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On generalizations of the Titchmarsh divisor problem

by

Akshaa Vatwani (Gandhinagar) and Peng-Jie Wong (Lethbridge)

1. Introduction and statement of results. The Titchmarsh divisor
problem is a well-known problem in analytic number theory, concerned with
the asymptotic behaviour of the summatory function of the number of divi-
sors of shifted primes. To formulate this precisely, let a be a fixed integer and
let τ(n) denote the number of positive divisors of n. In 1930, Titchmarsh [16]
showed that ∑

p≤x
τ(p− a) = O(x).

He also gave the following explicit asymptotic formula for this sum under
the generalized Riemann hypothesis for Dirichlet L-functions:

(1.1)
∑
p≤x

τ(p− a) = x
∏
p-a

(
1 +

1

p(p− 1)

)∏
p|a

(
1− 1

p

)
+O

(
x log log x

log x

)
.

The above formula was first proved unconditionally by Linnik [13] via the dis-
persion method. Moreover, by applying the celebrated Bombieri–Vinogradov
theorem, Halberstam [11] and Rodriquez [15] independently gave another
proof.

Subsequently, Fouvry [10, Corollaire 2] as well as Bombieri, Friedlander,
and Iwaniec [2, Corollary 1] showed that for any A > 1,

(1.2)
∑
p≤x

τ(p− a) = cx+ c1 Li(x) +O

(
x

(log x)A

)
,

where c is the constant expressed by the double product in (1.1), c1 is an ef-
fectively computable constant depending on a, the implied constant depends
only on a and A, and Li(x) is the usual logarithmic integral.
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Over the years, various variants of the classical Titchmarsh divisor prob-
lem have been studied in the literature. For instance, in [1], Akbary and
Ghioca formulated a generalization of this problem in the setting of abelian
varieties. In order to describe this in more detail, let us set up some notation.
Let K/Q be a Galois extension of number fields with Galois group G and
absolute discriminant dK . For every unramified prime p, let σp denote the
Artin symbol at p. If C is a union of conjugacy classes of G, we let

P(K,C) = {p ∈ P : p is unramified with σp ⊆ C}
denote the corresponding Chebotarev set of primes; here and later, P de-
notes the set of rational primes. Letting a = 1 for simplicity in the classical
Titchmarsh divisor problem, we have∑

p≤x
τ(p− 1) =

∑
p≤x

∑
m|p−1

1.

For a given prime p ≤ x, the inner sum above can be viewed as computing the
number of m ∈ N such that p splits completely in the cyclotomic extension
Q(ζm), where ζm denotes a primitive mth root of unity. More concisely,
letting Pm = P(Q(ζm), id), we have∑

p≤x
τ(p− 1) =

∑
p≤x

∑
m

p∈Pm

1.

This interpretation led Akbary and Ghioca [1] to formulate the following
interesting generalization of the Titchmarsh divisor problem.

Problem (Generalized Titchmarsh divisor problem, version 1). Let F =
{Fm : m ∈ N} be a family of finite Galois extensions of Q. For each m, let
Dm be a union of conjugacy classes of Gal(Fm/Q) and set D={Dm : m∈N}.
Define

τF ,D(p) = #{m ∈ N : p ∈ P(Fm,Dm)}.
Suppose that τF ,D(p) < ∞ for each prime p. What can one say about the
behaviour of

∑
p≤x τF ,D(p) as x→∞?

Subject to certain constraints on Dm, Akbary and Ghioca [1] obtained
some new results on this question.

In the present paper, we are motivated by a further generalization of the
above problem. Henceforth, let K/Q be a fixed Galois extension of Q with
Galois group G and absolute discriminant dK . We let C denote a union of
conjugacy classes of G, and let P = P(K,C) be a fixed Chebotarev set.

We may formulate the following version of the generalized Titchmarsh
divisor problem.

Problem (Generalized Titchmarsh divisor problem, version 2). Define
(1.3) τK,CF ,D (p) = #{m ∈ N : p ∈ Pm := P(Fm,Dm) and p ∈ P(K,C)}.
What can one say about the behaviour of

∑
p≤x τ

K,C
F ,D (p) as x→∞?
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Given p ≤ x, this version of the Titchmarsh divisor problem not only
counts all occurrences of p in the family {Pm} of Chebotarev sets, but also
imposes the condition that p belongs to the fixed Chebotarev set P(K,C).
Clearly, when K = Q, this problem reduces to the previous version of the
generalized Titchmarsh divisor problem.

The main result of our paper is related to version 2 of the generalized
Titchmarsh divisor problem. In order to state our result, we set up some
notation. We recall the notion of level of distribution for Chebotarev sets.
Let P be a set of primes. We use the standard notation

πP(x) = #{p ∈ P : p ≤ x},
πP(x; q, a) = #{p ∈ P : p ≤ x, p ≡ a (mod q)}.

Note that πP(x; q, a) is in fact πP1(x), where P1 denotes the set of primes
in P which are unramified in Q(ζq)/Q with σp = a.

A Chebotarev set P = P(K,C) is said to have level of distribution θ if
there exists a natural number M such that

(1.4)
∑

q≤ xθ

(log x)B

(q,M)=1

max
y≤x

max
(a,q)=1

∣∣∣∣πP(y; q, a)− πP(y)

φ(q)

∣∣∣∣�A
x

(log x)A

for any A > 0. Roughly speaking, this measures the range of moduli q for
which the primes in P are equidistributed in arithmetic progressions mod-
ulo q on average. For K = Q, or equivalently P = P, we have πP(x; q, a) =
π(x; q, a). In this case, the well-known Bombieri–Vinogradov theorem asserts
that the estimate (1.4) holds when 0 < θ ≤ 1/2 and M = 1. Moreover, the
Elliott–Halberstam conjecture predicts that the above estimate holds for all
0 < θ < 1.

We will be concerned with version 2 of the generalized Titchmarsh divisor
problem for the special case when F = {Fm} is a family of cyclotomic
extensions of Q and the Chebotarev set P(K,C) has level of distribution
1/2. Our main result is the following.

Theorem 1.1. Let K be a Galois extension of Q with absolute discrim-
inant dK , let C be a union of conjugacy classes in G = Gal(K/Q), and
P = P(K,C) be the corresponding Chebotarev set of primes. Fix an integer
a 6= 0 and let

F = {Fm = Q(ζm) : m ∈ N, (m, dK) = 1}

be a family of extensions of Q. Set Dm = {a} if (m, a) = 1, and Dm = ∅
otherwise. Suppose the Chebotarev set P(K,C) has level of distribution 1/2
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with M = adK . Then∑
p≤x

τK,CF ,D (p) =
|C|
|G|

CadKx+O

(
x log log x

log x

)
,

where the constant CadK is given by the Euler product

(1.5) CadK =
∏
p-adK

(
1 +

1

p(p− 1)

) ∏
p|adK

(
1− 1

p

)
.

We prove this result in Section 4.1 by adapting Halberstam’s uncondi-
tional proof of the Titchmarsh divisor problem.

Theorem 1.1 roughly asserts that the asymptotic distribution of the divi-
sors of p−a is uniform over the Galois group G = Gal(K/Q). This direction
of generalization has not been considered before. As mentioned in [14], it is
expected that one can always pick θ = 1/2 for the estimate (1.4), and thus
Theorem 1.1 should hold for all Galois extensions K/Q. However, achieving
such a level of distribution is still out of reach. This brings to the forefront
the question of whether equidistribution estimates of the type proved by
Bombieri–Friedlander–Iwaniec [2, 3, 4] can be extended to primes satisfying
Chebotarev conditions. This is a deep question which begs careful investi-
gation, and we do not delve more into it here. However, we do demonstrate
in Section 4.2 some examples of Chebotarev sets having level of distribu-
tion 1/2. In Lemma 4.2, we describe these examples in more generality in
terms of the set of values of χ(1) for irreducible characters χ of Gal(K/Q).
However, some specific non-abelian examples of interest for the generalized
Titchmarsh divisor problem are given by the following corollary.

Corollary 1.2. Fix an integer a 6= 0 and let the families {Fm}m∈N and
{Dm}m∈N be as in Theorem 1.1. Let K/Q be a Galois extension with Galois
group G and absolute discriminant dK . Let C be a union of conjugacy classes
in G = Gal(K/Q) and P = P(K,C) be the corresponding Chebotarev set of
primes. Assume G is isomorphic to S3, A4, S4, or a generalized dihedral
group (1). Then∑

p≤x
p∈P

τK,CF ,D (p) =
|C|
|G|

CadKx+O

(
x log log x

log x

)
,

where the constant CadK is given by the Euler product (1.5).

(1) A group G is said to be generalized dihedral if it admits a semidirect product
G = N o C2, where N is an abelian normal subgroup, and C2 is a cyclic subgroup of
order 2. In particular, if N is isomorphic to the cyclic group Cn of order n, then G = D2n,
the dihedral group of order 2n.
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In particular, in the special case when K is a cyclotomic extension Q(ζr)
of Q, the Chebotarev condition σp ⊆ C can be written as a congruence
condition p ≡ b (mod r) for some residue class b modulo r. Moreover, since
the discriminant of the field Q(ζr) is given by

(1.6) dQ(ζr) =
(−1)φ(r)/2rφ(r)∏

p|r p
φ(r)/p−1 ,

the condition (p, dQ(ζr)) = 1 that is needed to ensure that the prime p is
unramified reduces to the condition (p, r) = 1.

In this case, we obtain a stronger result than is implied by Theorem 1.1:
the error terms are uniform for a certain range of the modulus r. We state this
result as a corollary, since the proof is similar to the proof of Theorem 1.1.

Corollary 1.3. Let b ∈ Z, r ∈ N, r > 1, with (r, b) = 1. Let K = Q(ζr)
and consider the conjugacy class C = {b} in Gal(K/Q). Fix an integer a 6= 0
and let D > 0. Consider the family of extensions of Q given by

{Fm = Q(ζm) : m ∈ N, (m, r) = 1}.
Set Dm = {a} if (m, a) = 1, and Dm = ∅ otherwise. Then, uniformly for
r ≤ (log x)D,∑

p≤x
τK,CF ,D (p) =

Car
φ(r)

x+O

(
x log log x

log x

)
as x→∞.

Here Car is a constant depending only on a and r, given by replacing dK
by r in the Euler product (1.5).

This can be thought of as a Siegel–Walfisz type result for this version of
the Titchmarsh divisor problem in arithmetic progressions, the uniformity
of error terms being its special feature. This uniformity is a consequence of
the fact that the Chebotarev conditions involved can be written as a single
congruence condition using the Chinese remainder theorem. We give a sketch
of the proof in Section 5.1.

We may also think of Corollary 1.3 as a variant of a related result that
was obtained by Felix [6, Theorem 1.2]. We elaborate on this below. Setting

(1.7) τ(r, n) =
∑
d|n

(d,r)=1

1,

we can restate Corollary 1.3 in a more concrete manner: uniformly for r ≤
(log x)D,

(1.8)
∑
p≤x

p≡b (mod r)

τ(r, p− a) = Car
φ(r)

x+O

(
x log log x

log x

)
as x→∞.
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Let vq(n) denote the highest power of q dividing n. If r | p−a, then it is easy
to see that

τ(r, p− a) = τ

(
p− a∏

q|r q
vq(p−a)

)
.

Hence, if we put b = a in (1.8), we see that for (r, a) = 1, we have∑
p≤x

p≡a (mod r)

τ

(
p− a∏

q|r q
vq(p−a)

)
=

Car
φ(r)

x+O

(
x log log x

log x

)
as x→∞.

Related sums and subsequent connections to Artin’s conjecture on primi-
tive roots were investigated by Felix [6, 7]. In particular, it is instructive to
compare the above asymptotic formula with a result in [6]:

Theorem 1.4 ([6, Theorem 1.2]). Fix an integer a 6= 0. Let r ∈ N, r > 1,
with (r, a) = 1. Let A > 0. Then, uniformly for r ≤ (log x)A+1,∑

p≤x
p≡a (mod r)

τ

(
p− a
r

)
=
rCar
φ(r)2

x+Or,a

(
x

log x

)
+Oa,A

(
x

(log x)A

)

as x→∞. Here Car is the same as in Corollary 1.3.

It is worth remarking here that in the proof of Corollary 1.3, the general
case b 6= a does not allow us to invoke equidistribution results of Bombieri–
Friedlander–Iwaniec [2], which play a key role in the proof of [6, Theorem 1.2].
The error term in (1.8) is not optimal and is expected to be much smaller. In
the absence of sharp error terms, it is natural to study the error on average
over the modulus r. This leads us to ask whether we can have the following
average result for this problem:

Problem (Bombieri–Vinogradov type estimate for a version of the
Titchmarsh divisor problem in arithmetic progressions). Fix integers a, b 6=0.
Does there exist λ > 0 such that∑

r≤xλ
(r,b)=1

∣∣∣∣ ∑
p≤x

p≡b (mod r)

τ(r, p− a)− Car
φ(r)

x

∣∣∣∣�a,b,λ,A
x

(log x)A
for any A > 0?

This problem, as stated, seems to be still open. Motivated by the dis-
cussion preceding Theorem 1.4, one is led to consider such estimates for the
related sum ∑

p≤x
p≡a (mod r)

τ

(
p− a
r

)
.

Alternatively, one may consider a version of this sum supported on prime
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powers, that is, ∑
n≤x

n≡a (mod r)

Λ(n)τ

(
n− a
r

)
.

A Bombieri–Vinogradov type estimate for such a sum has been proved by
Fiorilli [8].

Theorem 1.5 ([8, Theorem 2.4]). Fix an integer a 6= 0 and let λ < 1/10
and A be two positive real numbers. Then, for R ≤ xλ,∑

r≤R
(r,a)=1

∣∣∣ ∑
|a|/r<m≤x/r

Λ(rm+ a)τ(m)−M.T.
∣∣∣�a,A,λ

x

(log x)A
,

where the main term M.T. is given by

x

r

(
C1(a, r) log x+ 2C2(a, r) + C1(a, r) log

(r′)2

er

)
,

with

C1(a, r) =
ζ(2)ζ(3)

ζ(6)

∏
p|a

(
1− p

p2 − p+ 1

)∏
p|r

(
1 +

p− 1

p2 − p+ 1

)
,

r′ =
∏
p|r p, and C2(a, r) given by

C1(a, r)

(
γ −

∑
p

log p

p2 − p+ 1
+
∑
p|a

p2 log p

(p− 1)(p2 − p+ 1)
−
∑
p|r

(p− 1)p log p

p2 − p+ 1

)
,

where γ is the Euler–Mascheroni constant.

In the final result of this paper, we extend the above theorem to the func-
tion τy(m) (the number of positive divisors d of m satisfying d ≤ y, where
y is a parameter depending on the modulus r). We thus obtain the follow-
ing analogue of Theorem 1.5, giving a Bombieri–Vinogradov type estimate
for a modified Titchmarsh divisor problem involving a ‘truncated’ divisor
function.

Theorem 1.6. Fix an integer a 6= 0 and let 0 < λ < 1/10 and D,A
be positive real numbers. Let M = M(r, x) be an integer such that 1 ≤
M(r, x) ≤ (log x)D. Then for any ε > 0, xλ+1/2+ε ≤ Q ≤ x, R = R(x) ≤ xλ,
letting y(r) = Q/rM , we have∑

r≤R
(r,a)=1

∣∣∣ ∑
|a|/r<m≤x/r

Λ(rm+ a)τy(r) (m)−M.T.
∣∣∣�a,A,D,λ

x

(log x)A
,

where τy(r)(m) denotes the number of divisors of m that are smaller than
y(r), the main term M.T. is given by
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x

r

(
C1(a, r) log x+C2(a, r)+C1(a, r) log

(r′)2

er
−

∑
1≤s≤M x

Q

(s,a)=1

r

φ(sr)

(
x− sQ

M

))
,

and r′, C1(a, r) and C2(a, r) are exactly as given in Theorem 1.5.

Note that with M = 1 and Q = x in the result above, we recover The-
orem 1.5. The proof of Theorem 1.6 relies upon a refinement of an equidis-
tribution estimate of Fiorilli [8, Proposition 5.1]. We give more details in
Section 6.1.

2. Notation. Recall that we let K/Q be a fixed Galois extension of
number fields with Galois group G and absolute discriminant dK . For ev-
ery unramified prime p, σp denotes the Artin symbol at p. We let C be a
union of conjugacy classes of G, and let P(K,C) be the corresponding fixed
Chebotarev set. We define the divisor function τK(n) with respect to K as

τK(n) :=
∑
de=n

(de,dK)=1

1.

We note that if K = Q, then τQ(n) is the classical divisor function τ(n).

3. Preliminaries. We will require the following well-known result. We
refer the reader to [5, Theorem 7.3.1] for a proof.

Theorem 3.1 (The Brun–Titchmarsh inequality). Let a and q be co-
prime integers and x a positive real number such that q ≤ xθ for some θ < 1.
Then for any ε > 0, there exists xε > 0 such that

π(x; q, a) ≤ (2 + ε)x

φ(q) log(2x/q)
for all x > xε.

We also recall an elementary estimate (see for instance, [11, eq. (iii)])

(3.1)
∑
d≤x

(d,α)=1

1

φ(d)
= Cα log x+O(1),

where the constant Cα is given by

(3.2) Cα =
∏
p-α

(
1 +

1

p(p− 1)

)∏
p|α

(
1− 1

p

)
.

4. A number field analogue of the Titchmarsh divisor problem.
In this section, we prove Theorem 1.1 and Corollary 1.2. As will be seen, our
approach to proving the former closely follows Halberstam’s unconditional
proof for the Titchmarsh divisor problem.



Titchmarsh divisor problem 9

4.1. Proof of Theorem 1.1. In the setup of Theorem 1.1, it is easy to
verify that ∑

p≤x
τK,CF ,D (p) =

∑
p≤x
p∈P

τK(p− a).

Let

δ(n) =

{
1 if n is a square,
0 otherwise.

Then ∑
p≤x
p∈P

τK(p− a) =
∑
p≤x
p∈P

(
2
∑
d|p−a

d≤
√
p−a

(d,dK)=1

1− δ(p− a)
)

= 2
∑

d≤
√
x−a

(d,dK)=1

∑
p≤x

p≡a (mod d)
p∈P

1 +O(
√
x).

Let us note that if (d, a) 6= 1, then the inner sum above is at most 1, so
that we may impose the condition (d, a) = 1 on the outer sum taking into
account an error of O(

√
x). Thus∑

a<p≤x
p∈P

τK(p− a) = 2
∑

d≤
√
x−a

(d,adK)=1

πP(x; d, a) +O(
√
x).

We split the sum as

(4.1)
∑

d≤
√
x

(log x)B

(d,adK)=1

πP(x; d, a) +
∑

√
x

(log x)B
≤d≤

√
x−a

(d,adK)=1

πP(x; d, a).

For the first range of d, applying the estimate (1.4) gives∑
d≤

√
x

(log x)B

(d,adK)=1

πP(x; d, a) =
∑

d≤
√
x

(log x)B

(d,adK)=1

(
πP(x; d, a)−

|C|Li(x)
|G|φ(d)

)
+

∑
d≤

√
x

(log x)B

(d,adK)=1

|C|Li(x)
|G|φ(d)

=
|C|
|G|

Li(x)
∑

d≤
√
x

(log x)B

(d,adK)=1

1

φ(d)
+O

(
x

(log x)A

)
.

For the second sum in (4.1), as log x� log(2x/d)� log x in this range of d,
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the Brun–Titchmarsh inequality yields∑
√
x

(log x)B
≤d≤

√
x

(d,adK)=1

πP(x; d, a)�
x

log x

∑
√
x

(log x)B
≤d≤

√
x

(d,adK)=1

1

φ(d)
� x log log x

log x
.

Thus, by the estimate (3.1), we have∑
a<p≤x
σp⊆C

(p,dK)=1

τK(p− a) =
|C|
|G|

CadKx+O

(
x log log x

log x

)
,

which concludes the proof.

4.2. Proof of Corollary 1.2. Our starting point is the following variant
of the Bombieri–Vinogradov theorem, which was proved by M. R. Murty and
V. K. Murty [14].

Theorem 4.1 ([14, Theorem 7.3]). Let K be a Galois extension of Q
with absolute discriminant dK , let C be a union of conjugacy classes in
G = Gal(K/Q), and P = P(K,C) be the corresponding Chebotarev set of
primes. Let

d∗ = min
H

max
χ

[G : H]χ(1),

where the minimum is over all subgroups H of G satisfying

• H ∩ C 6= ∅, and
• (AC) is true for H, i.e., all non-trivial L-functions attached to abelian
twists of any irreducible character of H are entire,

while the maximum runs over all irreducible characters of H. Define

η∗ =

{
d∗ − 2 if d∗ ≥ 4,

2 if d∗ < 4.

Then the average result (1.4) holds for M = dK and 0 < θ ≤ 1/η∗.

For any finite groupG, we let cd(G) = {χ(1) : χ ∈ Irr(G)}. It is clear that
if G is abelian, then cd(G) = {1}. By Artin reciprocity, the mean estimate
(1.4) holds for all 0 < θ ≤ 1/2 if K/Q is an abelian Galois extension. In the
light of this, we present a lemma.

Lemma 4.2. With the same notation as above, if cd(G) = {1, 3} or
cd(G) ⊆ {1, 2, 4}, then the average result (1.4) holds for all 0 < θ ≤ 1/2
(with M = dK). In particular, if G is a generalized dihedral group, then
K/Q has level of distribution 1/2.

Proof. Assume that cd(G) = {1, 3} or cd(G) ⊆ {1, 2, 4}. In each case, we
can choose p equal to 2 or 3 such that χ(1) is a power of p for every non-trivial
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character χ ∈ Irr(G). By [12, Theorem 6.9], G admits an abelian normal
p-complement N . This means that G/N is a p-group, and in particular is
nilpotent. One can show thatG is nearly nilpotent, that is, it admits a normal
subgroup N , all of whose irreducible characters are of degree less than or
equal to 2, such that G/N is nilpotent. By a result of the second-named
author [17, Theorem 1.2], Langlands reciprocity holds for K/Q. This means
that for any irreducible character χ ∈ Irr(G), there is a cuspidal automorphic
representation πχ such that the L-function attached to the abelian twist
of χ by ψ is equal to the Rankin–Selberg L-function L(s, πχ × ψ), which is
entire by Rankin–Selberg theory (unless the L-function is the Riemann zeta
function).

Thus, G = Gal(K/Q) satisfies the two conditions required of the sub-
group H in Theorem 4.1. This allows us to conclude that

d∗ ≤ max
χ∈Irr(G)

[G : G]χ(1).

Since cd(G) = {1, 3} or cd(G) ⊆ {1, 2, 4}, we obtain d∗ ≤ 4, which gives
η∗ = 2. Applying Theorem 4.1, we obtain level of distribution 1/2 as needed.

Furthermore, we recall that if G is a generalized dihedral group, then it
admits an abelian normal subgroup N of index 2. Thus, from [12, Theorem
6.22], we know cd(G) ⊆ {1, 2} and conclude the proof.

We also remark that S4 is of automorphic type, and that cd(S4) =
{1, 2, 3} (see, e.g, [17, Corollary 2.18]). Thus, we know that all S3-, A4-,
and S4-extensions have level of distribution 1/2.

Applying Theorems 1.1 and 4.1, together with Lemma 4.2 and the above
discussion, we deduce Corollary 1.2 immediately.

5. A version of the Titchmarsh divisor problem in arithmetic
progression. In the setup of Corollary 1.3, one obtains the following sum
which can be thought of as a version of the Titchmarsh divisor problem in
arithmetic progressions:

(5.1)
∑
p≤x

τK,CF ,D (p) =
∑
p≤x
σp⊆C

(p,dQ(ζr))=1

τQ(ζr)(p− a) =
∑
p≤x

p≡b (mod r)

τQ(ζr)(p− a).

Here we have used (1.6) to replace the condition (p, dQ(ζr)) = 1 by (p, r) = 1.
With this in hand, we may now commence the proof of Corollary 1.3.

5.1. Proof of Corollary 1.3. As in the proof of Theorem 1.1, we obtain∑
p≤x

p≡b (mod r)

τQ(ζr)(p− a) = 2
∑

d≤
√
x−a

(d,ar)=1

π(x; rd, c) +O

(
x

log x

)
,
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where c (mod rd) is uniquely determined by the congruence conditions
c ≡ a (mod d) and c ≡ b (mod r). The residue class c is now no longer fixed
and varies with d in the above sum. It is this subtle distinction that hinders us
from invoking stronger equidistribution results that are available when c is
fixed (cf. [2]). Instead, we now rely on the classical Bombieri–Vinogradov
theorem. As done in the proof of Theorem 1.1, we split the above sum over d
into a sum over d ≤

√
x− a/(log x)B and the remainder, for some B > 0 suf-

ficiently large. Again, as in the proof of Theorem 1.1, the Brun–Titchmarsh
theorem implies that the remainder sum is� x(log log x)/log x. For the first
sum, we have∑
d≤

√
x−a

(log x)B

(d,ar)=1

π(x; rd, c) =
∑

d≤
√
x−a

(log x)B

(d,ar)=1

Li(x)

φ(rd)
+O

( ∑
d≤

√
x−a

(log x)B

∣∣∣∣π(x; rd, c)− Li(x)

φ(rd)

∣∣∣∣).
Since r ≤ (log x)D, we choose B = B(D) sufficiently large, so that the
Bombieri–Vinogradov theorem shows that the error above is � x/(log x)A

for any A > 0. This is the crucial step where we derive the uniformity of r.
Putting everything together and using (3.1) and (3.2), we obtain∑

p≤x
p≡b (mod r)

τQ(ζr)(p− a) = 2
Li(x)

φ(r)

(
Car(log

√
x−B log log x) +O(1)

)
+O

(
x log log x

log x

)
,

which after a straightforward computation completes the proof.

6. An average result for a variant of the Titchmarsh divisor
problem. Bombieri, Friedlander and Iwaniec proved the following result.

Theorem 6.1 (Bombieri–Friedlander–Iwaniec [2, 3, 4]). Let a 6= 0, λ <
1/10 and R < xλ. For any A > 0 there exists B = B(A) such that if
QR < x/(log x)B, then∑

r≤R
(r,a)=1

∣∣∣∣ ∑
q≤Q

(q,a)=1

(
ψ(x; qr, a)− Λ(a)− x

φ(qr)

)∣∣∣∣�a,A,λ
x

(log x)A
.

A more precise variant of this result was obtained by Fiorilli [8, Proposi-
tion 5.1]. In this section, we obtain the following refinement; by takingQ = x,
one recovers Fiorilli’s result.

Proposition 6.2. Fix an integer a 6= 0 and let λ < 1/10 and D be pos-
itive real numbers. Let M = M(r, x) be an integer such that 1 ≤ M(r, x) ≤
(log x)D. Then for any ε > 0, xλ+1/2+ε ≤ Q ≤ x, and R = R(x) ≤ xλ,
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∑
R/2<r≤R
(r,a)=1

∣∣∣∣ ∑
q≤ Q

rM
(q,a)=1

(
ψ(x; qr, a)−Λ(a)− x

φ(qr)

)
−M.T.

∣∣∣∣ = Oa,A,D,λ

(
x

(log x)A

)
,

where the main term M.T. is given by

M.T. = x
C1(a, r)

r
log

r′Mx

Q
+x

C2(a, r)− C1(a, r)

r
−

∑
1≤s≤M x

Q

(s,a)=1

1

φ(sr)

(
x−sQ

M

)

and r′, C1(a, r) and C2(a, r) are exactly as given in Theorem 1.5.

Proof. The proof is essentially the same as that of [8, Proposition 5.1].
The difference is that we utilize the full strength of Theorem 6.1 in Q-aspect.
More precisely, in contrast to the proof in [8], where Q = x was fixed, we
allow Q to vary in [xλ+1/2+ε, x]. Now following Fiorilli, we first split the inner
sum over q as follows:

(6.1)
∑
q≤ Q

rM
(q,a)=1

=
∑
q≤ Q

RL
(q,a)=1

+
∑

Q
RL

<q≤Q
r

(q,a)=1

−
∑

Q
rM

<q≤Q
r

(q,a)=1

.

If we choose L = (log x)A+B+D+4 with B = B(A) as in Theorem 6.1, the
first term is controlled by that theorem to give∑

R/2<r≤R
(r,a)=1

∣∣∣∣ ∑
q≤ Q

RL
(q,a)=1

(
ψ(x; qr, a)− Λ(a)− x

φ(qr)

)∣∣∣∣�a,A,D,λ
x

(log x)A
.

For the remaining sums, we write∑
Q
rP
<q≤Q

r
(q,a)=1

(
ψ(x; qr, a)− Λ(a)− x

φ(qr)

)
=

∑
Q
rP
<q≤Q

r
(q,a)=1

∑
|a|<n≤x

n≡a (mod qr)

Λ(n)(6.2)

− x
∑

Q
rP
<q≤Q

r
(q,a)=1

1

φ(qr)
,

where P ≤ 2L will be eitherM or RL/r. By [8, Lemma 4.3], the second sum
on the right hand side of (6.2) equals

(6.3)
C1(a, r)

r
logP +O

(
3ω(ar)

P logQ

Q

)
.

As done by Fiorilli [8, proof of Proposition 5.1], to treat the first term on
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the right side of (6.2) we use [9, Lemma 5.3], which states that∑
q≤x

(q,a)=1

( ∑
|a|<n≤x

n≡a (mod q)

Λ(n)−
∑
|a|<p≤x

p≡a (mod q)

log p
)
�ε x

1/2+ε.

Thus, we can ignore the contribution of prime powers in the aforementioned
term by introducing an error of the order of x1/2+ε. Moreover, writing p =
a + qrs, we employ Hooley’s variant of the divisor switching technique as
done in [8, p. 1029], to deduce that

(6.4)
∑

Q
rP
<q≤Q

r
(q,a)=1

∑
|a|<n≤x

n≡a (mod qr)

Λ(n)

=
∑

1≤s<Px
Q
−aP
Q

(s,a)=1

∑
sQ
P

+a<p≤x
p≡a (mod sr)

log p+Oε(x
1/2+ε) +O(log x)

=
∑

1≤s<Px
Q
−aP
Q

(s,a)=1

(
θ(x; sr, a)− θ

(
sQ

P
+ a; sr, a

))
+Oε(x

1/2+ε) +O(log x)

=
∑

1≤s<Px
Q
−aP
Q

(s,a)=1

1

φ(sr)

(
x− sQ

P

)
+ E(r, a) +Oε(x

1/2+ε) +O(log x),

where

E(r, a) =
∑

1≤s<Px
Q
−aP
Q

(s,a)=1

(
θ(x; sr, a)− θ

(
sQ

P
+ a; sr, a

)
− 1

φ(sr)

(
x− sQ

P

))
.

Upon writing q = sr, we have∑
R/2<r≤R
(r,a)=1

|E(r, a)| �
∑
r≤R

(r,a)=1

∑
s≤Px

Q

(s,a)=1

max
y≤x

∣∣∣∣θ(y; sr, a)− y

φ(sr)

∣∣∣∣
�

∑
q≤PRx

Q

τ(q)max
y≤x

∣∣∣∣θ(y; q, a)− y

φ(q)

∣∣∣∣.
From the Cauchy–Schwarz inequality and the trivial estimate for θ(x; q, a),
it follows that the above expression is

�
( ∑
q≤PRx

Q

τ(q)2(log x)

(
x

q
+ 1

))1/2( ∑
q≤PRx

Q

max
y≤x

∣∣∣θ(y; q, a)− y

φ(q)

∣∣∣)1/2

.
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Since xλ+1/2+ε ≤ Q ≤ x with ε > 0, we can use the Bombieri–Vinogradov
theorem to bound the second term in parenthesis by �A x/(log x)

A for any
A > 0. Elementary estimates imply that the first term in parenthesis is of
the order x(log x)O(1). Thus, E(r, a)�A x/(log x)

A for any A > 0. Putting
together (6.3) and (6.4), we see that the main term of the left hand side of
(6.2) is

−xC1(a, r)

r
logP +O

(
x3ω(ar)

P logQ

Q

)
+

∑
1≤s≤Px

Q

(s,a)=1

1

φ(sr)

(
x− sQ

P

)
.

Putting P to be RL/r and then M , we see that the main term for (6.1) is

−xC1(a, r)

r
log

RL

r
+O

(
x3ω(ar)

RL
r logQ

Q

)
+

∑
1≤s≤RLx

rQ

(s,a)=1

1

φ(sr)

(
x− sQ

RL/r

)

−
(
−xC1(a, r)

r
logM +O

(
x3ω(ar)

M logQ

Q

)
+

∑
1≤s≤Mx

Q

(s,a)=1

1

φ(sr)

(
x− sQ

M

))
.

From [8, Lemma 4.3], we have∑
1≤s≤RLx

rQ

(s,a)=1

1

φ(sr)

(
x− sQ

RL/r

)

equals

x

(
C1(a, r)

r
log

r′RLx

rQ
+
C2(a, r)

r
+O

(
3ω(ar)

log r′RLx
rQ

rRLx
rQ

))
− Q

RL

(
C1(a, r)

RLx

rQ
+O

(
3ω(ar) log

r′RLx

rQ

))
.

Simplifying the expression for the above main term gives

x
C1(a, r)

r
log

r′Mx

Q
+ x

C2(a, r)− C1(a, r)

r
−

∑
1≤s≤M x

Q

(s,a)=1

1

φ(sr)

(
x− sQ

M

)
,

as required.

We will now apply the equidistribution estimate given by Proposition 6.2
above to prove Theorem 1.6.
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6.1. Proof of Theorem 1.6. Using Proposition 6.2 together with [8,
Lemma 4.3], and the triangle inequality, we have∑

R/2<r≤R
(r,a)=1

∣∣∣ ∑
q≤ Q

rM
(q,a)=1

(ψ(x; qr, a)− Λ(a))−M.T.
∣∣∣�a,A,D,λ

x

(log x)A+1
.

By a dyadic interval consideration, the whole sum over r ≤ R is �a,A,D,λ

x/(log x)A. Assuming a > 0 and exchanging the order of summation gives

(6.5)
∑
q≤ Q

rM
(q,a)=1

∑
a<n≤x

n≡a (mod qr)

Λ(n) =
∑

a<n≤x
n≡a (mod r)

Λ(n)
∑
q≤ Q

rM
qr|n−a
(q,a)=1

1.

When n equals some prime p, the condition p = a+mrq with m a positive
integer implies that q must be coprime to a. Hence, we may drop the condi-
tion (q, a) = 1 in this case. The contribution of prime powers pk with k ≥ 2
to the above sum can be estimated as follows:∑

a<n≤x
n≡a (mod r)

n=pk,k≥2

Λ(n)
∑
q≤ Q

rM
qr|n−a
(q,a)=1

1� log x
∑

2≤k≤log x

∑
a<pk≤x

pk≡a (mod r)

τ(pk − a)

�ε,a log x
∑

2≤k≤log x
x1/k+ε �ε,a (log x)

2x1/2+ε

for any ε > 0. Thus the condition (q, a) = 1 may be dropped in (6.5),
with the resulting error bounded by x/(log x)A when summed over r. Once
this coprimality condition is dropped, the inner sum in (6.5) is exactly the
number of divisors of (n − a)/r that are at most Q/(rM). This completes
the proof for a > 0.

The case a < 0 can be handled similarly, as in [8, proof of Theorem 2.4].
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