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For distinct unitary cuspidal automorphic representations π1 and
π2 for GL(2) over a number field F and any α ∈ R, let Sα be the
set of primes v of F for which λπ1

(v) ̸= eiαλπ2
(v), where λπi

(v) is
the Fourier coefficient of πi at v. In this article, we show that the
lower Dirichlet density of Sα is at least 1

16
. Moreover, if π1 and π2

are not twist-equivalent, we show that the lower Dirichlet densities
of Sα and ∩α Sα are at least 2

13
and 1

11
, respectively. Furthermore,

for non-twist-equivalent π1 and π2, if each πi corresponds to a
non-CM newform of weight ki ≥ 2 and with trivial nebentypus, we
obtain various upper bounds for the number of primes p ≤ x such
that λπ1

(p)2 = λπ2
(p)2. These present refinements of the works of

Murty-Pujahari, Murty-Rajan, Ramakrishnan, and Walji.
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1. Introduction and statement of main results

Let F be a number field and AF be its adèle ring. Let π1 and π2 be (uni-
tary) cuspidal automorphic representations for GL2(AF ). For each i, at any
unramified (finite) prime v of F for πi, we denote the trace of the Langlands
conjugacy class of πi by λπi

(v). There is a question of determining whether
π1 and π2 are globally equivalent (i.e. π1 ≃ π2) from the local information
on π1 and π2. For instance, given the set

S0 = S0(π1, π2) = {v unramified for both π1 and π2 | λπ1
(v) ̸= λπ2

(v)},

what information on S0 would be sufficient for one to determine the global
equivalence of π1 and π2? In [11], Jacquet and Shalika showed that if S0

is finite, then π1 ≃ π2 (which is often called the strong multiplicity one
theorem). This was improved by Ramakrishnan [21], who showed that if
S0 is of density less than 1

8 , then π1 and π2 are globally equivalent. By an
example given by Serre [25] (see also [28, Sec. 4.4]), such a bound is attained
by a pair of dihedral automorphic representations.1

Naturally, one may ask if the bound can be improved if dihedral au-
tomorphic representations are excluded. In [28], Walji gave an affirmative
answer by proving that if π1 and π2 are distinct and non-dihedral, then
δ(S0) ≥ 1

4 , where δ(S0) denotes the lower Dirichlet density of S0.
2

The main result of this article is the following generalisation of the work
of Ramakrishnan [21] and Walji [28].

1A cuspidal automorphic representation π for GL2(AF ) is called dihedral if it
admits a non-trivial self-twist, namely, there is a non-trivial Hecke character χ of
F such that π ⊗ χ ≃ π. Gelbart and Jacquet [7] showed that Ad(π) is cuspidal if π
is non-dihedral.

2We recall that the lower Dirichlet density δ(A) of a subset A of the primes v of
F is defined by

δ(A) = lim inf
s→1+

∑

v∈A
1

Nvs

log( 1

s−1
)
,

where Nv is the norm of v.
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Theorem 1.1. Let π1 and π2 be distinct cuspidal automorphic representa-
tions for GL2(AF ). Given α ∈ R, let

Sα = Sα(π1, π2) = {v unramified for both π1 and π2 | λπ1
(v) ̸= eiαλπ2

(v)},

and let δ(Sα) denote the lower Dirichlet density of Sα. Then

δ(Sα) ≥























1
6+2 cos(2α) if cos(2α) ≥ 0 and cosα ≥ 0;

1
6+2 cos(2α)−8 cosα if cos(2α) ≥ 0 and cosα ≤ 0;
1
6 if cos(2α) ≤ 0 and cosα ≥ 0;

1
6−8 cosα if cos(2α) ≤ 0 and cosα ≤ 0.

Moreover, if both π1 and π2 are non-dihedral, then

δ(Sα) ≥
{

min
{

1
3+cos(2α) ,

1
3+cos(2α)−2κ1 cosα

}

if cos(2α) ≥ 0;

min
{

1
3 ,

1
3−2κ1 cosα

}

if cos(2α) ≤ 0,

where κ1 is 1 if π1 ≃ π2 ⊗ ν for some cubic Hecke character ν and 0 other-
wise.

Remark. Let n ≥ 3, and let π1 and π2 be distinct cuspidal automorphic
representations for GLn(AF ), satisfying the Ramanujan-Petersson conjec-
ture. It can be shown that δ(Sα) ≥ 1

2n2 . In addition, if both Ad(π1) and
Ad(π2) are cuspidal, then δ(Sα) ≥ 1

8 . (See the final remark in Section 5 for
more details.) Also, as pointed out by the referee, Walji [30] obtained δ(S0) ≥
1
8 and, assuming further that Ad(π1) and Ad(π2) are distinct, δ(S0) ≥

1
3+2

√
2
.

We shall note that our interest in this theorem was motivated by the
following theorem of Ramakrishnan [22, Corollary] and [23, Corollary 4.1.3],
which uses the information on S0 ∩ Sπ to determine whether two given
GL(2)-forms are twist-equivalent.

Theorem 1.2 (Ramakrishnan). Let π1 and π2 be cuspidal automorphic
representations for GL2(AF ). If π1 and π2 are with trivial central character,
and

λπ1
(v)2 = λπ2

(v)2

for all unramified primes (for both π1 and π2), then π1 and π2 are twist-
equivalent.
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Moreover, if π1 and π2 correspond to holomorphic newforms (over Q) of
same weight and with same nebentypus, and

λπ1
(p)2 = λπ2

(p)2

outside a set S of primes p of density less than 1
18 , then π1 and π2 are twist-

equivalent. Furthermore, if both π1 and π2 are non-dihedral, then one has
the same result assuming only that the density of S is less than 1.

In light of this theorem, one may also ask a question of determining
whether π1 and π2 are twist-equivalent from the information on a single Sα.
For α = 0, Walji [28] proved the following theorem.

Theorem 1.3 (Walji). Let π1 and π2 be non-twist-equivalent cuspidal
automorphic representations for GL2(AF ) with unitary central characters.
Then

(i) if both π1 and π2 are dihedral, then δ(S0) ≥ 2
9 ;

(ii) if exactly one of π1 and π2 is non-dihedral, then δ(S0) ≥ 2
7 ;

(iii) if both π1 and π2 are non-dihedral, then δ(S0) ≥ 2
5 .

The second objective of this article is to prove the following “rotation
variant” of the work of Walji, Theorem 1.3.

Theorem 1.4. Let α ∈ R, and let π1 and π2 be non-twist-equivalent cuspi-
dal automorphic representations for GL2(AF ) with unitary central characters
ω1 and ω2, respectively. Then

(i) if both π1 and π2 are dihedral, then δ(Sα) ≥ min{dα, 14}, where

dα =























2
7+2 cos(2α) if cos(2α) ≥ 0 and cosα ≥ 0;

2
7+2 cos(2α)−4 cosα if cos(2α) ≥ 0 and cosα ≤ 0;
2
7 if cos(2α) ≤ 0 and cosα ≥ 0;

2
7−4 cosα if cos(2α) ≤ 0 and cosα ≤ 0;

(ii) if exactly one of π1 and π2 is non-dihedral, then

δ(Sα) ≥
{

2
5+2 cos(2α) if cos(2α) ≥ 0;
2
5 if cos(2α) ≤ 0;
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(iii) if both π1 and π2 are non-dihedral, then δ(Sα) ≥ 2
4+κ2 cos(2α)

, where κ2
is 1 if ω1 = ω2 and 0 otherwise.

Furthermore, we have the following refinement of Theorem 1.2.

Theorem 1.5. Let π1 and π2 be non-twist-equivalent cuspidal automorphic
representations for GL2(AF ) with unitary central characters, and let

S∗ = S∗(π1, π2) = {v unramified for both π1 and π2 | |λπ1
(v)| ≠ |λπ2

(v)|}.

Then

δ(S∗) ≥











1
8 if both π1 and π2 are dihedral;
1

9.58 if exactly one of π1 and π2 is dihedral;
1

10.76 if both π1 and π2 are non-dihedral.

Consequently, we have the following refined version of [23, Theorem
4.1.2] asserting that if the adjoint lifts of π1 and π2 agree at almost all
primes, then π1 and π2 are twist-equivalent.

Theorem 1.6. Let π1 = ⊗′
vπ1,v and π2 = ⊗′

vπ2,v be cuspidal automorphic
representations for GL2(AF ) with unitary central characters. If

Ad(π1,v) ≃ Ad(π2,v)

outside a set of lower Dirichlet density less than 1
10.76 , then

π2 ≃ π1 ⊗ χ

for some idèle class character.

Proof of Theorem 1.6. Toward a contradiction, suppose that π1 and π2 are
not twist-equivalent. By Theorem 1.5, we know that δ(S∗) ≥ 1

10.76 . However,
from our assumption of the theorem, it follows that λAd(π1)(v) = λAd(π2)(v)

outside a set of lower Dirichlet density less than 1
10.76 . In other words,

the lower Dirichlet density of the set of primes v for which λAd(π1)(v) ̸=
λAd(π2)(v) is less than 1

10.76 . This, together with the fact that |λπi
(v)|2 =

λAd(πi)(v) + 1 (for unramified v), leads to

1

10.76
≤ δ(S∗) = δ({v | λAd(π1)(v) ̸= λAd(π2)(v)}) <

1

10.76
,

a contradiction. □
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We also have the following interesting variant.

Theorem 1.7. Let π1 and π2 be non-twist-equivalent cuspidal automorphic
representations for GL2(AF ) with unitary central characters, and let

S∗ = S∗(π1, π2)

= {v unramified for both π1 and π2 | |λπ1
(v)|2 + |λπ2

(v)|2 ̸= 2}.

Then

δ(S∗) ≥
{

1
18 if π1 and π2 are simultaneously dihedral or non-dihedral;
1
12 if exactly one of π1 and π2 is dihedral.

Remark. (i) As remarked in [23], if π1 and π2 correspond to Hilbert new-
forms, one can establish a version of Theorem 1.2 by invoking the ℓ-adic
representations associated to π1 and π2 as done in [22].

(ii) In the case that π1 ≃ π2 ⊗ χ for some idèle class character χ, as π1 ⊠
π̄1 ≃ π2 ⊠ π̄2, |λπ1

(v)|2 = |λπ2
(v)|2 for any unramified v, and thus δ(S∗) = 0.

Hence, to have positive δ(S∗) in Theorem 1.5, the non-twist-equivalence
condition is necessary.

Remark. Our method is an adaption of the work of Walji [28], which subtly
relies on the L-functions associated to π1 and π2. The crucial ingredients are
the automorphy of the adjoint lift from GL(2) to GL(3) (due to Gelbart and
Jacquet [7]) and the functoriality of the tensor product GL(2)×GL(2) →
GL(4) (due to Ramakrishnan [23]). To prove Theorem 1.5, we will further
require the automorphy of Sym4 π and its cuspidality criterion established
by Kim and Shahidi [13, 14].

There are other variants and refinements of the above-mentioned work of
Ramakrishnan [22, 23]. For instance, when πi is a cuspidal automorphic rep-
resentation corresponding to a non-CM newform in Snew

ki
(Γ0(qi)) with trivial

nebentypus for each i, by Galois-theoretic techniques, Rajan [20, Corollary 1]
showed that if

lim sup
x→∞

#{p ≤ x | λπ1
(p)p

k1−1

2 = λπ2
(p)p

k2−1

2 }
π(x)

> 0,

then π1 and π2 are twist-equivalent. Also, in [17], Murty and Pujahari showed
that if

lim sup
x→∞

#{p ≤ x | λπ1
(p) = λπ2

(p)}
π(x)

> 0,
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then π1 and π2 are twist-equivalent. In much the same spirit, we have the
following theorem.

Theorem 1.8. Let F be a totally real number field. For each i, let πi be
a cuspidal automorphic representation corresponding to a non-CM Hilbert
newform of weights ki,j ≥ 2 (at all infinite primes vj of F ) and with trivial
nebentypus. If

lim sup
x→∞

#{v | Nv ≤ x, λπ1
(v)2 = λπ2

(v)2}
πF (x)

> 0,

where πF (x) denotes the number of primes v of F such that Nv ≤ x, then
π1 and π2 are twist-equivalent.

It is also worth mentioning that when π1 and π2 correspond to non-CM
newforms or non-dihedral Maaß forms, assuming the generalised Riemann
hypothesis and certain analytic properties for Rankin-Selberg L-functions
of Symm1 π1 and Symm2 π2, Murty and Rajan [18] showed that if π1 and π2
are not twist-equivalent, then

(1.1) #{p ≤ x | λπ1
(p) = λπ2

(p)} ≪ x5/6(log(Nx))1/3

(log x)2/3

for some suitable constant N (depending on π1 and π2). As a consequence, if
the number of primes p ≤ x for which λπ1

(p) = λπ2
(p) is ≫ xθ for some θ >

5/6, then π1 and π2 are twist-equivalent. In light of this and Theorems 1.2
and 1.8, it shall be reasonable to expect that π1 ≃ π2 ⊗ χ for some Dirichlet
character χ whenever λπ1

(p)2 = λf2(p)
2 for certain “thin” sets of primes p

(i.e., sets of zero upper density among all primes). We shall show that such
an expectation holds, unconditionally, in certain instances as follows.

Theorem 1.9. For each i, let πi be a cuspidal automorphic representation
corresponding to a non-CM newform in Snew

ki
(Γ0(qi)) with trivial nebentypus.

If

lim sup
x→∞

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2}
π(x)(log log log x)1+ϵ/(log log x)1/2

> 0

for some ϵ > 0, then π1 ≃ π2 ⊗ χ for some Dirichlet character χ.

Indeed, Theorem 1.9 follows from the following estimate.
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Theorem 1.10. In the notation of Theorems 1.9, if there is no Dirichlet
character χ such that π1 ≃ π2 ⊗ χ, then

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2} ≪ π(x)
log(k1q1k2q2 log log x)√

log log x
.

Proof of Theorem 1.9. Suppose that π1 and π2 are not twist-equivalent (i.e.,
there is no Dirichlet character such that π1 ≃ π2 ⊗ χ). Theorem 1.10 implies
that

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2}
π(x)(log log log x)1+ϵ/(log log x)1/2

≪ 1

(log log log x)ϵ

for any ϵ > 0. Taking lim supx→∞ on both sides, we see that the assumption
leads to 0 < 0, a contradiction. □

Furthermore, assuming the generalised Riemann hypothesis, we have the
following refined version of the above-mentioned works of Murty-Rajan (1.1)
and Ramakrishnan [22, 23].

Theorem 1.11. In the notation of Theorem 1.9, assume that π1 and π2 are
not twist-equivalent. If for (m1,m2) ∈ {(n, n− 2), (n− 2, n), (n− 2, n− 2) |
n ≥ 3}, L(s, Symm1 π1 × Symm2 π2) satisfies the generalised Riemann hy-
pothesis, then

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2} ≪ x5/6(log(k1q1k2q2x))
1/3

(log x)2/3
.

Remark. (i) We shall note that in order to prove Theorems 1.10 and 1.11,
we invoke the recent work of Newton and Thorne [19] (who proved that all
the symmetric powers of cuspidal automorphic representations correspond-
ing to non-CM newforms are automorphic).
(ii) With a little more effort, it is possible to extend Theorems 1.10 and 1.11
to non-CM Hilbert newforms under the assumption of the automorphy of
the pertinent symmetric powers (and the generalised Riemann hypothesis
for the extension of Theorem 1.11) by adapting the methods developed in
[27, 31]. However, for the sake of conceptual clarity, we shall not do this
here. Nonetheless, in Section 6, we will develop our argument in the setting
of Hilbert newforms so that the corresponding results can be immediately
derived once an effective version of Proposition 2.2 is established.
(iii) Similar to [17, 20] and Theorem 1.2, it is possible to prove a version of
Theorems 1.8, 1.10, and 1.11 by only assuming π1 corresponds to a newform
without CM. We will discuss this in more detail in Section 7.
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Remark. (i) Our method makes use of the Selberg polynomials (see Sec-
tion 2.4), which is more elementary than the one used by Murty and Rajan
[18] (who invoked the Erdős-Turán inequality to bound the “discrepancy” of
certain sequences, associated to λπ1

(p) and λπ2
(p), in terms of exponential

sums). Nonetheless, similar to the argument of [18], we apply the effective
versions of the joint Sato-Tate distribution established by Thorner [27] and
the author [31].
(ii) Compared to the argument used in [17], ours is slightly more compli-
cated. Nevertheless, our argument yields better estimates. For instance, un-
der the generalised Riemann hypothesis, using the argument of [17] would
result in

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2} ≪π1,π2
x7/8/(log x)1/2,

which is not as good as the one given in Theorem 1.11.

The rest of article is structured as follows. In the next section, we will
discuss Walji’s argument as well as collecting the relevant facts that will be
used later. We will prove Theorems 1.1 and 1.4 in Sections 3 (for pairs of
dihedral representations) and 4 (for the remaining cases); we will prove The-
orems 1.5 and 1.7 in Section 5. The proofs of Theorems 1.8, 1.10, and 1.11
will be given in Section 6. In Section 7, we will discuss how to extend The-
orem 1.8 to the case that one of the newforms is with CM.

2. Preliminaries

2.1. L-functions

We shall begin by reviewing automorphic L-functions, Rankin-Selberg L-
functions, and their properties.

Let F be a number field, and let π be a cuspidal automorphic repre-
sentation for GLn(AF ) with unitary central character, where, as later, AF

denotes the adèle ring of F . We define the (incomplete) automorphic L-
function L(s, π) attached to π by

L(s, π) =
∏

v

det(In −Av(π)Nv
−s)−1,

for Re(s) > 1, where the product is over unramified (finite) primes v for π,
and Av(π) denotes the Langlands conjugacy class of π at v. By the work of
Jacquet and Shalika [10], it is known that L(s, π) is non-vanishing at s = 1
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and with a possible simple pole at s = 1 that only appears if π is equivalent
to the trivial idèle class character 1 of F .

Let π and π′ be cuspidal automorphic representations, with unitary cen-
tral characters, for GLn(AF ) and GLm(AF ), respectively. We define the (in-
complete) Rankin-Selberg L-function L(s, π × π′) attached to π and π′ by

L(s, π × π′) =
∏

v

det(Inm − (Av(π)⊗Av(π
′))Nv−s)−1,

for Re(s) > 1, where the product is over unramified primes v for both π and
π′. It can be shown that L(s, π × π′) extends holomorphically to Re(s) = 1
except for a possible simple pole at s = 1− it that exists only if π′ ≃ π̄ ⊗ | ·
|it, where π̄ is the dual of π. Moreover, Shahidi [26] showed that L(s, π × π′)
is non-vanishing on Re(s) ≥ 1.

2.2. GL(2)-forms

We also collect some fact regarding cuspidal automorphic representations
for GL2(AF ) that we will make use of repeatedly throughout our discussion.

For any cuspidal automorphic representation π for GL2(AF ) with unitary
central character ω, by the work of Gelbart-Jacquet [7], the (automorphic)
tensor product π ⊠ π̄ exists as an automorphic representation for GL4(AF )
and satisfies

π ⊠ π̄ ≃ 1⊞Ad(π),

where ⊞ denotes the (Langlands) isobaric sum, and Ad(π) is an automorphic
representation for GL3(AF ). If π is non-dihedral, then Ad(π) is cuspidal.
Also, one knows that Ad(π) satisfies the relation

Ad(π) ≃ Sym2 π ⊗ ω−1,

where Sym2 π is the symmetric square of π. (We shall discuss more properties
of Ad(π) for dihedral representations π in Section 3.)

Now, let π1 and π2 be cuspidal automorphic representations for GL2(AF )
with unitary central characters. Ramakrishnan [23] proved that the tensor
product π1 ⊠ π2 exists as an automorphic representation for GL4(AF ); when
both π1 and π2 are dihedral, one has the following cuspidality criterion of
Ramakrishnan [23]:

π1 ⊠ π2 is cuspidal if and only if π1 and π2 cannot be induced from the
same quadratic extension K of F .



✐

✐

“11-Wong” — 2022/9/29 — 0:38 — page 569 — #11
✐

✐

✐

✐

✐

✐

Refinements of strong multiplicity one for GL(2) 569

Lastly, we recall that from the work of Gelbart and Jacquet [7], it follows
that if π1 and π2 are twist-equivalent (i.e., π1 ≃ π2 ⊗ χ for some idèle class
character χ), then

1⊞Ad(π1) ≃ π1 ⊠ π̄1 ≃ π2 ⊠ π̄2 ≃ 1⊞Ad(π2),

as χχ̄ ≃ 1, which means that Ad(π1) ≃ Ad(π2). Moreover, by [22, Theorem
4.1.2], the conserve is also true. Thus, we have the following twist-equivalence
criterion:

π1 and π2 are twist-equivalent if and only if Ad(π1) ≃ Ad(π2).

2.3. Walji’s strategy [28]

Let F be a number field, and let π1 and π2 be cuspidal automorphic repre-
sentations for GL2(AF ) with (unitary) central characters ω1 and ω2, respec-
tively. As before, for each i, we denote the trace of the Langlands conjugacy
class of πi at unramified v by λπi

(v). For any α ∈ R, we define

Sα = Sα(π1, π2) = {v unramified for both π1 and π2 | λπ1
(v) ̸= eiαλπ2

(v)}.

We let δ(Sα) denote the lower Dirichlet density of Sα and let χSα
denote the

indicator function of Sα.
Writing av = λπ1

(v) and bv = λπ2
(v), in light of the argument used by

Walji [28] (who considered the case that α = 0), to study the lower bound
of Sα, we shall apply the following consequence of the Cauchy-Schwarz in-
equality:

∑

v

|av − eiαbv|2
Nvs

=
∑

v

|av − eiαbv|2χSα
(v)

Nvs
(2.1)

≤
(

∑

v

|av − eiαbv|4
Nvs

)
1

2

(

∑

v∈Sα

1

Nvs

)
1

2

,

where, as later, the sums are over unramified primes v for both π1 and π2.
Recalling that

δ(Sα) = lim inf
s→1+

∑

v∈Sα

1
Nvs

log( 1
s−1)

,

to obtain a lower bound for δ(Sα), we shall analyse the asymptotic be-
haviours of sums in (2.1) as real s→ 1+.
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From the identities |av − eiαbv|2 = avāv − e−iαav b̄v − eiαāvbv + bv b̄v and

|av − eiαbv|4 = a2vā
2
v + e−2iαa2v b̄

2
v + e2iαā2vb

2
v + b2v b̄

2
v + 4avāvbv b̄v(2.2)

− 2e−iαa2vāv b̄v − 2eiαavā
2
vbv

− 2e−iαavbv b̄
2
v − 2eiαāvb

2
v b̄v,

it is not hard to see that to bound the sums in (2.1) as real s→ 1+, it suffices
to study the asymptotic behaviours of the Dirichlet series

D(s; i, j, k, l) =
∑

v

aivā
j
vbkv b̄

l
v

Nvs

as real s→ 1+. Indeed, for example,

log(L(s, π1 ⊠ π̄1 × π2 ⊠ π̄2)) = D(s; 1, 1, 1, 1) +O(1),

where the big-O term is contributed by prime powers vk (we note that
λπ1

(vk) and λπ2
(vk) can be controlled by the bound established by Blomer

and Brumley [6]), and thus

lim
s→1+

D(s; 1, 1, 1, 1)

log( 1
s−1)

= lim
s→1+

log(L(s, π1 ⊠ π̄1 × π2 ⊠ π̄2))

log( 1
s−1)

= δ1,1,1,1,

where δ1,1,1,1 denotes the order of the pole of L(s, π1 ⊠ π̄1 × π2 ⊠ π̄2) at
s = 1. Hence, to prove our main result, it is sufficient to bound the orders
of the poles of L-functions involved at s = 1. We shall use this argument
throughout Sections 3, 4, and 5.

To prove Theorem 1.4, we borrow the following estimates from [28, Sec.
2 and p. 4999].

Proposition 2.1. In the notation as above, let π1 and π2 be distinct. For
0 ≤ i, j, k, l ≤ 2, let

δi,j,k,l = lim
s→1+

D(s; i, j, k, l)

log( 1
s−1)

.

If π1 is not dihedral but π2 is dihedral, then one has
(2.3)

δi,j,k,l ≤























0 if (i, j, k, l) ∈ {(2, 1, 0, 1), (0, 1, 2, 1), (1, 2, 1, 0), (1, 0, 1, 2)};
1 if (i, j, k, l) = (1, 1, 1, 1);

2 if (i, j, k, l) ∈ {(2, 2, 0, 0), (2, 0, 0, 2), (0, 2, 2, 0)};
4 if (i, j, k, l) = (0, 0, 2, 2).
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If both π1 and π2 are non-dihedral and non-tetrahedral,3 then one has
(2.4)

δi,j,k,l ≤











0 if (i, j, k, l) ∈ {(2, 1, 0, 1), (0, 1, 2, 1), (1, 2, 1, 0), (1, 0, 1, 2)};
2 if (i, j, k, l) ∈ {(1, 1, 1, 1), (2, 2, 0, 0), (0, 0, 2, 2), (2, 0, 0, 2),

(0, 2, 2, 0)}.

If both π1 and π2 are non-dihedral, and at least one of π1 and π2 is
tetrahedral, then one has
(2.5)
{

δi,j,k,l = κ1 if (i, j, k, l) ∈ {(2, 1, 0, 1), (0, 1, 2, 1), (1, 2, 1, 0), (1, 0, 1, 2)};
δi,j,k,l ≤ 2 otherwise,

where κ1 is 1 if π1 ≃ π2 ⊗ ν for some cubic Hecke character ν and 0 other-
wise.

If π1 and π2 are non-dihedral and non-twist-equivalent, then one has
(2.6)






















δi,j,k,l = 0 if (i, j, k, l) ∈ {(2, 1, 0, 1), (0, 1, 2, 1), (1, 2, 1, 0), (1, 0, 1, 2)};
δi,j,k,l ≤ 1 if (i, j, k, l) = (1, 1, 1, 1);

δi,j,k,l ≤ 2 if (i, j, k, l) ∈ {(2, 2, 0, 0), (0, 0, 2, 2)};
δi,j,k,l = κ2 if (i, j, k, l) ∈ {(2, 0, 0, 2), (0, 2, 2, 0)},

where κ2 is 1 if ω1 = ω2 and 0 otherwise.

Remark. Let π and π′ be cuspidal automorphic representations, with uni-
tary central characters, for GLn(AF ) and GLm(AF ), respectively. By the
theory of Rankin-Selberg L-functions, we know that the poles of L(s, π × π′)
and L(s, π̄ × π̄′) at s = 1 must have the same order. Consequently, the poles
of D(s; 2, 0, 0, 2) and D(s; 0, 2, 2, 0) at s = 1 are of the same order, and thus
δ2,0,0,2 = δ0,2,2,0. Similarly, δ2,1,0,1 = δ1,2,1,0 and δ0,1,2,1 = δ1,0,1,2. We shall use
this fact throughout our discussion.

2.4. Joint Sato-Tate distribution and Selberg polynomials

To adapt the strategies developed in Murty-Pujahari [17] and Murty-Rajan
[18], we shall recall the joint Sato-Tate distribution and some basic properties
of Selberg polynomials.

3A cuspidal automorphic representation π for GL2(AF ) is called tetrahedral if it
is non-dihedral and its symmetric square Sym2 π admits a non-trivial self-twist by
a (cubic) Hecke character.
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Let F be a totally real number field. For each i, let πi be a cuspidal
automorphic representation corresponding to a non-CM Hilbert newform of
weights ki,j ≥ 2 (at all infinite primes vj of F ) and with trivial nebentypus.
For each i, we write

λπi
(v) = 2 cos θi,v

for some θi,v ∈ [0, π]. (Recall that by the work of Blasius [5], the Ramanujan-
Petersson conjecture holds for each πi.)

We recall that the n-th Chebyshev polynomial Un(x) (of the second
type) is defined by

Un(cos θ) =
sin((n+ 1)θ)

sin θ
.

(Note that U0(cos θ) ≡ 1 and U1(cos θ) = 2 cos θ.)
We will require the following version of the joint Sato-Tate distribution,

which is a consequence of the work of Barnet-Lamb et al. [2, 3] (see [31,
Theorem 1.1 and Sec. 3] for more details).

Proposition 2.2 (Barnet-Lamb et al.). In the notation as above, for
any m1,m2 ∈ N, one has

∑

Nv≤x

Um1
(cos θ1,v)Um2

(cos θ2,v) = o(πF (x)),

where πF (x) denotes the number of primes v of F such that Nv ≤ x.

We shall further require the following effective versions of the joint
Sato-Tate distribution, proved by Thorner [27, Proposition 2.2] and the au-
thor [31].

Proposition 2.3 (Thorner). For each i, let πi be a cuspidal automor-
phic representation corresponding to a non-CM newform in Snew

ki
(Γ0(qi))

with trivial nebentypus. Assume that all the symmetric powers Symm1 π1
and Symm2 π2 are automorphic. Then there exist positive constants c1, c2,
c3, c4 and c5 such that for any

1 ≤ m1,m2 ≤M ≤ c1
√

log log x/ log(k1q1k2q2 log log x),



✐

✐

“11-Wong” — 2022/9/29 — 0:38 — page 573 — #15
✐

✐

✐

✐

✐

✐

Refinements of strong multiplicity one for GL(2) 573

one has

∑

p≤x

Um1
(cos θ1,p)Um2

(cos θ2,p) ≪ π(x) exp
( −c2 log x
(k1q1k2q2M)c3M2

)

+ π(x)(m1m2)
2
(

x
−1

c4M2 + exp
( −c5 log x
M2 log(k1q1k2q2M)

)

+ exp
(−c5

√
log x

M

))

.

Proposition 2.4. [31, p. 287] In the notation of Proposition 2.3, assume
that the symmetric powers Symm1 π1 and Symm2 π2 are automorphic. If the
Rankin-Selberg L-function L(s, Symm1 π1 × Symm2 π2) satisfies the gener-
alised Riemann hypothesis, then

∑

p≤x

Um1
(cos θ1,p)Um2

(cos θ2,p) ≪ m1m2x
1/2 log((k1q1k2q2)(m1 +m2)x).

Remark. We shall note that the automorphy assumption of Symm1 π1 and
Symm2 π2 in Propositions 2.3 and 2.4 can be removed by invoking the recent
work of Newton and Thorne [19].

To end this section, we review some basic properties of Selberg polynomi-
als. We begin by recalling that for any integerM ≥ 1, the Vaaler polynomial
VM (x) is defined by

VM (x) =
1

M + 1

M
∑

k=1

( k

M + 1
− 1

2

)

∆M+1

(

x− k

M + 1

)

+
1

2π(M + 1)
sin(2π(M + 1)x)− 1

2π
∆M+1(x) sin(2πx),

where ∆M (x) = 1
M ( sin(πMx)

sin(πx) )2 is the Fejér kernel (see, e.g., [15, Sec. 1.2,

Eq. (16) and (17)]). Following [15, Sec. 1.2, Eq. (21+)], for any subinterval
J = [0, δ] ⊆ [0, 1] and integer M ≥ 1, we define the Selberg polynomial

(2.7) S+
J,M (x) = δ +BM (x− δ) +BM (−x),

where BM (x) is the Beurling polynomial as defined in [15, Sec. 1.2, Eq. (20)],
namely,

BM (x) = VM (x) +
1

2(M + 1)
∆M+1(x).

We recall that

χJ(x) ≤ S+
J,M (x),
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where χJ is the indicator function of J . (In what follows, we shall regard
both S+

J,M (x) and χJ(x) as functions of period 1 defined over R.) Moreover,

writing the Fourier expansion of S+
J,M (x) as

S+
J,M (x) =

∞
∑

n=−∞
Ŝ+
J,M (n)e2πinx,

we know that

Ŝ+
J,M (n) =

{

δ + 1
M+1 if n = 0;

0 if |n| > M ;

also, for 1 ≤ |n| ≤M ,

|Ŝ+
J,M (n)| ≤ 1

M + 1
+min

{

δ,
1

π|n|
}

(see [15, pp. 6–8]). From the definition of Fourier transform, it follows di-
rectly that

Ŝ+
J,M (n) + Ŝ+

J,M (−n) = 2Re(Ŝ+
J,M (n)),

and thus

S+
J,M (x) + S+

J,M (−x) = 2δ +
2

M + 1
+ 2

∑

0<|n|≤M

Ŝ+
J,M (n) cos(2πnx)

= 2δ +
2

M + 1
+ 4

M
∑

n=1

Re(Ŝ+
J,M (n)) cos(2πnx).

To summarise, we have the following proposition.

Proposition 2.5. In the notation as above, for any subinterval J = [0, δ] ⊆
[0, 1] and integer M ≥ 1, one has

Iδ(θ) :=
1

2

(

χJ

( θ

2π

)

+ χJ

(

− θ

2π

))

≤ δ +
1

M + 1
+ 2

M
∑

n=1

Re(Ŝ+
J,M (n)) cos(nθ),

where for 1 ≤ n ≤M ,

|Re(Ŝ+
J,M (n))| ≤ 1

M + 1
+min

{

δ,
1

πn

}

.
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3. Proofs of Theorems 1.1 and 1.4, part I: both π1 and π2

are dihedral

In this section, we shall prove Theorems 1.1 and 1.4 for the case that both
π1 and π2 are dihedral. We will emphasise the case that π1 and π2 are
twist-equivalent. (The case that α = 0 was not treated in [28] as the bound
established by Ramakrishnan [21] is already sharp.)

Recall that every dihedral cuspidal automorphic representation π for
GL2(AF ) can be induced from a Hecke character ψ of K for some quadratic
extension K of F . For such an instance, we shall write π = IFK(ψ). Following
Walji [28, p. 4995], we say that a dihedral cuspidal automorphic representa-
tion π for GL2(AF ) has property P if π = IFK(ψ), and the Hecke character
ψ/ψτ is invariant under τ , the non-trivial element of Gal(K/F ). We also
recall that π1 ⊠ π2 is cuspidal if and only if π1 and π2 cannot be induced
from the same quadratic extension of F .

In this section, we let π1 and π2 be dihedral cuspidal automorphic rep-
resentations for GL2(AF ) induced from ν and µ of quadratic extensions K1

and K2 of F , respectively. In addition, we let χi be the Hecke character asso-
ciated to Ki/F and let τi be the non-trivial element of Gal(Ki/F ). Besides,
if π1 and π2 can be induced from the same quadratic extension K of F , then
we shall choose K1 = K2 = K and define χ = χ1 = χ2 and τ = τ1 = τ2.

We shall argue according to whether πi has property P for each i.

3.1. Exactly one of π1 and π2 has property P

Assume that exactly one of the dihedral automorphic representations π1
and π2 satisfies property P. Without loss of generality, we consider the case
that π1 = IFK(ν) has property P (i.e., (ν/ντ1)τ1 = ν/ντ1 , where τ1 is the non-
trivial element of Gal(K1/F )).

3.1.1. π1 and π2 cannot be induced from the same quadratic ex-
tension of F . We first consider that case that π1 and π2 cannot be induced
from the same quadratic extension of F . (This case was not discussed in [28,
p. 4998]. Nonetheless, the bound for this case is better than the one for the
case that π1 and π2 can be induced from the same quadratic extension.)

Since π1 has property P, we have

(3.1) π1 ⊠ π̄1 ≃ 1⊞ χ1 ⊞ ν/ντ1 ⊞ (ν/ντ1)χ1,
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where χ1 is the Hecke character associated to K1/F . Also, as π1 ⊠ π̄1 ≃
1⊞Ad(π1), we see that

(3.2) Ad(π1) ≃ χ1 ⊞ ν/ντ1 ⊞ (ν/ντ1)χ1.

On the other hand, since π2 does not have property P,

(3.3) π2 ⊠ π̄2 ≃ 1⊞ χ2 ⊞ IFK2
(µ/µτ2),

where χ2 is the Hecke character associated to K2/F , and IFK2
(µ/µτ2) is

cuspidal. Thus,

(3.4) Ad(π2) ≃ χ2 ⊞ IFK2
(µ/µτ2).

Since each Ad(πi) is self-dual, we know that L(s,Ad(π1)×Ad(π1)) has a
pole of order three at s = 1 and that L(s,Ad(π2)×Ad(π2)) has a pole of
order two at s = 1. (Note that ν/ντ1 ̸≃ χ1; otherwise, π1 ≃ ν ⊞ νχ1, which
contradicts to the cuspidality of π1.) Moreover, in this case, π1 ⊠ π2 is cus-
pidal. Thus, from the identity

L(s, (1⊞Ad(π1))× (1⊞Ad(π2))) = L(s, π1 ⊠ π̄1 × π2 ⊠ π̄2)

= L(s, π1 ⊠ π2 × π̄1 ⊠ π̄2),

we see that L(s,Ad(π1)×Ad(π2)) is holomorphic at s = 1.
Since the Ramanujan-Petersson conjecture holds for π1 and π2 (as they

are dihedral), we have |λπi
(v)|2 ≤ 4. Recalling that for each i,

(3.5) λAd(πi)(v) = |λπi
(v)|2 − 1,

we derive

|λAd(π1)(v)− λAd(π2)(v)| = ||λπ1
(v)|2 − 1− |λπ2

(v)|2 + 1| ≤ 4

and thus

∑

v

|λAd(π1)(v)− λAd(π2)(v)|2
Nvs

=
∑

v

|λAd(π1)(v)− λAd(π2)(v)|2χAd(v)

Nvs

≤ 16
∑

v∈SAd

1

Nvs
,

(3.6)



✐

✐

“11-Wong” — 2022/9/29 — 0:38 — page 577 — #19
✐

✐

✐

✐

✐

✐

Refinements of strong multiplicity one for GL(2) 577

where

SAd = SAd(π1, π2)(3.7)

= {v unramified for both π1 and π2 | λAd(π1)(v) ̸= λAd(π2)(v)}.

Note that as each Ad(πi) is self-dual, for any unramified v, |λAd(π1)(v)−
λAd(π2)(v)|2 is equal to

λAd(π1)×Ad(π1)(v)− 2λAd(π1)×Ad(π2)(v) + λAd(π2)×Ad(π2)(v).

Now, dividing both sides of (3.6) by log( 1
s−1) and making real s→ 1+,

we deduce that 5 = 3 + 2 ≤ 16 δ(SAd). By (3.5), we know that if λAd(π1)(v) ̸=
λAd(π2)(v), then |λπ1

(v)| ≠ |λπ2
(v)|. Thus, for any α, SAd ⊆ Sα, and we ob-

tain
5

16
≤ δ(SAd) ≤ δ(Sα).

3.1.2. π1 and π2 can be induced from the same quadratic extension
of F . Suppose that π1 and π2 can be induced from the same quadratic
extension K of F . As argued in [28, p. 4998], for any prime ω of K, we have
ν(ω) = ±ντ (ω), and thus for any prime v of F , |λπ1

(v)| = |λIF

K
(ν)(v)| equals

either 0 or 2.
Write π2 = IFK(µ) as before. As (µ/µτ )τ ̸= µ/µτ , µ2/(µτ )2 is non-trivial,

and thus there is a set S of density 1/4 consisting of primes v of F that split
inK such that µ2/(µτ )2(ω) ̸= 1 for ω | v. Hence, if ω | v for some v ∈ S, then
µ(ω) ̸= ±µτ (ω), which implies that |λπ2

(v)| = |λIF

K
(µ)(v)| is not equal to 0

nor 2. Therefore, for any v ∈ S, |λπ1
(v)| ≠ |λπ2

(v)| and thus |λAd(π1)(v)| ≠
|λAd(π2)(v)| for any v ∈ S. In particular, for any v ∈ S and any α ∈ R,

λπ1
(v) ̸= eiαλπ2

(v).

From the above discussion, we see that

1

4
≤ δ(S) = δ(SAd) ≤ δ(Sα)

whenever exactly one of π1 and π2 satisfies property P.

Remark. If we argue as in the previous section, as L(s,Ad(π1)×Ad(π2))
has a pole of order one at s = 1, we will have a slightly weaker lower bound:

δ(SAd) ≥
3− 2 + 2

16
=

3

16
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for the case that π1 and π2 can be induced from the same quadratic extension
of F .

3.2. Both π1 and π2 do not have property P

3.2.1. π1 and π2 are twist-equivalent. Assume that both π1 and π2
do not have property P and that π1 and π2 are twist-equivalent. Note that

(3.8) π1 ⊠ π̄1 ≃ 1⊞ χ1 ⊞ IFK1
(ν/ντ1),

where χ1 is the quadratic Hecke character associated toK1/F , and I
F
K1

(ν/ντ1)
is cuspidal. From (3.8), it follows that

L(s, π1 ⊠ π̄1 × π1 ⊠ π̄1)

= L(s, (1⊞ χ1 ⊞ IFK1
(ν/ντ1))× (1⊞ χ1 ⊞ IFK1

(ν/ντ1)))

has a pole of order three at s = 1. Also, as Ad(π1) ≃ Ad(π2), π2 ⊠ π̄2 ≃
π1 ⊠ π̄1, and thus

L(s, π2 ⊠ π̄2 × π2 ⊠ π̄2) = L(s, π1 ⊠ π̄1 × π2 ⊠ π̄2) = L(s, π1 ⊠ π̄1 × π1 ⊠ π̄1)

has a pole of order three at s = 1.
Now, we consider the L-function L(s, π1 ⊠ π1 × π̄1 ⊠ π̄2). Writing π2 ≃

π1 ⊗ χ for some (non-trivial) idèle class character χ, we deduce

L(s, π1 ⊠ π1 × π̄1 ⊠ π̄2) = L(s, π1 ⊠ π̄1 × π1 ⊠ (π̄1 ⊗ χ̄))

= L(s, (1⊞ χ1 ⊞ IFK1
(ν/ντ1))× (χ̄⊞ χ1χ̄⊞ IFK1

(ν/ντ1)⊗ χ̄))

has a pole of order at most three at s = 1. Similarly, L(s, π1 ⊠ π1 × π̄2 ⊠
π̄2) = L(s, π1 ⊠ π̄1 × π1 ⊠ (π̄1 ⊗ χ̄2)) has a pole of order at most three at
s = 1.

As δi,j,k,l ≤ 3 for all cases, we derive

22 ≤























(3 + 6 cos(2α) + 3 + 12) δ(Sα) if cos(2α) ≥ 0 and cosα ≥ 0;

(3 + 6 cos(2α) + 3 + 12− 24 cosα) δ(Sα) if cos(2α) ≥ 0 and cosα ≤ 0;

(3 + 3 + 12) δ(Sα) if cos(2α) ≤ 0 and cosα ≥ 0;

(3 + 3 + 12− 24 cosα) δ(Sα) if cos(2α) ≤ 0 and cosα ≤ 0.

3.2.2. π1 and π2 are not twist-equivalent. Now, we consider the sit-
uation that π1 and π2 do not have property P, and π1 and π2 are not
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twist-equivalent. Similar to (3.4), by (3.8), we have

(3.9) Ad(π1) ≃ χ1 ⊞ IFK1
(ν/ντ1).

Recalling that IFK1
(ν/ντ1) and IFK2

(µ/µτ2) are cuspidal, we note that as

Ad(π1) ̸≃ Ad(π2) and Ad(π2) is self-dual, Ad(π1) ̸≃ Ad(π2) and thus either

χ̄2 ̸≃ χ1 or IFK2
(µ/µτ2) ̸≃ IFK1

(ν/ντ1). Hence, by (3.4) and (3.9), we see that

L(s,Ad(π1)×Ad(π2)) = L(s, (χ1 ⊞ IFK1
(ν/ντ1))× (χ2 ⊞ IFK2

(µ/µτ2)))

has a pole of order at most one at s = 1. Also, from (3.4) and (3.9), it follows
immediately that for each i, L(s,Ad(πi)×Ad(πi)) = L(s,Ad(πi)×Ad(πi))
has a pole of order two at s = 1. Therefore, by the estimate (3.6), we obtain

2 = 2− 2 + 2 ≤ 16 δ(SAd),

where SAd is defined as in (3.7). Since for any α, SAd ⊆ Sα, we obtain

1

8
≤ δ(SAd) ≤ δ(Sα).

This can be further improved for Sα by Walji’s argument. It was shown
in [28, pp. 4995–4996] that

δi,j,k,l ≤











1 if (i, j, k, l) ∈ {(2, 1, 0, 1), (0, 1, 2, 1), (1, 2, 1, 0), (1, 0, 1, 2)};
2 if (i, j, k, l) ∈ {(1, 1, 1, 1), (2, 0, 0, 2), (0, 2, 2, 0)};
3 if (i, j, k, l) ∈ {(2, 2, 0, 0), (0, 0, 2, 2)}.

Hence, we have

22 ≤























(3 + 4 cos(2α) + 3 + 8) δ(Sα) if cos(2α) ≥ 0 and cosα ≥ 0;

(3 + 4 cos(2α) + 3 + 8− 8 cosα) δ(Sα) if cos(2α) ≥ 0 and cosα ≤ 0;

(3 + 3 + 8) δ(Sα) if cos(2α) ≤ 0 and cosα ≥ 0;

(3 + 3 + 8− 8 cosα) δ(Sα) if cos(2α) ≤ 0 and cosα ≤ 0.

Thus, for any α ∈ R, δ(Sα) ≥ 2
13 (which is > 1

8). (We note that although our
method gives a worse bound than the one given by Walji’s argument, it will
be useful in Section 5.)
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3.3. Both π1 and π2 have property P

3.3.1. π1 and π2 are twist-equivalent. We move on to the case of
twist-equivalent π1 and π2 that satisfy property P. We recall that in Sec-
tion 3.1.1, we showed that

1⊞Ad(π1) ≃ π1 ⊠ π̄1 ≃ 1⊞ χ1 ⊞ ν/ντ1 ⊠ (ν/ντ1)χ1

and that L(s,Ad(π1)×Ad(π1)) has a pole of order three at s = 1. Thus,

L(s, π1 ⊠ π̄1 × π1 ⊠ π̄1) = L(s, 1)L(s,Ad(π1))
2L(s,Ad(π1)×Ad(π1))

has a pole of order four at s = 1. Since π1 ≃ π2 ⊗ χ for some (non-trivial)
Hecke character, we know that

L(s, π1 ⊠ π̄1 × π1 ⊠ π̄1) = L(s, π1 ⊠ π̄1 × π2 ⊠ π̄2) = L(s, π2 ⊠ π̄2 × π2 ⊠ π̄2)

and thus δi,j,k,l = 4 if (i, j, k, l) ∈ {(1, 1, 1, 1), (2, 2, 0, 0), (0, 0, 2, 2)}.
Moreover, L(s, π1 ⊠ π1 × π̄2 ⊠ π̄2) = L(s, π1 ⊠ (π̄1 ⊗ χ̄)× π1 ⊠ (π̄1 ⊗ χ̄))

equals

L(s,(χ̄⊞ χ1χ̄⊞ (ν/ντ1)χ̄⊞ (ν/ντ1)χ1χ̄)

× (χ̄⊞ χ1χ̄⊞ (ν/ντ1)χ̄⊞ (ν/ντ1)χ1χ̄)),

which has a pole of order at most four at s = 1 (note that χ̄, χ1χ̄, (ν/ν
τ1)χ̄,

and (ν/ντ1)χ1χ̄ are pairwise distinct). Similarly, we know that L(s, π1 ⊠
π1 × π̄1 ⊠ π̄2) = L(s, π1 ⊠ π̄1 × π1 ⊠ (π̄1 ⊗ χ̄)) is equal to

L(s, (1⊞ χ1 ⊞ ν/ντ1 ⊞ (ν/ντ1)χ1)× (χ̄⊞ χ1χ̄⊞ (ν/ντ1)χ̄⊞ (ν/ντ1)χ1χ̄)),

which has a pole of order at most four at s = 1.
By the above discussion, δi,j,k,l ≤ 4 for all cases, and thus

22 ≤























(4 + 8 cos(2α) + 4 + 16) δ(Sα) if cos(2α) ≥ 0 and cosα ≥ 0;

(4 + 8 cos(2α) + 4 + 16− 32 cosα) δ(Sα) if cos(2α) ≥ 0 and cosα ≤ 0;

(4 + 4 + 16) δ(Sα) if cos(2α) ≤ 0 and cosα ≥ 0;

(4 + 4 + 16− 32 cosα) δ(Sα) if cos(2α) ≤ 0 and cosα ≤ 0.

It is evident that it gives a worse lower bound for δ(Sα) than most cases
given in Section 3.2 (except for Section 3.2.2, where 1

8 appears).
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3.3.2. π1 and π2 are not twist-equivalent. To end this section, we
analyse the case of non-twist-equivalent π1 and π2 that satisfy property P.
We first recall that by [28, Lemma 6], Walji showed that both L(s,Ad(π1)×
Ad(π1)) and L(s,Ad(π2)×Ad(π2)) have a pole of order three at s = 1; also,
if π1 and π2 can be induced from K/F , L(s,Ad(π1)×Ad(π2)) have a pole
of order one at s = 1.

In addition, if π1 and π2 cannot be induced from the same quadratic
extension, then π1 ⊠ π2 and π̄1 ⊠ π̄2 are cuspidal. So L(s, π1 ⊠ π2 × π̄1 ⊠ π̄2)
has a pole of order one at s = 1. As argued in Section 3.1.1, we deduce that
L(s,Ad(π1)×Ad(π2)) is holomorphic at s = 1. (We note that this case was
not discussed in [28, pp. 4997–4998].)

Hence, from (3.6), it follows that if π1 and π2 are induced from the same
quadratic extension of F ,

δ(SAd) ≥
3− 2 + 3

16
=

1

4
,

where SAd is defined as in (3.7); otherwise,

δ(SAd) ≥
3 + 3

16
=

3

8
.

In particular, for any α, as SAd ⊆ Sα, δ(Sα) ≥ 1
4 .

4. Proofs of Theorems 1.1 and 1.4, part II: at least one of π1

and π2 is non-dihedral

In this section, we shall complete the proofs of Theorems 1.1 and 1.4 by
analysing the case that at least one of π1 and π2 is non-dihedral.

4.1. Exactly one of π1 and π2 is dihedral

If π1 is not dihedral but π2 is dihedral, then using (2.3) and the fact that
δ2,0,0,2 = δ0,2,2,0 and arguing similarly as before, we obtain

22 ≤ (2 + 2δ2,0,0,2 cos(2α) + 4 + 4) δ(Sα)

≤
{

(10 + 4 cos(2α)) δ(Sα) if cos(2α) ≥ 0;

10 δ(Sα) if cos(2α) ≤ 0,
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and thus

δ(Sα) ≥
{

2
5+2 cos(2α) if cos(2α) ≥ 0;
2
5 if cos(2α) ≤ 0.

(By the symmetry, the bound also holds if π1 is dihedral and π2 is not
dihedral.)

4.2. Both π1 and π2 are non-dihedral

4.2.1. Both π1 and π2 are non-tetrahedral. If both π1 and π2 are
non-tetrahedral, from (2.4), we see that

22 ≤ (2 + 2δ2,0,0,2 cos(2α) + 2 + 8) δ(Sα)

and hence

δ(Sα) ≥
{

1
3+cos(2α) if cos(2α) ≥ 0;
1
3 if cos(2α) ≤ 0.

4.2.2. At least one of π1 and π2 is tetrahedral. If at least one of π1
and π2 is tetrahedral, then applying (2.5), we have

22 ≤ (2 + 2δ2,0,0,2 cos(2α) + 2 + 8− 8κ1 cosα) δ(Sα)

≤
{

(12 + 4 cos(2α)− 8κ1 cosα) δ(Sα) if cos(2α) ≥ 0;

(12− 8κ1 cosα) δ(Sα) if cos(2α) ≤ 0.

Comparing this with the previous case, we complete the proof for the second
part of Theorem 1.1.

4.2.3. π1 and π2 are not twist-equivalent. If π1 and π2 are not twist-
equivalent, then from (2.6), it follows that

22 ≤ (2 + 2κ2 cos(2α) + 2 + 4) δ(Sα) ≤ (8 + 2κ2 cos(2α)) δ(Sα)

and thus

δ(Sα) ≥
2

4 + κ2 cos(2α)
,

which completes the proof of Theorem 1.4. □
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5. Proofs of Theorems 1.5 and 1.7

In this section, we shall prove Theorems 1.5 and 1.7. Since the proof of
Theorem 1.7 follows the same line, we shall focus on the proof of Theorem 1.5
and then discuss how to modify it to prove Theorem 1.7 at the end of this
section.

Our key observation is that SAd and

S∗ = S∗(π1, π2) = {v unramified for both π1 and π2 | |λπ1
(v)| ≠ |λπ2

(v)|}

are exactly the same (which follows from the identity that |λπi
(v)|2 =

λπi×π̄i
(v) = λAd(πi)(v) + 1 for unramified v). As the case that both π1 and

π2 are dihedral is already proved in Section 3, we shall only consider the
situation that at least one of π1 and π2 is non-dihedral.

We shall require the following proposition, which is a consequence of
the work of Kim and Shahidi [14], concerning the orders of poles of certain
L-functions at s = 1.

Proposition 5.1. Let π, π1, and π2 be non-dihedral cuspidal automorphic
representations for GL2(AF ) with unitary central characters ω, ω1, and ω2,
respectively. Suppose that π1 and π2 are not twist-equivalent. Then we have
(5.1)

− ords=1 L(s,Π×Π×Π×Π) =











7 if π is tetrahedral;

4 if π is octahedral;

3 if π is not solvable polyhedral,

where Π = Ad(π).4 Also, if π1 is not solvable polyhedral, then we have

(5.2) − ords=1 L(s,Π1 ×Π1 ×Π2 ×Π2) ≤
{

1 if π2 is tetrahedral;

2 otherwise,

where Πi = Ad(πi) for each i.

Proof. We first note that Π and Πi are self-dual cuspidal representations for
GL3(AF ). As a consequence of Clebsch-Gordon decomposition (see, e.g, [29,

4A cuspidal automorphic representation π for GL2(AF ) is called octahedral if it
is non-dihedral and non-tetrahedral, and Sym3 π admits a non-trivial self-twist by
a Hecke character; π is called solvable polyhedral if it is either dihedral, tetrahedral,
or octahedral.
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Lemma 3.3]), it is known that

Ad(Π) ≃ Ad(π)⊞ Sym4 π ⊗ ω−2,

where by [12], Sym4 π is automorphic. We note that 1 will never appear in
the isobaric sum of Ad(Π) = Ad(Ad(π)). Indeed, by the identity

L(s,Π× Π̄) = L(s, 1)L(s,Ad(Π))

and the fact that Π = Ad(π) is cuspidal, the theory of Rankin-Selberg L-
functions yields that

1 = − ords=1 L(s,Π× Π̄) = 1− ords=1 L(s,Ad(Π)),

and so L(s,Ad(Π)) is holomorphic at s = 1.
Moreover, we recall the cuspidality criteria established by Kim and

Shahidi [14, Sec 3.2 and Theorem 3.3.7]:

(i) if π is tetrahedral, one has

Sym4 π ⊗ ω−2 ≃ µ⊞ µ2 ⊞ Sym2 π ⊗ ω−1 ≃ µ⊞ µ2 ⊞Ad(π),

where µ is a (cubic) Hecke character such that Ad(π)⊗ µ ≃ Ad(π);

(ii) if π is octahedral, one has

Sym4 π ⊗ ω−2 ≃ σ ⊞Ad(π)⊗ η

for some dihedral representation σ and (quadratic) Hecke character η;

(iii) if π is not solvable polyhedral, then Sym4 π is cuspidal (and so is
Sym4 π ⊗ ω−2).

To prove (5.1), we use the following decomposition of L-functions:

L(s,Π×Π×Π×Π) = L(s, 1)L(s,Ad(Π))2L(s,Ad(Π)×Ad(Π)),

where L(s,Ad(Π)) has no pole at s = 1, and

L(s,Ad(Π)×Ad(Π))

= L(s, (Ad(π)⊞ Sym4 π ⊗ ω−2)× (Ad(π)⊞ Sym4 π ⊗ ω−2)).

Now, (5.1) follows from the above-mentioned cuspidality criteria of Kim and
Shahidi and the theory of Rankin-Selberg L-functions.
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Similarly, we have

L(s,Π1 ×Π1 ×Π2 ×Π2)

= L(s, 1)L(s,Ad(Π1))L(s,Ad(Π2))L(s,Ad(Π1)×Ad(Π2)),

where each L(s,Ad(Πi)) has no pole at s = 1, and

L(s,Ad(Π1)×Ad(Π2))

= L(s, (Ad(π1)⊞ Sym4 π1 ⊗ ω−2
1 )× (Ad(π2)⊞ Sym4 π2 ⊗ ω−2

2 )).

For non-dihedral π1, we have

− ords=1 L(s,Ad(π1)× Sym4 π2 ⊗ ω−2
2 ) ≤

{

1 if π2 is octahedral;

0 otherwise

(here we do not assume that π1 is not solvable polyhedral). Moreover, if π1
is not solvable polyhedral, then

− ords=1 L(s, Sym
4 π1 ⊗ ω−2

1 × Sym4 π2 ⊗ ω−2
2 )

≤
{

1 if π2 is not solvable polyhedral;

0 otherwise.

Putting everything together, we obtain (5.2). □

5.1. Exactly one of π1 and π2 is dihedral

Suppose that π1 is non-dihedral and π2 is dihedral. As Ad(π1) is cuspidal and
Ad(π2) is not cuspidal, L(s,Ad(π1)×Ad(π1)) has a simple pole at s = 1,
and L(s,Ad(π1)×Ad(π2)) is holomorphic at s = 1. Also, by (3.2) and (3.4),
we know that L(s,Ad(π2)×Ad(π2)) has a pole of order at least two at s = 1.
Now, as argued in Section 3.1.1 (see, especially, (3.6)), if the Ramanujan-
Petersson conjecture holds for π1, then we have

δ(S∗) = δ(SAd) ≥
1 + 2

16
=

3

16
.

As the Ramanujan-Petersson conjecture holds for solvable polyhedral
representations (see, e.g., [29, Sec. 6]), it remains to discuss the case that
π1 is not solvable polyhedral. To do so, we shall apply the Cauchy-Schwarz
inequality as follows. Note that as the Ramanujan-Petersson conjecture is
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valid for π2 (and thus |λAd(π2)(v)| ≤ 3), applying the Cauchy-Schwarz in-
equality, we have

|λAd(π1)(v)− λAd(π2)(v)|2 ≤ 2(|λAd(π1)(v)|2 + |λAd(π2)(v)|2)
≤ 2|λAd(π1)(v)|2 + 18.

Hence, as SAd = S∗, we have

(5.3)
∑

v

|λAd(π1)(v)− λAd(π2)(v)|2χSAd
(v)

Nvs

≤ 2
∑

v

|λAd(π1)(v)|2χS∗
(v)

Nvs
+ 18

∑

v∈S∗

1

Nvs
.

Applying the Cauchy-Schwarz inequality again and using “positivity” as in
[29, Eq. (2.2)], we can bound the first sum on the right of (5.3) as

∑

v

|λAd(π1)(v)|2χS∗
(v)

Nvs
≤

(

∑

v

|λAd(π1)(v)|4
Nvs

)
1

2

(

∑

v∈S∗

1

Nvs

)
1

2

≤
(

log(L(s,Π1 ×Π1 ×Π1 ×Π1))
)

1

2

(

∑

v∈S∗

1

Nvs

)
1

2

,

where Π1 = Ad(π1). Therefore, arguing similarly as in Section 3.1.1, by (5.1),
we obtain

3 ≤ 2 · 3 1

2 δ(S∗)
1

2 + 18 δ(S∗).

A numerical calculation then yields

δ(S∗) ≥
5

27
−

√
19

54
≥ 0.1044... ≥ 1

9.58
.

5.2. Both π1 and π2 are non-dihedral

We start with noting that if both π1 and π2 are non-dihedral, then Ad(π1)
and Ad(π2) are cuspidal and thus each L(s,Ad(πi)×Ad(πi)) has a simple
pole at s = 1. Also, as π1 and π2 are non-twist-equivalent, Ad(π1) ̸≃ Ad(π2),
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L(s,Ad(π1)×Ad(π2)) is holomorphic at s = 1. As argued previously, assum-
ing the Ramanujan-Petersson conjecture (for both π1 and π2), we obtain

δ(S∗) = δ(SAd) ≥
2

16
=

1

8
.

In the case that the Ramanujan-Petersson conjecture is unknown, we
shall modify Walji’s strategy, discussed in Section 2.3, to prove:

Theorem 5.2. Let π1 and π2 be a non-dihedral cuspidal automorphic rep-
resentation for GL2(AF ) with unitary central characters. Suppose, further,
that π1 and π2 are not twist-equivalent. If π1 is not solvable polyhedral, then

δ(S∗) ≥











1
10.17 if π2 is tetrahedral;
1

10.76 if π2 is octahedral;
1
9.9 if π2 is not solvable polyhedral.

Proof. We first remark that when at least one of π1 and π2 is not solvable
polyhedral, the information on at least one of L(s,Π1 ×Π1 ×Π1 ×Π2) and
L(s,Π1 ×Π2 ×Π2 ×Π2) at s = 1 seems unavailable at present. Therefore,
instead of using an estimate similar to (2.1) directly, we shall require a
modification.

From the inequality

|λAd(π1)(v)− λAd(π2)(v)|2

≤ |λAd(π1)(v)|2 + 2|λAd(π1)(v)λAd(π2)(v)|+ |λAd(π2)(v)|2

and the Cauchy-Schwarz inequality, it follows that

∑

v

|λAd(π1)(v)− λAd(π2)(v)|2χSAd
(v)

Nvs

≤
((

∑

v

|λΠ1
(v)|4

Nvs

)
1

2

+ 2
(

∑

v

|λΠ1×Π2
(v)|2

Nvs

)
1

2

+
(

∑

v

|λΠ2
(v)|4

Nvs

)
1

2

)

×
(

∑

v∈SAd

1

Nvs

)
1

2

,
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where, as before, Πi = Ad(πi). From Proposition 5.1, arguing similarly as
before, we derive

δ(S∗) = δ(SAd) ≥















4
(
√
3+2+

√
7)2

≥ 1
10.17 if π2 is tetrahedral;

4
(
√
3+2

√
2+

√
4)2

≥ 1
10.76 if π2 is octahedral;

4
(
√
3+2

√
2+

√
3)2

≥ 1
9.9 if π2 is not solvable polyhedral.

Herein, we conclude the proof. □

5.3. Proof of Theorem 1.7

To prove Theorem 1.7, we consider the set

S−
Ad = S−

Ad(π1, π2)

= {v unramified for both π1 and π2 | λAd(π1)(v) ̸= −λAd(π2)(v)}.

and the sum
∑

v

|λAd(π1)(v) + λAd(π2)(v)|2χS−

Ad
(v)

Nvs
,

where χS−

Ad
is the indicator function of S−

Ad. Note that the Ramanujan-
Petersson conjecture gives

|λAd(π1)(v) + λAd(π2)(v)|2 ≤ (3 + 3)2 ≤ 36.

Processing a similar argument as in the previous sections (including Sec-
tion 3) then results in

δ(S−
Ad) ≥

{

1
18 if π1 and π2 are simultaneously dihedral or non-dihedral;
1
12 if exactly one of π1 and π2 is dihedral.

Finally, observing that

λAd(π1)(v) + λAd(π2)(v) = |λπ1
(v)|2 + |λπ2

(v)|2 − 2,

we completes the proof of Theorem 1.7. □

Remark. Although it seems that one would obtain a better bound for
δ(S∗) in the simultaneously non-dihedral case than the simultaneously di-
hedral case by applying the argument used in Section 5.2, it is not always
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the case. Indeed, if both π1 and π2 are tetrahedral, L(s,Π1 ×Π1 ×Π2 ×Π2)
may admit a pole of order three at s = 1, where Πi = Ad(πi). This results
in δ(S∗) = δ(S−

Ad) ≥ 4
(
√
7+2·3+

√
7)2

≈ 1
31.88 . Nonetheless, if π1 is not solvable

polyhedral (regardless of that π2 is non-dihedral or not), arguing as in Sec-
tions 5.1 and 5.2, one can obtain δ(S∗) = δ(S−

Ad) ≥ 1
10.76 .

Remark. Let n ≥ 3, and let π1 and π2 be distinct cuspidal automorphic
representations for GLn(AF ), satisfying the Ramanujan-Petersson conjec-
ture, such that Ad(π1) and Ad(π2) are cuspidal. Applying the Cauchy-
Schwarz inequality twice, we have

(5.4)
∑

v

|λπ1
(v)− eiαλπ2

(v)|2χSα
(v)

Nvs
≤ 2

2
∑

i=1

∑

v

|λπi
(v)|2χSα

(v)

Nvs

≤ 2

2
∑

i=1

(

∑

v

|λπi
(v)|4

Nvs

)
1

2

(

∑

v∈Sα

1

Nvs

)
1

2

,

where

Sα = {v unramified for both π1 and π2 | λπ1
(v) ̸= eiαλπ2

(v)}.

Since we know

L(s, πi × π̄i × πi × π̄i) = L(s, 1)L(s,Ad(πi))
2L(s,Ad(πi)×Ad(πi)),

L(s, πi × π̄i × πi × π̄i) has a pole of order two at s = 1. Hence, we have

δ(Sα) ≥
( 2

4
√
2

)2
=

1

8
.

Furthermore, without the assumption that Ad(π1) and Ad(π2) are au-
tomorphic, as each Ad(πi) satisfies the Ramanujan-Petersson conjecture, we
know that |λπi

(v)|2 ≤ n2. Thus, applying the first inequality in (5.4), we
obtain

δ(Sα) ≥
2

4n2
=

1

2n2
.

6. Proofs of Theorems 1.8, 1.10, and 1.11

In this section, we will prove Theorems 1.8, 1.10, and 1.11. For the sake
of convenience, we shall assume that any prime v in the consideration is
unramified for both π1 and π2. (Note the argument presented in Section 6.1
does not make the assumption that both π1 and π2 are non-dihedral.)
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6.1. Generality

For each i, we write

λπi
(v) = 2 cos θi,v

for some θi,v ∈ [0, π]. It is clear that

λπ1
(v) = λπ2

(v) if and only if θ1,v = θ2,v

and that

λπ1
(v) = −λπ2

(v) if and only if θ1,v = π − θ2,v.

Thus, #{v | Nv ≤ x, λπ1
(v)2 = λπ2

(v)2} is less than or equal to

(6.1) #{v | Nv ≤ x, θ1,v = θ2,v}+#{v | Nv ≤ x, θ1,v = π − θ2,v}.

In the notation of Section 2.4, for any M ≥ 1 and δ ∈ (0, 1
π(M+1) ], we

first observe that
(6.2)

#{v | Nv ≤ x, θ1,v = θ2,v} ≤
∑

Nv≤x

(

Iδ(θ1,v − θ2,v) + Iδ(θ1,v + θ2,v)
)

.

From Proposition 2.5 and the identity

cos(n(θ1,v − θ2,v)) + cos(n(θ1,v + θ2,v)) = 2 cos(nθ1,v) cos(nθ2,v),

it follows that the sum on the right of (6.2) is less than or equal to

(6.3)
(

2δ +
2

M + 1

)

πF (x) + 4

M
∑

n=1

Re(Ŝ+
J,M (n))

∑

Nv≤x

cos(nθ1,v) cos(nθ2,v),

where πF (x) denotes the number of primes v of F such that Nv ≤ x. Since
δ ∈ (0, 1

π(M+1) ], |Re(Ŝ+
J,M (n))| ≤ δ + 1

M+1 ≤ 2
M , and thus

(6.4) 4

2
∑

n=1

Re(Ŝ+
J,M (n))

∑

Nv≤x

cos(nθ1,v) cos(nθ2,v) ≪
1

M
πF (x).

Also, recalling that for n ≥ 2,

2 cos(nθ) =
sin((n+ 1)θ)

sin θ
− sin((n− 1)θ)

sin θ
= Un(cos θ)− Un−2(cos θ),



✐

✐

“11-Wong” — 2022/9/29 — 0:38 — page 591 — #33
✐

✐

✐

✐

✐

✐

Refinements of strong multiplicity one for GL(2) 591

we see that the remaining terms5 in the double sum of (6.3) become

≪ 1

M

M
∑

n=3

∣

∣

∣

∑

Nv≤x

(

Un(cos(θ1,v))− Un−2(cos(θ1,v))
)

(6.5)

×
(

Un(cos(θ2,v))− Un−2(cos(θ2,v))
)
∣

∣

∣
.

By (6.2), (6.3), (6.4), and (6.5), we see that #{v | Nv ≤ x, θ1,v = θ2,v} is

≪ πF (x)

M
+

1

M

M
∑

n=3

∣

∣

∣

∑

Nv≤x

2
∏

i=1

(

Un(cos(θi,v))− Un−2(cos(θi,v))
)∣

∣

∣
.(6.6)

To bound #{v | Nv ≤ x, θ1,v = π − θ2,v}, we use the estimate

#{v | Nv ≤ x, θ1,v = π − θ2,v}
≤

∑

Nv≤x

(

Iδ(θ1,v − (π − θ2,v)) + Iδ(θ1,v + (π − θ2,v))
)

.

As cos(n(θ1,v − (π − θ2,v))) + cos(n(θ1,v + (π − θ2,v))) equals

2 cos(nθ1,v) cos(n(π − θ2,v)) = 2(−1)n cos(nθ1,v) cos(nθ2,v),

by Proposition 2.5, we see that #{v | Nv ≤ x, θ1,v = π − θ2,v} is less than
or equal to

(

2δ +
2

M + 1

)

πF (x) + 4

M
∑

n=1

Re(Ŝ+
J,M (n))(−1)n

∑

Nv≤x

cos(nθ1,v) cos(nθ2,v).

By an analogous argument as above, this becomes

≪ πF (x)

M
+

1

M

M
∑

n=3

∣

∣

∣

∑

Nv≤x

2
∏

i=1

(

Un(cos(θi,v))− Un−2(cos(θi,v))
)∣

∣

∣
.(6.7)

5We note that although [17] includes the case n = 2 in their consideration, one
has to treat it separately since [17, Proposition 2.1] (cf. Propositions 2.2) does not
cover the situation that U2−2(cos(θ1,v))U2−2(cos(θ2,v)) ≡ 1.
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6.2. Proof of Theorem 1.8

Now, we are in a position to prove Theorem 1.8. Assume that both π1 and
π2 are non-dihedral and that

(6.8) lim sup
x→∞

#{v | Nv ≤ x, λπ1
(v)2 = λπ2

(v)2}
πF (x)

> 0.

Suppose, on the contrary, that π1 and π2 are not twist-equivalent. From
Proposition 2.2 and estimates (6.6) and (6.7), it follows that the limit on
the left of (6.8) is less than or equal to

lim sup
x→∞

#{v | Nv ≤ x, θ1,v = θ2,v}
πF (x)

+ lim sup
x→∞

#{v | Nv ≤ x, θ1,v = π − θ2,v}
πF (x)

≪ 1

M

for any M ≥ 1. Making M → ∞ yields that

lim sup
x→∞

#{v | Nv ≤ x, λπ1
(v)2 = λπ2

(v)2}
πF (x)

= 0

and thus 0 < 0, a contradiction. □

6.3. Completing the proof of Theorems 1.10 and 1.11

Let F = Q. For each i, let πi be a cuspidal automorphic representation cor-
responding to a non-CM newform in Snew

ki
(Γ0(qi)) with trivial nebentypus.

Assume that π1 and π2 are not twist-equivalent. Applying Proposition 2.3
(and the recent work of Newton and Thorne [19] on the automorphy of
symmetric powers of πi), we have

1

M

M
∑

n=3

∣

∣

∣

∑

p≤x

2
∏

i=1

(

Un(cos(θi,p))− Un−2(cos(θi,p))
)∣

∣

∣
(6.9)

≪ π(x) exp
( −c2 log x
(k1q1k2q2M)c3M2

)

+M4π(x)
(

exp
(− log x

c4M2

)

+ exp
( −c5 log x
M2 log(k1q1k2q2M)

)

+ exp
(−c5

√
log x

M

))

.
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Thus, using (6.1), (6.6), (6.7), and (6.9) and choosing

M = ⌈c6
√

log log x/ log(k1q1k2q2 log log x)⌉ ≥ 3,

for some sufficiently small c6 > 0, we arrive at

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2} ≪ π(x)
log(k1q1k2q2 log log x)√

log log x
.

Moreover, assuming the generalised Riemann hypothesis, by Proposi-
tion 2.4 and estimates (6.1), (6.6), and (6.7), we have

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2} ≪ 1

M

x

log x
+M2x1/2 log((k1q1k2q2M)x).

Choosing

M = ⌈x1/6/(log x)1/3(log((k1q1k2q2)x))1/3⌉,
we derive

#{p ≤ x | λπ1
(p)2 = λπ2

(p)2} ≪ x5/6(log(k1q1k2q2x))
1/3

(log x)2/3
.

□

7. Remarks on non-CM condition in Theorems 1.8, 1.9,

1.10, and 1.11

We shall note that in Theorems 1.8, 1.9, 1.10, and 1.11, we assume π1 and
π2 correspond to non-CM newforms f1 and f2, respectively, just for the sake
of simplicity of discussion. As done in [17, 20, 22], it is possible to drop the
assumption that f2 is without CM. (We note that as remarked in [17] if both
f1 and f2 are with CM, then the theorems are not always true.)

To extend Theorem 1.8, we require the following estimate.

Proposition 7.1. Let F be a totally real number field. For each i, let πi be
a cuspidal automorphic representation corresponding to a Hilbert newform fi
of weights ki,j ≥ 2 (at all infinite primes vj of F ) and with trivial nebentypus.
Let mi ≥ 1. Assume that f1 is a non-CM newform such that Symm1 π1 is
automorphic, and suppose that f2 is with CM. Then one has

∑

Nv≤x

Um1
(cos θ1,v)Um2

(cos θ2,v) = o(πF (x)).
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We note that this proposition was stated in [17, Proposition 2.1] (for
F = Q) without assuming the automorphy of Symm1 π1. However, as may
be noticed, the argument in [17, Sec. 4] only works for the case that both f1
and f2 are without CM. Indeed, as argued in [17, Sec. 4] (see also [8, pp. 716–
719, especially, Theorems 2.4 and 2.5] and [31, Proof of Theorem 1.1]), to
use the “Brauer-Taylor induction” (together with the automorphy theorem
from [4] and the theory of Rankin-Selberg L-functions), one would require
the cuspidality of both Symm1 π1 and Symm2 π2 after a suitable base change,
which may not hold if f2 is with CM (see the proof below).

We also note that the proof of Hecke’s theorem on the distribution of
the Frobenius angles of CM modular forms does not rely on the symmetric
power L-functions but the equidistribution of the values of Hecke characters
(see, e.g., [1, Theorem 3.1.1 and Sec. 3.3]).

Since we did not find a reference with the precise proof for the propo-
sition (although it seems to be known by experts, at least, implicitly), we
include a proof in this section for the sake of completeness.

Proof of Proposition 7.1. As argued in [17], by the Wiener-Ikehara Taube-
rian theorem (see, e.g., [16]), to prove the proposition, it suffices to show
that the L-function

L(s, Symm1 π1 × Symm2 π2)

extends to a non-vanishing holomorphic function on Re(s) ≥ 1. As remarked
in [24, pp. 243 and 251], if π2 corresponds to a CM Hilbert newform f2 (and
so π2 is dihedral), there exists an imaginary quadratic extension K of F
such that

Symm2 π2 ≃ ⊞jΠj ,

where Πj is either an idèle class character of F or a two-dimensional cuspidal
automorphic representation induced from a (non-trivial) character of K.
Thus, we have the factorisation

L(s, Symm1 π1 × Symm2 π2) =
∏

j

L(s, Symm1 π1 ×Πj).

By the theory of Rankin-Selberg L-functions, each L(s, Symm1 π1 ×Πj)
extends holomorphically to Re(s) ≥ 1 except for a possible simple pole at
s = 1− it that exists only if Symm1 π1 ≃ Π̄j ⊗ | · |it. By a dimension con-
sideration, if L(s, Symm1 π1 ×Πj) admits a pole at s = 1− it, then m1 = 1
and dimΠj = 2 and thus π1 ≃ Π̄j ⊗ | · |it. However, it is impossible as f1
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is without CM (so π1 is non-dihedral), but Πj is induced from a charac-
ter (so it is dihedral). Finally, it follows from the work of Shahidi [26],
each L(s, Symm1 π1 ×Πj) is non-vanishing on Re(s) ≥ 1, which concludes
the proof. □

Now, using Proposition 7.1 in the place of Proposition 2.2 in the proof
of Theorem 1.8 given in Section 6.2, we have the following:

Theorem 7.2. Let F be a totally real number field. For each i, let πi be
a cuspidal automorphic representation corresponding to a Hilbert newform
fi of weights ki,j ≥ 2 and with trivial nebentypus. Assume that f1 is without
CM and that all the symmetric powers Symm1 π1 are automorphic. If

lim sup
x→∞

#{v | Nv ≤ x, λπ1
(v)2 = λπ2

(v)2}
π(x)

> 0,

then π1 and π2 are twist-equivalent.

In closing this section, we remark that it is possible to prove an effective
version of Proposition 7.1 by adapting the methods used in [27, 31] and
thus obtain a version of Theorems 1.10 and 1.11, without assuming that π2
is without CM, by using the argument developed in Section 6.
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