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Let π be a cuspidal representation of GL2(AQ) defined by a 
non-CM holomorphic newform of weight w ≥ 2, and let K/Q
be a totally real Galois extension with Galois group G. In this 
article, under Selberg’s orthogonality conjecture, we show that 
for any irreducible character χ of G, the twisted symmetric 
power L-function L(s, Symm π × χ) is a primitive function in 
the Selberg class, and it is automorphic subject to further the 
solvability of K/Q. The key new idea is to apply the work of 
Barnet-Lamb, Geraghty, Harris, and Taylor on the potential 
automorphy of Symm π.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Thirty years ago, Selberg introduced a class S of L-functions, called the Selberg class 
nowadays, in [17]. The class S consists of functions F (s) of a complex variable s enjoying 
the following properties:
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(Dirichlet series and Euler product). For Re(s) > 1, one has

F (s) =
∞∑

n=1

aF (n)
ns

=
∏
p

exp
( ∞∑

k=1

bF (pk)/pks
)
, (1.1)

for some complex numbers aF (n) and bF (pk), where the product is over rational primes 
p. In addition, one has aF (1) = 1 and bF (pk) = O(pkθ) for some θ < 1

2 . Moreover, the 
Dirichlet series and Euler product in equation (1.1) converge absolutely on Re(s) > 1.
(Analytic continuation and functional equation). There is a non-negative integer mF such 
that the function (s − 1)mFF (s) extends to an entire function of finite order. Moreover, 
there are numbers rF , QF > 0, αF (j) > 0, Re(γF (j)) ≥ 0 so that the function

ΛF (s) = Qs
F

rF∏
j=1

Γ(αF (j)s + γF (j))F (s)

satisfies the functional equation ΛF (s) = wFΛF (1 − s) for some complex number wF of 
absolute value 1.
(Ramanujan-Petersson conjecture). For any fixed ε > 0, one has aF (n) = O(nε).

A function F ∈ S is called primitive if for any F1, F2 ∈ S satisfying the equation 
F = F1F2, one has either F = F1 or F = F2. The primitive functions are the building 
blocks of S. Indeed, the class S is multiplicatively closed, and every function F ∈ S
factorises into a product of primitive functions in S (see, e.g., [14]). In [17], Selberg 
made the following orthogonality conjecture.

Conjecture 1.1. For any F ∈ S, there exists a positive integer nF such that one has

∑
p≤x

|aF (p)|2
p

= nF log log x + OF (1), (1.2)

as x → ∞, where the implied constant depends on F . Moreover, for any primitive func-
tion F , one has nF = 1.

For any distinct primitive functions F and G, as x → ∞, one has

∑
p≤x

aF (p)aG(p)
p

= OF,G(1), (1.3)

where the implied constant depends on F and G.

Selberg’s orthogonality conjecture has a strong impact on the theory of L-functions. 
For instance, under Selberg’s orthogonality conjecture, Conrey and Ghosh [9] showed 
that every F ∈ S has a unique factorisation into primitive functions. Moreover, Murty 
[14] showed that Selberg’s orthogonality conjecture implies Artin’s conjecture on the 
holomorphy of Artin L-functions.
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Although Selberg introduced the class S to study the value distribution of L-functions 
(see [17, Sec. 2]), the study of the structural properties of the Selberg class S is also of 
interest (see, e.g., [9,11,12]). For example, Conrey and Ghosh [9] proved that the only 
F ∈ S of degree zero is 1 and that there is no function F ∈ S with 0 < dF < 1, where 
the degree dF of F is defined by dF = 2 

∑rF
j=1 αF (j). Moreover, Kaczorowski and Perelli 

[12] showed that there is no function F ∈ S with 1 < dF < 2. In addition, if a function 
F ∈ S is of degree one, then it is either the Riemann zeta function or a shifted Dirichlet 
L-function (see [11]).

In this article, we shall emphasise symmetric power L-functions associated to modular 
forms. Let AQ be the adèle ring of Q. Let π be a cuspidal representation of GL2(AQ)
defined by a non-CM holomorphic newform of weight w ≥ 2, and let L(s, π) be the 
automorphic L-function of π. It is known that the automorphic L-function L(s, π) is 
a member of the Selberg class S. Furthermore, via the symmetric power lifting, one 
can construct new L-functions L(s, Symm π), the symmetric power L-functions of π. 
These L-functions are expected to belong to S, and their analytic properties have many 
important applications to number theory. Most famously, they led to the resolution of 
the Sato-Tate conjecture for non-CM elliptic curves defined over totally real number 
fields (see [7,10,19]).

By the work of Barnet-Lamb, Geraghty, Harris, and Taylor [4], the symmetric power 
L-function L(s, Symm π) extends holomorphically to Re(s) ≥ 1 and meromorphically to 
C. Furthermore, the symmetric power L-function L(s, Symm π) satisfies the Ramanujan-
Petersson conjecture and the expected functional equation. Thus, if the symmetric power 
L-function L(s, Symm π) extends holomorphically to Re(s) < 1, then it will belong to 
the Selberg class.

Throughout this article, for any finite group G, we let Irr(G) denote the set of 
irreducible characters of G. Our primary objective is to show that under Selberg’s orthog-
onality conjecture, certain twisted symmetric power L-functions belong to the Selberg 
class as follows.

Theorem 1.2. Let π be a cuspidal representation of GL2(AQ) defined by a non-CM holo-
morphic newform of weight w ≥ 2. Let K/Q be a totally real Galois extension with Galois 
group G, and let χ ∈ Irr(G) be an irreducible character of G. Then Conjecture 1.1 implies 
that the L-functions L(s, Symm π) and L(s, Symm π × χ) are primitive functions in S.

Moreover, we have the following conditional automorphy result.

Theorem 1.3. Let π, K, and G be as in Theorem 1.2. Suppose that the Galois group G
is solvable. Assume that the mth symmetric power Symm π of π is automorphic over Q. 
Then subject to Conjecture 1.1, for any χ ∈ Irr(G), the L-function L(s, Symm π × χ) is 
automorphic over Q. Consequently, under Selberg’s orthogonality conjecture, if m ≤ 8, 
then the L-function L(s, Symm π × χ) is automorphic over Q.
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Note added on November 17, 2021. Since this article was prepared, the author has been 
pleased to learn of the recent work by Newton and Thorne [15], proving the automorphy 
of the symmetric powers Symm π and therefore removing the automorphy assumption 
in the above theorem.

Remarks. (i) Theorem 1.2 does not affect the Selberg class S, but verifies expected mem-
bers L(s, Symm π) and L(s, Symm π × χ) of S under Selberg’s orthogonality conjecture. 
Also, the conditional primitivity of L(s, Symm π) may be seen as a kind of analytic ver-
sion of the conjectural cuspidality of Symm π predicted by the Langlands programme. 
Indeed, the Langlands functoriality conjecture asserts that all the Symm π are auto-
morphic. This implies that every Symm π is cuspidal by the work of Ramakrishnan [16, 
Theorem A(d)].
(ii) As pointed out by the referee, in [13], it is shown that conditional on the cuspidality 
of L(s, Symm π × χ), the L-function L(s, Symm π × χ) cannot be factored further into 
automorphic L-functions of smaller degree. Theorem 1.2 shows that the orthogonality 
implies primitivity of L(s, Symm π × χ), without passing through automorphy. The key 
is to apply the work of Barnet-Lamb, Geraghty, Harris, and Taylor on the potential 
automorphy of Symm π. Moreover, under the automorphy of the symmetric powers and 
the Artin representation associated to χ, the functoriality of the tensor product implies 
that the L-function L(s, Symm π × χ) is automorphic. From these, Theorems 1.2 and 
1.3 show the consistency between the Langlands programme and Selberg’s orthogonality 
conjecture.
(iii) To prove Theorems 1.2 and 1.3, one does not need Conjecture 1.1 in full generality. 
Indeed, a weaker orthogonality conjecture, Conjecture 2.1, for L-functions appearing in 
the factorisations (2.4) and (2.6) is sufficient.

Notation. Given two complex-valued functions f(x) and g(x) and objects ω1, . . . , ω�, we 
shall use the notation f(x) = Oω1,...,ω�

(g(x)) to mean that there exists Mω1,...,ω�
> 0, 

depending on ω1, . . . , ω�, such that |f(x)| ≤ Mω1,...,ω�
|g(x)| for all sufficiently large x.

The letters K and L consistently mean totally real Galois extensions of Q, with L
always taken to be an extension of K. For any subgroup H of the Galois group Gal(L/Q), 
we will let LH denote the fixed field of H.

2. Proofs of Theorems 1.2 and 1.3

2.1. Remark on the use of Selberg’s orthogonality conjecture

As remarked by Smajlovic, invoking Conjecture 1.1 for the whole Selberg class S to 
study certain L-functions is not necessary. Indeed, one may instead consider the following 
weak version of Selberg’s orthogonality conjecture.
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Conjecture 2.1 (SOC(F )). Let F be a member of the Selberg class S. Then F itself and 
every primitive function appearing in a factorisation of F satisfies (1.2). Moreover, any 
pair of primitive functions appearing in factorisations of F satisfy (1.3).

Under Conjecture 1.1, Conrey and Ghosh [9] showed that the factorisation of F ∈ S
is unique. As a demonstration of the use of Conjecture 2.1, we shall show that such a 
uniqueness theorem follows from SOC(F ). Let F ∈ S and assume SOC(F ). Following 
the argument of Conrey and Ghosh [9], we suppose that the function F admitted two 
different factorisations into primitive functions

F = F1 · · ·Fr = G1 · · ·Gt.

Write Fj(s) =
∑∞

n=1 aFj
(n)n−s and G�(s) =

∑∞
n=1 aG�

(n)n−s. Without loss of general-
ity, we may assume that no G� is an F1. Comparing the pth coefficients of the Dirichlet 
series of both sides of F1 · · ·Fr = G1 · · ·Gt, we have

aF1(p) + · · · + aFr
(p) = aG1(p) + · · · + aGt

(p).

Thus, we derive

∑
p≤x

aF1(p)(aF1(p) + · · · + aFr
(p))

p
=

∑
p≤x

aF1(p)(aG1(p) + · · · + aGt
(p))

p
(2.1)

for x ≥ 0. However, under SOC(F ), as x → ∞, the sum on the left of (2.1) tends to 
infinity while the sum on the right of (2.1) is OF1,G1,...,Gt

(1), which is impossible.

2.2. Chebotarev-Sato-Tate distribution and its consequence

In this section, we shall give a refined version of the “Chebotarev-Sato-Tate distribu-
tion” established in [20]. As in [20], we will follow the strategy of Serre [18].

Let π be a cuspidal representation of GL2(AQ) defined by a non-CM holomorphic 
newform of weight w ≥ 2. For any unramified p of π, let απ(p) and βπ(p) denote the 
Satake parameters of π at p. Since the Satake parameters απ(p) and βπ(p) are conjugate 
with absolute value 1, there exists θp ∈ [0, π] such that απ(p) = eiθp and βπ(p) = e−iθp .

Let K/Q be a totally real Galois extension with Galois group G. Following [20], we 
consider the compact group G = SU(2) ×G. Let X be the space of conjugacy classes of 
G, and let μ denote the push-forward measure of X obtained from the normalised Haar 
measure of G. Let ρ0 (resp. 1G) denote the trivial representation of SU(2) (resp. G), 
and, for m ≥ 1, let ρm denote the mth symmetric power of the natural representation 
ρ1 of degree two for SU(2). It is clear that any non-trivial irreducible representation 
of G = SU(2) × G is of the form ρm ⊗ τ �= ρ0 ⊗ 1G for some m ≥ 0 and irreducible 
representation τ of G, and the tensor product ρ0 ⊗ 1G is the trivial representation of 
G = SU(2) ×G.
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Let τ be an irreducible representation of G and χ be its character. For θ ∈ [0, π], we 
set

Mθ =
(
eiθ 0
0 e−iθ

)
.

For every unramified prime p of both π and K/Q, we choose xp = (Mθp , σp) ∈ X , where 
the symbol σp denotes the Artin symbol at p. Otherwise, we set xp = (M0, eG), where 
the notation eG denotes the identity of G. Following Serre [18, Ch. I, A.2], we then form 
the L-function L(s, ρm ⊗ τ) by

L(s, ρm ⊗ τ) =
∏
p

det(I − ρm(Mθp) ⊗ τ(σp)p−s)−1,

for Re(s) > 1. It can be checked that the L-function L(s, ρm ⊗ τ) is the same as 
L(s, Symm π × χ) up to a finite number of terms in their Euler products. Moreover, 
it was shown in [20, Proof of Theorem 1.1] that each L(s, Symm π × χ) extends to a 
non-vanishing holomorphic function on Re(s) ≥ 1 unless one has m = 0 and χ = 1G, 
where the notation Sym0 π denotes the trivial representation of GL1(AQ). Hence, by 
Serre’s equidistribution criterion [18, I-21–23], the elements xp are μ-equidistributed. 
More precisely, this means that for any complex-valued continuous function f on X , one 
has

lim
x→∞

1
π(x)

∑
p≤x

f(xp) =
∫
X

fdμ.

Here, the function π(x) is the usual prime-counting function.
Now, let ψ = tr(ρm ⊗ τ) be the character of ρm ⊗ τ . Note that the function |ψ|2 is 

continuous on X . As the elements xp = (Mθp , σp) are μ-equidistributed, we have

∑
p≤x

|ψ(xp)|2 =
(∫

X

|ψ|2dμ
) x

log x + o
( x

log x

)
= x

log x + o
( x

log x

)
,

as x → ∞, where the last equality is due to the orthogonality of irreducible characters 
of compact groups.

Denote the pth coefficients of Dirichlet series of L(s, Symm π) and L(s, Symm π × χ)
by λSymm π(p) and λSymm π×χ(p), respectively. Since we know

ψ = tr(ρm ⊗ τ) = tr(ρm) tr(τ) = tr(ρm)χ,

we obtain

ψ(xp) = ψ((Mθp , σp)) = sin(m + 1)θp
χ(σp) = λSymm π(p)χ(σp) = λSymm π×χ(p)
sin θp
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for any unramified p of both π and K/Q. Hence, unconditionally, we have

∑
p≤x

|λSymm π×χ(p)|2
p

=
∑
p≤x

|ψ(xp)|2
p

+ Om,π,χ(1) = log log x + o(log log x), (2.2)

as x → ∞.

2.3. Proof of Theorem 1.2

Lemma 2.2. Let F belong to the Selberg class and suppose that one knows F =
∏r

j=1 F
ej
j

for some distinct primitive functions Fj ∈ S. Then subject to SOC(F ), one has

nF =
r∑

j=1
e2
j .

In addition, under SOC(F ), the function F ∈ S is primitive if and only if one has 
nF = 1.

Proof. As before, we write Fj(s) =
∑∞

n=1 aFj
(n)n−s. From the Dirichlet series of both 

sides of F =
∏r

j=1 F
ej
j , we have

aF (p) =
r∑

j=1
ejaFj

(p).

Thus, we obtain

∑
p≤x

|aF (p)|2
p

=
∑
p≤x

|
∑r

j=1 ejaFj
(p)|2

p

for x ≥ 0. Now, applying SOC(F ) to both sides of the above identity, we deduce nF =∑r
j=1 ej

2, as desired.
For the second part of the lemma, the “only if” part is clear. On the other hand, 

for the case that we have nF = 1, we know |e1| = 1 (say) and the remaining ej are 
zero. In other words, the function F (s) is equal to either F1(s) or F1(s)−1. However, the 
latter instance is impossible since it would give some poles for F (s) on the half-plane 
Re(s) < 0, which completes the proof. �
Lemma 2.3. Let Π be a cuspidal representation of GLn(AQ) satisfying the Ramanujan-
Petersson conjecture. Then under SOC(Π), the automorphic L-function L(s, Π) is prim-
itive.

Here, as later, the notation SOC(Π) is a shorthand for SOC(L(s, Π)).
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Proof of Theorem 1.2. By the work of Barnet-Lamb, Gee, Geraghty, and Taylor [2,3], 
there is a totally real number field L such that the base change (Symm π)|L is cuspidal, 
and the extension L/Q is a finite Galois extension containing K/Q. Hence, one may 
regard χ as a character of G̃ = Gal(L/Q). By Brauer’s induction theorem [5], there are 
ni ∈ Z, nilpotent subgroups Hi of G̃, and characters ψi of Hi of degree one such that

χ =
∑
i

ni IndG̃
Hi

ψi.

By Artin reciprocity, each ψi can be seen as a 1-dimensional cuspidal representation over 
the fixed field LHi of Hi. We then have the following factorisation

L(s,Symm π × χ) =
∏
i

L(s, (Symm π)|LHi × ψi)ni . (2.3)

As each Hi is solvable, every extension L/LHi is solvable. By [4, Lemma 1.3], we derive 
that the base change (Symm π)|LHi is cuspidal over LHi . Thus, each L(s, (Symm π)|LHi ×
ψi) is a Rankin-Selberg L-function. In addition, as both L(s, (Symm π)|LHi ) and 
L(s, ψi) satisfy the Ramanujan-Petersson conjecture, the Rankin-Selberg L-function 
L(s, (Symm π)|LHi × ψi) satisfies the Ramanujan-Petersson conjecture. Thus, the L-
function L(s, (Symm π)|LHi ×ψi) is a member of the Selberg class S. (For the properties 
of Rankin-Selberg L-functions used here, see [6].) Therefore, by (2.3), there are functions 
Fj ∈ S and integers ej such that one has

L(s,Symm π × χ) =
�∏

j=1
Fj(s)ej . (2.4)

Since every element in S has a factorisation into primitive functions, we may assume 
that all functions Fj are primitive and distinct. Similar to the proof of Lemma 2.2, by 
(2.4), we have

∑
p≤x

|λSymm π×χ(p)|2
p

=
∑
p≤x

1
p

∣∣∣ �∑
j=1

ejaFj
(p)

∣∣∣2 (2.5)

for x ≥ 0. Moreover, assuming SOC(Fj) for all j and using (2.2) and (2.5), we obtain 
1 =

∑�
j=1 ej

2. Thus, as argued in the last part of the proof of Lemma 2.2, we have 
L(s, Symm π×χ) = Fj0 for some j0. In other words, the L-function L(s, Symm π×χ) is 
primitive. �
2.4. Proof of Theorem 1.3

We begin with the following proposition.
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Proposition 2.4. Let π, K, and G be as in Theorem 1.2. Suppose that the L-function 
L(s, (Symm π)|K) admits a factorisation of the form

L(s, (Symm π)|K) =
∏
j

L(s, πj)ej , (2.6)

for some cuspidal representations πj over Q, and ej ∈ N. Assume that the conjecture
SOC(Fj) holds for each Fj appearing in (2.4) and that the conjectures SOC((Symm π)|K) 
and SOC(πj) are all valid. Then for every χ ∈ Irr(G), the L-function L(s, Symm π× χ)
is automorphic over Q.

Proof. By the work of Deligne, the Ramanujan-Petersson conjecture holds for π. Hence, 
comparing the local Euler factors on both sides of the decomposition (2.6), we deduce 
that each L(s, πj) satisfies the Ramanujan-Petersson conjecture. Thus, under SOC(πj), 
Lemma 2.3 yields that each L(s, πj) is primitive. On the other hand, we have the classical 
factorisation

L(s, (Symm π)|K) =
∏

χ∈Irr(Gal(K/Q))

L(s,Symm π × χ)χ(1). (2.7)

By Theorem 1.2, each L(s, Symm π×χ) is a primitive function in the Selberg class S. Note 
that the L-function L(s, (Symm π)|K) factorises into a product of primitive functions 
uniquely under SOC((Symm π)|K). Hence, by (2.6) and (2.7), each L(s, Symm π × χ)
must be L(s, πj) for some j, which concludes the proof. �

Although the assumption (2.6) seems quite strong, it does not require the automor-
phy of Symm π over Q or the automorphy of (Symm π)|K over K. What the assumption 
(2.6) requires is that the formal L-function L(s, (Symm π)|K) factors into a product of 
automorphic L-functions over Q. This may be regarded as a kind of potential automor-
phy. As can be seen in the proof below, such a potential automorphy follows from the 
automorpfy of Symm π over Q if the extension K/Q is solvable.

We now prove Theorem 1.3.

Proof of Theorem 1.3. We may assume K �= Q. Since the Galois extension K/Q is 
solvable, there is a chain of cyclic extensions Q = K0 ⊂ K1 ⊂ · · · ⊂ K� = K, for some 
� ∈ N, so that each Ki/Ki−1 is of prime degree. By Arthur-Clozel’s base change [1, 
Sec. 3.4 and 3.5], the base change (Symm π)|K exists as an automorphic representation 
over K. Moreover, the automorphic induction of (Symm π)|K from K to Q exists as an 
automorphic representation over Q. Thus, the L-function L(s, (Symm π)|K) factorises 
into a product of cuspidal L-functions over Q. Hence, by Proposition 2.4, we prove the 
first assertion of the theorem. Finally, the last part of the theorem follows from the work 
of Clozel and Thorne [8] on the automorphy of Symm π for m ≤ 8. �
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As may be noticed, in the proof of Theorem 1.3, the focus is on L(s, (Symm π)|K), 
and the L-functions L(s, Symm π) and L(s, Symm π × χ) do not appear. It is because 
the L-function L(s, Symm π) and its twists were already used to prove Proposition 2.4, 
which the proof of Theorem 1.3 subtly relies on.
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