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Abstract

Stark conjectured that for any h ∈ N, there are only finitely many CM-fields with class number h. Let C
be the class of number fields L for which L has an almost normal subfield K such that L/K has solvable
Galois closure. We prove Stark’s conjecture for L ∈ C of degree greater than or equal to 6. Moreover, we
show that the generalised Brauer–Siegel conjecture is true for asymptotically good towers of number fields
L ∈ C and asymptotically bad families of L ∈ C.
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1. Introduction

For a number field L/Q, let nL and dL denote its degree and absolute discriminant,
respectively. Let hL denote the class number of L. Stark [13] conjectured that for
any h ∈ N, there are only finitely many CM-fields, that is, totally imaginary quadratic
extensions of totally real fields, with class number h. Stark proved his conjecture for
fields with fixed degree greater than or equal to 6.

A number field M is called almost normal if there exists a sequence of number fields
Q = M0 ⊆ M1 ⊆ · · · ⊆ M� = M, for some � ∈ N, such that each extension Mi/Mi−1 is
normal for 1 ≤ i ≤ �. In [11], Odlyzko verified Stark’s conjecture for CM-fields L with
nL ≥ 6 whose maximal totally real subfields L+ are almost normal. In [6], Hoffstein
and Jochnowitz proved that there exists an effective absolute constant C such that the
assumption of the almost normality of L+ in Odlyzko’s theorem can be replaced with
the bound dL+ > C[L+:Q]. Murty [10] proved Stark’s conjecture for CM-fields L having
solvable normal closures over Q when nL ≥ 6.

For any CM-field L, class field theory tells us that the class number hL+ divides hL,
where L+ is the maximal totally real subfield of L. Thus, the number h−L = hL/hL+ is a
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positive integer. This number is called the relative class number of L. One may also
consider the following problem that generalises Stark’s conjecture.

PROBLEM 1.1. Let H be a positive integer. Is the set of CM-fields L with h−L ≤ H finite?

If the answer to this problem is affirmative, then Stark’s conjecture is true. Since
the class number of Q is 1, Problem 1.1 for CM-fields L with nL = 2 is, in fact, Gauss’s
original class number conjecture proved by Deuring, Hecke, Heilbronn and Mordell.
An effective version of Gauss’s conjecture has been established by Goldfeld [4].

The first goal of this paper is to prove an instance of Problem 1.1. Let K be a subfield
of a number field L. We say L/K has solvable Galois closure if Gal(L̃/K) is solvable,
where L̃ denotes the normal closure of L over K. Throughout this paper, we let C be
the class of number fields L for which L has an almost normal subfield K such that
L/K has solvable Galois closure. Our first main result is the following theorem.

THEOREM 1.2. Let H be a positive integer.
(i) The set of CM-fields L ∈ C with nL � 4 and h−L ≤ H is finite and its cardinality

can be bounded effectively (in terms of H). Moreover, if Artin’s conjecture is true,
then the set of CM-fields L with nL � 4 and h−L ≤ H is finite and its cardinality can be
bounded effectively.

(ii) Unconditionally, the set of CM-fields L with nL = 4 and h−L ≤ H is finite.

REMARK 1.3. (i) The class C contains every number field with solvable Galois closure
over Q. If the maximal totally real subfield of L is almost normal, then L is also almost
normal and so L ∈ C. Thus, the class C includes the fields considered by Murty [10]
and Odlyzko [11] and Theorem 1.2 presents a common extension of their results. There
is a further extension of Murty’s result because the Galois closure of L ∈ C overQmay
not be solvable. For instance, if L contains a subfield K that is a nonsolvable Galois
extension of Q, then the Galois closure of L over Q cannot be solvable even if the
Galois closure of L over K is solvable.

(ii) The second part of Theorem 1.2 is ineffective since the proof requires Siegel’s
ineffective bound on the exceptional zeros of Dedekind zeta functions of quadratic
fields.

There are several questions and results concerning the behaviour of hL as L varies.
Most famously, in [1], Brauer proved the following theorem.

THEOREM 1.4 (Brauer–Siegel theorem). Let {Li} be a family of number fields (that is,
Li � Lj for any i � j) such that each Li/Q is Galois. If limi→∞ d

1/nLi
Li
= ∞, then

lim
i→∞

log(hLi RLi )

log
√

dLi

= 1,

where RLi denotes the regulator of Li. Moreover, the Galois condition on Li/Q can be
removed if the generalised Riemann hypothesis is true.
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Siegel [12] proved this theorem for the case when {Li} is a family of quadratic
fields. If {Li} is a family of imaginary quadratic fields, then RLi = 1 and hence the
Brauer–Siegel theorem provides a rate at which hLi goes to infinity. Consequently,
there are only finitely many imaginary quadratic fields with a bounded class number
(see also [5]).

In [13], Stark proved an effective and much stronger version of the Brauer–Siegel
theorem for families of almost normal number fields that do not contain any quadratic
fields. Stark was aware that the Brauer–Siegel theorem would hold over families of
almost normal fields, but this was only made explicit in the work of Zykin [15].

In [14], Tsfasman and Vlăduţ formulated the generalised Brauer–Siegel conjecture
(GBS) and proved some instances of it. Let L = {Li} be a family of number fields. By
the definition of the Dedekind zeta function ζLi (s) of Li, there are nonnegative integers
Nq(Li) such that

ζLi (s) =
∏

q

(1 − q−s)−Nq(Li),

for Re(s) > 1, where the product is over prime powers q. We call L = {Li} asymptoti-
cally exact if the limits

φq(L) = lim
i→∞

Nq(Li)
gLi

, φR(L) = lim
i→∞

r1(Li)
gLi

and φC(L) = lim
i→∞

r2(Li)
gLi

exist, for every prime power q, where gLi = log
√

dLi , and r1(Li) and r2(Li) are the
numbers of real and complex embeddings of Li, respectively.

CONJECTURE 1.5 (Generalised Brauer–Siegel conjecture). For any asymptotically
exact family L = {Li}, the limit BS(L) = limi→∞ log(hLi RLi )/gLi exists. Moreover,

BS(L) = 1 +
∑

q

φq(L) log
q

q − 1
− φR(L) log 2 − φC(L) log 2π.

Following [14], an asymptotically exact family L will be called asymptotically bad
if φq(L) = φR(L) = φC(L) = 0 for every prime power q. If an asymptotically exact
family is not asymptotically bad, then it will be said to be asymptotically good.

Tsfasman and Vlăduţ [14] proved their conjecture for any asymptotically exact
family under the assumption of the generalised Riemann hypothesis. Also, uncon-
ditionally, they proved GBS for asymptotically good towers of almost normal fields.
(Recall that a family {Li} is called a tower if Li � Li+1 for each i.) Moreover, Zykin [15]
proved GBS for asymptotically bad families of almost normal fields. Recently, Dixit
[3] showed that GBS is true for asymptotically good towers and asymptotically bad
families of number fields with solvable Galois closure over Q. Our second goal is to
prove the following extension of the work of Dixit, Tsfasman and Vlăduţ, and Zykin.

THEOREM 1.6. If an exact family L ⊆ C is an asymptotically good tower or an
asymptotically bad family, then GBS is true for L. Furthermore, if Artin’s conjecture
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is true, then GBS is true for any asymptotically good tower and any asymptotically bad
family.

REMARK 1.7. (i) As noted by Dixit [3], it follows from the class number formula that
GBS for an exact family L = {Li} is equivalent to the statement that the limit

ρ(L) = lim
i→∞

log ρLi

gLi

exists and equals
∑

q φq(L) log(q/(q − 1)), where ρLi is the residue of the Dedekind
zeta function ζLi (s) at s = 1. We shall use this fact repeatedly in Section 4.

(ii) The familyL = {Li} is asymptotically bad if and only if limi→∞ d
1/nLi
Li
= ∞. From

this, GBS for asymptotically bad families is equivalent to the classical Brauer–Siegel
conjecture (that is, the Brauer–Siegel ‘theorem’ without the Galois condition on Li).

2. Stark zeros in certain towers of number fields

Stark’s conjecture arose from his work on exceptional zeros of Dedekind zeta
functions. These zeros are also crucial to the study of GBS. In this section, we will
briefly review some results concerning ‘Stark zeros’ (see [10] for further discussion).

For any number field L, Stark showed that the Dedekind zeta function ζL(s) has at
most one zero in the region

1 − 1
4 log dL

≤ Re(s) ≤ 1 and |Re(s)| < 1
4 log dL

, (2.1)

and if the zero exists in this region, it must be real and simple. We call this possible zero
the Stark zero of ζL(s) and denote it by β0. For any Galois extension L/K, if the Stark
zero β0 of ζL(s) exists, then there is a field M with K ⊆ M ⊆ L such that [M : K] ≤ 2
and ζM(β0) = 0. In the case when L is almost normal, Stark [13, Lemma 10] showed
that if the Stark zero β0 of ζL(s) appears in the region

1 − 1
16 log dL

≤ Re(s) ≤ 1,

then there is a quadratic field F ⊆ L such that ζF(β0) = 0. These results play a key role
in the argument of Odlyzko [11].

Let m be a positive integer. We set

e(m) = max
pα‖m

α and δ(m) = (e(m) + 1)231/312e(m)−1. (2.2)

THEOREM 2.1 (Murty, [10, Theorem 2.1]). Let L/K be an extension with solvable
Galois closure. Let m be the degree of L/K. There exists an absolute constant c0 > 0
such that if ζL(s) has a zero β0 in the region

1 − c0

me(m)δ(m) log dL
≤ Re(s) ≤ 1 and |Re(s)| < c0

me(m)δ(m) log dL
,

then there is a field M with K ⊆ M ⊆ L such that [M : K] ≤ 2 and ζM(β0) = 0.

https://doi.org/10.1017/S0004972721001076 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972721001076


292 P.-J. Wong [5]

As in the work of Odlyzko [11], in order to ‘descend’ the Stark zero of ζL(s) to
a quadratic field, Murty considered the class of number fields with solvable Galois
closure over Q and applied his theorem with K = Q.

We require the following refinement of Murty’s theorem for our main theorems.

THEOREM 2.2. Let L/K be an extension with solvable Galois closure and let K be an
almost normal field. Let m and n be the degrees of L/K and L/Q, respectively. Let c0
be as in Theorem 2.1 and c1 = min{c0, 1/16}. Suppose that ζL(s) has a zero β0 in the
region

1 − c1

me(m)δ(m) log dL
≤ Re(s) ≤ 1 and |Re(s)| < 1

4 log dL
, (2.3)

where e(m) and δ(m) are defined as in (2.2). Then β0 is real and simple and there is a
quadratic field F ⊆ L such that ζF(β0) = 0. Consequently, if ζL(s) has a zero β0 in the
region

1 − c1

ne(n)δ(n) log dL
≤ Re(s) ≤ 1 and |Re(s)| < 1

4 log dL
, (2.4)

then β0 is real and simple and there is a quadratic field F ⊆ L such that ζF(β0) = 0.

PROOF. As the region (2.3) is contained in the region (2.1), β0 must be real and
simple. Since c1 ≤ c0, by Theorem 2.1, there is a field M with K ⊆ M ⊆ L such that
[M : K] ≤ 2 and ζM(β0) = 0. As [M : K] ≤ 2, the extension M/K is normal. Since K is
almost normal, M is also almost normal. Observing that

c1

me(m)δ(m) log dL
≤ 1

16 log dM
,

we have β0 ∈ [1 − 1/16 log dM , 1]. Finally, by the result on Stark zeros in almost normal
extensions [13, Lemma 10], there is a quadratic field F with F ⊆ M ⊆ L such that
ζF(β0) = 0.

To prove the second part of the theorem, it suffices to show that the region (2.4) is
contained in the region (2.3). As m | n, we have e(m) ≤ e(n) and thus δ(m) ≤ δ(n). This
concludes the proof. �

If Artin’s conjecture is true, one has the following improvement of these results.

LEMMA 2.3 (Stark, [13, Lemma 13]). Let L be a number field of degree n > 1 and let L̃
be the normal closure of L over Q. Suppose that all the Artin L-functions L(s,ψ, L̃/Q)
are holomorphic at s � 1. If there is a zero β0 of ζL(s) in the range

1 − 1
8(n − 1) log dL

≤ Re(s) ≤ 1,

then there exists a quadratic field F ⊆ L such that ζF(β0) = 0.

Lastly, we recall the following bound for the exceptional zeros of Dedekind zeta
functions of quadratic fields.
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LEMMA 2.4 [13, Lemma 11]. Let F be a quadratic field. Then there is an effective
absolute constant c2 > 0 such that ζF(σ) is nonvanishing for σ ≥ 1 − c2/d

1/2
F .

3. Proof of Theorem 1.2

To prove Theorem 1.2, we shall prove the following lower bounds for h−L .

THEOREM 3.1. Let L be a CM-field with maximal totally real subfield L+. Assume
either L ∈ C or the truth of Artin’s conjecture. Write dL = d2

L+ f and set n = [L+ : Q].
Then there are effective absolute constants c3 > 0 and c4 > 1 such that

h−L ≥
c3

ng(n)
cn

4 f (1/2)−(1/2n), (3.1)

where the function g(n) is defined by

g(n) =

⎧⎪⎪⎨⎪⎪⎩
(2n)e(2n)δ(2n) if L ∈ C,
n − 1

2 if Artin’s conjecture is true.

Moreover, for any ε ∈ [1/(8 log dL), 1], there exists c(ε) > 0, depending only on ε, such
that

h−L ≥
c3c(ε)n

ng(n)
d(1/2)−(1/n)−ε

L+ f (1/2)−(1/2n). (3.2)

PROOF. We shall follow the arguments used in [10, 11, 13]. Note that there is a
nontrivial Hecke character χ of L+ such that ζL(s) = ζL+(s)L(s, χ), where L(s, χ) is
the Hecke L-function attached to χ. Let β0 be the possible exceptional zero of L(s, χ)
satisfying

1 − 1
4 log(d2

L+ f )
≤ β0 ≤ 1,

and set β1 = β0 if it exists. Otherwise, set β1 = 1 − 1/(4 log(d2
L+ f )). By equation (31)

in [13],

h−L =
hL

hL+
≥ d1/2

L+ f 1/2(2π)−nL(1, χ).

In addition, as in [13, Proof of Lemma 5] (see also [11, Equation (4.2)]), for any σ1
such that

1 +
1

4 log dL
≤ σ1 ≤ 2,

there is a c5 > 0 such that

L(1, χ) ≥ c5(1 − β1)d−(1/2)(σ1−1)
L+ ζL+(σ1)−1.

Thus,

h−L ≥ c5(1 − β1)d(1/2)−(1/2)(σ1−1)
L+ f 1/2(2π)−nζL+(σ1)−1. (3.3)
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Now, if L(s, χ) has a zero β0 in the region

1 − c1

g(n) log dL
≤ Re(s) ≤ 1, (3.4)

where c1 is defined as in Theorem 2.2, then β0 is also a zero of ζL(s). By Theorem 2.2
and Lemma 2.3, since β0 is in the region (3.4) and c1 ≤ 1/16, there is a quadratic
field F ⊆ L such that ζF(β0) = 0. By Lemma 2.4, β0 ≤ 1 − c2/d

1/2
F . Therefore, L(s, χ)

is nonzero on

max
{
1 − c1

g(n) log dL
, 1 − c2

d1/2n
L

}
≤ Re(s) ≤ 1.

(Here, we used dL ≥ dn
F.) Consequently, as dL = d2

L+ f ,

1 − β1 ≥
c6

g(n)
min{(log dL)−1, d−1/2n

L } ≥ c6

ng(n)
d−1/n

L+ f −1/2n,

where c6 = min{c1, c2} > 0. It follows from (3.3) that

h−L ≥
c5c6

ng(n)
d(1/2)−(1/2)(σ1−1)−(1/n)

L+ f (1/2)−(1/2n)(2π)−nζL+(σ1)−1. (3.5)

Now, as argued by Odlyzko [11, pages 284–285], there are effective absolute positive
constants c7 and c8 such that

h−L ≥
c5c6c7

ng(n)
f (1/2)−(1/2n)(1 + c8)n.

This proves the first claimed bound.
To prove the second bound, we chooseσ1 = 1 + 2εwith ε ∈ [1/(8 log dL), 1]. Recall

that for σ ∈ (1, 3],

0 < ζL+(σ) ≤ ζ(σ)n ≤
( c9

σ − 1

)n

for some effective absolute c9 > 0. Thus, by (3.5),

h−L ≥
c5c6

ng(n)
d(1/2)−(1/n)−ε

L+ f (1/2)−(1/2n)(2π)−nζ(1 + 2ε)−n

≥ c5c6

ng(n)
d(1/2)−(1/n)−ε

L+ f (1/2)−(1/2n)
(
ε

c9π

)n

as desired. �

We are now in a position to prove Theorem 1.2. As mentioned before, for CM-fields
of degree 2, the theorem follows from the works of Goldfeld, Gross and Zagier. So, we
may restrict our attention to CM-fields of degree at least 6.

PROOF OF THEOREM 1.2. (i) Let L be a CM-field with h−L ≤ H, nL+ ≥ 3 and
dL = d2

L+ f . Assume either L ∈ C or the truth of Artin’s conjecture. Since e(n) ≤
log n/log 2,

ne(n) ≤ exp((log n)2).
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Thus, by (3.1), there exists an effective positive constant AH > 0, depending only on H,
such that nL+ ≤ AH and f ≤ AH .

Note that nL ≥ 6 for [L+ : Q] > 2. By Minkowski’s bound, nL ≤ 2 log dL/log 3,
and thus 1/(8 log dL) ≤ 1/(4(log 3)nL) ≤ 1/(24 log 3). To use (3.2), we may choose
ε = 1/(24 log 3) so that

1
2
− 1

nL+
− ε ≥ 1

6
− ε > 0.

Now, by (3.2) and the bounds nL+ ≤ AH and f ≤ AH , there is an effective positive
constant BH > 0, depending only on H, such that dL+ ≤ BH . Hence, we arrive at dL =

d2
L+ f ≤ B2

HAH . This completes the proof because the number of number fields L with
dL ≤ B2

HAH can be bounded effectively.
(ii) In the proof of Theorem 3.1, instead of using Lemma 2.4, we may use Siegel’s

ineffective bound

β0 ≤ 1 − c̃2

d1/4
F

for some ineffective absolute c̃2 > 0. This results in an ineffective improvement of the
second bound of Theorem 3.1 to give

h−L ≥
c̃3c(ε)n

ng(n)
d(1/2)−(1/2n)−ε

L+ f (1/2)−(1/4n)

for some ineffective c̃3 > 0. This estimate, together with the first bound of
Theorem 3.1, proves the finiteness of L with nL+ = 2 and h−L ≤ H for any given H ∈ N.
Note that L must have Galois closure over Q since nL = 4 and so this finiteness result
is unconditional. �

4. Proof of Theorem 1.6

4.1. Auxiliary lemmas. Our proof of Theorem 1.6 builds on the works of Dixit [3],
Tsfasman and Vlăduţ [14] and Zykin [15].

Let L be a number field and let GL(s) be the entire function such that

ζL(s) =
ρL

s − 1
GL(s). (4.1)

We shall set

ZL(s) =
d
ds

( log GL(s)
gL

)
.

From Lagarias and Odlyzko [8, Theorem 9.2], based on an idea of Tsfasman and
Vlăduţ [14], Dixit proved the following lemma.

LEMMA 4.1 (Dixit, [3, Lemma 4.2]). Let L belong to an asymptotically good familyL,
and let n = [L : Q]. Suppose that ζL(s) has no zero in the region

1 − c1

ne(n)δ(n) log dL
≤ Re(s) ≤ 1. (4.2)
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Then there are positive constants C1, C2 and C3, dependent on c1 and L, but
independent of L, such that |ZL(1 + θ)| ≤ C1gC2 log gL

L for any θ ∈ (0, 1) and any gL > C3.

To control the possible exceptional zeros arising from an asymptotically good
family, Tsfasman and Vlăduţ [14] proved the following finiteness lemma.

LEMMA 4.2 (Tsfasman and Vlăduţ, [14, Lemma 7.3]; see also [3, Lemma 4.3]). Let
L = {Li} be an asymptotically good family, and set

Q(L) = {F | [F : Q] = 2 and F ⊆ Li for some i}.

Then Q(L) is finite.

Lastly, we require the following bounds for the residues ρL.

LEMMA 4.3 (Louboutin, [9, Theorem 1]). For any number field L � Q, if ζL(β) = 0
for some β ∈ [ 1

2 , 1), then

ρL ≤ (1 − β)
(e log dL

2nL

)nL

.

LEMMA 4.4 (Stark, [13, Lemma 4]). There exists an effective constant c′ > 0 such
that for any number field L � Q, one has ρL > c′(1 − β0), where β0 is the possible
exceptional zero of ζL(s) in [1 − 1/(4 log dL), 1]. If the possible exceptional zero does
not exist, then one can take β0 = 1 − 1/(4 log dL).

4.2. Proof of Theorem 1.6 when L is an asymptotically good tower. In light of
the work of Dixit [3] and Tsfasman and Vlăduţ [14], to prove Theorem 1.6, we require
the following general inequalities towards GBS for asymptotically good towers.

LEMMA 4.5. Let L = {Li} be an asymptotically good tower. Let {θLi} ⊂ (0, 1) be a
sequence convergent to zero such that log θLi = o(gLi ). Then

∑
q

φq(L) log
q

q − 1
≥ lim sup

i→∞

log ρLi

gLi

and

lim inf
i→∞

log ρLi

gLi

≥
∑

q

φq(L) log
q

q − 1
− lim sup

i→∞

log GLi (1 + θLi )
gLi

.

PROOF. The first inequality is established in [14] for any asymptotically exact family,
so it remains to prove the second inequality. By (4.1), for any θL ∈ (0, 1),

log ζL(1 + θL)
gL

=
log ρL

gL
+

log GL(1 + θL)
gL

− log θL

gL
. (4.3)

Since L = {Li} is a tower, for θ > 0,
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log ζLi (1 + θ)
gLi

=
∑

q

Nq(Li)
gLi

log
1

1 − q−1−θ

=
∑

p

Np(Li)
gLi

log
1

1 − p−1−θ +
∑
q=pk

k≥2

Nq(Li)
gLi

log
1

1 − q−1−θ

≥
∑

p

φp(L) log
1

1 − p−1−θ +
∑
q=pk

k≥2

Nq(Li)
gLi

log
1

1 − q−1−θ .

In addition, there is a positive number δ such that
∑
q=pk

k≥2

Nq(Li)
gLi

log
1

1 − q−1−θ →
∑
q=pk

k≥2

φq(L) log
1

1 − q−1−θ

uniformly in θ > −δ. Thus, as the sequence {θLi} converges to zero, we arrive at

lim inf
i→∞

log ζLi (1 + θLi )
gLi

≥
∑

q

φq(L) log
q

q − 1
. (4.4)

Gathering (4.3), (4.4) and the assumption log θLi = o(gLi ) completes the proof. �

We now prove Theorem 1.6 for asymptotically good towers.

PROOF OF THEOREM 1.6 FOR ASYMPTOTICALLY GOOD TOWERS. Let L = {Li}
be an asymptotically good tower. Assume either L = {Li} ⊆ C or Artin’s conjecture.
Following Dixit [3, Section 5.1], we choose θLi = g

−(C2+1) log gLi
Li

, where C2 is the same as
in Lemma 4.1. It is clear that the sequence {θLi} converges to zero and log θLi = o(gLi ).
Therefore, by Lemma 4.5, it remains to show that

lim sup
i→∞

log GLi (1 + θLi )
gLi

≤ 0.

By Theorem 2.2 and Lemma 2.3, if ζLi (s) has a zero β0 in the region (4.2) with
L = Li and n = nLi , then it must be a real zero of ζF(s) for some F ∈ Q(L). By Lemmas
2.4 and 4.2,

β0 ≤ 1 − c2

maxF∈Q(L) d1/2
F

< 1.

Hence, for i sufficiently large, ζLi (s) has no zero in the region (4.2) with L = Li and
n = nLi . As GLi (1) = 1, by Lemma 4.1, for i sufficiently large,

log GLi (1 + θLi )
gLi

=

∫ θLi

0
ZLi (1 + θ) dθ � g

− log gLi
Li

.

Taking the lim sup on both sides completes the proof. �
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4.3. Proof of Theorem 1.6 when L is an asymptotically bad family. For any
asymptotically bad family L = {Li}, we have 0 ≥ lim supi→∞ (log ρLi )/gLi . Thus, to
prove GBS for an asymptotically bad family L, it is sufficient to show that

lim inf
i→∞

log ρLi

gLi

≥ 0 (4.5)

Let I be the set of indices i for which ζLi (s) does not have any zero in the region
(4.2) with L = Li and n = nLi , and let J be the set of indices i for which ζLi (s) has a
zero in the region (4.2) with L = Li and n = nLi . Without loss of generality, we may
assume that both I and J are infinite.

If ζLi (s) is nonvanishing on the region (4.2), Lemma 4.4 gives

ρLi > c′min
{ c1

n
e(nLi )
Li

δ(nLi ) log dLi

,
1

4 log dLi

}
≥ c′c1

n
e(nLi )
Li

δ(nLi ) log dLi

and thus we obtain
log ρLi

gLi

≥
log(c′c1) − e(nLi ) log nLi − log δ(nLi ) − log log dLi

gLi

.

Recall the estimates e(n) ≤ log n/log 2 and δ(n) � n4. Since gLi → ∞ and nLi/gLi → 0,
by the above inequality, we obtain

lim inf
i→∞
i∈I

log ρLi

gLi

≥ 0

Now suppose that ζLi (s) has a zero β0,i in the region (4.2) with L = Li and n = nLi . By
Theorem 2.2 and Lemma 2.3, there is a quadratic field Fi ⊆ Li such that ζFi (β0,i) = 0.
By Lemmas 4.3 and 4.4,

ρLi = ρLi

ρFi

ρFi

≥ c′(1 − β0,i)
1

(1 − β0,i)(e log dFi/2nFi )
nFi
ρFi .

Hence, (log ρLi )/gLi is bounded below by

log c′ + 2 log(4/e log dFi ) + log ρFi

gLi

=
log c′ + 2 log(4/e log dFi )

gLi

+
gFi

gLi

log ρFi

gFi

.

By the classical Brauer–Siegel theorem, Theorem 1.4, for quadratic fields Fi,

lim inf
i→∞
i∈J

log ρLi

gLi

≥ 0.

Since I ∪ J contains all the indices, this gives (4.5) and completes the proof.

5. Concluding remarks

In [11], Odlyzko also showed that the generalised Riemann hypothesis implies
Stark’s conjecture. We note that the generalised Riemann hypothesis can be replaced
by a much weaker conjecture on the nonexistence of Stark zeros. More precisely,
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assume that none of the Dedekind zeta functions ζL(s) of CM-fields L admits a zero in
the region (2.1). Then arguing as in the proof of Theorem 3.1, for any CM-field L with
nL+ = n and applying Minkowski’s bound,

h−L ≥
c5c7

4
1

log dL
d1/n

L+ f 1/2cn
4 ≥

c5c7
√

3
4

1
log(d2

L+ f )
f 1/2cn

4

and

h−L ≥
c5c(ε)n

4
1

log(d2
L+ f )

d(1/2)−ε
L+ f 1/2.

Consequently, the cardinality of the set of CM-fields L with h−L ≤ H is finite and can
be bounded effectively (in terms of H).

In a slightly different vein, for GBS, suppose that a family L = {Li} is an asymp-
totically good tower or an asymptotically bad family such that each Dedekind zeta
function ζLi (s) is nonzero in the region (2.1) with L = Li and n = nL. By the arguments
used in Section 4 and observing that the region (4.2) is contained in the region (2.1),
one can show that GBS is true for L.

Last but not least, we note that Theorem 2.2 may have other applications. For
instance, consider the Euler–Kronecker constant γL attached to a number field L in
the expansion

ζ′L
ζL

(s) =
−1

s − 1
+ γL + O(s − 1).

Ihara [7] showed that under the generalised Riemann hypothesis, γL ≤ 2 log log
√

dL,
and unconditionally, γL ≥ − log

√
dL. In [2], Dixit proved that for every almost

normal L not containing any quadratic fields, |γL| ≤ κ0(log dL)4n3
L for some absolute

κ0 > 0. Moreover, he showed that if L has solvable Galois closure over Q and does not
contain any quadratic fields, then |γL| ≤ κ1(log dL)κ2 log log dL for some absolute κ1 > 0
and κ2 > 0. Now, if we consider a number field L ∈ C of degree n such that L does not
contain any quadratic fields, then by Theorem 2.2, any zero β0 of ζL(s) in the region
(2.1) must satisfy

1 − 1
4 log dL

≤ β0 ≤ 1 − c1

ne(n)δ(n) log dL
.

Hence, arguing as in [2, Sections 2.3.1–2.3.2] yields the following theorem.

THEOREM 5.1. Let L ∈ C be a number field not containing any quadratic fields. Then

|γL| ≤ κ′1(log dL)κ
′
2 log log dL

for some absolute κ′1 > 0 and κ′2 > 0.
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