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Supercharacters and the Chebotarev density theorem

by

Peng-Jie Wong (Lethbridge)

1. Introduction. Almost one hundred years ago, Emil Artin introduced
his L-functions and made the following famous conjecture.

Conjecture. Let K/k be a Galois extension of number fields with Ga-
lois group G, and let χ be a character of G. If χ does not contain the trivial
character of G, then the Artin L-function L(s, χ,K/k) attached to χ can be
extended to an entire function.

From Artin reciprocity, this conjecture follows if χ is monomial, i.e.,
χ is induced from a character of degree 1. After Artin’s work, Brauer [3]
proved his induction theorem and then derived that all Artin L-functions
extend meromorphically over C. By the works of Langlands and many oth-
ers (see, for example, [6, 8, 9, 11, 14]), we know that Artin’s conjecture
holds for certain irreducible characters of degree 2 and 4. From these re-
sults, the author [15] recently showed that Artin’s conjecture holds if K/k is
nearly supersolvable, i.e., G = Gal(K/k) admits a normal subgroup N with
G/N supersolvable such that all irreducible characters of N are of degree
at most 2. Furthermore, in [16, 17], Artin’s conjecture is established for all
solvable Galois groups of degree at most 200, with a single exceptional group
of order 108. However, in general, Artin’s conjecture is still open.

Like Dirichlet L-functions leading to the prime number theorem for arith-
metic progressions, Artin L-functions lead to a proof of the Chebotarev
density theorem. Indeed, the theorem follows from Artin reciprocity, the
Brauer induction theorem, and the theory of Hecke L-functions. (For the
convenience of the reader, let us recall the Chebotarev density theorem. As
above, K/k denotes a Galois extension of number fields with Galois group G.
For every unramified prime ideal p in Ok, σp denotes the Artin symbol at p.
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Let C be a subset of G stable under conjugation, and denote

πC(x) = #{p | p is unramified with N p ≤ x and σp ⊆ C}.
The Chebotarev density theorem asserts that, as x→∞,

πC(x) ∼ |C|
|G|

Lix,

where Lix is the usual offset logarithmic integral function.)
To study arithmetic problems, it is crucial to know the error term for the

Chebotarev density theorem. This was studied, with and without the gen-
eralised Riemann hypothesis (denoted GRH), by Lagarias and Odlyzko [7]
as well as Serre [13]. Moreover, under the further assumption of Artin’s
conjecture, M. R. Murty, V. K. Murty, and Saradha [10] gave the following
refinement.

Theorem 1.1 ([10, Proposition 3.6]). Suppose that all Artin L-functions
attached to irreducible characters of G = Gal(K/k) are holomorphic at
s 6= 1, and that the GRH holds for the Dedekind zeta function ζK(s) of K.
Then ∑

C

1

|C|

∣∣∣∣πC(x)− |C|
|G|

Lix

∣∣∣∣2 � xn2k
(
log(M(K/k)x)

)2
,

where the sum on the left runs over conjugacy classes C of G, πC(x) is
defined as above, nk is the degree of k/Q, and M(K/k) is a computable
constant depending only on K/k (see (2.1) below for a precise description
of M(K/k)). In particular,

πC(x) =
|C|
|G|

Lix+O
(
|C|1/2x1/2nk log(M(K/k)x)

)
.

In a completely different vein, in order to study matrix groups, Diaconis
and Isaacs [4] introduced the theory of supercharacters as follows.

Definition 1 ([4, Section 2]). Let G be a finite group. Let K be a
partition of G and let X be a partition of Irr(G). The ordered pair (X ,K)
is a supercharacter theory if

SC1. {1} ∈ K,
SC2. |X | = |K|, and
SC3. for each X ∈ X , the character σX =

∑
ψ∈X ψ(1)ψ is constant on each

K ∈ K.

The characters σX are called supercharacters, and the elements K in K are
called superclasses. In addition, if f : G→ C is constant on each superclass
in G, then we say f is a superclass function on G. (Here, Irr(G) denotes
the set of irreducible characters of G, and 1 stands for the identity element
of G.)
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The irreducible characters and conjugacy classes of G give a supercharac-
ter theory of G, which will be referred to as the classical theory of G. Indeed,
Diaconis and Isaacs showed their theory enjoys properties similar to the clas-
sical character theory. For example, every superclass is a union of conjugacy
classes in G [4, Theorem 2.2]. Also, as noted in [4], every group G admits
a non-classical theory with only two supercharacters 1G and RegG−1G and
superclasses {1} and G \ {1}, where 1G denotes the trivial character of G
and RegG =

∑
χ∈Irr(G) χ(1)χ is the character of the regular representation

of G. This theory will be called the maximal theory of G.

We note that from the definition, every supercharacter is a character.
Also, as shown in [4, Theorem 2.2], if (X ,K) is a supercharacter theory
of G, some member of X consists of just the trivial character 1G of G. In
other words, the trivial character is always a supercharacter in any theory.
Following the convention of the classical character theory, for X ∈ X , if
σX 6= 1G, we shall call σX non-trivial.

As the supercharacter theory generalises the (irreducible) character the-
ory, it may be of interest to study Artin L-functions attached to superchar-
acters. For instance, if G = Gal(K/k) is equipped with the maximal theory,
then the Artin L-functions attached to supercharacters with respect to such
a theory are

L(s, 1G,K/k) = ζk(s) and L(s,RegG−1G,K/k) = ζK(s)/ζk(s).

By a result of Aramata and Brauer [2], we know that ζK(s)/ζk(s) is entire.
This can be interpreted as Artin’s conjecture being valid for all Artin L-
functions attached to supercharacters of the maximal theory. In light of the
above observation, we consider the following conjecture, which may be seen
as a supercharacter-theoretic variant of Artin’s conjecture.

Conjecture 1. Let K/k be a Galois extension of number fields with
Galois group G. Let (X ,K) be a supercharacter theory of G and let Sup(G)
denote the set of supercharacters with respect to (X ,K). Then for every
non-trivial σ ∈ Sup(G), the Artin L-function L(s, σ,K/k) attached to σ
extends to an entire function. For such an instance, we shall say that Artin’s
conjecture holds for G with respect to (X ,K).

We note that if (X ,K) is the classical theory, then Conjecture 1 is equiv-
alent to Artin’s conjecture. In general, Conjecture 1 follows from Artin’s
conjecture since every non-trivial supercharacter is a character that does
not contain the trivial character. Furthermore, as discussed above, Conjec-
ture 1 is valid whenever the theory (X ,K) of G is maximal.

The object of this paper is to show the following effective version of the
Chebotarev density theorem for any supercharacter theory.
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Theorem 1.2. Let G = Gal(K/k) and let (X ,K) be a supercharacter
theory of G. Suppose that Conjecture 1 is true for K/k with respect to
(X ,K), and that the GRH holds for ζK(s). Then∑

C

1

|C|

∣∣∣∣πC(x)− |C|
|G|

Lix

∣∣∣∣2 � xn2k
(
log(M(K/k)x)

)2
,

where the sum on the left runs over superclasses C ∈ K, and πC(x), nk, and
M(K/k) are defined in the same way as in Theorem 1.1.

Applying the Cauchy–Schwarz inequality, we have the following.

Corollary 1.3. Under the same assumption and notation as above,
one has

πD(x) =
|D|
|G|

Lix+O
(
|D|1/2x1/2nk log(M(K/k)x)

)
for an arbitrary union D of superclasses in K.

Note that if (X ,K) is the classical theory, our theorem is exactly Theo-
rem 1.1. Also, from the above discussion (à la Aramata–Brauer), if (X ,K)
is maximal, then the holomorphy assumption on Artin L-functions in Theo-
rem 1.2 can be removed. With these and Conjecture 1 in mind, in Section 4,
we shall further study the relation between supercharacters and Artin’s
conjecture. In particular, by invoking the “∗-product” constructed by Hen-
drickson [5], we give a simple criterion, Proposition 4.2, to check Artin’s
conjecture for certain supercharacter theories. As a consequence, we ob-
tain the following two effective versions of the Chebotarev density theorem,
Propositions 1.4 and 1.5, without assuming Artin’s conjecture, by applying
Corollaries 4.3 and 4.4, respectively.

Proposition 1.4. In the notation of Theorem 1.2, let N be a normal
subgroup of G contained in the centre Z(G) of G. Suppose that the GRH
holds for ζK(s). Then∑

C

1

|C|

∣∣∣∣πC(x)− |C|
|G|

Lix

∣∣∣∣2 � xn2k
(
log(M(K/k)x)

)2
,

where the sum on the left runs over G \N and all conjugacy classes of N .
In particular, if C is G\N , a conjugacy class of N , or a union of such sets,
one has

πC(x) =
|C|
|G|

Lix+O
(
|C|1/2x1/2nk log(M(K/k)x)

)
.

Proposition 1.5. In the notation of Theorem 1.2, let N be a normal
subgroup of G with G/N nearly supersolvable. Suppose that the GRH holds
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for ζK(s). Then∑
C

1

|C|

∣∣∣∣πC(x)− |C|
|G|

Lix

∣∣∣∣2 � xn2k
(
log(M(K/k)x)

)2
,

where the sum on the left runs over {1}, N \ {1}, and all sets of the form
ND for some non-trivial conjugacy class D in G/N . In particular, if C is
{1}, N \ {1}, a set of the form ND for some non-trivial conjugacy class D
in G/N , or a union of such sets, one has

πC(x) =
|C|
|G|

Lix+O
(
|C|1/2x1/2nk log(M(K/k)x)

)
.

As demonstrated in [10], the above estimates are versatile enough for
studying several arithmetic objects and related problems. We shall give two
applications of our results to elliptic curves and modular forms.

First of all, let f be a normalised Hecke eigenform of integral weight
k ≥ 2 for Γ0(N), and let ε be its nebentypus character. Write f(z) =∑

n≥1 af (n)e2πinz for its Fourier expansion at i∞, and for simplicity of dis-
cussion, suppose that the af (n)’s are all rational. By a celebrated result of
Deligne, for each prime `, there is a representation

ρf,` : Gal(Q/Q)→ GL2

(
Z`
)

such that for any p not dividing `N , one has

tr ρf,`(σp) = ap and det ρf,`(σp) = pk−1ε(p),

where σp stands for a Frobenius element at p. Denote by ρ̃f,` the reduction
(mod `) of ρf,` (into GL2(Z/`Z)), and let K` be the fixed field of the kernel
of ρ̃f,`. For the sake of simplicity, we assume the reduction is surjective, i.e.,
Gal(K`/Q) = GL2(Z/`Z). It may be of interest to study the prime-counting
function πf (x, `, a) defined as

πf (x, `, a) = #{p ≤ x | p - `N is a prime such that det ρ̃f,`(σp) = a}
for any given a ∈ (Z/`Z)∗. We now recall that the determinant of ρf,` is,
in fact, the mod ` cyclotomic character χ`. (For the details of the above
discussion of modular forms and their Galois representations, we refer the
interested reader to Ribet’s beautiful article [12].) From this connection,
the above prime-counting function πf (x, `, a) may be seen as a non-abelian
generalisation of the usual prime-counting function π(x, `, a) for the primes
congruent to a modulo `, and should have a similar distribution. Indeed, we
shall show this is the case below.

With the notation used in Proposition 1.5, we shall consider G =
GL2(Z/`Z) and let N = SL2(Z/`Z), which is normal (as the determi-
nant gives a natural homomorphism from GL2(Z/`Z) to (Z/`Z)∗ with
kernel SL2(Z/`Z)). Now let Da denote the class consisting of matrices
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with determinant a in GL2(Z/`Z)/SL2(Z/`Z) ' (Z/`Z)∗. It is clear that
|NDa| = |SL2(Z/`Z)| and that the condition det ρ̃f,`(σp) = a is nothing but
ρ̃f,`(σp) ∈ NDa. Thus, the Chebotarev density theorem tells us that, as
x→∞,

πf (x, `, a) ∼ 1

φ(`)
Lix,

where φ is Euler’s totient function. Furthermore, under the GRH and with
the same notation as above, Proposition 1.5 yields

πf (x, `, a) =
1

φ(`)
Lix+O(|SL2(Z/`Z)|1/2x1/2 log(`Nx)).

(We remark that this can also be derived from Theorem 1.1 under the further
assumption of Artin’s conjecture on GL2(Z/`Z)-extensions. Also, one may
drop the assumption of rationality of af (n) by replacing Z in the above
discussion by Of , the ring of integers of the algebraic number field obtained
by adjoining the Fourier coefficients af (n) to Q.)

Secondly, we shall apply Proposition 1.4 to the geometric variant of the
Titchmarsh problem considered by Akbary and Ghioca [1]. In particular, we
refine their result, [1, Theorem 1.5], by removing the use of Artin’s conjecture
for the case of elliptic curves as follows.

Corollary 1.6. Let E be an elliptic curve over Q, and let δ ∈ [0, 1) be
a real number. For each m ∈ N, we let Cm be a union of conjugacy classes
in Gm = Gal(Q(E[m])/Q), where E[m] denotes the set of m-torsion points
of E, such that

(1) |Cm| � mδ, and
(2) each σ ∈ Cm acts on E[m] via a scalar matrix aI2 =

(
a 0
0 a

)
.

For each prime p, we further define τE,C(p) = #{m ∈ N | σp ∈ Cm}. Assume
the GRH is valid for each extension Q(E[m])/Q. Then∑

p≤x
τE,C(p)−

∞∑
m=1

|Cm|
|Gm|

Lix�

{
x

10+3δ
12+2δ (log x)

4
6+δ for δ ∈ [0, 2/3),

(x/log x)
5+2δ
6+δ for δ ∈ [2/3, 1).

(We recall that Gm = Gal(Q(E[m])/Q) embeds into GL2(Z/mZ) canon-
ically. We will fix such an embedding throughout our discussion. In addition,
by abuse of notation, we shall write I2 for the identity matrix of GL2(Z/mZ)
for any m.)

The paper is arranged as follows. In the next section, we shall collect the
preliminaries for the proof of our effective version of the Chebotarev density
theorem. The proofs of Theorem 1.2 and of Propositions 1.4 and 1.5 will be
given in Sections 3 and 4, respectively. Finally, in Section 5, we discuss how
to derive Corollary 1.6 from Proposition 1.4.
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2. Preliminaries. Throughout this paper, we make use of some stan-
dard notation. We write f � g or equivalently f = O(g) if there is a constant
M such that |f(x)| ≤Mg(x) for all x sufficiently large. (We remark that all
implied constants in estimates presented in this section are absolute.) Also,
we write f ∼ g if f(x)/g(x) → 1 as x → ∞. In addition, nk = [k : Q] is
the degree of k over Q, and n = [K : k]. Let dk and dK denote the absolute
discriminants of k/Q and K/Q, respectively. Let P (K/k) denote the set of
rational primes p for which there is a prime p of k with p | p and p is ramified
in K. We then set

(2.1) M(K/k) = nd
1/nk
k

∏
p∈P (K/k)

p.

Let f(χ) denote the Artin conductor of a character χ of G = Gal(K/k),

and let Aχ = d
χ(1)
k N f(χ) denote the conductor of χ.

To obtain a sharp error term for the Chebotarev density theorem,
M. R. Murty, V. K. Murty, and Saradha [10] first derived the two esti-
mates stated below.

Proposition 2.1 ([10, Section 3.5]). For each unramified prime p of k,
let σp denote the Artin symbol at p. Let χ be a character of G and let
π(x, χ) =

∑
N p≤x χ(σp), where the sum is over unramified primes p of k.

Let δ(χ) denote the multiplicity of the trivial character in χ. Suppose that
the Artin L-function L(s, χ) is holomorphic for all s 6= 1 and is non-zero
for <(s) 6= 1/2 and 0 < <(s) < 1. Then

π(x, χ) = δ(χ) Lix+O
(
x1/2(logAχ + χ(1)nk log x) + χ(1)nk logM(K/k)

)
.

Lemma 2.2 ([10, Proposition 2.5]). Let χ be an irreducible character
of G. Then

log N f(χ) ≤ 2χ(1)nk

( ∑
p∈P (K/k)

log p+ log n
)
.

From these estimates, one can derive the effective version of the Cheb-
otarev density theorem stated in Theorem 1.1.

As mentioned earlier, effective versions of the Chebotarev density theo-
rem with explicit error terms were first established by Lagarias and Odlyzko
[7] and were refined by Serre [13]. In particular, if the GRH for ζK(s) is as-
sumed, one has

(2.2) πC(x) =
|C|
|G|

Lix+O
(
|C|x1/2nk log(M(K/k)x)

)
.

(We remark that there are unconditional versions, and refer the reader to
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[7] and [13].) We further note that by Theorem 1.1, one has

(2.3) πC(x) =
|C|
|G|

Lix+O
(
|C|1/2x1/2nk log(M(K/k)x)

)
.

It is clear that (2.3) is a better estimate because the factor |C| in (2.2) is now
replaced by |C|1/2. Such an estimate is more versatile for many applications
such as the Lang–Trotter conjecture on Fourier coefficients of modular forms
(see [10]) and the Titchmarsh divisor problem for abelian varieties (cf. [1]
and Section 5).

3. An effective Chebotarev density theorem. In this section, we
will make use of notation introduced in the previous section, and we shall fix
a supercharacter theory (X ,K) for G = Gal(K/k). Also, Sup(G) will stand
for the set of supercharacters of G with respect to (X ,K).

Following the strategy developed in [10], in order to extend Theorem 1.1
to superclasses of G, we need the following lemmata.

Lemma 3.1. For any superclass C ∈ K,

δC =
|C|
|G|

∑
σ∈Sup(G)

σ(gC)σ

σ(1)
,

where δC denotes the indicator function of C, and gC is a representative
of C.

Proof. We recall that from the orthogonality property of Irr(G), Diaconis
and Isaacs deduced that the set Sup(G) forms an orthogonal basis for the
inner product space of all superclass functions on G with respect to the
usual inner product. Thus,

δC =
∑

σ∈Sup(G)

(δC , σ)
σ

(σ, σ)
,

where (σ, σ) = σ(1). Since for any representative gC of C,

(δC , σ) =
1

|G|
∑
g∈G

δC(g)σ(g) =
|C|
|G|

σ(gC),

the claim follows.

Lemma 3.2. Let π be a complex-valued linear function defined on the
vector space of superclass functions of G (with respect to (X ,K)). Then∑

C

1

|C|

∣∣∣∣π(δC)− |C|
|G|

π(1G)

∣∣∣∣2 =
1

|G|
∑
σ 6=1G

|π(σ)|2

σ(1)
,

where the sum on the left runs over superclasses C ∈ K, and the sum on the
right runs over the non-trivial supercharacters in Sup(G).
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Proof. Since π is linear, by Lemma 3.1, one can write

π(δC)− |C|
|G|

π(1G) =
|C|
|G|

∑
σ 6=1G

σ(gC)π(σ)

σ(1)
,

where gC is a representative of C. Therefore,∣∣∣∣π(δC)− |C|
|G|

π(1G)

∣∣∣∣2 =

(
|C|
|G|

∑
σ 6=1G

σ(gC)π(σ)

σ(1)

)(
|C|
|G|

∑
τ 6=1G

τ(gC)π(τ)

τ(1)

)

=
|C|2

|G|2
∑

σ,τ 6=1G

π(σ)π(τ)
σ(gC)τ(gC)

σ(1)τ(1)
.

Dividing both sides by |C| and then summing over all superclasses of G on
both sides, one has∑
C

1

|C|

∣∣∣∣π(δC)− |C|
|G|

π(1G)

∣∣∣∣2 =
∑
C

|C|
|G|2

∑
σ,τ 6=1G

π(σ)π(τ)
σ(gC)τ(gC)

σ(1)τ(1)

=
1

|G|
∑

σ,τ 6=1G

π(σ)π(τ)
1

|G|
∑
C

|C|σ(gC)τ(gC)

σ(1)τ(1)
.

As one can write the inner sum as

1

|G|
∑
C

|C|σ(gC)τ(gC)

σ(1)τ(1)
=

1

|G|
∑
g∈G

σ(g)τ(g)

σ(1)τ(1)
=

(σ, τ)

σ(1)τ(1)
,

the orthogonality property of Sup(G) then implies that∑
C

1

|C|

∣∣∣∣π(δC)− |C|
|G|

π(1G)

∣∣∣∣2 =
1

|G|
∑
σ 6=1G

π(σ)π(σ)(σ, σ)

σ(1)σ(1)
=

1

|G|
∑
σ 6=1G

|π(σ)|2

σ(1)

as desired.

For the purpose of counting primes, we also need to rewrite the estimates
stated in Proposition 2.1 and Lemma 2.2 in the context of supercharacters.
As before, for each unramified prime p of k, let σp denote the Artin symbol
at p. Let χ be a superclass function on G and let π(x, χ) =

∑
N p≤x χ(σp),

where the sum is over unramified primes p of k. In particular, we have
π(x, δC) = πC(x) for any superclass C. Together with the definition of su-
percharacters, Proposition 2.1 gives:

Proposition 3.3. Assuming the GRH for the Dedekind zeta function
of k, one has

π(x, 1G) = Lix+O
(
x1/2(log dk + nk log x) + nk logM(K/k)

)
,

where M(K/k) is defined as in (2.1).



10 P.-J. Wong

For any non-trivial supercharacter σ ∈ Sup(G), if the Artin L-function
L(s, σ,K/k) is entire and is non-zero for <(s) 6= 1/2 and 0 < <(s) < 1,
then

π(x, σ) = O
(
x1/2(logAσ + σ(1)nk log x) + σ(1)nk logM(K/k)

)
,

where Aσ = d
σ(1)
k N f(σ) denotes the conductor of σ.

By the properties of Artin conductors, we have a variant of Lemma 2.2
as follows.

Lemma 3.4. Let σ ∈ Sup(G) be a supercharacter of G. Then

log N f(σ) ≤ 2σ(1)nk

( ∑
p∈P (K/k)

log p+ log n
)
.

Proof. One can write any supercharacter σ as

σ =
∑

χ∈Irr(G,σ)

χ(1)χ,

where Irr(G, σ) is the subset of Irr(G) consisting of all irreducible characters
appearing in σ. Since, for any characters χ1 and χ2, f(χ1 +χ2) = f(χ1)f(χ2),
and the (absolute) norm N is completely multiplicative, one has

log N f(σ) =
∑

χ∈Irr(G,σ)

χ(1) log N f(χ).

Therefore, Lemma 2.2 implies that

log N f(σ) ≤
∑

χ∈Irr(G,σ)

χ(1)
(

2χ(1)nk

( ∑
p∈P (K/k)

log p+ log n
))
.

Now the assertion follows from the identity σ(1) =
∑

χ∈Irr(G,σ) χ
2(1).

Using these estimates, we can now prove our main results.

Proof of Theorem 1.2 and Corollary 1.3. First, observe that∑
C

1

|C|

∣∣∣∣ |C||G|π(x, 1G)− |C|
|G|

Lix

∣∣∣∣2 =
1

|G|2
∑
C

|C|(π(x, 1G)− Lix)2(3.1)

=
1

|G|
(π(x, 1G)− Lix)2.

Applying Lemma 3.2 and noticing that πC(x) = π(x, δC), one has

(3.2)
∑
C

1

|C|

∣∣∣∣πC(x)− |C|
|G|

π(x, 1G)

∣∣∣∣2 =
1

|G|
∑
σ 6=1G

|π(x, σ)|2

σ(1)
.

Also, for any σ ∈ Sup(G), Proposition 3.3 and Lemma 3.4 give

π(x, σ)− δ(σ) Lix� x1/2σ(1)nk log
(
M(K/k)x

)
,

where δ(σ) denotes the indicator function of 1G.
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Now, from the Cauchy–Schwarz inequality, (3.1), (3.2), and the above
estimate for π(x, σ), it follows that∑
C

1

|C|

∣∣∣∣πC(x)− |C|
|G|

Lix

∣∣∣∣2
≤
∑
C

2

|C|

∣∣∣∣πC(x)− |C|
|G|

π(x, 1G)

∣∣∣∣2 +
∑
C

2

|C|

∣∣∣∣ |C||G|π(x, 1G)− |C|
|G|

Lix

∣∣∣∣2
=

2

|G|
∑
σ 6=1G

|π(x, σ)|2

σ(1)
+

2

|G|
(π(x, 1G)− Lix)2

� 1

|G|
∑

σ∈Sup(G)

xσ(1)n2k
(
log(M(K/k)x)

)2
.

We then conclude by using |G| =
∑

χ∈Irr(G) χ
2(1) =

∑
σ∈Sup(G) σ(1).

Furthermore, by the Cauchy–Schwarz inequality and Theorem 1.2, for
any union D of superclasses in G, one has∣∣∣∣π(x, δD)− |D|

|G|
Lix

∣∣∣∣ =

∣∣∣∣ ∑
C⊆D

(
π(x, δC)− |C|

|G|
Lix

)
|C|1/2

|C|1/2

∣∣∣∣
≤
(∑
C⊆D

1

|C|

∣∣∣∣π(x, δC)− |C|
|G|

Lix

∣∣∣∣2)1/2(∑
C⊆D

|C|
)1/2

�
(
xn2k

(
log(M(K/k)x)

)2)1/2|D|1/2,
where the sums run over all superclasses C ⊆ D.

4. The ∗-product and proofs of Propositions 1.4 and 1.5. As we
now have a variant of Theorem 1.1 in the context of supercharacter the-
ory, it seems possible to refine Theorem 1.1 by removing the use of Artin’s
conjecture for certain cases. Indeed, in this section, we shall find some super-
character theories of G = Gal(K/k) satisfying Conjecture 1. We first recall
that the Aramata–Brauer theorem asserts that the quotient ζK(s)/ζk(s) is
entire for any Galois extension K/k with Galois group G. In other words,
Artin’s conjecture holds for the Artin L-functions attached to the super-
characters RegG−1G and 1G. (We note that {RegG−1G, 1G} together with
{G \ {1}, {1}} gives the maximal theory of G.)

In [5], Hendrickson introduced the ∗-product of supercharacter theories,
which produces a supercharacter theory of G from its normal subgroup N
and the quotient group H = G/N as follows. Let G be a finite group and
N be a normal subgroup of G. We equip N and G/N with supercharacter
theories (X ,K) and (Y,J ), respectively. Following [5], (X ,K) is said to be
G-invariant if for each g ∈ G and n ∈ N , both n and g−1ng belong to the
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same superclass. Assuming that (X ,K) is G-invariant, let (Z,M) denote
the pair with

Z = {IndGN σX | X ∈ X \ {1N}} ∪ {InfGG/N σY | Y ∈ Y},
M = K ∪ {NJ | J ∈ J \ {1}}.

Hendrickson [5, Theorem 4.3] then proved the following assertion.

Proposition 4.1. The pair (Z,M) defines a supercharacter theory of G.

This supercharacter theory is referred to as the ∗-product of (X ,K) and
(Y,J ). From the construction of ∗-product, we derive the following criterion.

Proposition 4.2. Let G = Gal(K/k), and let N and G/N be equipped
with (X ,K) and (Y,J ), respectively, where (X ,K) is G-invariant. Suppose
that Conjecture 1 holds for both (X ,K) and (Y,J ). Then Artin’s conjecture
is valid for G with respect to the ∗-product (Z,M) of (X ,K) and (Y,J ).

Proof. By the construction, any supercharacter σ of G (equipped with
(Z,M)) is either IndGN τ for some supercharacter τ of (X ,K), or InfGG/N ψ

for some supercharacter ψ of (Y,J ). For the former instance, the induction
invariance property of Artin L-functions gives

L(s, σ,K/k) = L(s, IndGN τ,K/k) = L(s, τ,K/KN ).

For the latter case, we have

L(s, σ,K/k) = L(s, InfGG/N ψ,K/k) = L(s, ψ,KN/k).

Now the holomorphy ofL(s, σ,K/k) follows from our assumption that Artin’s
conjecture holds for L(s, τ,K/KN ) and L(s, ψ,KN/k).

From this proposition, we immediately have the following corollary.

Corollary 4.3. Let G = Gal(K/k). Let N and G/N be equipped with
(X ,K) and (Y,J ), respectively. Assume further that N is central, i.e. con-
tained in Z(G), and that (Y,J ) is the maximal theory. Then Artin’s conjec-
ture holds for G with respect to the ∗-product (Z,M) of (X ,K) and (Y,J ).

Proof. Firstly, the Aramata–Brauer theorem asserts that Artin’s conjec-
ture holds for G/N equipped with maximal (Y,J ).

On the other hand, as N is central, it is clear that for any n ∈ N and
g ∈ G, one has

g−1ng = n,

which means that any supercharacter theory (X ,K) is automatically G-
invariant. Furthermore, N is abelian since N is central. Thus, Artin’s con-
jecture is valid for (X ,K) and hence the corollary follows from Proposi-
tion 4.2.
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Proof of Proposition 1.4. Assume the GRH, and let N be normal and
contained in Z(G). By Theorem 1.2 and Corollary 1.3, it suffices to check
that Conjecture 1 for the ∗-product (Z,M) of (X ,K) and (Y,J ) holds,
where (X ,K) is the classical theory of N , and (Y,J ) is the maximal theory
of G/N . However, this follows immediately from Corollary 4.3. Note that
the collection of superclasses of (Z,M) is

K ∪
{
NJ

∣∣ J ∈ J \ {1}},
which consists of all conjugacy classes in N and of the set G \N .

We now equip N with the maximal theory of N and note that for any
n ∈ N and g ∈ G, g−1ng = 1 if and only if n = 1. Since in such an
instance, there are only two superclasses, namely {1} and N \ {1}, a mo-
ment’s reflection shows that the maximal theory of N is always G-invariant.
As mentioned in the introduction, Artin’s conjecture for all nearly super-
solvable Galois extensions was established by the author [15, Section 6.1].
Thus, Proposition 4.2 yields the following.

Corollary 4.4. Let G = Gal(K/k), and let N and G/N be equipped
with (X ,K) and (Y,J ), respectively. Assume (X ,K) is the maximal theory.
If G/N is nearly supersolvable, then Artin’s conjecture holds for G with
respect to the ∗-product of (X ,K) and (Y,J ).

From this corollary, it is easy to deduce Proposition 1.5 as follows.

Proof of Proposition 1.5. Let N be normal in G and equipped with max-
imal (X ,K), and let G/N be nearly supersolvable with classical (Y,J ). By
Corollary 4.4, Artin’s conjecture holds for G with respect to the ∗-product
of (X ,K) and (Y,J ).

Thus, under the GRH, the proposition follows from Theorem 1.2 and
Corollary 1.3. Note that for such a ∗-product, the collection of superclasses
consists of {1}, N \ {1}, and sets of the form NJ for some non-trivial con-
jugacy class J in G/N .

5. An application to the Titchmarsh divisor problem for ellip-
tic curves. In their paper [1], Akbary and Ghioca formulated a geometric
analogue of the Titchmarsh divisor problem in the context of abelian vari-
eties defined over Q and proved several theorems concerning the asymptotic
distribution of the primes with certain splitting properties in the division
fields of a given abelian variety. For the sake of simplicity, we shall only
consider the case of elliptic curves. Following [1], for any elliptic curve E/Q,
we consider the family E = {Em = Q(E[m]) | m ∈ N} of division fields
of E. Let Cm be a union of conjugacy classes in Gm = Gal(Em/Q) and let
C = {Cm}. Setting τE,C(p) = #{m ∈ N | σp ∈ Cm}, one may want to study
the behaviour of

∑
p≤x τE,C(p) as x→∞.
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This question was studied and answered by Akbary and Ghioca in [1,
Theorem 1.5], who gave the estimate described in Corollary 1.6 under the
further assumption of Artin’s conjecture for every Gm. We shall give a sketch
of their proof below. First, let us recall the conditions imposed in their
theorem:

1. There is a number δ ∈ [0, 1) such that for any m, |Cm| � mδ.
2. Each σ ∈ Cm acts on E[m] via a scalar matrix aI2.

As discussed in [1, proof of Theorem 1.5], by the second condition, in order
to study

∑
p≤x τE,C(p), it suffices to estimate

∑
p≤x πE,C(x,m), where

πE,C(x,m) = #{p ≤ x | p is a prime of good reduction so that σp ∈ Cm}.
(Indeed, condition 2 forces that p ≡ a2 (mod m), and hence m ≤ x whenever
x > a2, which justifies the range of the new summatory function above.)

For the summatory function over the initial range m ≤ (x/log x)2/(δ+6),
Theorem 1.1 is applied to get

(5.1) πE,C(x,m) =
|Cm|

[Em : Q]
Lix+O(|Cm|1/2x1/2 log(mx)).

This is the only step in the proof that requires the GRH and Artin’s conjec-
ture. Furthermore, because of the nature of sieving process (cf. [1, equations
(5.1)–(5.5)]), condition 1 is needed for bounding the summatory function
over the initial range.

On the other hand, in order to obtain a good estimate for the remaining
range, one needs to invoke condition 2 again. (Indeed, such a condition allows
one to further reduce the sum to the range m ≤ 2x1/2.)

Now we are in a position to prove Corollary 1.6. As remarked in [1],
condition 2 above is equivalent to the condition that Cm consists of scalar
matrices in GL2(Z/mZ). For each m, we let Nm stand for the subgroup
consisting of all scalar matrices in Gm. Noticing that any scalar matrix
(in Gm) forms a conjugacy class in Nm, applying Proposition 1.4 (with
G = Gm and N = Nm) yields the key estimate (5.1), even without using
Artin’s conjecture. In other words, we can remove the assumption of Artin’s
conjecture from [1, Theorem 1.5] and deduce Corollary 1.6.
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Abstract (will appear on the journal’s web site only)

We employ the theory of supercharacters introduced by Diaconis and
Isaacs to refine the previous work of M. R. Murty, V. K. Murty, and Saradha
by deriving effective versions of the Chebotarev density theorem for certain
unions of conjugacy classes without using Artin’s conjecture. As an applica-
tion, we remove the assumption of Artin’s conjecture from a result of Akbary
and Ghioca on the Titchmarsh divisor problem for elliptic curves.
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