty and Murty [8].

With this theorem in mind, we elaborate on the notion of the level of distribution
of a Chebotarev set. Let P be a set of primes. We use the standard notation

πP(x) = #{p ∈ P | p ≤ x},
and

πP (x, q, a) = #{p ∈ P | p ≤ x, p ≡ a (mod q)}.
A Chebotarev set P = P(K, C) is said to have a level of distribution θ if there
exists a natural number M such that∑

q≤xθ

(q,M)=1

max
y≤x

max
(a,q)=1

∣∣∣∣πP(y, q, a) − πP (y)
φ(q)

∣∣∣∣�A,K
x

(log x)A
, (4.1)

holds for any A > 0. In [8], the authors prove the following.

Theorem 4.1. The average result (4.1) holds if M = dK and 0 < θ < min
(

2
|G| ,

1
2

)
.

Moreover, assuming a special case of the Artin conjecture (AC) that all L-functions
attached to all abelian twists of any non-trivial character of G are entire, and setting

η = max
χ�=χ0

|χ(1) − 2|,

where the maximum runs over all non-trivial characters of G, one can improve the
estimate (4.1) with a larger level of distribution 0 < θ < min

(
1
η , 1

2

)
.

Thus, for G with η ≤ 2 (which can be classified by using results of the type [3,
Theorem 24.6]), assuming (AC), P has a level of distribution θ for any θ < 1/2. On
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the other hand, in [1], Arthur and Clozel obtained the following celebrated theorem
which proves Langlands’ reciprocity conjecture in the nilpotent case.

Theorem 4.2 ([1, p. 220]). If K/k is a nilpotent Galois extension of number
fields, then for each irreducible representation ρ of Gal(K/k) of dimension n, there
exists a cuspidal automorphic representation Π = Π(ρ) of GLn(Ak) such that the
Artin L-function attached to ρ coincides with the automorphic L-function attached
to Π.

Applying the Rankin–Selberg theory due to Jacquet, Piatetski-Shapiro and Sha-
lika, as well as the above theorem of Arthur and Clozel, the assumption of (AC) in
Theorem 4.1 automatically holds if K/Q is a nilpotent Galois extension. Thus, if G is
nilpotent, P has level of distribution θ for any 0 < θ < min

(
1
η , 1

2

)
unconditionally.

In general, as mentioned in [8, Sec. 7.4], it is possible to improve the level of
distribution as follows. Let

d∗ = min
H

max
χ

[G : H ]χ(1),

where the minimum is over all subgroups H of G satisfying

• H ∩ C �= ∅, and
• (AC) is true for H , i.e. all L-functions attached to all abelian twists of any non-

trivial character of H are entire;

while the maximum runs over irreducible characters of H . Then, η can be replaced
by η∗ which is defined as

η∗ =

{
d∗ − 2 if d∗ ≥ 4;

2 if d∗ < 4.
(4.2)

In other words, one has a level of distribution θ for any θ ∈ (0, 1
η∗ ). As discussed

above, since (AC) holds when H is nilpotent, we have the upper bound

d∗ ≤ min
H

max
χ

[G : H ]χ(1),

where the minimum now is over all nilpotent subgroups H of G such that H∩C �= ∅,
and the maximum runs over irreducible characters of H . However, sometimes this
bound is not really practical since it requires information about all character degrees
of all subgroups H appearing in the minimum. To obtain a more precise bound on
d∗, we recall the following.

Theorem 4.3 ([6, p. 28]). Let G be a finite group and Z(G) its centre. Then for
every irreducible character χ of G, one has

χ(1)2 ≤ [G : Z(G)].

Therefore, we then deduce

d∗ ≤ min
H

[G : H ][H : Z(H)]
1
2 ,
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where the minimum is over all nilpotent subgroups H of G such that H ∩ C �= ∅.
It is worth noting that, as all abelian groups are nilpotent, we have

d∗ ≤ [G : HC ],

where HC is the largest abelian subgroup such that HC ∩ C �= ∅. For the case
d∗ ≥ 4, we will show that even this crude bound gives a better level of distribution
than θ < 2/|G|, which is used in [13] whenever |G| > 4. Assuming |G| > 4, let
HC be the largest abelian subgroup such that HC ∩ C �= ∅. We first show that
|HC | ≥ 2. Clearly, if C contains any non-trivial element g, then the cyclic group 〈g〉
has non-empty intersection with C. On the other hand, if C = {e}, we can simply
pick HC to be the largest abelian subgroup of G.

To show that we obtain a better level of distribution, we need to prove that
1

[G : HC ] − 2
≥ 2

|G| .

This follows easily from the inequality

|G|
(

2
|HC | − 1

)
≤ 4,

which holds since 2/|HC | ≤ 1. Thus, we have level of distribution at least
1

[G : HC ] − 2
,

provided that [G : HC ] ≥ 4; otherwise, we will have level of distribution θ for any
θ < 1/2.

In order to apply the above discussion to the context of gaps between primes sat-
isfying Chebotarev conditions, we now turn our attention to the results of Thorner.
For the admissible set H = {h1, . . . , hk}, we put

det(H) =
∏
i�=j

(hi − hj).

Recall that for a natural number n, the radical of n is defined as rad(n) =
∏

p|n p.
As before, we let W =

∏
p≤D0

p for some sufficently large D0 to be chosen later. We
set U = W/rad(dK). Note that when D0 is sufficiently large, rad(det(H)) divides
W . By the Chinese remainder theorem and the admissibility of H, there exists an
integer u0 such that (

∏k
i=1(u0 + hi), U) = 1.

Thorner’s argument is based on using the congruence condition n ≡ u0 modulo
U instead of a congruence condition modulo W . In analogy with the sums S1(N, P)
and S2(N, P) considered earlier (see (3.1) and (3.2)), we now consider the following:

S1(N,P) =
∑
n∼N

n≡u0 (mod U)

ωn, (4.3)

S2(N,P) =
∑
n∼N

n≡u0 (mod U)

k∑
i=1

χP(n + hi)ωn, (4.4)
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where ωn are non-negative sieve parameters and χP denotes the characteristic func-
tion of P . As done in Maynard’s setting, the parameters ωn are chosen as in (3.5)
with λd defined as in Proposition 3.1.

As it is convenient to examine each of the k inner summands in the sum S2(N,P)
separately, we define

S
(m)
2 (N,P) =

∑
n∼N

n≡u0 mod U

χP(n + hm)ωn. (4.5)

Finally, for ρ > 0, we consider the difference

S(N, ρ,P) = S2(N,P) − ρS1(N,P). (4.6)

Recall that by definition, the support of λd is restricted to square-free tuples d

satisfying (
k∏

i=1

di, W

)
= 1,

k∏
j=1

dj < R.

Clearly, this implies that λd �= 0 only if

(di, dj) = 1, (di, U) = 1, ∀i �= j. (4.7)

Adapting Maynard’s method, Thorner proved the following result. We continue to
use notation established in this section.

Proposition 4.4 ([13, Propositions 4 and 5]). Let P have level of distribution
θ > 0, choose D0 = log log log N and R = N

θ
2−δ for some small fixed δ > 0. Then,

S1(N,P) = (1 + o(1))
rad(dK)φ(W )kN(log R)k

W k+1
Ik(F ),

S2(N,P) = (1 + o(1))
|C|
|G|

φ(rad(dK))φ(W )kN(log R)k+1

W k+1 log N

k∑
i=1

J
(i)
k (F ),

where Ik(F ) and J
(i)
k (F ) are as given in Proposition 3.1.

For the purpose of this paper, we need asymptotic formulas for S1 and S2 which
give the error term explicitly in terms of D0. These can be proved in almost the
same way as done by Thorner. In essence, he shows that S1(N,P) and S

(m)
2 (N,P)

are “multiples” (in terms of dK) of the familiar sums S1(N, P) and S
(m)
2 (N, P),

respectively. The required estimates then follow from Maynard’s results. However,
for the sake of completeness and clarity, we include the proof below.

Proposition 4.5. Let P have a level of distribution θ > 0 and D0 = C∗(k) be a
sufficiently large constant. As before, set R = N

θ
2−δ for some small fixed δ > 0.

Then we have

S1(N,P) =
(

1 + O

(
1

D0

))
rad(dK)φ(W )kN(log R)k

W k+1
Ik(F ),



June 22, 2017 6:57 WSPC/S1793-0421 203-IJNT 1750095

1662 A. Vatwani & P.-J. Wong

and

S2(N,P) =
(

1 + O

(
1

D0

)) |C|
|G|

φ(rad(dK))φ(W )kN(log R)k+1

W k+1 log N

k∑
i=1

J
(i)
k (F ),

where Ik(F ) and J
(i)
k (F ) are as given in Proposition 3.1.

Proof. We first consider the non-weighted sum S1(N,P).

The estimate for S1(N, P)

Expanding the square and interchanging summation gives

S1(N,P) =
∑
d,e

λdλe

∑
n∼N

n≡u0 (mod U)
[d,e]|n

1.

It is clear from (4.7) that U is co-prime to each [di, ei], 1 ≤ i ≤ k. Note that if a
prime p divides [di, ei], [dj , ej ] for some i �= j, then p must divide both n + hi and
n+hj. This means that p is a factor of hj−hi and hence of W . As this contradicts the
second co-primality condition of (4.7), we must have that the [di, ei]’s are mutually
pairwise co-prime.

As all the moduli in the inner sum above are co-prime to each other, using the
Chinese remainder theorem, the congruence conditions in this sum can be written
as a single congruence condition ∗ (say) modulo the product q = U [d, e]. This gives

S1(N,P) =
∑
d,e

λdλe

∑
n∼N

n≡∗ (mod q)

1 =
N

U

∑
d,e

λdλe∏k
i=1[di, ei]

+ O
(∑

|λd||λe|
)
,

where the final sum is over all tuples such that [d, e] is square-free and co-prime to
U . Since λdλe = 0 if a prime p divides (U, [di, ei]) for some i, one may drop the
requirement that U is relatively prime to each [di, ei]. To ease notation, one may
put λmax = supd |λd|, and [7, Lemma 5.1] yields that

S1(N,P) =
N

U

∑
d,e

λdλe∏k
i=1[di, ei]

+ O(λ2
maxR

2(log R)2k).

This expression for S1(N,P) shows that this sum is the same as S1(N, P) except that
W is now replaced by U = W/ rad(dk). Hence, the desired estimate for S1(N,P)
follows directly from the corresponding asymptotic formula of Proposition 3.1.

The estimate for S2(N, P)

For each m, expanding the square and interchanging summation in the expression
for S

(m)
2 (N,P) gives

S
(m)
2 (N,P) =

∑
d,e

λdλe

∑
n∼N

n≡u0 mod U
[d,e]|n

χP(n + hm).
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Reasoning as in the case of S1(N,P), we can write the inner sum as a sum running
over a single residue class am modulo q = U [d, e]. Writing n + hm as n′, this gives

S
(m)
2 (N,P) =

∑
d,e

λdλe

∑
n′∼N

n′≡am+hm (mod q)

χP(n′).

From the construction of the residue class am, one has

am ≡ u0 mod U and am ≡ −hi (mod [di, ei]) for all 1 ≤ i ≤ k.

As u0 is the chosen integer satisfying (
∏k

i=1(u0 + hi), U) = 1, we have,

(am + hm, U) = 1.

Note that am + hm ≡ hm − hi (mod [di, ei]). Since it follows from the support of λd

that (hm − hi, [di, ei]) = 1 for all i �= m, we obtain that (am + hm, q) = [dm, em].
We first consider the case [dm, em] �= 1. As [dm, em] divides n′, we see that the
summand χP(n′) survives if and only if n′ = [dm, em] is a prime in our Chebotarev
set P . Observing that n′ > N and [dm, em] < R2 ≤ Nθ−δ due to the support of the
λd’s, we conclude that it is not possible to have n′ = [dm, em].

Hence, the inner sum only contributes when dm = em = 1, in which case, it is
given by

πP(2N) − πP(N)
φ(q)

+ O(E(N, q,P)),

where

E(N, q,P) = 1 + max
(a,q)=1

∣∣∣∣∣∣∣
∑
n∼N

n≡a mod q

χP(n) − 1
φ(q)

∑
n∼N

χP(n)

∣∣∣∣∣∣∣ .
Recall that

πP(x) =
∑
n≤x

χP(n).

Thus, we have obtained

S
(m)
2 (N,P) =

πP(2N) − πP (N)
φ(U)

∑
d,e

dm=em=1

λdλe

φ([d, e])

+ O


 ∑

d,e
dm=em=1

λ2
maxE(N, q,P)


,

where q = U [d, e], and the sums are over tuples d, e such that [d, e] is square-free
and co-prime to U .

We now proceed by first dealing with the error term. From the support of λd, it
is clear that one only needs to consider square-free q with q < R2U and (q, dK) = 1.
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Given a square-free integer r, it is easy to see that there are at most τ3k(r) choices
of integers d1, . . . , dk, e1, . . . , ek for which U [d, e] = r. Thus, the error term is of the
order of

λ2
max

∑
r<R2U

(r,dK)=1

µ2(r)τ3k(r)E(N, r,P).

By the Cauchy–Schwarz inequality, the trivial bound E(N, q,P) � N
q + 1, and the

assumption that P has a level of distribution θ, this term contributes

� λ2
max


 ∑

r<R2U
(r,dK)=1

µ2(r)τ2
3k(r)

N

r




1
2

 ∑

r<R2U
(r,dK)=1

µ2(r)E(N, r,P)




1
2

� λ2
max

N

(log N)A
,

for any A > 0. This gives for any fixed A > 0,

S
(m)
2 (N,P) =

πP (2N) − πP(N)
φ(U)

∑
d,e

dm=em=1

λdλe

φ([d, e])
+ O

(
λ2

max

N

(log N)A

)
,

where the sum is over tuples such that [d, e] is square-free and relatively prime to
U . We also note that the implicit constant above depends on the field K. Finally,
the Chebotarev density theorem implies that

πP(2N) − πP (N) =
|C|
|G|

N

log N
+ O

(
N

(log N)2

)
,

with the implicit constant depending on K. From this discussion, it is clear that
S

(m)
2 (N,P) is the same as S

(m)
2 (N, P), with W replaced by U , up to a factor of

|G|/|C|. The required asymptotic formula for S
(m)
2 (N,P), and hence for S2(N,P)

now follows from the corresponding expression for S2(N, P) in Proposition 3.1. This
completes the proof.

With asymptotic formulas for S1(N,P) and S2(N,P) in place, we would now
like to determine the optimum value of ρ for which the inequality

S2(N,P) − ρS1(N,P) > 0,

holds. This is done in the following proposition.

Proposition 4.6. Let H = {h1, . . . , hk} be an admissible set, and let P have level
of distribution θ > 0. Let Sk denote the set of Riemann integrable functions F

supported on the simplex Rk, such that Ik(F ) and J
(i)
K (F ) do not vanish for 1 ≤

i ≤ k. Set

Mk = sup
F∈Sk

∑k
i=1 J

(i)
k (F )

Ik(F )
, rk =

⌈ |C|φ(dK )θMk

2|G|dK

⌉
.
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Then there are infinitely many integers n such that at least rk elements of {n+hi}k
i=1

are prime. In particular, if pn denotes the nth prime in P , we have

lim inf
n

(pn+rk−1 − pn) ≤ max
1≤i,j≤k

|hi − hj |.

Proof. Recall that R = N
θ
2−δ for some small δ. For this δ > 0, by the definition

of Mk, there is a Riemann integrable function G with the required support, such
that

∑k
i=1 J (i)(G) > (Mk − δ)Ik(G). Since G is Riemann integrable, there exists a

smooth function F with the required support, such that

k∑
i=1

J (i)(F ) > (Mk − 2δ)Ik(F ).

Using this smooth function F for the choice of λd, Proposition 4.5 allows us to
deduce that S(N, ρ,P) = S2(N,P) − ρS1(N,P) is bounded below by(

1 + O

(
1

D0

))
φ(W )k

W k

N(log R)k

U
Ik(F )

( |C|φ(dK)
|G|dK

(
θ

2
− δ

)
(Mk − 2δ) − ρ

)
.

(4.8)

Note that here we have used U = W/ rad(dK) as well as the identity

φ(rad(dK))
rad(dK)

=
φ(dK)

dK
.

For the above expression to be positive, the term in parenthesis must be positive.
Choose

ρ =
|C|φ(dK)θMk

2|G|dK
− ε,

for some small ε > 0. Then by choosing δ sufficiently small (depending on ε), one
can ensure that S(N, ρ,P) > 0 for all large N . This means that there are infinitely
many integers n for which at least �ρ + 1	 elements of {n + hi}k

i=1 are prime. Since
we have

�ρ + 1	 =
⌈ |C|φ(dK)θMk

2|G|dK

⌉
,

for ε sufficiently small, the result follows.

For the above result to be effective, we need a good lower bound for Mk. For
this purpose, we utilize the bound

Mk > log k − c, (4.9)

for all k ≥ c, for some absolute constant c. This is given in [12, Theorem 23].
With all this in place, we obtain the following result. As mentioned in the remark

following the proof of this theorem, this gives better bounds than those previously
obtained, for m-gaps between primes satisfying given Chebotarev conditions.
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Theorem 4.7. Let P = P(K, C) be a Chebotarev set having level of distribution θ.
Let m be a natural number and H = {h1, . . . , hk} be an admissible set of k distinct
non-negative integers, where

k ≥
⌈
κ exp

(
2|G|dKm

|C|φ(dK)θ

)⌉
,

for a sufficiently large absolute constant κ. Then, there are infinitely many n such
that at least m + 1 of the n + hi’s are in P. In particular, we obtain

lim inf
n→∞ (pn+m − pn) ≤ c0

(
2|G|dKm

|C|φ(dK )θ

)
exp

(
2|G|dKm

|C|φ(dK)θ

)
, (4.10)

for a sufficiently large absolute constant c0.

Proof. To obtain at least m+1 primes among n+hi’s, we need rk of Proposition 4.6
to satisfy rk ≥ m+1. Using the expression for rk in the above mentioned proposition,
we need to find k such that

|C|φ(dK )θMk

2|G|dK
> m,

holds. Using the lower bound (4.9) for Mk, it suffices to find k satisfying the
inequality

log k − c >
2|G|dKm

|C|φ(dK )θ
.

From this, it is clear that the required lower bound for k holds, with the (absolute)
constant κ only depending on the absolute constant c. As given in [12, Theorem 17],
the minimal diameter of an admissible set of size k is of the order of k log k. Choosing

k =
⌈
κ exp

(
2|G|dKm

|C|φ(dK)θ

)⌉
,

yields the desired bound for lim infn→∞(pn+m − pn).

Remark 4.8. In our result, θ is the level of distribution of P , satisfying the bound

θ < min
(

1
η∗ ,

1
2

)
,

with η∗ as defined in (4.2). The above theorem improves upon the work of Thorner,
who uses θ = 2

|G| − δ and Maynard’s lower bound for Mk to obtain (c.f. [13,
Remark 1]),

lim inf
n→∞ (pn+m − pn) � m3 exp

( |G|2dKm

|C|φ(dK)

)
.

It is clear that when |G| is large, the improvement in the level of distribution θ does
matter.
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The case m = 1 in the above theorem gives us the following improved bound for
gaps between primes satisfying certain Chebotarev conditions.

Corollary 4.9. Let P = P(K, C) be a Chebotarev set having level of distribution
θ. There exist infinitely many pairs of distinct primes p1, p2 ∈ P such that

|p1 − p2| ≤ c0

(
2|G|dK

|C|φ(dK)θ

)
exp

(
2|G|dK

|C|φ(dK )θ

)
,

for a sufficiently large absolute constant c0.

Remark 4.10. This improves upon the result of Thorner, who obtains the bound

825
( |G|2dK

|C|φ(dK)

)3

exp
( |G|2dK

|C|φ(dK )

)
,

for gaps between primes in a given Chebotarev set P(K, C). It is possible to compute
explicitly the value of the absolute constant c0 appearing in our bound, but for the
sake of conceptual clarity, we do not do so here.

5. Arithmetic Progressions of Chebotarev Primes

In this section, we generalize the method of Pintz to primes satisfying Chebotarev
conditions. Our exposition is self-contained and simplified. In the spirit of Pintz’s
work, we would like to neglect all the weights

ωn =


∑

d|n
λd




2

in the sums S1(N,P), S2(N,P), for which there exists 1 ≤ i ≤ k, such that n + hi

has a “small” prime factor p. In order to make this more precise, we first prove the
following lemma. As this lemma lies at the crux of the method and is of interest in
its own right, we give a detailed and lucid proof.

Lemma 5.1. For any 1 ≤ j ≤ k and any prime p > D0 with log p
log R < ε, for some

sufficiently small ε > 0, we have as R → ∞,

S
(j)
1,p :=

∑
n∼N

n≡u0 (mod U)
p|n+hj

ωn � (log p)2

p(log R)2
N(log R)k

U
.

The implicit constant above depends only on k.

Proof. It is enough to show this for j = 1. By choice of the weights ωn, we have

S
(1)
1,p =

∑
n∼N

n≡u0 (mod U)
p|n+h1


∑

d<R
d|n

λd




2

.
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Interchanging summation gives

S
(1)
1,p =

∑
d,e<R

λdλe

∑
n∼N

n≡u0 (mod U)
n≡−hj (mod [dj,ej ])∀j

n≡−h1 (mod p)

1.

A moment’s reflection allows us to see that p must be co-prime to U . Indeed,
if p divides U , then we get u0 ≡ −h1 (mod p). This is a contradiction because
the construction of u0 implies in particular that u0 + h1 is co-prime to all primes
dividing U . Similarly one can show that p must be co-prime to all [dj , ej ] for 2 ≤
j ≤ k. Moreover, the [dj , ej ]’s are themselves mutually co-prime and also co-prime
to U . This means that one can apply the Chinese remainder theorem to the inner
sum above to obtain a sum running over some residue class a modulo the product
q = U [d1, e1, p][dj , ej], where [d1, e1, p] denotes the lcm of [d1, e1] and p. Thus,

S
(1)
1,p =

∑
d,e<R

λdλe

∑
n∼N

n≡a (mod q)

1 =
N

pU

∑
d,e<R

λdλe

[d1,e1,p]
p

∏k
j=2[dj , ej ]

+ O


 ∑

d,e<R

λ2
max


.

As done while proving the asymptotic formula for S1(N,P) in Proposition 4.5, it
can be shown that the error term above is of the order of N/(logN)A for any A > 0.
We proceed to analyze the main term.

For any multiplicative function f(n), it can be checked that f([n, p])/p is also
a multiplicative function of n. For our fixed prime p, we define the multiplicative
function g(n) = [n, p]/p. We also define the “Möbius inverse” of g, denoted g′, by
the equation g′(n) =

∑
d|n µ(n/d)g(d). Then, observe that for any prime �, we have

g(�) =

{
� if � �= p,

1 if � = p,
g′(�) =

{
� − 1 if � �= p,

0 if � = p.

Following the notation set by Pintz in [10], let us denote the sum in the main term
for S

(1)
1,p as T

(1)
p,1 , that is,

T
(1)
p,1 =

∑
d,e<R

λdλe

[d1,e1,p]
p

∏k
j=2[dj , ej ]

.

We diagonalize the quadratic form T
(1)
p,1 following the procedure of the classical

Selberg sieve to get

T
(1)
p,1 =

∑
d,e<R

λdλe

g([d1, e1])
∏k

j=2[dj , ej]

=
∑

d,e<R

λdλe

g(d1)g(e1)
∏k

j=2 djej

g((d1, e1))
k∏

j=2

(dj , ej)
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=
∑

d,e<R

λdλe

g(d1)g(e1)
∏k

j=2 djej

∑
r|d,e

g′(r1)
k∏

j=2

φ(rj)

=
∑

r

g′(r1)
k∏

j=2

φ(rj)


∑

d,r|d

λd

g(d1)
∏k

j=2 dj




2

.

Observe that in the sum above we may assume p � r1 because whenever p divides
r1, the summand vanishes as g′(p) = 0. For r such that p � r1, we make the change
of variable

ωr = µ(r)g′(r1)
k∏

r=2

φ(rj)
∑
r|d

λd

g(d1)
∏k

j=1 dj

,

so that we have the convenient expression

T
(1)
p,1 =

∑
r,p�r1

µ(r)2

g′(r1)
∏k

j=2 φ(rj)
(ωr)2. (5.1)

Recall that Maynard’s choice of parameters λd in terms of the test function F

corresponds to the choice

yr = F

(
log r1

logR
, . . . ,

log rk

log R

)
, (5.2)

where

yr = µ(r)φ(r)
∑
r|d

λd

d
.

As ωr and yr differ only in terms of the functions being evaluated on the first
component of the tuple, we try to relate them so as to obtain some information
about T

(1)
p,1 . Using g′(r1) = φ(r1), for p � r1 along with the definition of g(d1),

depending on whether d1 is a multiple of p or not, we have

ωr = µ(r)φ(r)


 ∑

r|d,p|d1

λd

g(d1)
∏k

j=2 dj

+
∑

r|d,p�d1

λd

g(d1)
∏k

j=2 dj




= µ(r)φ(r)


 ∑

r|d,p|d1

pλd

d
+

∑
r|d,p�d1

λd

d


 = µ(r)φ(r)


φ(p)

∑
r|d,p|d1

λd

d
+
∑
r|d

λd

d




= µ(p)ypr1,r2,...,rk
+ yr.

Plugging this back into (5.1) and choosing yr as in (5.2), as done by Maynard, we
obtain

T
(1)
p,1 =

∑
r<R,p�r1

µ(r)2

φ(r)
(yr − ypr1,r2,...,rk

)2
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=
∑

r,p�r1

µ(r)2

φ(r)

(
F

(
log r1

log R
, . . . ,

log rk

log R

)
− F

(
log r1 + log p

log R
, . . . ,

log rk

log R

))2

,

keeping in mind that the function F (t) is zero outside the simplex

Rk = {t ∈ [0, 1]k|
∑

ti ≤ 1}.
We recall that Maynard’s choice of the test function F is given by

F (t) =




k∏
i=1

g(kti) if
k∑

i=1

ti ≤ 1,

0 otherwise,
(5.3)

for some smooth, compactly supported function g, depending only on k. As the
function gk(t) := g(kt) is smooth, we have as h → 0,

|gk(t + h) − gk(t)| = (1 + o(1))|g′k(t)||h| = (1 + o(1))|g′(t)||kh|. (5.4)

Note the implicit constant above depends on g and hence only on k. As g and g′

are smooth, compactly supported functions, they can both be bounded absolutely
in terms of k.

Going back to the final expression for T
(1)
p,1 obtained above, from the above

discussion and the condition that log p/ log R can be made as small as necessary,
we have(

F

(
log r1

logR
, . . . ,

log rk

log R

)
− F

(
log r1 + log p

log R
, . . . ,

log rk

log R

))2

≤ C(k)
(

log p

log R

)2

,

for all R sufficiently large. Here C(k) is a constant depending on the suprema of
|g(t)| and |g′(t)| in their support.

This gives

T
(1)
p,1 �k

(
log p

log R

)2 ∑
r<R,p�r1

µ(r)2

φ(r)
�k

(
log p

log R

)2

(log R)k,

using the elementary estimate
∑

t≤x 1/t = log x + O(1).

Recalling that S
(1)
1,p = N

pU T
(1)
p,1 , we derive the bound

S
(1)
1,p �k

(log p)2

p(log R)2
N(log R)k

U
.

With this lemma in place, we can now estimate the contribution of n’s having
small prime factors to our sum S1(N,P).

Lemma 5.2. Given any ε(k) > 0, there exists a sufficiently small constant c1(k),
such that

S−
1 (N,P) :=

∑
n∼N

n≡u0 (mod U)

P−(Qk
i=1(n+hi))<nc1(k)

ωn ≤ ε(k)
N(log R)k

U
,

as N → ∞.
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Proof. Observe that the above sum of S−
1 (N,P) runs over only those n’s for which

each of the n + hi’s have small prime factors. Clearly, this means

S−
1 (N,P) ≤

k∑
j=1

∑
p≤(2N)c1(k)

S
(j)
1,p ≤

∑
p≤(2N)c1(k)

kS
(1)
1,p.

Letting c1(k) be sufficiently small, all primes p < (2N)c1(k) satisfy the conditions
of the previous lemma. Applying the bound obtained in Lemma 5.1 to each such p,
we see that

S−(N,P) ≤ c(k)
N(log R)k

U

∑
p≤(2N)c1(k)

(log p)2

p(log R)2
,

as R → ∞, where c(k) is a constant depending only on k. Using the asymptotic
formula ∑

p≤x

(log p)2

p
=

(log x)2

2
+ O(log x),

which can be obtained by partial summation, we get

S−(N,P) ≤ c(k)
N(log R)k

U

(c1(k) log N)2

(log R)2
.

By choosing c1(k) to be sufficiently small and noting that R = N
θ
2−δ, we obtain

S−
1 (N,P) ≤ ε(k)

(
N(log R)k

U

)
.

The expression for S1(N,P) from Proposition 4.5 suggests that one can neglect
the contribution of S−

1 (N,P) in the sum S1(N,P) if ε(k) is chosen appropriately.
We will elucidate two consequences of this simple fact that play a crucial role in
Pintz’s strategy.

Note that for all n satisfying

P−
(

k∏
i=1

(n + hi)

)
≥ nc1(k), (5.5)

each n+hi has a bounded number of prime factors, with the explicit bound depend-
ing on hi as well as c1(k). From the definition of ωn, one then has

ωn =


 ∑

di|n+hi∀i

λd




2

�c1(k),H λ2
max,

where λmax = supd λd and H is the maximum of the |hi|’s. From [7, Eqs. (5.9)
and (6.3)], we have

λmax �k ymax(log R)k �k (log R)k,

where ymax = supr yr. Here we have used the fact that the choice of the test function
F = Fk is only dependent on k. Putting everything together, it follows that when
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n is an “almost prime” in the sense of (5.5), we have
 ∑

di|n+hi∀i

λd




2

�k,H (log R)2k. (5.6)

This is an important point which will be useful later.
Additionally, Lemma 5.2 allows one to overlook the contribution to the sum

S2(N,P) from those n which are not of the form (5.5).

Lemma 5.3. Given any ε(k) > 0, there exists a sufficiently small constant c1(k),
such that

S−
2 (N,P) :=

∑
n∼N

n≡u0 (mod U)

P−(Qk
i=1(n+hi))<nc1(k)

k∑
i=1

χP(n + hi)ωn ≤ ε(k)
N(log R)k

U
,

as N → ∞.

Proof. By the triangle inequality, we have

|S−
2 (N,P)| ≤

∑
n∼N

n≡u0 (mod U)

P−(Qk
i=1(n+hi))<nc1(k)

k∑
i=1

|χP(n + hi)|ωn

≤
∑
n∼N

n≡u0 (mod U)

P−(Qk
i=1(n+hi))<nc1(k)

kωn,

since χP(n) is absolutely bounded by 1 for all n. The right-hand side above is simply
kS−

1 (N,P), which together with Lemma 5.2, completes the proof.

We set

S+
1 (N,P) = S1(N,P) − S−

1 (N,P), S+
2 (N,P) = S2(N,P) − S−

2 (N,P).

From Lemmas 5.2 and 5.3, we see that by choosing c1(k) sufficiently small, one
has that S−

1 (N,P) and S−
2 (N,P) are both �k (N(log R)k/U). We now show that

Theorem 4.7 goes through verbatim for natural numbers n satisfying the additional
hypothesis of being almost primes in the sense of (5.5).

Theorem 5.4. Let P = P(K, C) be a Chebotarev set having a level of distribution
θ. Let m be a natural number and H = {h1, . . . , hk} be an admissible set of k distinct
non-negative integers, where

k ≥
⌈
κ exp

(
2|G|dKm

|C|φ(dK)θ

)⌉
,
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for a sufficiently large absolute constant κ. Then, there are infinitely many n such
that at least m + 1 of the n + hi’s are in P and moreover

P−
(

k∏
i=1

(n + hi)

)
≥ nc1(k).

Proof. Recall from (4.8) that the difference S2(N,P)−ρS1(N,P) is bounded below
by(

1 + O

(
1

D0

))
φ(W )k

W k

N(log R)k

U
Ik(F )

( |C|φ(dK)
|G|dK

(
θ

2
− δ

)
(Mk − 2δ) − ρ

)
.

Theorem 4.7 implies that for some fixed m ∈ N, if ρ is chosen to be ρm, where
�ρm + 1	 = m + 1, and k satisfies

k ≥
⌈
κ exp

(
2|G|dKm

|C|φ(dK)θ

)⌉
, (5.7)

then the term

|C|φ(dK )
|G|dK

(
θ

2
− δ

)
(Mk − 2δ) − ρ

in parenthesis above is a positive constant, depending on the choice of k and the
field K. Indeed, this is exactly how the proof of Theorem 4.7 proceeded. Let us
denote the above positive constant by C(K, k). In other words, we have

S2(N,P) − ρmS1(N,P) ≥
(

1 + O

(
1

D0

))
φ(W )k

W k

N(log R)k

U
Ik(F )C(K, k),

where the right-hand side is positive. By Lemmas 5.2 and 5.3, choosing c1(k) to be
sufficiently small, we can write

S2(N,P) = S+
2 (N,P) + S−

2 (N,P) ≤ S+
2 (N,P) + Ok

(
N(log R)k

U

)
,

and similarly for S1(N,P). This gives for k chosen as in (5.7),

S+
2 (N,P) − ρmS+

1 (N,P) ≥
(

1 + O

(
1

D0

)
+ Ok(1)

)

× φ(W )k

W k

N(log R)k

U
Ik(F )C(K, k).

In particular, since the function F (chosen as in (5.3)) depends only on k, we can
write

S+
2 (N,P) − ρmS+

1 (N,P) �k,K
φ(W )k

W k

N(log R)k

U
. (5.8)

It is here that the choice of D0 as in Proposition 4.5, different from that chosen by
Maynard is crucial. Recall that W =

∏
p<D0

p, and D0 is chosen to be a sufficiently
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large constant depending only on k. This means that the ratio φ(W )k/W k depends
only on k and can be absorbed into the implicit constant in (5.8). This gives

S+
2 (N,P) − ρmS+

1 (N,P) �k,K
N(log R)k

U
, (5.9)

with the implicit constant depending on k and the field K. In particular, if we
have S+

2 (N,P) > ρmS+
1 (N,P), then as in the key idea of the GPY approach, the

inequalities
k∑

i=1

χP(n + hi) ≥ (m + 1), P−
(

k∏
i=1

(n + hi)

)
< nc1(k)

hold for some n ∼ N . From (5.9), it is clear that this can be done for all N sufficiently
large, giving infinitely many such n as needed.

The above proof can be used to derive the following result, which is in fact a
stronger version of Theorem 5.4.

Theorem 5.5. Fix a Chebotarev set P = P(K, C) having a level of distribution θ.
Let m be a natural number and H = {h1, . . . , hk} be an admissible set of k distinct
non-negative integers, where

k ≥
⌈
κ exp

(
2|G|dKm

|C|φ(dK)θ

)⌉
,

for a sufficiently large absolute constant κ. For c1(k) chosen to be sufficently small,
let SP(H) denote the set{

n ∈ N : at least m + 1 of the n + hi’s are in P , P−
(

k∏
i=1

(n + hi)

)
≥ nc1(k)

}
.

Then #{n ≤ x : n ∈ SP(H)} ≥ cP(k)x(log x)−k, for some constant cP(k) > 0.

Proof. Consider the number of elements in SP(H) between N and 2N , given by
the sum ∑

n∼N
n∈SP(H)

1.

In this sum, we could attach to each n ∈ SP(H) the weight
k∑

i=1

χP(n + hi) − ρm,

where ρm satisfies �ρm + 1	 = m + 1. From the construction of SP(H), it is evident
that this weight is positive. It is also clear that it is bounded above by k−m. Hence,
we can write ∑

n∼N
n∈SP(H)

1 �k

∑
n∼N

n∈SP(H)

(
k∑

i=1

χP(n + hi) − ρm

)
.
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We would like to introduce sieve parameters into the sum on the right-hand side
to make it more familiar. In order to do this, note that since (5.5) holds for any
n ∈ SP(H), we have the bound (5.6) for all such n. This can be restated as

1 �k,H
1

(log R)2k


∑

d|n
λd




2

,

for all n ∈ SP(H). The dependence of the implicit constant upon the admissible
set H can be thought of as a dependence on k. Combining this with the previous
bound gives

∑
n∼N

n∈SP(H)

1 �k
1

(log R)2k

∑
n∼N

n∈SP(H)

(
k∑

i=1

χP(n + hi) − ρm

)∑
d|n

λd




2

.

Continuing with this train of thought, we see that the sum appearing on the right-
hand side is greater than the order of S+

2 (N,P) − ρmS+
1 (N,P), which was studied

by us in the proof of Theorem 5.4. Using the estimate (5.9) for this difference, we
obtain ∑

n∼N
n∈SP(H)

1 �k,K
N

(log R)k
,

thus completing the proof.

We are now ready to prove Theorem 1.5, which is a special application of the
general result of Pintz stated in Theorem 1.2.

Proof of Theorem 1.5. We can construct the set SP(H) as in Theorem 5.5. As
this set is infinite and the number of (m + 1)-element subsets of H are finite, there
is a subset H′ ⊆ H given by {h′

1, . . . , h
′
m+1}, such that the set

SP(H′) =

{
n ∈ N : n + h′

j ∈ P for all 1 ≤ j ≤ m + 1, P−
(

k∏
i=1

(n + hi)

)
≥ nc1(k)

}

satisfies the condition

#{n ≤ x : n ∈ SP(H′)} ≥ c′P(k)
x

(log x)k
, (5.10)

for some constant c′P(k) > 0.
Thus, this set satisfies the hypotheses of Theorem 1.2. Applying Theorem 1.2

then yields l-term arithmetic progressions in SP(H′) for every l ∈ N. This means
that there are infinitely many arbitrarily long progressions of primes n + h′

1 ∈ P ,
such that n + h′

j ∈ P for every 2 ≤ j ≤ m + 1.
We can obtain the extra condition that the primes n + h′

i occur “consecutively”
in P as follows. Pick H′ to be an (m+1)-element subset of H with minimal diameter,
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such that (5.10) holds. Consider all elements hi ∈ H\H′ which can be added to the
set H′ without increasing its diameter. Of these elements, we examine first those
elements hj0 such that

#{n ≤ x : n ∈ SP(H), n + hj0 ∈ P} = o(x(log x)−k),

as x → ∞. In this case, we simply delete such n’s from our set SP(H) and apply
Theorem 1.2 to the remaining set. On the other hand, there may be elements hj0

such that

#{n ≤ x : n ∈ SP(H), n + hj0 ∈ P} � (x(log x)−k),

as x → ∞. In this case, we consider the new admissible set {h′
1, . . . , h

′
k, hj0}. Since

the diameter of this new set is at most the diameter of H′ by hypothesis, it is possible
to pick a new (m + 1)-element subset H′′ of this set, satisfying condition (5.10),
with diam H′′ < diam H′. This contradicts the minimality of diam H′.

However, we may still have intermediate primes in P of the form n+h for some
1 ≤ h ≤ H , h /∈ H, such that when h is added into the set H′, the diameter does
not increase. Once again, for a given h, if there are only finitely many such n’s, we
can simply delete them from the set we are considering. If there are infinitely many
such n’s, then the set {h1, . . . , hk, h} must be admissible. We note that all those
n ∈ SP(H), for which n + h is a prime, satisfy the inequality

P−
(

(n + h)
k∏

i=1

(n + hi)

)
> nc1(k). (5.11)

As stated in [11, Eq. (2.20)], from standard Selberg sieve estimates, the number of
n ≤ x such that (5.11) holds is O(x/(log x)k+1). As there are at most H possibilities
for h, we see that

#{n ∈ SP(H) : n + h is prime for some h /∈ H} � xH

(log x)k+1
.

Hence, we can delete such n from our set SP(H) and still apply Theorem 1.2. This
completes the proof.
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