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Abstract

In the spirit of Artin, Brauer, and Heilbronn, we implement representation theory

together with the Artin formalism to study L-functions in this thesis.

One of the major themes is motivated by the work of Heilbronn and many others

on classical Heilbronn characters. We define the arithmetic Heilbronn characters and

apply them to study L-functions. In particular, we prove a theorem concerning the

analytic ranks of elliptic curves as predicted by the Birch-Swinnerton-Dyer conjecture.

In a different vein, we employ the theory of supercharacters introduced by Diaconis

and Isaacs to derive a supercharacter-theoretic analogue of Heilbronn characters.

Moreover, we generalise the effective Chebotarev density theorem due to M. R. Murty,

V. K. Murty, and Saradha in the context of supercharacter theory.

Lastly, we study the conjectures of Artin and Langlands via group theory and

extend the previous work of Arthur and Clozel. For instance, we introduce the notion

of near supersolvability and near nilpotency, and show that Artin’s conjecture holds if

Gal(K/k) is nearly supersolvable. As a consequence, the Artin conjecture is true for

any solvable Frobenius Galois extension. Also, we derive the automorphy for every

nearly nilpotent group. Furthermore, the Langlands reciprocity conjecture has been

established for Galois extensions of number fields of either square-free degree or odd

cube-free degree as well as all non-A5 extensions of degree at most 100.
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Chapter 1

Introduction

A natural number is said to be prime if it has exactly two divisors, namely, 1 and

itself. Prime numbers have been studied for a long time as they are building blocks

of natural numbers. Indeed, every natural number n admits a unique factorisation

n = pe11 · · · p
ek
k ,

where pi’s are distinct primes and ei’s are natural numbers. Therefore, in order to

understand properties of natural numbers, studying primes is crucial.

It was more than two thousand years ago that Euclid proved the infinitude of

primes. His elegant argument is that assuming there were only finitely many primes

p1, · · · , pk (say), the number

p1 · · · pk + 1

is not divisible by any pi. Thus, there would be a new prime diving p1 · · · pk+1, which

leads to a contradiction. In 1737, Euler gave another proof via an analytic method.
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He considered a special function
∞∑
n=1

n−x

of a real variable x > 1. By the unique factorisation, he then wrote

∞∑
n=1

n−x =
∏
p

(1− p−x)−1

for x > 1, where the product runs over all the primes. Since the series
∑∞

n=1 n
−1

diverges, by taking x → 1+, Euler proved the existence of infinitely many primes.

Motivated by this result, Euler and Legendre asked if there are infinitely many primes

in a given arithmetic progression. More precisely, for any given two coprime natural

numbers a and q, are there infinitely many primes p such that

q | (p− a)?

The affirmative answer was given by Dirichlet in 1837 (for q prime) and in 1840

(for all q). For this purpose, he considered the periodic and completely multiplicative

functions defined on integers, what now are called Dirichlet characters. Furthermore,

he associated the L-function L(x, χ) to each Dirichlet character χ by defining

L(x, χ) =
∞∑
n=1

χ(n)n−x =
∏
p

(1− χ(p)p−x)−1

of a real variable x > 1, where the product is over all primes.

In a different theme, there was a conjecture due to Legendre and Gauss asserting
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that the prime-counting function

π(x) = #{p ≤ x | p is a prime}

is asymptotic to x/ log x as x→∞. To answer this, Riemann in 1859 suggested that

one should study

ζ(s) =
∞∑
n=1

n−s =
∏
p

(1− p−s)−1

as a function of a complex variable s. Moreover, he showed that ζ(s) extends to a

meromorphic function on C which has only a simple pole at s = 1 and satisfies a

functional equation. Also, Riemann derived an explicit formula for π(x) in terms of

zeros of his zeta function.

The next step was taken by Hadamard and de la Vallée-Poussin independently

in 1896. They proved the conjecture of Legendre and Gauss, which is now the cel-

ebrated prime number theorem, by using Riemann’s idea and showing that ζ(s) is

non-vanishing on <(s) ≥ 1. Shortly after, de la Vallée-Poussin gave a quantitative

form of the above-mentioned theorem of Dirichlet. This is now called the prime num-

ber theorem for arithmetic progressions, which states that if natural numbers a and

q have no common prime factors, then the proportion of the primes p congruent to a

modulo q is equal to 1
φ(q)

, where φ is the Euler totient function.

Indeed, the analytic properties of L-functions have been utilised to establish results

of a purely arithmetic nature. For instance, to study primes, mathematicians were

forced to investigate prime ideals in number fields. This led Dedekind to his zeta

functions. Furthermore, in light of work of Riemann and many others, Landau derived

the prime ideal theorem, asserting that in every given number field the number of
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prime ideals with norm at most x is asymptotic to x/ log x. Moreover, in 1922,

Chebotarev obtained a vast generalisation of the earlier-mentioned result of Dirichlet.

His remarkable result, nowadays called the Chebotarev density theorem, describes

probabilistically how primes p distribute in a given Galois extension of the field of

rational numbers Q with respect to their Artin symbols σp (cf. Sections 3.1.1 and

3.1.2). In particular, if the given Galois extension is cyclotomic, the Chebotarev

density theorem gives the prime number theorem for arithmetic progressions. More

precisely, considering the q-th cyclotomic field Q(ζq), where ζq is a primitive q-th

root of unity, one has Gal(Q(ζq)/Q) ' (Z/qZ)×. Moreover, for each prime p coprime

to q, the Artin symbol σp is defined and σp(ζq) = ζpq . Thus, σp only depends on

the arithmetic progression to which p belongs modulo q. Hence, by applying the

Chebotarev density theorem in this context, for any a coprime to q, the number of

primes p ≤ x which is congruent to a modulo q is asymptotic to

1

φ(q)

x

log x

as x→∞.

Meanwhile, for every Galois extension K/k of number fields with Galois group G

and every representation ρ of G into GLn(C), Artin defined the L-function attached to

ρ and conjectured that his L-function can be extended to an entire function whenever

ρ is non-trivial and irreducible. Via his celebrated reciprocity law, Artin showed that

his conjecture is valid when n = 1. From this and the induction-invariance property of

Artin L-functions, Artin established his conjecture when G is an M-group, namely, all

irreducible characters of G are induced from 1-dimensional characters of subgroups of

G. Furthermore, by his induction theorem, Brauer proved that all Artin L-functions
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extend meromorphically over C and indeed satisfy the functional equation predicted

by Artin.

In light of Artin reciprocity, Langlands further conjectured that for each rep-

resentation ρ of G, ρ should be associated to an automorphic representation π of

GLdim ρ(Ak), where Ak denotes the adèle ring of k; and if ρ is irreducible, then π

will be cuspidal. If such a π exists, then ρ is said to be automorphic. This is often

called the Langlands reciprocity conjecture or the strong Artin conjecture. Indeed,

Artin’s conjecture follows from the Langlands reciprocity conjecture and the theory

of automorphic L-functions.

By the works of Iwasawa [29] and Tate [64], one knows that the Langlands con-

jecture for GL(1) is exactly Artin reciprocity. The next big step was taken by

Langlands [37] and Tunnell [66] who proved the Langlands reciprocity conjecture

for 2-dimensional ρ with solvable image. In much the same spirit, Ramakrishnan

[54] showed that solvable 4-dimensional representations of GO(4)-type are all auto-

morphic; and Martin [41, 42] derived the automorphy for ρ with projective image

(in PGL4(C)) isomorphic to E24 o C5 or an extension of A4 by V4. Moreover, the

automorphy of odd 2-dimensional icosahedral representations over Q follows from

Khare-Wintenberger’s proof of Serre’s modularity conjecture (cf. [34]). In a slightly

different vein, from their theory of base change and automorphic induction, Arthur

and Clozel [2] derived Langlands reciprocity whenever G is nilpotent. Moreover, they

showed that if G is solvable and ρ is accessible, i.e., χ is an integral sum of char-

acters induced from linear characters of subnormal subgroups of G, then ρ must be

automorphic. These results will be discussed and summarised in Section 3.3.

A conjecture of Dedekind asserts that the quotient ζK(s)/ζk(s) is entire if K/k is



6

any finite extension (not necessarily Galois). By the works of Aramata and Brauer,

this conjecture is valid if K/k is a Galois extension. Moreover, if K is contained

in a solvable normal closure of k, Uchida [67] and van der Waall [69] independently

proved Dedekind’s conjecture in this case. However, this conjecture is still open in

general. We remark that Dedekind’s conjecture follows from Artin’s conjecture and

that all these results, in fact, rely on the theories of Artin L-functions and induced

representations. On the other hand, to study zeros of Dedekind zeta functions, Heil-

bronn [23] introduced what are now called the Heilbronn characters. His innovation

allowed him to give a simple proof of the Aramata-Brauer theorem. This profound

idea was also used by Stark [62] to prove that if K/k is Galois and ζK(s) has a simple

zero at s = s0, then such a zero must arise from a cyclic extension of k. Moreover, in

the spirit of Heilbronn and Stark, Foote and V. K. Murty [19] showed that if K/k is

a Galois extension with Galois group G, for fixed s0 ∈ C,

∑
χ∈Irr(G)

n(G,χ)2 ≤ (ords=s0 ζK(s))2,

where n(G,χ) denotes the order of the Artin L-function L(s, χ,K/k) at s = s0.

Furthermore, if G is solvable, this result has been improved by M. R. Murty and

Raghuram in [49] and later Lansky and Wilson in [39]. In particular, the result of M.

R. Murty and Raghuram generalises the works of Uchida and van der Waall.

Following the path illuminated by Heilbronn, Stark, and many others, in Section

5.1, we will introduce the notion of weak arithmetic Heilbronn characters that satisfy

properties analogous to some properties of the classical Heilbronn characters known by

the works of Heilbronn-Stark (Lemma 5.2), Aramata-Brauer (Corollary 5.4), Foote-V.

K. Murty (Theorem 5.3), and M. R. Murty-V. K. Murty (Proposition 5.6). Later, in
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Section 5.2, more conditions will be imposed on weak arithmetic Heilbronn characters

which take them closer to Heilbronn characters. These will be outlined in Lemma 5.7

(Heilbronn-Stark lemma in full strength), Proposition 5.11 (known by the work of M.

R. Murty-Raghuram), and Corollary 5.12 (the Uchida-van der Waall Theorem). We

will go on to derive several extensions of results of M. R. Murty and Raghuram for

arithmetic Heilbronn characters.

In Section 5.3, we will apply the results from Section 5.2 to study Artin-Hecke

L-functions and L-functions of CM-elliptic curves. Furthermore, in Section 5.4, by ap-

plying the results from Section 5.2, we will study holomorphy of quotients of Rankin-

Selberg L-functions arising from certain cuspidal automorphic representations that

allows one to investigate holomorphy of quotients of L-functions associated to non-

CM elliptic curves. Also, in Section 5.5, we will use properties of weak arithmetic

Heilbronn characters along with the celebrated result of Taylor and his school on the

potential automorphy of symmetric power L-functions of non-CM elliptic curves (cf.

Section 3.3.5) to deduce generalisations of the results of Foote, M. R. Murty, and V.

K. Murty. In particular, one such consequence, Theorem 5.35, is predicted by the

Birch-Swinnerton-Dyer conjecture.

In 1988, under the assumption that the generalised Riemann hypothesis and the

Artin conjecture hold, M. R. Murty, V. K. Murty, and Saradha [48] gave an effective

version of the Chebotarev density theorem, refining the previous work of Lagarias

and Odlyzko [40] as well as a result of Serre [58] (cf. Section 3.1.2). More recently,

Diaconis and Isaacs in [16] constructed a theory of supercharacters and showed that

their theory of supercharacters shares similar properties of the classical character the-

ory. For instance, they proved that there is the first orthogonality property in general



8

and derived super Frobenius reciprocity for certain matrix groups. We will give a

brief review of the supercharacter theory in Section 2.3 and derive super Frobenius

reciprocity for all groups. Inspired by the work of Brauer, Heilbronn, and others,

we are also interested in studying Artin L-functions via the theory of supercharac-

ters. Indeed, we derive a supercharacter-theoretic analogue of Heilbronn characters

in Section 4.1 and give an effective version of the Chebotarev density theorem for

Artin L-functions attached to supercharacters in Section 4.3. Furthermore, as will be

discussed in Section 4.2, the Artin conjecture is true for Artin L-functions attached

to suitable supercharacters. As a consequence, we obtain the same effective esti-

mate given by M. R. Murty-V. K. Murty-Saradha without the assumption of Artin’s

conjecture for these cases.

From the above discussion, it is not hard to see that all the results suggest that the

group-theoretic method shall be a key of optimising our understanding of the Artin

conjecture. For instance, the Artin conjecture has been derived for certain solvable

Frobenius extensions by Zhang [75] by invoking the theory of Frobenius groups. (We

recall that a group G is said to be Frobenius if it has a non-trivial proper subgroup

H such that g−1Hg ∩ H = 1 for all g ∈ G\H.) Thus, for our purpose of study-

ing Artin’s conjecture, the major part of Chapters 2 and 6 are devoted to collecting

pure group-theoretic results and developing a method of low-dimensional groups, re-

spectively. (We call a group low-dimensional if all its irreducible characters are of

“small” degree.) Such group-theoretic machinery will allow one to obtain information

of representations of groups via their low-dimensional (normal) subgroups.

We will say a finite group G is nearly supersolvable if it has an invariant series

1 = N0 E N1 E · · · E Nk−1 E Nk = G,
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where each subgroup is normal in G, the quotient Ni+1/Ni is cyclic for every i ≥ 1, and

N1 belongs to the class C consisting of groups all of whose irreducible representations

are of dimension less than or equal to 2. We note that the symmetric group on four

letters, S4, is not supersolvable. However, as it admits a normal subgroup isomorphic

to the Klein four-group V4, S4 is nearly supersolvable. This, in fact, motivates our

notation of nearly supersolvable groups to study Artin’s conjecture.

As an application, we derive the following theorem in Sections 6.1 and 6.5 (cf.

Theorems 6.5 and 6.29).

Theorem 1.1. Suppose that K/k is a nearly supersolvable Galois extension or a

solvable Frobenius extension. Then the Artin conjecture holds for K/k.

In light of their work on the automorphy of accessible characters of solvable groups,

Arthur and Clozel asked if one can classify the accessible groups (cf. [2, pp. 220-221]).

From this question and the accessibility of subnormally monomial groups, i.e., the

groups all of whose irreducible characters are induced from 1-dimensional characters

of subnormal subgroups, one may further want a classification of the subnormally

monomial groups. We remark that this desire arises naturally as the symmetric

group on three letters, S3, is not nilpotent, which prevents one from applying Arthur-

Clozel’s automorphy result on nilpotent extensions. Nevertheless, it can be shown

that S3 is subnormally monomial and hence of automorphic type. As one can see, a

general criterion for subnormal monomiality is now crucial for studying the Langlands

reciprocity conjecture.

Inspired by the above observation and discussion, we introduce the notation of

nearly nilpotent groups as follows. A group G is said to be nearly nilpotent if it admits

a normal subgroup N in the class C described above such that G/N is nilpotent.
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Furthermore, we will prove the following result that presents an enlargement of Galois

extensions of number fields satisfying Langlands reciprocity (cf. Theorem 6.12 and

Section 6.6).

Theorem 1.2. Let K/k be a Galois extension of number fields with Galois group G.

If G is a direct product of two nearly nilpotent groups, then Langlands reciprocity is

true for K/k. Moreover, Langlands reciprocity holds for all non-A5 Galois extensions

of number fields of degree at most 100.

Our result covers all metabelian Galois extensions as well as Arthur-Clozel’s theo-

rem on the automorphy of nilpotent Galois extensions. Also, as all groups of square-

free order are meta-cyclic, it follows that Langlands reciprocity is valid for all Galois

extensions of square-free degree. One may regard this theorem as the “metabelian

class field theory” or the “square-free reciprocity” as predicted by the Langlands

program.
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Chapter 2

Group-Theoretic Preliminaries

2.1 A Little Finite Group Theory

In this section, we will recall some notations and results from the theory of groups.

Firstly, G always denotes a finite group, and H and N denote a subgroup and a

normal subgroup of G, respectively. A semi-direct product of N by H will be denoted

as NoH. Also, G′ and Z(G) will stand for the derived subgroup and the centre of G,

respectively. Moreover, we let F(G) denote the maximal normal nilpotent subgroup

of G, i.e., the Fitting subgroup of G, and let Φ(G) stand for the Frattini subgroup

of G, i.e., the intersection of all maximal subgroups of G. For any finite set π of

primes, Gπ denotes a Hall π-subgroup of G. The cyclic group of order m, the Klein

four-group, and the quaternion group of order 8 will be denoted as Cm, V4, and Q,

respectively. The direct product of n-copies of Cm will be denoted by Cn
m.

Definition 2.1. A finite group G is said to be nilpotent if one of the followings holds.

N1. G admits a central series, i.e., there is an invariant series of subgroups

1 = H0 E H1 E · · · E Hk−1 E Hk = G,
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where for each i, Hi is normal in G and Hi+1/Hi ≤ Z(G/Hi);

N2. G is a direct product of its Sylow subgroups; or

N3. Every subgroup H of G is subnormal, i.e., there is an invariant series of sub-

groups

H = H0 E H1 E · · · E Hk−1 E Hk = G,

where each Hi is normal in Hi+1.

Definition 2.2. A finite group G is called supersolvable (resp., solvable) if there exists

an invariant series of subgroups

1 = H0 E H1 E · · · E Hk−1 E Hk = G,

where each Hi is normal in G (resp., in Hi+1) and each Hi+1/Hi is cyclic.

Definition 2.3. A finite group G is said to be meta-cyclic (resp., metabelian), if G

has a normal subgroup N such that both N and G/N are cyclic (resp., abelian).

Let Sn denote the symmetric group on n letters. It is well-known that for n ≤ 4,

Sn is solvable. In particular, S2 is isomorphic to the cyclic group of order 2. Also, S3 is

not nilpotent but supersolvable. Indeed, S3 admits a normal cyclic subgroup of order

3 and hence is a meta-cyclic group. However, S4 is not nilpotent nor supersolvable.

A classical result of Hölder asserts that a (finite) group of square-free order must

be meta-cyclic. Moreover, in 2005, Dietrich and Eick [17] studied the class of groups

of cube-free order and, in particular, characterised non-solvable groups of cube-free

order. Their work has been extended by Qiao and Li [52] who gave a description of

the class of solvable groups of cube-free order as follows.
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Proposition 2.1. Let G be a solvable group of cube-free order. Then one of the

followings holds.

1. G = (Ca × C2
b ) o (Cc × C2

d), or (C2
2 × Ca × C2

b ) o (Cc × C2
d); or

2. G = (Ca × C2
b ) o (Cc × C2

d) oG{2},

where a, b, c, and d are suitable odd integers such that (a, b) = (c, d) = 1, ac is

cube-free, bd is square-free, prime divisors of ab are not less than prime divisors of

cd, and Cm denotes a cyclic group of order m.

We remark that Qiao and Li showed that the first case happens if a Hall {2, 3}-

subgroup G{2,3} = G{2} oG{3} of G is non-abelian (cf. [52, Lemma 3.8]).

As mentioned earlier, G is a Frobenius group if there is a non-trivial proper sub-

group H of G such that g−1Hg ∩H = 1 whenever g ∈ G\H. In this case, H is called

a Frobenius complement of G.

Definition 2.4. Let G be a finite group. A proper subgroup N is called a CC-subgroup

if for every non-trivial element n of N , its centraliser CG(n) is contained in N , where

CG(n) is defined as

CG(n) = {g ∈ G | gn = ng}.

We note that if G admits a non-trivial proper normal CC-subgroup, then G is a

Frobenius group. Conversely, a theorem of Frobenius tells us that if G is a Frobenius

group with a Frobenius complement H, there is a normal CC-subgroup N of G such

that G = N oH, where N is called the Frobenius kernel of G. On the other hand,

all Sylow subgroups of a Frobenius complement are cyclic or generalised quaternion,

and a deep theorem of Thompson asserts that every Frobenius kernel is nilpotent.

For more details, we refer the reader to [26, Chapter 7] and [27, Chapter 6].
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2.2 Finite-Dimensional Representations and their Characters

Let G be a finite group. A representation ρ of G on a finite dimensional vector space

V over C is a group homomorphism from G to GL(V ), the general linear group on

V . Given a representation ρ of G, the character of ρ is a function on G defined by

χ(g) = tr ρ(g). A linear subspace W ⊂ V is called G-invariant if ρ(g)w ∈ W for

all g ∈ G and all w ∈ W . In this case, ρ can be seen as a representation of G on

W , and we denote such a representation by ρ|W . A representation ρ is said to be

irreducible if there is no proper and non-trivial G-invariant subspaces W of V . In

addition, the character χ of a representation ρ is called irreducible if ρ is irreducible.

If f1, f2 : G→ C are two functions on G, one can define their inner product by

(f1, f2)G =
1

|G|
∑
g∈G

f1(g)f2(g).

If f : G→ C is constant on each conjugacy class in G, then f is called a class function

on G. We will let C(G) denote the space of class functions of G. It can be shown

that the set Irr(G) of all irreducible characters of G forms an orthonormal basis for

the inner product space of all class functions on G with respect to the inner product

defined above.

Let H be a subgroup of G and f a class function on H. The induction of f from

H to G is defined by

IndGH f(x) =
1

|H|
∑
g∈G

f̃(g−1xg),

where f̃ extends f by setting f̃(g) = 0 for all g ∈ G\H. By using the definition of

induction, one can deduce that IndGH f is a class function on G if f is a class function
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on H, and one can also show the following reciprocity theorem.

Proposition 2.2 (Frobenius Reciprocity). For all class functions φ on H, a subgroup

of G, and all class functions θ of G,

(IndGH φ, θ)G = (φ, θ|H)H ,

where θ|H is the restriction of θ from G to H.

We recall that a character is said to be monomial if it is induced from a linear

character (i.e., a character of degree 1) and that a monomial group (or an M-group

for short) is a group that all of whose irreducible characters are monomial. As will

be discussed in the next chapter, monomial characters play a crucial role in studying

Artin’s conjecture and Galois representations. In light of this, we shall further recall

some concepts of relative M-groups and relative SM-groups (cf. [26, Chapter 6] and

[25], respectively).

Definition 2.5. Let G be a finite group and let N be a normal subgroup of G. A

character χ of G is called a relative M-character (resp., a relative SM-character)

with respect to N if there exists a subgroup (resp., a subnormal subgroup) H with

N ≤ H ≤ G and an irreducible character ψ ∈ Irr(H) such that IndGH ψ = χ and

ψ|N ∈ Irr(N). If every irreducible character of G is a relative M-character (resp.,

a relative SM-character) with respect to N , then G is said to be a relative M-group

(resp., a relative SM-group) with respect to N .

We note that if N is normal in G and G/N is nilpotent or supersolvable, then G

is a relative M-group with respect to N . In general, one has the following result due

to Price (cf. [5, Theorem 7.63] and [26, Theorem 6.22]).
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Theorem 2.3. Let G be a finite group with a normal subgroup N such that G/N is

solvable. If every chief factor of every non-trivial subgroup of G/N has order equal

to an odd power of some prime, then G is a relative M-group with respect to N .

From this, one has a result of Huppert (cf. [26, Theorem 6.23]) as stated below.

Proposition 2.4. Let G be a finite group and let N be a normal subgroup of G such

that G/N is supersolvable. If N is solvable and all Sylow subgroups of N are abelian,

then G is an M-group.

Moreover, based on Theorem 2.3, Horváth [25, Proposition 2.7] gave a sufficient

condition for groups being relative SM-groups as follows.

Theorem 2.5. Let G be a finite group and let N be a normal subgroup of G with

G/N nilpotent. Then G is a relative SM-group with respect to N .

We note that Horváth omitted the proof and remarked that it is similar to the

proof of Theorem 2.3. However, for the sake of completeness, we give a proof below.

Proof. By Theorem 2.3, we already know that each χ ∈ Irr(G) is a relative M-

character with respect to N , i.e., there exists a subgroup H with N ≤ H ≤ G and

an irreducible character ψ ∈ Irr(H) such that IndGH ψ = χ and ψ|N ∈ Irr(N). Now as

G/N is nilpotent, all its subgroups are subnormal. In particular, we have

H/N = H0 E H1 E · · · E Hm−1 E Hm = G/N,

where for each i, Hi is a normal subgroup of Hi+1. Now by lifting this series (with

respect to N), we can see that H is subnormal in G. In other words, each χ is a
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relative SM-character with respect to N , and hence, G is a relative SM-group with

respect to N .

Recall that a Dedekind group is a group G such that every subgroup of G is normal.

By an analogous argument as above, we have the following variant that may be of

interest.

Proposition 2.6. Let G be a finite group and let N be a normal subgroup of G

such that G/N is a Dedekind group. Then for every χ ∈ Irr(G), there exists a normal

subgroup H of G with N ≤ H and ψ ∈ Irr(H) such that IndGH ψ = χ and ψ|N ∈ Irr(N).

As a consequence, any irreducible character of a metabelian group G is induced

from a 1-dimensional character of a normal subgroup of G.

For Frobenius groups, one also has the following theorem that characterises their

(induced) irreducible characters (cf. [26, Theorem 6.34]).

Proposition 2.7. Let G be a Frobenius group with Frobenius kernel N . For any

χ ∈ Irr(G) with N * Kerχ, one has χ = IndGN ψ for some ψ ∈ Irr(N).

We recall that a group is called p-elementary if it is a direct product of a p-group

and a cyclic group, and that a group is said to be elementary if it is p-elementary for

some prime p. Let us state Brauer’s theorem on induced characters.

Theorem 2.8 (Brauer Induction Theorem). Let G be a finite group and χ a character

of G. Then there exist integers ni such that

χ =
∑
i

ni IndGHi ψi,

where Hi’s are elementary subgroups of G and ψi is a linear character of Hi.
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To end this section, we collect more results from the representation theory of finite

groups.

Lemma 2.9. Let G be a finite group and Z(G) its centre. Then for every irreducible

character χ of G, one has

χ(1)2 ≤ [G : Z(G)].

We let cd(G) = {χ(1) | χ ∈ Irr(G)}. Via the above lemma, Theorem 2.3, Sylow’s

theory (or the computer algebra package [20]), one has the following.

Lemma 2.10. If G is of order 1, 2, 4, 3, or 9, then cd(G) = {1}. If G is of order

8, 16, 6, or 18, then cd(G) ⊆ {1, 2}. If |G| is 12, 24, or 36, then cd(G) ⊆ {1, 2, 3, 4}

where 4 ∈ cd(G) only if |G′| = 9.

We also invoke below a result of Isaacs (cf. [26, Theorems 12.5, 12.6 and 12.15]).

Theorem 2.11. If G is a finite group with | cd(G)| ≤ 3, then G must be solvable.

Let ρ be an irreducible representation of G. As the finite subgroups of PGL3(C)

have been classified by Blichfeldt [6, 44], one has the following.

Lemma 2.12. If ρ is primitive, 3-dimensional, and with solvable projective image G

in PGL3(C), then G is of order 36, 72, or 216.

We let GOn(C) denote the subgroup of GLn(C) consisting of orthogonal simili-

tudes, i.e., matrices M such that M tM = λMI, with λM ∈ C. Also, we define the

(m-th) symplectic similitude group as

GSp2m(C) = {M ∈ GL2m(C) |M tJM = λMJ, λM ∈ C},
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where J is the matrix defined as

J =

 0 Im

−Im 0

 ,

and Im is the identity m × m matrix. We note that irreducible primitive finite

subgroups of SL4(C) were classified by Blichfeldt [6] in 1917. However, as mentioned

by Martin [43, Chapter 5], Blichfeldt’s list is presented in terms of generating matrices

and geometrical invariants, which is not the most convenient form for studying Artin’s

conjecture. Hence, we will use a classification due to Martin as stated below.

Lemma 2.13. Suppose that ρ is primitive, 4-dimensional, and with solvable projective

image G in PGL4(C), and that the image of ρ is contained in GSp4(C). Then G is

isomorphic to E24 oC5, E24 oD10, or E24 oF20, where E24 is the elementary abelian

group of order 24, D10 denotes the dihedral group of order 10, and F20 is the Frobenius

group of order 20.

2.3 Review of Supercharacter Theory

Recently, Diaconis and Isaacs [16] introduced the theory of supercharacters which

generalises the classical character theory in a natural way as follows.

Definition 2.6. Let G be a finite group, let K be a partition of G, and let X be a

partition of Irr(G). The ordered pair (X ,K) is a supercharacter theory if

SC1. {1} ∈ K,

SC2. |X | = |K|, and

SC3. For each X ∈ X , the character σX =
∑

σ∈X σ(1)σ is constant on each K ∈ K.
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The characters σX are called supercharacters, and the elements K in K are called

superclasses. In addition, if f : G→ C is constant on each superclass in G, then we

say f is a superclass function on G.

It is clear that the irreducible characters and conjugacy classes of G give a su-

percharacter theory of G, which will be referred to as the classical theory of G.

Throughout this section, we will often equip groups with (possible) supercharacter

theories without mentioning this.

We remark that Diaconis and Isaacs showed that every superclass is a union of

conjugacy classes in G. By the orthogonality property of Irr(G), the set of all super-

characters, denoted Sup(G), forms an orthogonal basis for the inner product space

of all superclass functions on G with respect to the usual inner product. Moreover,

they also defined superinduction and then obtained super Frobenius reciprocity for

certain matrix groups equipped with special supercharacter theories. In general, one

can develop such a theory of superinduction as the following.

Definition 2.7 (Compatibility and Superinduction). Let G be a finite group and

H a subgroup of G. If for any h ∈ H, SClH(h) is contained in SClG(h), where

SClH(h) and SClG(h) are the superclasses containing h in H and G, respectively,

then such supercharacter theories of H and G are said to be compatible, or G and H

are compatible (with respect to the given supercharacter theories) for short. Moreover,

if G and H are compatible, the superinduction SIndGH φ of φ, a superclass function of

H, is defined by

SIndGH φ(g) =
|G|
|H|

1

|SClG(g)|

m(g)∑
i=1

|SClH(xi,g)|φ(xi,g),
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where SClG(g) is the superclass in G containing g and {xi,g} is a set of superclass

representatives in H belonging to SClG(g).

Since SClG(g′) = SClG(g) for any g′ ∈ SClG(g), one can choose xi,g′ = xi,g for

all i’s. Thus, SIndGH φ is a superclass function of G for any superclass function φ of

H. On the other hand, Diaconis and Isaacs, in fact, gave an example in which the

induction IndGH σ of a supercharacter σ of H is not a superclass function of G. Thus,

the definition superinduction associated to compatible supercharacter theories of G

and H is crucial. We also have below a theorem that generalises Frobenius reciprocity.

Proposition 2.14 (Super Frobenius Reciprocity). Suppose that G and H are com-

patible. For all superclass functions φ on H and all superclass functions θ of G,

(SIndGH φ, θ)G = (φ, θ|H)H ,

where θ|H is the restriction of θ from G to H.

Proof. For any g ∈ G,

SIndGH φ(g)θ(g) =
|G|
|H|

1

|SClG(g)|

m(g)∑
i=1

|SClH(xi,g)|φ(xi,g)θ(g)

=
|G|
|H|

1

|SClG(g)|

m(g)∑
i=1

|SClH(xi,g)|φ(xi,g)θ(xi,g),

where xi,g’s are superclass representatives in H belonging to SClG(g), and the last

equality holds provided that xi,g ∈ SClG(g) and θ is a superclass function of G, i.e.

θ is constant on each SClG(g). Let g1, · · · , gk be distinct superclass representatives
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of G. Since SIndGH φ and θ both are superclass functions of G, one has

(SIndGH φ, θ)G =
1

|G|
∑
g∈G

SIndGH φ(g)θ(g)

=
1

|G|

k∑
j=1

|SClG(gj)| SIndGH φ(gj)θ(gj)

=
1

|G|

k∑
j=1

|SClG(gj)|
|G|
|H|

1

|SClG(gj)|

m(gj)∑
i=1

|SClH(xi,gj)|φ(xi,gj)θ(xi,gj)

=
1

|H|

k∑
j=1

m(gj)∑
i=1

|SClH(xi,gj)|φ(xi,gj)θ(xi,gj).

Observe that if j 6= l, then for any i and i′,

xi,gj ∈ SClH(gj) ⊆ SClG(gj), xi′,gl ∈ SClH(gl) ⊆ SClG(gl),

and the intersection of SClG(gj) and SClG(gl) is empty. Thus, xi,gj 6= xi′,gl if j 6= l.

From this, one can conclude that xi,gj ’s are all distinct. On the other hand, each

superclass K of H is contained in exactly one superclass of G, and so there are i and j

such that K = SClH(xi,gj). Therefore, {xi,gj} forms a set of (distinct) representatives

for all superclasses in H. Therefore,

(SIndGH φ, θ)G =
1

|H|

k∑
j=1

m(gj)∑
i=1

|SClH(xi,gj)|φ(xi,gj)θ(xi,gj)

=
1

|H|
∑
h∈H

φ(h)θ|H(h)

= (φ, θ|H)H ,

where the second equality holds provided that θ(h) = θ|H(h) for any h ∈ H and θ is
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constant on each SClH(xi,gj).

We note that the above results concerning superinduction and super Frobenius

reciprocity were also considered by Hendrickson [24], who equips H with the classical

theory.

Now, we shall show that superinduction is unique. Suppose that there is another

arbitrary map φ 7→ φ(G) sending superclass functions of H to superclass functions of

G and satisfying super Frobenius reciprocity, i.e., for any superclass function φ on H

and any superclass function θ of G,

(φ(G), θ)G = (φ, θ|H)H .

Applying the above theorem of super Frobenius reciprocity for SIndGH , for any super-

class function φ on H and any superclass function θ of G, one has

(φ(G), θ)G = (SIndGH φ, θ)G,

which implies that

φ(G) = SIndGH φ

for all superclass functions φ on H. In other words, there is a unique superinduction

which satisfies super Frobenius reciprocity.
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Chapter 3

Galois and Automorphic Representations

3.1 Galois Representations and L-Functions

3.1.1 Artin L-Functions and Artin’s Conjecture

In this section, we will set up the machinery and motivation for defining Artin L-

functions and list their basic but important properties.

An algebraic number field k (or simply a number field) is a finite extension of the

field of rational numbers, Q. The ring of integers of k, denoted by Ok, consists of all

elements x ∈ k such that x is a root of a non-zero monic polynomial with integral

coefficients. This ring Ok is a Dedekind domain, i.e., an integral domain where every

non-zero proper ideal can be factorised uniquely into a product of prime ideals (up to

the order of the factors). The (absolute) norm of a non-zero ideal a in Ok is defined

by Na = [Ok : a] = |Ok/a|, i.e., the cardinality of the quotient ring Ok/a. The

Dedekind zeta function of k is defined by

ζk(s) =
∑
a

1

Nas
,
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where the sum runs over all non-zero integral ideals of Ok, and this series converges for

<(s) > 1. Since Ok is a Dedekind domain and the norm is completely multiplicative,

i.e., N(ab) = N(a)N(b) for all non-zero integral ideals a and b in Ok, one can deduce

the Euler product for the Dedekind zeta function of k, namely,

ζk(s) =
∏
p

(1−Np−s)−1,

where the product runs over all prime ideals in Ok. Note that, if k = Q, the Dedekind

zeta function ζQ(s) is exactly the Riemann zeta function, denoted by ζ(s). Like

the Riemann zeta function, every Dedekind zeta function extends to a meromorphic

function on C which has only a simple pole at s = 1. Moreover, every Dedekind zeta

function is non-vanishing on <(s) = 1 and admits a functional equation relating values

at s with values at 1−s. The famous generalised Riemann hypothesis, denoted GRH,

asserts that every Dedekind zeta function is non-vanishing for s with 0 < <(s) < 1

and <(s) 6= 1
2
.

By considering quadratic fields of the form Q(
√
d) for some square-free integer d,

one can write the Dedekind zeta function ζQ(
√
d)(s) as a product of the Riemann zeta

function and a Dirichlet L-function

ζQ(
√
d)(s) = ζ(s)L(s, χ)

for some (non-trivial) Dirichlet character χ depending on d. (We recall that a Dirichlet

character modulo m is a homomorphism

χ : (Z/mZ)× → C×
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extended to Z by putting χ(n) = 0 if (n,m) 6= 1. The Dirichlet L-function attached

to χ is defined as

L(s, χ) =
∏
p

(1− χ(p)p−s)−1,

where the product runs over all primes.) Since this Dirichlet L-function can be ex-

tended to an entire function, one can deduce that the quotient ζQ(
√
d)(s)/ζ(s) is entire.

In general, replacing Q(
√
d)/Q by an arbitrary extension of number fields M/k, one

may wonder whether the quotient ζM(s)/ζk(s) of the Dedekind zeta functions is also

entire. In fact, Dedekind conjectured that this quotient, ζM(s)/ζk(s), should be entire,

and proved in 1873 his conjecture for pure cubic extensions M/Q, i.e., M = Q( 3
√
m)

for some cube-free integer m. For the case of Galois extensions, Dedekind’s conjecture

was proved by Aramata and Brauer independently as the following.

Theorem 3.1 (Aramata-Brauer). Let M/k be a Galois extension of number fields.

Then ζM(s)/ζk(s) is entire.

In the direction of Dedekind’s conjecture for non-normal extensions, Uchida and

van der Waall (independently) proved the following theorem which partially gener-

alises the above theorem of Aramata and Brauer.

Theorem 3.2 (Uchida-van der Waall). Let M/k be an extension of number fields,

and M̃ a normal closure of M/k. If Gal(M̃/k) is solvable, then ζM(s)/ζk(s) is entire.

To study Dedekind’s conjecture, one needs to know how to factorise the Dedekind

zeta functions. We shall start by recalling the theory about how primes split in a

given Galois extension of number fields.

Let K/k be a Galois extension of number fields with Galois group G. Since OK
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is also a Dedekind domain, for any prime ideal p in Ok, one has

pOK = Pe1
1 · · ·P

el
l ,

where Pj’s are distinct prime ideals in OK and ej’s are positive integers. In this

case, we say that the prime ideals Pj’s are above p and denote this as Pj|p. In

addition, if ej = 1 for every j, then p is called unramified. Otherwise, p is ramified.

Moreover, using the maximality of (non-zero) prime ideals in a Dedekind domain, it

can be shown that for any prime ideals P and P′ above p, there is a σ ∈ G such that

σ(P) = P′. Therefore, one can conclude that G acts on {P1, · · · ,Pl} transitively,

i.e., there is exactly one G-orbit in {P1, · · · ,Pl}. Together with this transitivity, the

unique factorisation implies that all ej’s are the same. Thus, one has

pOK = (P1 · · ·Pl)
e,

where e = ej for any j. This e is called the ramification index of p.

On the other hand, since the Galois group G acts on the prime factors of pOK ,

it is natural to consider the stabiliser subgroup of each prime factor P above p. Let

DP denote the stabiliser subgroup of P|p, i.e.,

DP = {σ ∈ G | σ(P) = P},

which is called the decomposition group at P. One also has the inertia group at P

IP = {σ ∈ G | σ(x) ≡ x (mod P) for all x ∈ OK},
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which is a normal subgroup of DP. Since every (non-zero) prime ideal is maximal in

a Dedekind domain, both OK/P and Ok/p are fields; and, in fact, these fields are

also finite. Moreover, it can be shown that the extension (OK/P)/(Ok/p) is Galois

and Gal((OK/P)/(Ok/p)) is a cyclic group with a generator x 7→ xNp. Indeed, there

is a canonical isomorphism

DP/IP ' Gal((OK/P)/(Ok/p)).

Therefore, one can choose an element σP ∈ DP whose image in Gal((OK/P)/(Ok/p))

is the generator described above. Such an element σP is called a Frobenius automor-

phism at P and it is only well-defined modulo IP.

It can be shown that for any unramified p, IP is a trivial group for every P|p. In

fact, combining the orbit-stabiliser theorem with the fact that there is exactly one

G-orbit in {P1, · · · ,Pl}, and the canonical isomorphism stated above, one can show

that the order of IP is equal to e, the ramification index of p, for any P|p. Thus, if

p is unramified, then e = 1 and so IP is a trivial group. Besides, since there are only

finitely many ramified prime ideals in Ok, one can deduce that all but finitely many

IP are trivial for P|p, where p is a prime ideal in Ok. For p unramified, one can show

that as P ranges over the prime ideals above p, the σP form a conjugacy class. This

class is called the Artin symbol at p, denoted σp.

Using the above theory and representations of finite groups, Artin introduced his

L-functions that generalise Dirichlet L-functions as follows. Let ρ be a complex finite-

dimensional representation of G = Gal(K/k). The Artin L-function attached to ρ is
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defined by

L(s, ρ,K/k) =
∏
p

Lp(s, ρ,K/k),

where the local L-function at p is defined as

Lp(s, ρ,K/k) = det(1− ρ|V
IP

(σP)Np−s)−1

for <(s) > 1. Here, the product runs over prime ideals in Ok, P denotes a prime

ideal above p, and V IP = {v ∈ V | ρ(g)v = v for all g ∈ IP}. Sometimes we write

L(s, χ,K/k) for L(s, ρ,K/k), where χ = tr ρ denotes the character of ρ. One can

easily show that

L(s, 1G, K/k) = ζk(s),

where 1G denotes the trivial character of G, and that

L(s, χ1 + χ2, K/k) = L(s, χ1, K/k)L(s, χ2, K/k)

for any characters χ1 and χ2 of G. Also, for any tower of Galois extensions K/F/k,

any character ψ of Gal(F/k) defines a character Inf
Gal(K/k)
Gal(F/k) ψ, called the inflation of

ψ, of Gal(K/k) canonically through the quotient map Gal(K/k)→ Gal(F/k), and

L(s, Inf
Gal(K/k)
Gal(F/k) ψ,K/k) = L(s, ψ, F/k).

Moreover, for any character χ of H ≤ G, one has

L(s, IndGH χ,K/k) = L(s, χ,K/KH),
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where KH is the fixed field of H. This property is called the induction-invariance

property of Artin L-functions. Using these properties, one can deduce the following

theorem of Artin and Takagi, generalising the decomposition of the Dedekind zeta

functions of quadratic extensions of Q that we described previously.

Proposition 3.3 (Artin-Takagi Decomposition).

ζK(s) = ζk(s)
∏
χ 6=1G

L(s, χ,K/k)χ(1),

where the product runs over all non-trivial irreducible characters of G. In particular,

one has

L(s,RegG, K/k) = ζK(s),

where RegG is the regular representation of G.

Artin conjectured that if ρ is irreducible and non-trivial, then L(s, ρ,K/k) extends

to an entire function and satisfies a functional equation. In fact, Artin showed that

his conjecture is true if G is an M-group. In general, Artin’s conjecture is still open

and is viewed as a central problem in number theory.

It is worth noting that Artin seemed to be led to his L-functions and conjecture

while trying to prove Dedekind’s conjecture. Indeed, Dedekind’s conjecture follows

from Artin’s conjecture. More precisely, for any intermediate field M of K/k, accord-

ing to the fundamental theorem of Galois theory, there is a subgroup H of G such

that M is the fixed field of H. Now, by Frobenius reciprocity, there are non-negative

integers ai’s such that

IndGH 1H = 1G +
∑
i

aiχi,
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where 1H and 1G denote the trivial characters of H and G, respectively, and χi’s are

non-trivial irreducible characters of G. By the induction-invariance property of Artin

L-functions and the above expression of IndGH 1H , one can deduce that

L(s, 1H , K/K
H) = L(s, 1G, K/k)

∏
i

L(s, χi, K/k)ai .

Since ζM(s) = L(s, 1H , K/K
H), ζk(s) = L(s, 1G, K/k), and all ai’s are non-negative

integers, Dedekind’s conjecture follows from Artin’s conjecture.

Now let us put our attention to infinite places of number fields. Firstly, let k be a

number field. We recall that a real embedding of k is an injective field homomorphism

from k to R and that a complex embedding of k is an injective field homomorphism

from k to C whose image is not contained in R. Dirichlet’s unit theorem tells us that

the rank of the group of units in Ok is r = r1 + r2 − 1, where

[k : Q] = r1 + 2r2,

r1 is the number of real embeddings k and 2r2 is the number of complex embeddings

of k. When r2 = 0, k is said to be totally real. For a real embedding (resp., a

complex embedding) v of k, v is often called a real infinite place (resp., a complex

infinite place) of k. We further recall that the discriminant of k is the square of the

determinant of the n by n matrix whose (i, j)-entry is σi(bj), where n is the degree

of k, {b1, · · · , bn} is an integral basis of Ok, and σ1, · · · , σn are embeddings of k.

To end this section, let us define the (global) Artin conductor (of χ with underlying

space V ). Let p be a prime of k and P be a prime of K above p. We let Gi denote

the subgroup consisting of all σ of G acting trivially on OK/Pi+1. The group Gi is



3.1. GALOIS REPRESENTATIONS AND L-FUNCTIONS 32

called the i-th ramification group. These higher ramification groups form a decreasing

filtration

G ⊇ G0 ⊇ G1 ⊇ · · · .

Furthermore, it can be shown that there exists N such that Gi is trivial for every

i ≥ N . Thus, we can define

n(χ, p) =
∞∑
i=0

|Gi|
|G0|

codimV Gi ,

which is, in fact, a finite sum. Furthermore, Artin proved that n(χ, p) is an integer.

Moreover, for p unramified, n(χ, p) = 0. Thus, the following product

f(χ) =
∏
p

pn(χ,p),

where the product is over all primes of k, is a (well-defined) ideal of Ok, called the

Artin conductor of χ. From this, it is not hard to see that for any characters χ1 and

χ2 of G, one has

f(χ1 + χ2) = f(χ1)f(χ2).

3.1.2 The Chebotarev Density Theorem

Throughout this section, we make use of some standard notations. We write f � g

or, equivalently, f = O(g) if there is a constant M such that |f(x)| ≤ Mg(x) for all

x sufficiently large. Also, we write f ∼ g if f(x)/g(x) → 1 as x → ∞. We remark

that all implied constants of estimates presented in this section are absolute.

As before, K/k denotes a Galois extension of number fields with Galois group

G. For every unramified prime ideal p in Ok, σp denotes the Artin symbol at p. The
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Chebotarev density theorem essentially tells that the Artin symbols are equidistributed

in the set of conjugacy classes of G. More precisely, the Chebotarev density theorem

states the following.

Theorem 3.4 (Chebotarev Density Theorem). Let C be a subset of G stable under

conjugation and denote πC(x) = #{p | p is unramified with Np ≤ x and σp ⊆ C}.

Then

πC(x) ∼ |C|
|G|

πk(x),

as x→∞, where πk(x) = #{p | p is unramified with Np ≤ x}.

Practically, one needs to know an effective version of the Chebotarev density

theorem with error terms for studying problems from number theory. There are three

versions: an unconditional version, a version assuming GRH, the generalised Riemann

hypothesis asserting that the Dedekind zeta function is non-zero for <(s) 6= 1
2

and

0 < <(s) < 1, and a version assuming GRH and Artin’s conjecture where the first

two are covered in the fundamental paper [40] of Lagarias and Odlyzko, and the last

one is due to M. R. Murty, V. K. Murty, and Saradha [48].

In the following theorems and corollaries, nk = [k : Q] is the degree of k over

Q and n = [K : k] is the degree of K over k. Let dk and dK denote the absolute

discriminants of k/Q and K/Q, respectively. Let P (K/k) denote the set of rational

primes p for which there is p of k with p|p and p is ramified in K. We then set

M(K/k) = nd
1
nk
k

∏
p∈P (K/k)

p.

Let f(χ) denote the Artin conductor of a character χ of G = Gal(K/k), and let

Aχ = d
χ(1)
k N f(χ) denote the conductor of χ. The offset logarithmic integral function
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is defined as

Lix =

∫ x

2

dt

log t

for real variables x > 2.

To obtain a sharp error term for the Chebotarev density theorem, M. R. Murty,

V. K. Murty, and Saradha [48] first derived the two estimates stated below.

Proposition 3.5. For each unramified prime p of k, let σp denote the Artin symbol

at p. Let χ be a character of G and let π(x, χ) =
∑

Np≤x χ(σp) where the sum is over

unramified primes p of k. Let δ(χ) denote the multiplicity of the trivial character

in χ. Suppose that the Artin L-function L(s, χ) is holomorphic for all s 6= 1 and is

non-zero for <(s) 6= 1
2

and 0 < <(s) < 1. Then

π(x, χ) = δ(χ) Lix+O
(
x

1
2 (logAχ + χ(1)nk log x)

)
+O (χ(1)nk logM(K/k)) .

Lemma 3.6. Let χ be an irreducible character of G. Then

logN f(χ) ≤ 2χ(1)nk

 ∑
p∈P (K/k)

log p+ log n

 .

From these estimates, M. R. Murty, V. K. Murty, and Saradha derived an effective

version of the Chebotarev density theorem as follows.

Theorem 3.7. Suppose that all Artin L-functions attached to all irreducible char-

acters of G = Gal(K/k) are holomorphic at s 6= 1, and that GRH holds for ζK(s).

Then ∑
C

1

|C|

∣∣∣∣πC(x)− |C|
|G|

Lix

∣∣∣∣2 � xn2
k log2

(
M(K/k)x

)
,

where the sum on the left runs over conjugacy classes C of G.
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We note that as mentioned above, effective versions of the Chebotarev density

theorem with explicit error terms were first established by Lagarias and Odlyzko in

[40]. If the generalised Riemann hypothesis for the Dedekind zeta function ζK(s) is

assumed, Serre [58] further showed that

πC(x) =
|C|
|G|

Lix+O

(
|C|
|G|

x
1
2 (log dK + nK log x)

)
, (3.1)

where the big-O symbol is absolute. We also remark that there are unconditional

versions, and refer the reader to [40] and [58].

Now by Theorem 3.7, one has

πC(x) =
|C|
|G|

Lix+O(|C|
1
2x

1
2nk logM(K/k)x). (3.2)

On the other hand, if one writes the error term in (3.1) as

O

(
|C|x

1
2nk

(
log dK
nK

+ log x

))
,

one can see that (3.2) is a better estimate as the factor |C| in (3.1) is now replaced

by |C| 12 . These estimates are more versatile for many applications such as Artin’s

primitive root conjecture and the Lang-Trotter conjecture on Fourier coefficients of

modular forms (cf. [48]).

3.1.3 Classical Heilbronn Characters

To study Artin’s conjecture, Heilbronn introduced an innovative method. We now

describe this.
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As before, let K/k be a Galois extension of number fields with Galois group G,

and fix s0 ∈ C. The Heilbronn character ΘG (with respect to s = s0) is defined by

ΘG =
∑

χ∈Irr(G)

n(G,χ)χ,

where n(G,χ) = ords=s0 L(s, χ,K/k). One can see that the Heilbronn character

might not be a character, and the Heilbronn character is a character or identically

equal to zero if and only if Artin’s conjecture is locally valid at s = s0. By the

works of Heilbronn-Stark (see Lemma 3.8 below), Foote-V. K. Murty [19], and M. R.

Murty-Raghuram [49], one has the following collection of results connecting the zeros

and poles of Artin L-functions and the Dedekind zeta functions.

Lemma 3.8 (Heilbronn-Stark Lemma). For any subgroup H of G,

ΘG|H = ΘH .

Theorem 3.9. ∑
χ∈Irr(G)

n(G,χ)2 ≤ (ords=s0 ζK(s))2 .

In addition, if G is solvable and χ′ is a character of G of degree one, then

∑
χ 6=χ′

n(G,χ)2 ≤
(

ords=s0
ζK(s)

L(s, χ′, K/k)

)2

.

In particular, ∑
χ 6=1G

n(G,χ)2 ≤
(

ords=s0
ζK(s)

ζk(s)

)2

,

where 1G is the trivial character of G.



3.1. GALOIS REPRESENTATIONS AND L-FUNCTIONS 37

Notice that these results imply that the zeros and poles (if any) of any Artin L-

function are contained in the set of zeros of the Dedekind zeta function. In particular,

applying the above theorem, one can easily see that all Artin L-functions are non-

vanishing and holomorphic at s = s0 if ords=s0 ζK(s) = 0. Moreover, in the case

that the Dedekind zeta function has a simple zero at s = s0, Stark [62] obtained the

following holomorphy result.

Proposition 3.10. If ords=s0 ζK(s) = 1, then all Artin L-functions attached to irre-

ducible characters of G are holomorphic at s = s0.

3.1.4 Elliptic Curves and their L-Functions

Let k be a number field and E an elliptic curve defined over k. We recall that E is

said to have good reduction at a finite place, i.e., a prime, v of k if E (mod v) is still

an elliptic curve. For every good reduction v of E, we let

Nv + 1− av

represent the number of points of E (mod v), where Nv stands for the absolute norm

of v. The L-function L(s, E, k) of E/k is defined as an Euler product:

L(s, E, k) =
∏
v

Lv(s, E, k),

where the product is over all finite places of k. Moreover, for good reduction v of E,

Lv(s, E, k) = (1− avNv−s +Nv1−2s)−1.



3.1. GALOIS REPRESENTATIONS AND L-FUNCTIONS 38

For every finite extension F/k, E can be seen as an elliptic curve defined over F .

Let E/F [n] denote the set of n-torsion points of E/F . By the work of Serre and Tate

(cf. [55, 56]), one can associate a compatible system of `-adic representations to E

over F , i.e., for each prime `,

ρF := ρ`,F : Gal(k/F )→ Aut(T`(E,F )),

where T`(E,F ) denotes the (`-adic) Tate module of E/F , i.e., the inverse limit

T`(E,F ) = lim←−E/F [`n].

Furthermore, the L-function L(s, E, F ) of E/F is given by this family of `-adic rep-

resentations of E over F (see [55, 56] for details). Since T`(E,F ) = T`(E, k) as

Gal(k/F )-modules, ρF is the restriction of ρk, which implies that

L(s, ρF ) = L(s, ρk|Gal(k/F )).

Now let us fix a Galois extension K/k and consider the m-th symmetric power of ρk.

An analogous argument tells us that

(Symm ρk)|Gal(k/F ) = Symm ρF

for every intermediate field F of K/k. But

Ind
Gal(k/k)

Gal(k/F )

(
(Symm ρk)|Gal(k/F )

)
= Symm ρk ⊗ Ind

Gal(k/k)

Gal(k/F )
1.



3.1. GALOIS REPRESENTATIONS AND L-FUNCTIONS 39

Putting everything together, we finally obtain

L(s, Symm ρF ) = L(s, (Symm ρk)|Gal(k/F ))

= L(s, Symm ρk ⊗ IndGHF 1),

(3.3)

where HF is a subgroup of G such that KHF = F . We remark that if F = K, then HF

is the trivial group and the above formula, i.e., Equation (3.3), gives the Artin-Takagi

decomposition for L-functions associated to elliptic curves.

3.1.5 Hecke L-Functions

Let k be a number field and m a non-zero integral ideal of k. One defines the subgroup

Im (resp., Pm) of the group I of fractional ideals in k (resp., the group P of principal

ideals in k) by

Im = {a ∈ I | (a,m) = 1},

Pm = {a = (α) ∈ P ∩ Im | α ≡ 1 (mod m)}.

One can show that Pm is normal in Im, and that the quotient group Hm = Im/Pm is

a finite abelian group, called the ray-class group modulo m.

Let ω∞ : Q×\k× → C× be a (unitary) character such that Um ⊆ Kerω∞, where

Um denotes the group of units in Pm. Then, ω∞ induces a homomorphism

ω∞ : Pm → C×.

From this, one can define a Hecke character of weight ω∞ for m as a homomorphism

χ : Im → C×,
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which is (unitary) such that χ((α)) = ω∞(α) if a = (α) ∈ Pm, and is extended to I by

setting χ(a) = 0 if (a,m) 6= 1. We then come to the definition of Hecke L-functions

as follows. The Hecke L-function of a Hecke character χ is defined as

L(s, χ) =
∑
a

χ(a)

Nas
=
∏
p

(1− χ(p)Np−s)−1,

where the sum is over all non-zero integral ideals and the product runs over all prime

ideals.

As a simple example, for k = Q, one can only have ω∞ = 1 and m = (m) for some

(unique) m ≥ 1. Hence, the Hecke characters (resp., Hecke L-functions) modulo m

are exactly Dirichlet characters (resp., Dirichlet L-functions) modulo m.

3.1.6 Artin-Hecke L-Functions and CM-Elliptic Curves

We now recall the concept of Artin-Hecke L-functions developed by Weil [70].

Definition 3.1. Let K/k be a Galois extension of number fields with Galois group G.

Let ψ be a Hecke character of k and ρ be a complex representation of G with underlying

vector space V . The Artin-Hecke L-function attached to ψ and ρ is defined by

L(s, ψ ⊗ ρ,K/k) =
∏
p

det(1− ψ(p)ρ |V
IP

(σP)Np−s)−1,

where the product runs over prime ideals in Ok, P denotes a prime ideal above p, IP

is the inertia subgroup at P, and V IP = {v ∈ V | ρ(g)v = v for all g ∈ IP}. Usually

we write L(s, ψ ⊗ χ,K/k) for L(s, ψ ⊗ ρ,K/k) where χ = tr ρ.

We remark that for every 1-dimensional character χ of G, the Artin-Hecke L-

function L(s, ψ ⊗ χ,K/k) extends to a meromorphic function over C with only a
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possible pole at s = 1 since the corresponding L-function is a Hecke L-function.

Moreover, Weil proved each of these L-functions L(s, ψ⊗ ρ,K/k) extends to a mero-

morphic function on C by showing the following lemma and applying the Brauer

induction theorem.

Lemma 3.11. For any characters χ1 and χ2 of G and every character φ of H, we

have

1. L(s, ψ ⊗ (χ1 + χ2), K/k) = L(s, ψ ⊗ χ1, K/k)L(s, ψ ⊗ χ2, K/k), and

2. L(s, ψ ⊗ IndGH φ,K/k) = L(s, ψ ◦NKH/k ⊗ φ,K/KH), where KH is the subfield of

K fixed by H and NKH/k is the usual norm of KH/k.

We also recall two important facts from the theory of elliptic curves.

Theorem 3.12. Let E be an elliptic curve defined over k. Suppose that E has CM by

an order in an imaginary quadratic field F . If F ⊆ k, then the L-function L(s, E, k)

of E is the product of two Hecke L-functions of k. If F * k, then L(s, E, k) is equal

to a Hecke L-function of kF which is a quadratic extension of k.

This result is due to Deuring [15]. From this theorem, M. R. Murty and V.

K. Murty [46, Lemma 2] showed the following result, which was proved earlier by

Shimura for CM-elliptic curves over Q by using Weil’s converse theorem.

Theorem 3.13. The generalised Taniyama-Shimura conjecture is valid for all CM-

elliptic curves defined over k. In other words, every L-function of a CM-elliptic curve

can be written in terms of Hecke L-functions.
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3.2 Automorphic Representations and the Langlands Reciprocity Con-

jecture

Let k be a number field. Denote the completion of k at finite v by kv. Also, if v is

real (resp., complex), then we set kv = R (resp., kv = C). The adèle ring Ak of k

is the restricted direct product
∏′

v kv over all places v of k with respect to {Okv},

where Okv stands for the ring of v-adic integers. For any algebraic group G over k,

it can be shown that G(Ak) is the restricted direct product
∏′

v G(kv) with respect to

{G(Okv)}.

We begin by discussing L-functions attached to automorphic representations of

GLn. Our discussion is bound to be incomplete, so we refer the serious reader to [9]

for details. When G = GLn, one can show that the L-group of G is LG = LG0 ×Wk

where LG0 is the connected component of LG and equal to GLn(C), and Wk is the

Weil group of k. We recall that all upper-triangular matrices of G form a subgroup,

which is called the Borel subgroup and often denoted by B. Also, if kv is R (resp., C),

then the maximal compact subgroup Kv of G(kv) is O(n) (resp., U(n)); otherwise,

for any finite place v, Kv = GLn(Okv).

Now let us fix a character ω of k×\GL1(Ak), which is often called a Grossen-

character, and consider the Hilbert space L2(G(k)\G(Ak), ω). For the right regular

representation R of G(Ak) on L2(G(k)\G(Ak), ω), one has

(R(g)f)(x) = f(xg)
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for any f ∈ L2(G(k)\G(Ak), ω) and x, g ∈ G(Ak). This is a unitary representa-

tion of G(Ak). From this, we define an automorphic representation to be an ir-

reducible unitary subrepresentation of the right regular representation R of G(Ak)

on L2(G(k)\G(Ak), ω). Similarly, a cuspidal automorphic representation is an ir-

reducible unitary subrepresentation of the right regular representation of G(Ak) on

L2
0(G(k)\G(Ak), ω), where L2

0(G(k)\G(Ak), ω) stands for the subspace of cusp forms

of L2(G(k)\G(Ak), ω). Moreover, a representation of G(Ak) is said to be admissi-

ble if its restriction to the maximal compact subgroup, K =
∏

vKv, contains each

irreducible representation of K with only finite multiplicity.

For any automorphic representation π of G(Ak), it has been shown that π can

be written as a restricted tensor product ⊗′vπv, where for each place v, πv is an

irreducible admissible representation of GLn(kv) such that for all but finitely many v,

πv is unramified, namely, the restriction of πv to Kv contains the trivial representation.

A place v will be called unramified (for π) if πv is; otherwise, v is said to be ramified.

It is known that for v unramified, πv is induced from the Borel subgroup B(kv) of

some tensor product µ1 ⊗ · · · ⊗ µn, where each µi is an unramified character of k×v .

For v finite, we let ω be a generator for the maximal prime ideal of kv (which is called

the uniformiser for kv). From this, we can further associate the semisimple conjugacy

class A(πv) in LG0 to any unramified v, where

A(πv) = diag(µ1(ω), · · · , µn(ω)).

We note that the eigenvalues of A(πv) are called the Satake parameters of πv.
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Now we define the (incomplete) automorphic L-function attached to π by

L(s, π) =
∏
v

L(s, πv),

where the product runs over all finite places of k and for v unramified,

L(s, πv) = det(I − A(πv)Nv
−s)−1.

We remark that it is possible to define the complete automorphic L-function attached

π and write down the precise description of L(s, πv) for ramified v (cf. [21, 30]). More-

over, by the work of Godement and Jacquet, we know that for every automorphic

representation π of GLn(Ak), L(s, π) converges on some right half-plane and can be

extended to a meromorphic function over C. Moreover, if π is non-trivial and cuspi-

dal, then L(s, π) is entire. On the other hand, for any automorphic representations π1

and π2 of GLn(Ak) and GLm(Ak), respectively, by the theory of Rankin-Selberg con-

volutions developed by many authors, one can define the Rankin-Selberg L-function

as

L(s, π1 × π2) =
∏
v

L(s, π1,v × π2,v),

where for v unramified, the local L-function is defined by

L(s, π1,v × π2,v) = det(I − A(π1,v)⊗ A(π2,v)Nv
−s)−1.

Via Rankin-Selberg convolutions, Jacquet and Shalika [33] showed that the L-function

L(s, π1×π2) converges absolutely for <(s) > 1. Moreover, they proved the following.

Theorem 3.14. Let π1 and π2 be cuspidal. Then the Rankin-Selberg L-function
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L(s, π1 × π2) has a simple pole at s = 1 if and only π2 ' π̌1, where π̌1 denotes the

contragredient of π1.

Now we state the Langlands reciprocity conjecture, which sometimes is also called

the strong Artin conjecture.

Conjecture 3.15. For every Galois representation ρ : Gal(K/k) → GLn(C), there

exists an automorphic representation π of GLn(Ak) such that

Lv(s, ρ,K/k) = L(s, πv)

for all but finitely many finite places v of k.

If such a π exists, then ρ is said to be of automorphic type (or automorphic for

short), ρ is associated to π, or ρ corresponds to π; and we will write ρ! π.

We remark that as a consequence of the above theory, primarily, the result of

Godement and Jacquet, Artin’s conjecture follows from the Langlands reciprocity

conjecture. Also, if Langlands reciprocity holds for characters χ1 and χ2 of G, then

Artin’s conjecture is valid for the Artin L-function L(s, χ1 ⊗ χ2, K/k). Furthermore,

a result of Jacquet and Shalika (cf. [33, Theorem 4.7]) asserts that if χ ∈ Irr(G) is

associated to an automorphic representation π of GLn(Ak), then π must be cuspidal.

3.3 Automorphy and Functoriality Results

3.3.1 Some Known Cases of Langlands Reciprocity

We first remark that by the works of Artin, Hecke, Iwasawa, and Tate, the Langlands

conjecture for GL(1) is precisely Artin reciprocity. The next big step was taken by
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Langlands [37] and Tunnell [66] who proved the Langlands reciprocity conjecture for

all irreducible 2-dimensional Galois representations with finite solvable image. Thus,

by extracting the works of Artin and Langlands-Tunnell, one has

Theorem 3.16. If a character χ of a solvable group G is of degree at most 2, then

χ is of automorphic type.

More recently, Khare and Wintenberger [34] proved Serre’s modularity conjec-

ture and then deduced Langlands reciprocity for any odd irreducible 2-dimensional

representation over Q with non-solvable image.

We recall that a C-representation (ρ, V ) of a group G is said to be of GO(n)-type

if dimV = n and it factors as

ρ : G→ GOn(C) ⊂ GL(V ).

In his paper [54], Ramakrishnan derived the automorphy of solvable Artin represen-

tations of GO(4)-type as follows.

Theorem 3.17. Let K/k be a Galois extension of number fields and ρ be a 4-

dimensional representation of G whose image is solvable and lies in GO4(C). Then

ρ is automorphic.

One also has the following results concerning symplectic Galois representations

and hypertetrahedral Galois representations due to Martin [41, 42].

Theorem 3.18. Let K/k be a Galois extension of number fields and ρ be an irre-

ducible 4-dimensional representation of G = Gal(K/k) into GSp4(C). If the projec-

tive image G of ρ (in PGL4(C)) is isomorphic to E24 o C5, then ρ is automorphic.
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Theorem 3.19. Let K/k be a Galois extension of number fields and ρ be an irre-

ducible 4-dimensional representation of G = Gal(K/k). Suppose G is an extension

of A4 by V4. Then ρ is automorphic.

As remarked by Martin, the case where G = V4oA4 yields examples of irreducible

monomial 4-dimensional representations of GO(4)-type, which can also be shown to

be automorphic by Theorem 3.17.

3.3.2 Base Change and Automorphic Induction

A key ingredient in the proof of the Langlands theorem on the automorphy of certain

2-dimensional Galois representations is the (normal) cyclic base change forGL2, which

has been generalised to GLn by Arthur and Clozel [2] (à la Langlands) as follows.

Theorem 3.20. Let K/k be a Galois extension of prime degree. Then for every

(isobaric) representation π of GLn(Ak), there exists a unique (isobaric) automorphic

representation π|K of GLn(AK), called the base change of π to K, such that

1. a cuspidal representation Π of GLn(AK) is the base change πK of π if and only if

Π is Galois invariant (in particular, if Π is associated to ρ|K for some Galois

representation ρ over k);

2. for any (isobaric) π′ over k, π′K = πK if and only if π′ = π ⊗ χ for some idèle

class character χ of k;

3. for every Galois representation ρ over k associated to π, one has ρ|K ! π|K; and

4. if χ is an idèle class character of k, then (π ⊗ χ)|K = π|K ⊗ χ|K.
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Moreover, Arthur and Clozel [2] derived the adjoint map to base change, called

automorphic induction, which corresponds to induction for Galois representations as

stated in the following theorem.

Theorem 3.21. Let K/k be a Galois extension of number fields of prime degree p,

and Π denote an automorphic representation induced from cuspidal of GLn(AK) (or,

in particular, a cuspidal automorphic representation of GLn(AK)). Then there is an

automorphic representation I(Π) of GLnp(Ak), called the automorphic induction of

Π, such that L(s,Π) = L(s, I(Π)); and I(Π) is also induced from cuspidal. Moreover,

if ρ is a Galois representation corresponding to Π, then Ind
Gal(k/k)

Gal(k/K)
ρ! I(Π).

Furthermore, one has a result of Jacquet [31].

Lemma 3.22. Let K/k be a Galois extension of number fields of prime degree.

Let π and σ be two cuspidal unitary automorphic representations of GLn(Ak) and

GLm(AK), respectively. Then the Rankin-Selberg L-functions satisfy the following

formal identity:

L(s, B(π)⊗ σ) = L(s, π ⊗ I(σ)).

For non-normal extensions, one has a theorem due to Jacquet, Piatetski-Shapiro,

and Shalika [32] below.

Theorem 3.23. Let K/k be a non-normal cubic extension of number fields. Let χ be

an idèle class character of K and π an automorphic representation of GL2(Ak). Then

the automorphic induction I(χ) of χ and the base change π|K exist as automorphic

representations of GL3(Ak) and GL2(AK), respectively.

Thus, by Theorems 3.21 and 3.23, all monomial characters of degree 3 are of

automorphic type.
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3.3.3 Tensor Products and Symmetric and Exterior Powers

In light of the Langlands reciprocity conjecture and the fact that the tensor prod-

uct of any two Galois representations is still a Galois representation, the principle

of functoriality asserts that the Rankin-Selberg convolutions π1 × π2 of any cuspi-

dal representations π1 and π2 of GLn(Ak) and GLm(Ak), respectively, is in fact an

automorphic representation of GLnm(Ak), denoted by π1 ⊗ π2. In particular, if each

Galois representation ρi is associated to πi, then ρ1 ⊗ ρ2 ! π1 ⊗ π2. When m = 1,

this is known since for π1 automorphic, any “twist” π1 ⊗ χ is also automorphic for

any (unitary) character χ of k×\A×k ; and the functoriality was recently established

for GL(2)×GL(2) by Ramakrishnan [53] and GL(2)×GL(3) by Kim-Shahidi [36].

In a slightly different vein, consider a representation ρ : Gal(K/k)→ GLn(C) and

a symmetric or exterior power lifting r : GLn(C) → GLm(C). For v unramified, the

local L-function attached to r(ρ) is defined as

Lv(s, r(ρ)) = det(I − r(ρ(σv))Nv
−s)−1.

Similarly, for every automorphic representation π of GLn(Ak), one can define the

local automorphic L-function at (finite) unramified v as

Lv(s, π, r) = det(I − r(A(πv))Nv
−s)−1.

Again, inspired by the properties of Galois representations, the principle of func-

toriality conjectures that there should exist an automorphic representation r(π) of

GLm(Ak) such that L(s, r(π)v) = Lv(s, π, r) for all unramified v. In particular, if ρ

is a Galois representation corresponding to π, then r(ρ) ! r(π). For n = 2, Sym2,
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Sym3, and Sym4 have been shown to be functorial by Gelbart-Jacquet, Kim-Shahidi,

and Kim, respectively. Also, Kim showed that ∧2 : GL4 → GL6 is functorial. (In

fact, Kim proved that ∧2(π) equals an automorphic representation of GL6(Ak) at all

places, except possibly those above 2 and 3, and Henniart indicated how one can

derive equality at the remaining places in a letter to Kim and Shahidi.)

3.3.4 Applications to the Langlands Reciprocity Conjecture

Applying the functoriality mentioned above and the works of Artin, Langlands, and

many others, one knows that the Langlands reciprocity conjecture holds in the fol-

lowing cases.

1. the direct sum of (Galois) representations of automorphic type;

2. the induction of a representation of automorphic type from a subnormal subgroup

of a solvable group;

3. the induction of a 1-dimensional representation from a subgroup of index 3;

4. Symm ρ for 2-dimensional automorphic ρ, where m ≤ 4;

5. ∧2ρ for 4-dimensional automorphic ρ;

6. the tensor product of two representations of automorphic type whose dimensions

are 2 and 2, or 2 and 3;

7. any abelian twist of a representation of automorphic type;

8. representations of dimension at most 2 with (finite) solvable image;

9. the Asai lift of any 2-dimensional representation of automorphic type;
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10. representations of GO(4)-type with solvable image;

11. 4-dimensional representations with projective image isomorphic to E24 o C5 or

an extension of A4 by V4;

12. representations with (finite) nilpotent images; and

13. odd 2-dimensional icosahedral representations over Q.

We note that the first seven cases are straightforward applications of the functo-

riality results discussed in the preceding sections. On the other hand, although the

second instance is well-known by experts, we still give a proof below as it will play a

crucial role in helping us to study conjectures of Artin and Langlands later.

Proof of Case 2. We now consider a character χ of G = Gal(K/k) which is induced

from an irreducible character ψ of a subnormal subgroup H of G. Assume, further,

that G is solvable and that ψ is automorphic over the fixed field KH , i.e., there is a

cuspidal automorphic representation Π of GLψ(1)(AKH ) such that

L(s, ψ,K/KH) = L(s,Π).

Since H is a subnormal subgroup of G, there is an invariant series

H = H0 E H1 E · · · E Hm−1 E Hm = G,

where for each i, Hi is a normal subgroup of Hi+1. As G is finite, we may require

each Hi+1/Hi is a finite simple group. Since G is solvable, each quotient group must

be cyclic. Thus, each Hi+1/Hi is a cyclic group of prime order, and one has a tower
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of Galois extensions of prime degree

K ⊃ KH1 ⊃ · · · ⊃ KHm−1 ⊃ k.

Now applying the Arthur-Clozel theorem of automorphic induction successively, one

can derive that IndGH ψ corresponds to an automorphic representation over k. In other

words, Langlands reciprocity holds for χ. Moreover, if χ is irreducible, the earlier-

mentioned result of Jacquet and Shalika asserts that π is necessarily cuspidal.

The eighth case is the celebrated Artin reciprocity and the Langlands-Tunnell

theorem (we will often refer to these celebrated results as the Artin-Langlands-Tunnell

theorem), and the eleventh case is due to Martin. We remark that the proofs of

the results of Langlands-Tunnell and Martin profoundly rely on the functoriality of

base change and symmetric/exterior powers. The ninth and tenth cases are due to

Ramakrishnan. The twelfth case is a theorem of Arthur-Clozel who utilised Artin

reciprocity, their theory of automorphic induction, and the fact that all subgroups of

a nilpotent group are subnormal. The last case follows from Khare-Wintenberger’s

proof of Serre’s modularity conjecture.

3.3.5 Potential Automorphy

In his paper [65], Taylor proved the potential automorphy for certain symmetric power

L-functions of non-CM elliptic curves and then deduced the Sato-Tate conjecture (over

totally real fields). As remarked in [65], Taylor was building on his earlier work [13]

and [22] with Clozel, Harris, and Shepherd-Barron (we note that [22] was cited as

“Ihara’s lemma and potential automorphy” in [65]). More recently, Barnet-Lamb,
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Geraghty, Harris, and Taylor [4] proved the potential automorphy for symmetric

power L-functions in a more general setting.

We recall that the main theorem of Taylor et al. is: let k be a totally real field

and E/k a non-CM elliptic curve. Then for any finite set S of natural numbers, there

is a (finite) totally real Galois extension L/k such that for every m ∈ S, Symm ρk is

automorphic over L, i.e., (Symm ρk)|L is automorphic.

From now on, we fix a finite set S of natural numbers and let L be a totally real

Galois extension L/k such that for every m ∈ S, Symm ρk is automorphic over L. We

now recall two key steps of the proof of the Sato-Tate conjecture.

Theorem 3.24. For any intermediate field F of L/k with L/F solvable,

(Symm ρk)|F

is automorphic.

This is proved in [22] by Harris, Shepherd-Barron, and Taylor. The proof essen-

tially applies the Arthur-Clozel theorem of base change and the fact that (Symm ρk)|L

is Galois-invariant. Moreover, from Theorem 3.24, Artin reciprocity, and the Brauer

induction theorem, Taylor et al. showed the following.

Theorem 3.25. L(s, Symm ρk) extends to a meromorphic function over C.
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Chapter 4

Applications of Supercharacter Theory

4.1 Super Heilbronn Characters

Via the theory of supercharacters and superinduction discussed in Section 2.3, one

can generalise the classical Heilbronn character as follows.

Definition 4.1 (Super Heilbronn Characters). Let K/k be a Galois extension of

number fields with Galois group G. Let H be a subgroup of G. Let G and H be

compatible, Sup(G) be the set of all supercharacters of G, and Sup(H) be the set of

all supercharacters of H. Assume that the restriction σ|H of any supercharacter σ of

G to H is an integral combination of supercharacters of H. Then the super Heilbronn

character ΘH (with respect to s = s0) is defined by

ΘH =
∑

τ∈Sup(H)

n(H, τ)
τ

τ(1)
,

where n(H, τ) = 1
m

ords=s0 L(s,m SIndGH τ,K/k), and m = lcm(σ(1) : σ ∈ Sup(G)).

One might ask why there are extra m and 1
m

for each n(H, τ), and why one needs

to normalise supercharacters appearing in ΘH . First of all, since the superinduction
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SIndGH τ of a supercharacter τ of H might be a rational combination of supercharacters

of G, SIndGH τ might be a rational combination of irreducible characters of G. But

it is more natural to consider Artin L-functions attached to characters. Thus, we

use m SIndGH τ , which is actually a character, instead of SIndGH τ . However, if one

considers the improper subgroup H of G, i.e., H = G, equipped with the same

supercharacter theory, then the superinduction from H to G is the identity map, i.e,

for any supercharacter σ of H = G, SIndGH σ = σ. So

n(G, σ) =
1

m
ords=s0 L(s,mσ,K/k) = ords=s0 L(s, σ,K/k),

which coincides with the classical definition.

Secondly, when one regards the classical theory as a supercharacter theory, one is,

in fact, considering Sup(G) = {σ = χ(1)χ | χ ∈ Irr(G)} instead of Irr(G). Therefore,

from the definition of super Heilbronn characters, one has

ΘG =
∑

σ∈Sup(G)

n(G, σ)
σ

σ(1)

=
∑

σ∈Sup(G)

ords=s0 L(s, σ,K/k)
σ

σ(1)

=
∑

χ∈Irr(G)

ords=s0 L(s, χ(1)χ,K/k)
χ(1)χ

χ2(1)

=
∑

χ∈Irr(G)

n(G,χ)χ,

which gives the classical Heilbronn character.

To demonstrate that Artin L-functions attached to supercharacters enjoy similar

properties of Artin L-functions attached to irreducible characters, we present the
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following result that generalises the previous works of Heilbronn and others in the

context of supercharacters.

Proposition 4.1. Let K/k be a Galois extension of number fields with Galois group

G. One has ∑
σ∈Sup(G)

n(G, σ)2

σ(1)
≤ (ords=s0 ζK(s))2 ,

where ζK(s) is the Dedekind zeta function of K. In addition, if G is solvable and χ

is a supercharacter of G of degree one, then

∑
σ 6=χ

n(G, σ)2

σ(1)
≤
(

ords=s0
ζK(s)

L(s, χ,K/k)

)2

.

In particular, ∑
σ 6=1G

n(G, σ)2

σ(1)
≤
(

ords=s0
ζK(s)

ζk(s)

)2

,

where 1G denotes the trivial character of G.

Proof. For every σ ∈ Sup(G), one can write σ as

σ =
∑

χ∈Irr(G,σ)

χ(1)χ,

where Irr(G, σ) is the set of irreducible characters of G appearing in σ. Then

ords=s0 L(s, σ,K/k) = ords=s0 L

s, ∑
χ∈Irr(G,σ)

χ(1)χ,K/k


=

∑
χ∈Irr(G,σ)

χ(1)ords=s0 L(s, χ,K/k),
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which together with the Cauchy-Schwarz inequality implies that

n(G, σ)2 = (ords=s0 L(s, σ,K/k))2 =

 ∑
χ∈Irr(G,σ)

χ(1)ords=s0 L(s, χ,K/k)

2

≤
∑

χ∈Irr(G,σ)

χ2(1)
∑

χ∈Irr(G,σ)

(ords=s0 L(s, χ,K/k))2

= σ(1)
∑

χ∈Irr(G,σ)

(ords=s0 L(s, χ,K/k))2.

Since Irr(G) =
∐

σ∈Sup(G) Irr(G, σ) is a disjoint union of all Irr(G, σ)’s,

∑
σ∈Sup(G)

n(G, σ)2

σ(1)
≤

∑
σ∈Sup(G)

σ(1)
∑

χ∈Irr(G,σ) (ords=s0 L(s, χ,K/k))2

σ(1)

=
∑

χ∈Irr(G)

(ords=s0 L(s, χ,K/k))2

≤ (ords=s0 ζK(s))2,

where the last inequality holds thanks to Theorem 3.9. Since any supercharacter χ′ of

G of degree one is exactly a 1-dimensional irreducible character of G, by an analogous

argument, one has

∑
σ 6=χ′

n(G, σ)2

σ(1)
≤
∑
σ 6=χ′

σ(1)
∑

χ∈Irr(G,σ) (ords=s0 L(s, χ,K/k))2

σ(1)

=
∑

χ∈Irr(G)\{χ′}

(ords=s0 L(s, χ,K/k))2

≤
(

ords=s0
ζK(s)

L(s, χ′, K/k)

)2

,

where the last inequality is due to Theorem 3.9. The final part of the theorem can

be obtained by taking χ′ = 1G, the trivial character of G.
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We also have the following Heilbronn-Stark lemma for super Heilbronn characters.

Lemma 4.2. Under the same assumption as before, one has ΘG|H = ΘH for any

subgroup H of G.

Proof. By super Frobenius reciprocity, one has

ΘG|H =
∑

σ∈Sup(G)

n(G, σ)

σ(1)
σ|H

=
∑

σ∈Sup(G)

m

m

n(G, σ)

σ(1)
σ|H

=
1

m

∑
σ∈Sup(G)

m
n(G, σ)

σ(1)

∑
τ∈Sup(H)

(τ, σ|H)H
τ

(τ, τ)H

=
1

m

∑
τ∈Sup(H)

 ∑
σ∈Sup(G)

mn(G, σ)

σ(1)
(SIndGH τ, σ)G

 τ

τ(1)
,

where m = lcm{σ(1) : σ ∈ Sup(G)}. Since the restriction σ|H of any supercharacter

σ of G to H is an integral combination of supercharacters of H, (SIndGH τ, σ) is an

integer for any supercharacter τ of H and any supercharacter σ of G. Now, we have

∑
σ∈Sup(G)

mn(G, σ)

σ(1)
(SIndGH τ, σ)G = ords=s0 L

s, ∑
σ∈Sup(G)

m(SIndGH τ, σ)G
σ(1)

σ,K/k


= ords=s0 L

s, ∑
σ∈Sup(G)

m(SIndGH τ, σ)G
(σ, σ)

σ,K/k


= ords=s0 L(s,m SIndGH τ,K/k)G

= mn(H, τ).
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Thus,

ΘG|H =
1

m

∑
τ∈Sup(H)

 ∑
σ∈Sup(G)

mn(G, σ)

σ(1)
(SIndGH τ, σ)G

 τ

τ(1)

=
1

m

∑
τ∈Sup(H)

mn(H, τ)
τ

τ(1)

=
∑

τ∈Sup(H)

n(H, τ)
τ

τ(1)

= ΘH .

Similar to the role played by the classical Heilbronn-Stark lemma in studying the

relation between orders of the Dedekind zeta functions and Artin L-functions, one

can obtain the following results by applying Lemma 4.2.

Proposition 4.3.

|H|
|G|

∑
τ∈Sup(H)

n(H, τ)2

τ(1)
≤ (ords=s0 ζK(s))2 .

Proof. By the orthogonality property of supercharacters and Proposition 4.1,

(ΘG,ΘG)G =

 ∑
σ∈Sup(G)

n(G, σ)
σ

σ(1)
,
∑

σ∈Sup(G)

n(G, σ)
σ

σ(1)


G

=
∑

σ∈Sup(G)

n(G, σ)2

σ(1)

≤ (ords=s0 ζK(s))2 .
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On the other hand, Lemma 4.2 gives

(ΘG,ΘG)G =
1

|G|
∑
g∈G

ΘG(g)ΘG(g)

≥ 1

|G|
∑
g∈H

ΘG(g)ΘG(g)

=
1

|G|
|H|
|H|

∑
g∈H

ΘH(g)ΘH(g)

=
|H|
|G|

(ΘH ,ΘH)H

=
|H|
|G|

∑
τ∈Sup(H)

n(H, τ)2

τ(1)
,

and thus the corollary follows.

Corollary 4.4. If ords=s0 ζK(s) = 0, then Artin L-functions L(s,m SIndGH τ,K/k)

attached to supercharacters τ of H are holomorphic and non-vanishing at s = s0.

Since the first orthogonality property states that the set of all supercharacters of

G forms an orthogonal basis of the inner product space of superclass functions of

G, one might expect that there should be a second orthogonality property. In fact,

the expected second orthogonality property can be derived easily by using the first

orthogonality property and linear algebra. However, for the sake of completeness and

clarity, we shall state and prove the following lemma.

Lemma 4.5. Let Sup(G) = {σ1, · · · , σn} and {C1, · · · , Cn} be the sets of superchar-

acters and superclasses of G, respectively. Then

n∑
k=1

σk(Ci)σk(Cj)

σk(1)
=


|G|
|Ci| if i = j,

0 otherwise.
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In particular, for any superclass C,

δC =
|C|
|G|

∑
σ∈Sup(G)

σ(gC)σ

σ(1)
,

where δC denotes the characteristic function of C and gC is an element of C.

Proof. For each k, let ek be a representative of Ck. Then, for any i and j,

δij

√
σi(1)σj(1) = (σi, σj)

=
1

|G|
∑
g∈G

σi(g)σj(g)

=
1

|G|

n∑
k=1

|Ck|σi(ek)σj(ek),

where δij is the Kronecker delta. Setting aij =
σj(ei)√
σj(1)

, one has

δij = (σi, σj)G

=
1

|G|

n∑
k=1

aki
√
|Ck|akj

√
|Ck|.

Considering a matrix B = (bkj) where bkj = akj

√
|Ck|√
|G|

, the above equation implies

that B∗B = I = BB∗. Hence,

δij =
n∑
k=1

bikbjk

=
1

|G|

n∑
k=1

aik
√
|Ci|ajk

√
|Cj|

=
1

|G|

n∑
k=1

σk(ei)√
σk(1)

√
|Ci|

σk(ej)√
σk(1)

√
|Cj|,
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as desired.

4.2 Supercharacters and Artin’s Conjecture

We remind the reader that our purpose of this chapter is applying supercharacter the-

ory to study Artin L-functions. Thus, it is certainly desired to find a supercharacter

theory of G satisfying the Artin conjecture, i.e., for any Galois extension K/k of num-

ber fields with Galois group G, the Artin conjecture holds for all Artin L-functions

attached to supercharacters of such a supercharacter theory. To obtain such a theory,

we shall invoke the Aramata-Brauer theorem.

First of all, for any Galois extension K/k with Galois group G, the Aramata-

Brauer theorem asserts that the quotient ζK(s)/ζk(s) is entire. In other words, Artin’s

conjecture holds for the Artin L-functions attached to supercharacters RegG− 1G and

1G. (We note that {RegG− 1G, 1G} gives the maximal theory of G.)

In [24], Hendrickson introduced the ∗-product of supercharacter theories, which

produces a supercharacter theory of G from its normal subgroup N and the quotient

group H = G/N as follows.

Let G be a finite group and N be a normal subgroup of G. We equip N and G/N

with supercharacter theories (X ,K) and (Y ,J ) respectively. Following [24], (X ,K)

is said to be G-invariant if for each g ∈ G and n ∈ N , both n and g−1ng belong to

the same superclass. Assuming that (X ,K) is G-invariant, define

Z = {IndGN(σX) | X ∈ X \ {1N}} ∪ {InfGG/N σY | Y ∈ Y},

M = K ∪ {NJ | J ∈ J \ {eH}}.
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Hendrickson then proved the following (cf. [24, Theorem 4.3]):

Proposition 4.6. The pair (Z,M) defines a supercharacter theory of G.

This supercharacter theory is referred as the ∗-product of (X ,K) and (Y ,J ), and

denoted by

(Z,M) = (X ,K) ∗ (Y ,J ).

Now we furthermore assume that N is equipped with the maximal theory and that

H = G/N is equipped with the classical theory. It is clear that the maximal theory of

N is G-invariant. By the Aramata-Brauer theorem, the maximal theory of N satisfies

the Artin conjecture. Thus, if Artin’s conjecture is true for the classical theory of

H, which is the case for H nearly supersolvable (see Section 6.1), then the ∗-product

(Z,M), constructed as above, is a supercharacter theory of G, which satisfies Artin’s

conjecture as desired. We shall call it the max-min theory.

4.3 An Effective Chebotarev Density Theorem

In this section, we will make use of notations introduced in Section 3.1.2.

We now plan to extend the result of M. R. Murty, V. K. Murty, and Saradha,

Theorem 3.7, to Artin L-functions attached to supercharacters. First of all, following

the strategy developed in [48], one would need the following lemma which will play

the main role in “counting primes”.

Lemma 4.7. Let π be a complex-valued linear function defined on the vector space

of superclass functions of G. Then

∑
C

1

|C|

∣∣∣∣π(δC)− |C|
|G|

π(1G)

∣∣∣∣2 =
1

|G|
∑
σ 6=1G

|π(σ)|2

σ(1)
,
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where the sum on the left runs over superclasses C of G, and the sum on the right

runs over the non-trivial supercharacters.

Proof. Since π is linear, by Lemma 4.5, one can write

π(δC)− |C|
|G|

π(1G) =
|C|
|G|

∑
σ 6=1G

σ(gC)π(σ)

σ(1)
,

where gC is a representative of C. Therefore,

∣∣∣∣π(δC)− |C|
|G|

π(1G)

∣∣∣∣2 =
|C|
|G|

∑
σ 6=1G

σ(gC)π(σ)

σ(1)

|C|
|G|

∑
τ 6=1G

τ(gC)π(τ)

τ(1)

=
|C|2

|G|2
∑

σ,τ 6=1G

π(σ)π(τ)
σ(gC)τ(gC)

σ(1)τ(1)
.

Dividing both sides by |C| and then taking summations running over all superclasses

of G on both sides, one has

∑
C

1

|C|

∣∣∣∣π(δC)− |C|
|G|

π(1G)

∣∣∣∣2 =
∑
C

|C|
|G|2

∑
σ,τ 6=1G

π(σ)π(τ)
σ(gC)τ(gC)

σ(1)τ(1)

=
1

|G|
∑

σ,τ 6=1G

π(σ)π(τ)
1

|G|
∑
C

|C|σ(gC)τ(gC)

σ(1)τ(1)

=
1

|G|
∑

σ,τ 6=1G

π(σ)π(τ)
1

|G|
∑
g∈G

σ(g)τ(g)

σ(1)τ(1)

=
1

|G|
∑
σ 6=1G

π(σ)π(σ)
(σ, σ)

σ(1)σ(1)

=
1

|G|
∑
σ 6=1G

|π(σ)|2

σ(1)
,

where the second last equality is due to the orthogonality property of Sup(G).
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For the purpose of counting primes, we also need to rewrite estimates described

in Proposition 3.5 and Lemma 3.6 in the context of supercharacters as follows. As

before, for each unramified prime p of k, let σp denote the Artin symbol at p. Let χ

be a character of G and let π(x, χ) =
∑

Np≤x χ(σp) where the sum is over unramified

primes p of k. Together with the definition of supercharacters, Proposition 3.5 gives:

Proposition 4.8. Assuming GRH for the Dedekind zeta function of k, one has

π(x, 1G) = Li x+O
(
x

1
2 (log dk + nk log x)

)
+O(nk logM(K/k)),

where as before, M(K/k) is defined as

M(K/k) = nd
1
nk
k

∏
p∈P (K/k)

p.

For any non-trivial supercharacter σ ∈ Sup(G), if the Artin L-function L(s, σ,K/k)

is entire and is non-zero for <(s) 6= 1
2

and 0 < <(s) < 1, then

π(x, σ) = O
(
x

1
2 (logAσ + σ(1)nk log x)

)
+O(σ(1)nk logM(K/k)),

where Aσ = d
σ(1)
k N f(σ) denotes the conductor of σ.

By the properties of Artin conductors, we also have below a generalisation of

Lemma 3.6.

Lemma 4.9. Let σ be a supercharacter of G. Then

logN f(σ) ≤ 2σ(1)nk

 ∑
p∈P (K/k)

log p+ log n

 .



4.3. AN EFFECTIVE CHEBOTAREV DENSITY THEOREM 66

Proof. For any supercharacter σ, one can write σ as

σ =
∑

χ∈Irr(G,σ)

χ(1)χ,

where Irr(G, σ) is the subset of Irr(G) consisting of all irreducible characters appearing

in σ. Since, for any characters χ1 and χ2, f(χ1 +χ2) = f(χ1)f(χ2), and the (absolute)

norm N is completely multiplicative, one has

logN f(σ) = logN f

 ∑
χ∈Irr(G,σ)

χ(1)χ


= logN

 ∏
χ∈Irr(G,σ)

f(χ)χ(1)


=

∑
χ∈Irr(G,σ)

χ(1) logN f(χ).

Therefore, Lemma 3.6 implies that

logN f(σ) =
∑

χ∈Irr(G,σ)

χ(1) logN f(χ)

≤
∑

χ∈Irr(G,σ)

χ(1)

2χ(1)nk

 ∑
p∈P (K/k)

log p+ log n


= 2

∑
χ∈Irr(G,σ)

χ2(1)

nk ∑
p∈P (K/k)

log p+ log n


= 2σ(1)nk

 ∑
p∈P (K/k)

log p+ log n

 .
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Using the previous results, one can establish an effective version of the Chebotarev

density theorem for any supercharacter theory as follows.

Theorem 4.10. Suppose that all Artin L-functions attached to supercharacters of

G = Gal(K, k) are holomorphic at s 6= 1, and that GRH holds for ζK(s). Then

∑
C

1

|C|

∣∣∣∣π(x, δC)− |C|
|G|

Lix

∣∣∣∣2 � xn2
k log2 (M(K/k)x),

where the sum on the left runs over superclasses C of G.

Proof. First, observe that

∑
C

1

|C|

∣∣∣∣ |C||G|π(x, 1G)− |C|
|G|

Lix

∣∣∣∣2 =
1

|G|2
∑
C

|C|(π(x, 1G)− Lix)2

=
1

|G|
(π(x, 1G)− Lix)2.

Applying Lemma 4.7, one has

∑
C

1

|C|

∣∣∣∣π(x, δC)− |C|
|G|

π(x, 1G)

∣∣∣∣2 =
1

|G|
∑
σ 6=1G

|π(x, σ)|2

σ(1)
.

On the other hand, for all non-trivial supercharacters σ of G, Proposition 4.8 gives

π(x, σ) = O
(
x

1
2 (logAσ + σ(1)nk log x)

)
+O (σ(1)nk logM(K/k)) ,

and according to Lemma 4.9, this becomes

π(x, σ)� x
1
2σ(1)nk log (M(K/k)x) .
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Putting everything together and using the Cauchy-Schwarz inequality, one has

∑
C

1

|C|

∣∣∣∣π(x, δC)− |C|
|G|

Lix

∣∣∣∣2
=
∑
C

1

|C|

∣∣∣∣π(x, δC)− |C|
|G|

π(x, 1G) +
|C|
|G|

π(x, 1G)− |C|
|G|

Lix

∣∣∣∣2
≤
∑
C

2

|C|

∣∣∣∣π(x, δC)− |C|
|G|

π(x, 1G)

∣∣∣∣2 +
∑
C

2

|C|

∣∣∣∣ |C||G|π(x, 1G)− |C|
|G|

Lix

∣∣∣∣2
=

2

|G|
∑
σ 6=1G

|π(x, σ)|2

σ(1)
+

2

|G|
(π(x, 1G)− Lix)2

� 1

|G|
∑

σ∈Sup(G)

xσ(1)n2
k log2 (M(K/k)x)

= xn2
k log2 (M(K/k)x) ,

where the last equality holds since |G| =
∑

χ∈Irr(G) χ
2(1) =

∑
σ∈Sup(G) σ(1).

Corollary 4.11. Under the same assumptions as the previous theorem,

π(x, δD) =
|D|
|G|

Lix+O(|D|
1
2x

1
2nk log (M(K/k)x)),

where D is an arbitrary union of superclasses in G.

Proof. By the Cauchy-Schwarz inequality,

∣∣∣∣π(x, δD)− |D|
|G|

Lix

∣∣∣∣ =

∣∣∣∣∣∑
C⊆D

(
π(x, δC)− |C|

|G|
Lix

)
|C| 12
|C| 12

∣∣∣∣∣
≤

(∑
C⊆D

1

|C|

∣∣∣∣π(x, δC)− |C|
|G|

Lix

∣∣∣∣2
) 1

2
(∑
C⊆D

|C|

) 1
2

�
(
xn2

k log2 (M(K/k)x)
) 1

2 |D|
1
2 ,
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where the sums run over superclasses C ⊆ D.

Remark 4.12. As discussed in Section 4.2, the assumption of the Artin conjecture in

our effective Chebotarev density theorem is automatically satisfied if one chooses the

maximal theory or the max-min theory. We remark that these choices are sufficient for

some arithmetic applications. For instance, to study the cyclicity problem of elliptic

curves (modulo p), a key ingredient is the explicit formulae for

π1(x,Q(E[m])/Q) = #{p ≤ x | p splits completely in Q(E[m])/Q},

where Q(E[m]) is the m-division field of an elliptic curve E/Q (cf. [57] and [12]).

Since π1(x,Q(E[m])/Q) = π(x, δ{1}), the number of primes p ≤ x with σp = {e}, and

{e} is a superclass, we can choose the maximal theory to get a desired estimate.
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Chapter 5

A Variant of Heilbronn Characters

5.1 Weak Arithmetic Heilbronn Characters

In this section, we will introduce weak arithmetic Heilbronn characters that generalise

the classical Heilbronn characters, and we will discuss their properties.

From now on, G always denotes a finite group. For any subgroup H of G, we

denote the trivial character and the regular representation of H by 1H and RegH ,

respectively. In addition, 〈h〉 denotes the cyclic subgroup of H generated by an

element h ∈ H, and eH is the identity element of H.

Definition 5.1. Let I(G) be a set defined as

I(G) = {(H,φ) | H ≤ G is proper and cyclic or H = G, and φ is a character of H},

and n : I(G)→ Z be a function satisfying the following three properties:

WAHC1. n(H,φ1 + φ2) = n(H,φ1) + n(H,φ2) for any characters φ1 and φ2 of H,

where H is a cyclic subgroup or an improper subgroup of G;

WAHC2. n(G, IndGH φ) = n(H,φ) for every cyclic subgroup H and every character
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φ of H; and

WAHC3. n(H,φ) ≥ 0 for all cyclic subgroups H of G and all characters φ of H.

Then the weak arithmetic Heilbronn character of a proper cyclic or improper subgroup

H of G associated with such n(H,φ)’s is defined by

ΘH =
∑

φ∈Irr(H)

n(H,φ)φ,

which by condition WAHC2, is equal to
∑

φ∈Irr(H) n(G, IndGH φ)φ.

Such a formalism technique was used by Foote in [18] as well as by M. R. Murty and

V. K. Murty in [46] to study certain L-functions. However, we will see such “abstract”

Heilbronn characters are of interest in their own right. In fact, weak Heilbronn

arithmetic characters and arithmetic Heilbronn characters, which will be discussed in

the next section, inherit many properties of the classical Heilbronn characters. For

instance, these Heilbronn characters also admit an Artin-Takagi decomposition.

Proposition 5.1 (Artin-Takagi Decomposition).

n(G,RegG) =
∑

χ∈Irr(G)

χ(1)n(G,χ).

Proof. Since RegG =
∑

χ∈Irr(G) χ(1)χ, the decomposition follows simply from condi-

tion WAHC1.

By conditions WAHC2 and WAHC3, one can see n(G,χ) ≥ 0 for any character

χ of G induced from a character of a cyclic subgroup of G. Also, condition WAHC2

implies a stronger condition: n(H̃, IndH̃H φ) = n(H,φ) for any cyclic subgroup H̃ of G
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containing H, since

n(H̃, IndH̃H φ) = n(G, IndG
H̃

IndH̃H φ) = n(G, IndGH φ) = n(H,φ).

Now we shall state and prove several properties of weak arithmetic Heilbronn

characters. Our methods are based on earlier works of Heilbronn, Stark, Foote, and

V. K. Murty.

Lemma 5.2 (Heilbronn-Stark Lemma). Assume ΘG is a weak arithmetic Heilbronn

character. Then, for every cyclic subgroup H of G, one has

ΘG|H = ΘH .

Proof. By the definition, the first orthogonality property of irreducible characters,

and Frobenius reciprocity, we have

ΘG|H =
∑

χ∈Irr(G)

n(G,χ)χ|H

=
∑

χ∈Irr(G)

n(G,χ)
∑

φ∈Irr(H)

(χ|H , φ)φ

=
∑

χ∈Irr(G)

n(G,χ)
∑

φ∈Irr(H)

(χ, IndGH φ)φ

=
∑

φ∈Irr(H)

 ∑
χ∈Irr(G)

(χ, IndGH φ)n(G,χ)

φ.

Now we use conditions WAHC1 and WAHC2, and the first orthogonality property of
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irreducible characters again to get

ΘG|H =
∑

φ∈Irr(H)

n

G, ∑
χ∈Irr(G)

(χ, IndGH φ)χ

φ

=
∑

φ∈Irr(H)

n(G, IndGH φ)φ

= ΘH .

Like the classical Heilbronn-Stark lemma, the above lemma enables us to bound

the coefficients of our Heilbronn characters.

Theorem 5.3. ∑
χ∈Irr(G)

n(G,χ)2 ≤ n(G,RegG)2.

Proof. We will give a proof based on the method developed in [19] and [46]. By the

first orthogonality property and the definition of the (usual) inner product of class

functions of G, one has

∑
χ∈Irr(G)

n(G,χ)2 = (ΘG,ΘG)

=
1

|G|
∑
g∈G

|ΘG(g)|2.

Applying the Heilbronn-Stark lemma, for any g ∈ G, one has

ΘG(g) = Θ〈g〉(g)

=
∑

φ∈Irr(〈g〉)

n(〈g〉, φ)φ(g).
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Since 〈g〉 is cyclic, the triangle inequality and conditions WAHC2 and WAHC3 yield

|ΘG(g)| = |Θ〈g〉(g)|

≤
∑

φ∈Irr(〈g〉)

n(〈g〉, φ)

= n

〈g〉, ∑
φ∈Irr(〈g〉)

φ


= n(〈g〉,Reg〈g〉)

= n(G,RegG).

Therefore, the theorem follows.

Using this theorem and the fact that n(G,RegG) = n(G, IndG〈eG〉 1〈eG〉) ≥ 0, one can

immediately obtain the following analogues of famous theorems of Aramata-Brauer

and Stark as mentioned earlier.

Corollary 5.4. n(G,RegG)± n(G, 1G) ≥ 0.

Corollary 5.5. If n(G,RegG) ≤ 1, then n(G,χ) ≥ 0 for all irreducible characters χ

of G.

Proof. If n(G,RegG) = 0, then the corollary follows from the above theorem immedi-

ately. Otherwise, for n(G,RegG) = 1, by the Artin-Takagi decomposition, Proposition

5.1, one has ∑
χ∈Irr(G)

χ(1)n(G,χ) = n(G,RegG) = 1.

In addition, Theorem 5.3 forces that all integers n(G,χ) are bounded by 1. Thus,

we can conclude that there is exactly one character χ0 of G such that χ0(1) = 1 and

n(G,χ0) = 1. In other words, n(G,χ) = 0 for any irreducible character χ 6= χ0.
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In [46], M. R. Murty and V. K. Murty showed the following “twisting” result by

using a formalism technique. We shall give a proof below by just checking that such

twisting indeed defines a set of integers satisfying conditions WAHC1 to WAHC3.

Proposition 5.6. Let n(H,φ)’s be integers defining a weak Heilbronn character, i.e.,

these integers satisfy conditions WAHC1 to WAHC3. Let ρ be an arbitrary character

of G. Suppose that for every cyclic subgroup H of G and irreducible character φ of

H, we have n(H, ρ|H ⊗ φ) ≥ 0, then

∑
χ∈Irr(G)

n(G, ρ⊗ χ)2 ≤ n(G, ρ⊗ RegG)2.

Proof. For every cyclic subgroup H of G (or H = G) and every character φ of H, let

n′(H,φ) = n(H, ρ|H ⊗ φ) . By the linearity of tensor product and the hypothesis of

this theorem, it is easy to see that n′(H,φ)’s satisfy conditions WAHC1 and WAHC3.

On the other hand, since tensoring “commutes” with induction, we have

n′(H,φ) = n(H, ρ|H ⊗ φ)

= n(G, IndGH(ρ|H ⊗ φ))

= n(G, ρ⊗ IndGH φ)

= n′(G, IndGH φ).

Therefore, this proposition follows from Theorem 5.3 immediately.

5.2 Arithmetic Heilbronn Characters

In this section, we will put more conditions on n(H,φ)’s, which make weak arithmetic

Heilbronn characters capture almost all properties that we know for the classical
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Heilbronn characters.

Definition 5.2. Let I(G) be a set defined as

I(G) = {(H,φ) | H is a subgroup of G, and φ is a character of H},

and n : I(G)→ Z be a function satisfying the following three properties:

AHC1. n(H,φ1 + φ2) = n(H,φ1) + n(H,φ2) for any subgroup H of G and any

characters φ1 and φ2 of H;

AHC2. n(G, IndGH φ) = n(H,φ) for every character φ of every subgroup H; and

AHC3. n(H,φ) ≥ 0 for all 1-dimensional characters φ of subgroups H of G.

Then the arithmetic Heilbronn character of a subgroup H of G associated with such

n(H,φ)’s is defined as

ΘH =
∑

φ∈Irr(H)

n(H,φ)φ,

which by condition AHC2, is equal to
∑

φ∈Irr(H) n(G, IndGH φ)φ.

It is clear that all arithmetic Heilbronn characters have properties discussed in

the previous section. Moreover, since n(H,φ)’s are now defined for all subgroups H

of G, we have the following full-powered Heilbronn-Stark Lemma.

Lemma 5.7 (Heilbronn-Stark Lemma). For every subgroup H of G, one has

ΘG|H = ΘH .

Remark 5.8. As pointed out by Professor Mike Roth (private communication), con-

ditions AHC1-2 are equivalent to:
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AHC’. Choose an integer qi for each irreducible character χi of G.

Proof (due to M. Roth). Let χi’s be the irreducible characters of G. Given a func-

tion n : I(G) → Z satisfying conditions AHC1-2, we set qi = n(G,χi) for each

i. Then for any character φ of G, as φ =
∑

imiχi for some mi ≥ 0, condition

AHC1 then gives that n(G, φ) =
∑

imiqi. Moreover, condition AHC2 says that

n(H,φ) = n(G, IndGH φ), which is already determined by the qi’s.

Thus, conditions AHC1-2 give qi’s, and conversely, from the above discussion, it

is clear that any choice of qi’s gives a function n : I(G) → Z satisfying conditions

AHC1-2.

As one can see now, conditions AHC1-2 are not really axioms, but rather a choice,

the choice of a virtual character ΘG =
∑

i qiχi with qi ∈ Z. Also, by the above

discussion, one may replace conditions AHC1-2 by the formula

n(H,φ) = (IndGH φ,ΘG). (5.1)

Therefore, one may form the function n : I(G)→ Z by the choice of a virtual charac-

ter of G together with the formula (5.1). Furthermore, with the same consideration,

one may also define

ΘH = ΘG|H .

We further remark that this argument is also valid for weak arithmetic Heilbronn

characters. The subtle difference between the two cases, which is really an axiom, is

the condition WAHC3 or AHC3, requiring non-negativity on characters induced from

1-dimensional characters. Furthermore, considering the following two conditions:
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WAHC. (IndGH φ, ·) ≥ 0 for all cyclic subgroups H ≤ G and all 1-dimensional char-

acters φ of H; and

AHC. (IndGH φ, ·) ≥ 0 for all subgroups H ≤ G and all 1-dimensional characters φ

of H,

each defines a cone in C(G), the space of class functions of G. Moreover, axioms

WAHC3 and AHC3 respectively are requiring ΘG to be in this cone. It might be

interesting to understand these cones in a few cases.

Finally, as suggested by M. Roth, it is possible to simplify or shorten most of the

proofs via “ΘG-perspective”. For instance, formulas of type
∑
n(G,χ)2 can be replaced

by (ΘG,ΘG), the “Artin-Takagi decomposition” is the linearity of the function (·,ΘG),

etc.

From now on, ΘG always denotes an arithmetic Heilbronn character of G. Fur-

thermore, we assume G is solvable. The following powerful lemma is essentially due

to the work of Uchida and van der Waall, which is used by M. R. Murty and V. K.

Murty [46] implicitly and is stated precisely in [49, Lemma 2.4].

Lemma 5.9. Let G be a finite solvable group, and let H be a subgroup of G. Then

IndGH 1H = 1G +
∑
i

IndGHi φi,

where φi’s are non-trivial 1-dimensional characters of some subgroups Hi’s of G.

Following [49], we let G0 = G, and define Gi to be [Gi−1, Gi−1] for all i ≥ 1.

The series {Gi} is called the derived series of G. Since G is solvable, such a series

is eventually trivial. Using this series, one may define the level of an irreducible
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character χ of G, denoted l(χ), as the least non-negative integer n such that χ is

trivial on Gn. For instance, the level one characters are exactly the non-trivial 1-

dimensional characters of G. In addition, M. R. Murty and Raghuram showed a

stronger version of Lemma 5.9 (cf. [49, Lemma 2.5]).

Lemma 5.10. Let G be a finite solvable group having more than one element, and

let H be a subgroup of G. Let {Gi} denote the derived series of G, and let m be the

least non-negative integer such that Gm+1 = 〈eG〉. Then for all i ≥ 1,

IndGH 1H = IndGHGi 1HGi +
∑
j

IndGHj φj,

where φj’s are non-trivial 1-dimensional characters of some subgroups Hj’s of G, and

the sum might be empty.

Using these lemmas and the method developed in [49], we can prove the following

sequence of properties for arithmetic Heilbronn characters.

Proposition 5.11. Let H be a subgroup of G. Let χ and φ be 1-dimensional char-

acters of G and H respectively. Then

n(G, IndGH φ)− (χ|H , φ)n(G,χ) ≥ 0.

Proof. Note that if (χ|H , φ) = 0, the theorem is clearly true by conditions AHC2 and

AHC3. Suppose that (χ|H , φ) > 0. Since both χ and φ are 1-dimensional, we obtain

χ|H = φ and (χ|H , φ) = 1. Following the proof of [49, Theorem 4.1], by Lemma 5.9,

we first write

IndGH 1H = 1G +
∑

IndGHi φi,
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where φi’s are non-trivial 1-dimensional characters of some subgroups Hi’s of G. Since

tensoring and induction “commute”, by tensoring χ on the both sides of the above

equation, we then get

IndGH χ|H = χ+
∑

IndGHi(χ|Hiφi).

As χ|Hiφi’s are still 1-dimensional, by condition AHC3, n(H,χ|Hiφi) ≥ 0 for all i.

Hence, the theorem follows from condition AHC2 and the fact that (χ|H , φ) = 1 and

χ|H = φ.

For any subgroup H of G, by taking χ = 1G and φ = 1H , one can deduce an

analogue of the Uchida-van der Waall theorem as below.

Corollary 5.12. Let G be a solvable group, and H a subgroup. One has

n(G, IndGH 1H)− n(G, 1G) ≥ 0.

Moreover, by applying Lemma 5.10 and Proposition 5.11, it is possible to derive

several analogues of M. R. Murty and Raghuram’s results for arithmetic Heilbronn

characters.

Theorem 5.13. Let χ0 be a 1-dimensional character of G. Then

∑
χ∈Irr(G)\{χ0}

n(G,χ)2 ≤ (n(G,RegG)− n(G,χ0))
2.

Proof. In light of the proof of [49, Theorem 4.4], we define a “truncated” (arithmetic)
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Heilbronn character with respect to χ0 as

Θχ0

G =
∑

χ∈Irr(G)\{χ0}

n(G,χ)χ.

Taking norms on both sides of the above equation, one has

|Θχ0

G |
2 =

1

|G|
∑
g∈G

|Θχ0

G (g)|2

=
∑

χ∈Irr(G)\{χ0}

n(G,χ)2.

On the other hand, by the Heilbronn-Stark lemma, Lemma 5.7, we have

Θχ0

G (g) = ΘG(g)− n(G,χ0)χ0(g)

= Θ〈g〉(g)− n(G,χ0)χ0(g)

=
∑

φ∈Irr(〈g〉)

n(〈g〉, φ)φ(g)− n(G,χ0)
∑

φ∈Irr(〈g〉)

(χ0|〈g〉, φ)φ(g)

=
∑

φ∈Irr(〈g〉)

(n(〈g〉, φ)− n(G,χ0)(χ0|〈g〉, φ))φ(g).

Applying Proposition 5.11 with H = 〈g〉 and φ ∈ Irr(〈g〉), we get

n(〈g〉, φ)− n(G,χ0)(χ0|〈g〉, φ) ≥ 0,
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which combining with the triangle inequality gives

|Θχ0

G (g)| ≤
∑

φ∈Irr(〈g〉)

(n(〈g〉, φ)− n(G,χ0)(χ0|〈g〉, φ))

= n

〈g〉, ∑
φ∈Irr(〈g〉)

φ

− n
G, ∑

φ∈Irr(〈g〉)

(χ0|〈g〉, φ)χ0


= n(〈g〉,Reg〈g〉)− n(G, (χ0|〈g〉,Reg〈g〉)χ0)

= n(G,RegG)− n(G,χ0),

where the last equality holds provided that (χ0|〈g〉,Reg〈g〉) = χ0|〈g〉(1) = 1.

Proposition 5.14. Let H be a subgroup of G, and let φ be any 1-dimensional charac-

ter of H. Let Sφ denote the set of all 1-dimensional characters of G whose restrictions

on H are φ. Then

n(G, IndGH φ)−
∑
χ∈Sφ

n(G,χ) ≥ 0.

Proof. Note that if Sφ is empty, then the theorem is obviously true by conditions

AHC2 and AHC3. Now we may assume Sφ is non-empty, and take χ0 ∈ Sφ. Applying

Lemma 5.10 with i = 1, we have

IndGH 1H = IndGHG1 1HG1 +
∑

IndGHj φj,

where for each j, φj is a non-trivial 1-dimensional character of a subgroup Hj of G,

and the sum might be empty. Again, twisting the above equation by χ0, we have

IndGH φ = IndGHG1 χ0|HG1 +
∑

IndGHi(χ0|Hiφi).
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Since χ0|Hiφi’s are still 1-dimensional and IndGHG1 χ0|HG1 is exactly
∑

χ∈Sφ χ, the

proposition follows.

Theorem 5.15. Let S be the set of all 1-dimensional characters of G. Then

∑
χ∈Irr(G)\S

n(G,χ)2 ≤ (n(G,RegG)− n(G, IndGG1 1G1))2.

Proof. Following the proof of [49, Theorem 5.3], we define a truncated arithmetic

Heilbronn character with respect to S as

ΘS
G =

∑
χ∈Irr(G)\S

n(G,χ)χ.

Taking norms on both sides of the above equation gives

1

|G|
∑
g∈G

|ΘS
G(g)|2 =

∑
χ∈Irr(G)\S

n(G,χ)2.

Thanks to the Heilbronn-Stark lemma, Lemma 5.7, we have

ΘS
G(g) = ΘG(g)−

∑
χ∈S

n(G,χ)χ(g)

= Θ〈g〉(g)−
∑
χ∈S

n(G,χ)χ(g)

=
∑

φ∈Irr(〈g〉)

(
n(〈g〉, φ)−

∑
χ∈S

n(G,χ)(χ, IndG〈g〉 φ)

)
φ(g).

Using Proposition 5.14 with H = 〈g〉 and φ ∈ Irr(〈g〉), we then obtain

n(G, IndG〈g〉 φ)−
∑
χ∈Sφ

n(G,χ) ≥ 0.
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Observe that for every χ ∈ S, (χ, IndG〈g〉 φ) is either 0 or 1, and that (χ, IndG〈g〉 φ) = 1

if and only if χ ∈ Sφ. Thus, by condition AHC2, we may rewrite the above inequality

as

n(〈g〉, φ)−
∑
χ∈S

n(G,χ)(χ, IndG〈g〉 φ) ≥ 0.

Finally, by the triangle inequality and the fact that for χ ∈ S, (χ|〈g〉,Reg〈g〉) = 1, and

IndGG1 1G1 =
∑

χ∈S χ, one can deduce

|ΘS
G(g)| ≤

∑
φ∈Irr(〈g〉)

(
n(〈g〉, φ)−

∑
χ∈S

n(G,χ)(χ, IndG〈g〉 φ)

)

= n(〈g〉,Reg〈g〉)−
∑
χ∈S

n(G,χ)(χ|〈g〉,Reg〈g〉)

= n(G,RegG)− n(G, IndGG1 1G1),

which completes the proof.

Corollary 5.16. Let G be a solvable group. Then n(G,RegG) − n(G, IndGG1 1G1)

cannot be 1.

Proof. Observe that RegG = IndGG1 1G1 +
∑

χ/∈S χ(1)χ where S denotes the set of all

1-dimensional characters of G. If n(G,RegG)− n(G, IndGG1 1G1) was equal to 1, then

conditions AHC1 and AHC2 tell us that
∑

χ/∈S χ(1)n(G,χ) = 1. However, Theorem

5.15 forces that there is at most one character χ′ /∈ S of G such that n(G,χ′) is

non-zero. In addition, the Artin-Takagi decomposition, Proposition 5.1, asserts that

there should be a character χ′ /∈ S such that n(G,χ′) is non-zero. But χ′(1) ≥ 2,

which contradicts to the fact that χ′(1)n(G,χ′) =
∑

χ/∈S χ(1)n(G,χ) = 1.

In [39, Lemma 3.2], Lansky and Wilson generalised results of M. R. Murty and

Raghuram (cf. Lemma 5.10) by proving the following.
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Lemma 5.17. Let G be a finite solvable group, and let H be a subgroup of G. Let φ

be a 1-dimensional character of H such that φ|H∩Gi is trivial, and let φ′ be the unique

extension of φ to a character of HGi that is trivial on Gi. Then for any irreducible

character χ of G, one has

(χ, IndGHGi φ
′) =


(χ, IndGH φ), if l(χ) ≤ i,

0, if l(χ) > i.

Adapting the method developed by Lansky and Wilson, it is possible now to obtain

a generalisation of M. R. Murty and Raghuram’s work in the setting of arithmetic

Heilbronn characters as follows.

Proposition 5.18. Let d be the greatest common divisor of the degrees of the charac-

ters in Irr(G)\Si, where Si denotes the set of irreducible characters of G of level less

than or equal to i. Then n(G,RegG) − n(G, IndGGi 1Gi) = kd for some non-negative

integer k.

Proof. By conditions AHC1 and AHC2, and Lemma 5.17 with H = 〈eG〉, we have

n(G,RegG)− n(G, IndGGi 1Gi) = n(G,RegG)−
∑
χ∈Si

χ(1)n(G,χ)

=
∑

χ∈Irr(G)\Si
χ(1)n(G,χ),

which is a multiple of the greatest common divisor of the degrees of the characters χ

of G with l(χ) > i. Since the Aramata-Brauer theorem asserts that

n(Gi,RegGi)− n(Gi, 1Gi) ≥ 0,
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by condition AHC2, we obtain n(G,RegG) − n(G, IndGGi 1Gi) ≥ 0, which completes

the proof.

Proposition 5.19. Let φ be a 1-dimensional character of a subgroup H of G. Then

n(G, IndGH φ)−
∑
χ∈Si

(χ, IndGH φ)n(G,χ) ≥ 0,

where Si denotes the set of irreducible characters of G of level less than or equal to i.

Proof. The proof is exactly the same as the proof in [39], but for the sake of com-

pleteness and clarity, we shall reproduce a proof in our setting. Firstly, we assume φ

is trivial on H ∩Gi, then φ extends uniquely to a character φ′ of H ·Gi. Now Lemma

5.17 implies that

∑
χ∈Si

(χ, IndGH φ)n(G,χ) =
∑

χ∈Irr(G)

(χ, IndGHGi φ
′)n(G,χ)

= n(G, IndGHGi φ
′).

By Lemma 5.9, we have

IndHG
i

H 1H = 1H·Gi +
∑
j

IndHG
i

Hj
φj,

where φj’s are non-trivial 1-dimensional characters of some subgroups Hj’s of H ·Gi,

and the sum might be empty. By twisting the above equation by φ′, using the fact

that tensoring and induction commute, and inducing everything to G, one has

IndGH φ = IndGHGi φ
′ +
∑
j

IndGHj φ
′|Hjφj.
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Thus, the theorem follows in this case that φ is trivial on H ∩Gi.

We remark that none of φ′|Hjφj’s is trivial. If φ 6= 1H , then (1G, IndGH φ) = 0,

and thus 1G does not occur. On the other hand, if φ = 1H , then Lemma 5.17 and

Frobenius reciprocity imply that (1G, IndGHGi φ
′) = (1G, IndGH φ) = 1, and thus 1G

cannot occur in the summation in the above equation.

For the case that φ is non-trivial on H ∩Gi, Mackey’s theorem (see, for example,

[5, Sections 5.3 and 5.12]) and Frobenius reciprocity tell us that

((IndGH φ)|Gi , 1Gi) =
∑

Gi\G/H

(IndG
i

xHx−1∩Gi φ
x, 1Gi)

=
∑

Gi\G/H

(φx, 1xHx−1∩Gi)

=
∑

Gi\G/H

(φ, 1H∩Gi)

= 0,

where for every x ∈ G, φx denotes the character of xHx−1∩Gi given by g 7→ φ(x−1gx).

Thus, IndGH φ contains no characters of level less than or equal to i, which means

that n(G, IndGH φ) −
∑

χ∈Si(χ, IndGH φ)n(G,χ) = n(G, IndGH φ) in this case. Now the

proposition follows from conditions AHC2 and AHC3.

Corollary 5.20. Let φ0 be a 1-dimensional character of a subgroup H of G, and Siφ0

the set of irreducible characters of level i occurring in IndGH φ0. Then

∑
χ∈Siφ0

(χ, IndGH φ0)n(G,χ) ≥ 0.

Proof. If φ0 is non-trivial on H ∩ Gi, the last paragraph of the proof of Proposition



5.2. ARITHMETIC HEILBRONN CHARACTERS 88

5.19 gives (χ, IndGH φ0) = 0 for all χ ∈ Siφ0 , and the corollary follows immediately.

Otherwise, φ0 extends uniquely to a character φ of HGi which is trivial on Gi. Then

Proposition 5.19 (by replacing H and i by H ·Gi and i− 1, respectively) implies that

n(G, IndGHGi φ)−
∑

χ∈Si−1

(χ, IndGHGi φ)n(G,χ) ≥ 0.

By Lemma 5.17, the above difference is equal to

∑
χ∈Si

(χ, IndGH φ0)n(G,χ)−
∑

χ∈Si−1

(χ, IndGH φ0)n(G,χ) =
∑
χ∈Siφ0

(χ, IndGH φ0)n(G,χ),

where Sj denotes the set of irreducible characters of G of level less than or equal to

j. Hence, the corollary follows.

Although we are not able to prove an analogue of Theorem 4.2 in [39], we can

instead prove the following weaker result conjectured by M. R. Murty and Raghuram

in [49].

Theorem 5.21. For each i ≥ 1,

∑
χ∈Irr(G)\Si

n(G,χ)2 ≤ (n(G,RegG)− n(G, IndGGi 1Gi))
2,

where Si denotes the set of irreducible characters of G of level less than or equal to i.

Proof. Again, we consider a truncated Heilbronn character with respect to Si

ΘSi

G =
∑

χ∈Irr(G)\Si
n(G,χ)χ.
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Taking norms on both sides of the above equation, we get

1

|G|
∑
g∈G

|ΘSi

G (g)|2 =
∑

χ∈Irr(G)\Si
n(G,χ)2.

Using the Heilbronn-Stark lemma, Lemma 5.7, one has

ΘSi

G (g) = ΘG(g)−
∑
χ∈Si

n(G,χ)χ(g)

= Θ〈g〉(g)−
∑
χ∈Si

n(G,χ)χ(g)

=
∑

φ∈Irr(〈g〉)

n(〈g〉, φ)−
∑
χ∈Si

n(G,χ)(χ, IndG〈g〉 φ)

φ(g).

Applying Proposition 5.19 with H = 〈g〉, we then obtain

n(〈g〉, φ)−
∑
χ∈Si

n(G,χ)(χ, IndG〈g〉 φ) ≥ 0.

Therefore, the triangle inequality and Frobenius reciprocity yield

|ΘSi

G (g)| ≤
∑

φ∈Irr(〈g〉)

n(〈g〉, φ)−
∑
χ∈Si

n(G,χ)(χ, IndG〈g〉 φ)


= n(G,RegG)−

∑
χ∈Si

n(G,χ)(χ|〈g〉,Reg〈g〉)

= n(G,RegG)− n

G,∑
χ∈Si

χ(1)χ

 .
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Using Lemma 5.10 with H = 〈eG〉, we have

RegG = IndGGi 1Gi +(∗),

where (*) is a sum of monomial characters. Now IndGGi 1Gi is exactly the sum of

characters of G occurring in RegG which are trivial on Gi (or, equivalently, which have

level less than or equal to i). This means that IndGGi 1Gi =
∑

χ∈Si χ(1)χ. Therefore,

by conditions AHC1 to AHC3, we complete the proof.

By an analogous argument of the proof of Corollary 5.16, one can deduce the

following corollary.

Corollary 5.22. Let G be a solvable group. Then n(G,RegG)−n(G, IndGGi 1Gi) cannot

be 1.

At the end of this section, we give an application of our arithmetic Heilbronn

characters to Artin L-functions.

Proposition 5.23. Let ΘG be an arithmetic Heilbronn character of a group G as-

sociated with integers n(H,φ). Let ρ be a character of G. Suppose that for every

subgroup H of G, and 1-dimensional character φ of H, we have n(H, ρ|H ⊗ φ) ≥ 0.

Then for any subgroup H of G, we have an arithmetic Heilbronn character defined by

Θ′H =
∑

φ∈Irr(H)

n′(H,φ)φ,

where n′(H,φ) = n(H, ρ|H ⊗ φ). In particular, all properties we have shown for

arithmetic Heilbronn characters also hold for Θ′H .
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Proof. The proof is similar to the proof of Proposition 5.6. By linearity of tensor

product and the assumption of this theorem, it is easy to see that n′(H,φ)’s satisfy

conditions AHC1 and AHC3. Now since tensoring commutes with induction, by

condition AHC2, we have

n′(H,φ) = n(H, ρ|H ⊗ φ)

= n(G, IndGH(ρ|H ⊗ φ))

= n(G, ρ⊗ IndGH φ)

= n′(G, IndGH φ).

Therefore, the proposition follows.

Let K/k be a solvable Galois extension of number fields with Galois group G. A

deep theorem of Langlands-Tunnell asserts that all two dimensional representations

of subgroups of G are automorphic. As a consequence, for any two dimensional

representation ρ of G and any abelian character φ of a subgroup H of G, the Artin

L-function L(s, ρ|H ⊗ φ,K/KH) is holomorphic at s 6= 1. Fix s0 6= 1 and set

n′(H,φ) = ords=s0 L(s, ρ|H ⊗ φ,K/KH).

We recall that n(H,φ) = ords=s0 L(s, φ,K/KH) defines the classical Heilbronn char-

acter. Hence, the above theorem assures that these n′(H,φ)’s give a new arithmetic

Heilbronn character. In particular, we have the following variant of the Uchida-van

der Waall theorem (cf. Theorem 3.2) and M. R. Murty-Raghuram’s inequality [49].

Theorem 5.24. Let K/k be a solvable Galois extension of number fields with Galois

group G, and let ρ be a two dimensional representation of G. Then for any subgroup
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H of G, the quotient

L(s, IndGH ρ|H , K/k)

L(s, ρ,K/k)

is holomorphic at s 6= 1. Moreover, for every 1-dimensional character χ0 of G, one

has

∑
χ∈Irr(G)\{χ0}

(ords=s0 L(s, ρ⊗ χ))2 ≤
(

ords=s0

(
ζ2K(s)

L(s, ρ⊗ χ0, K/k)

))2

.

Proof. By Proposition 5.23, this theorem follows immediately from Corollary 5.12

and Theorem 5.13 and the identity

ρ⊗ RegG = ρ⊗ IndG〈eG〉 1〈eG〉 = IndG〈eG〉 ρ|〈eG〉 = 2 IndG〈eG〉 1〈eG〉 = 2 RegG .

5.3 Applications to Artin-Hecke L-Functions and CM-Elliptic Curves

To avoid the situation that this chapter becomes a loyal servant of Nicolas Bourbaki,

we shall apply our theory of arithmetic Heilbronn characters to study Artin-Hecke

L-functions and L-functions of CM-elliptic curves. The central idea is due to M.

R. Murty and V. K. Murty in [46] by setting n(G,χ) being equal to the orders of

certain Artin-Hecke L-functions to establish an elliptic analogue of the Uchida-van

der Waall theorem. As we will see, this brilliant idea will allow us to obtain several

analytic properties of Artin-Hecke L-functions and L-functions of CM-elliptic curves.

In particular, we derive the non-existence of simple zeros for the quotients of suitable

L-functions of CM-elliptic curves.
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First of all, we consider a (non-trivial) Hecke character ψ of infinite type of k, and

fix a point s0 ∈ C. We may set nψ(H,φ) = ords=s0 L(s, ψ ◦ NKH/k ⊗ φ,K/KH) for

every character φ of any subgroup H of G. Using Lemma 3.11, it is easy to see that

such nψ(H,φ)’s define an arithmetic Heilbronn character. Moreover, by “linearity” of

tensor product, for any Hecke characters ψ1 and ψ2 of infinite type of k, the integers

nψ1,ψ2(H,φ) = nψ1(H,φ) + nψ2(H,φ) also give an arithmetic Heilbronn character.

We recall that, as discussed in Section 3.1.6, every L-function of a CM-elliptic

curve can be written in terms of Hecke L-functions. Now fix s0 ∈ C and suppose that

K/k is a Galois extension of number fields with Galois group G. Let L(s, E,KH) be

the L-function of E/KH , which is either a single Hecke L-function or a product of two

Hecke L-functions of KH . Following the proof of Theorem 1 in [46], for each subgroup

H of G and complex character φ of H, let n(H,φ) be the order of the L-function

L(s, φ, E,KH) at s = s0, where L(s, φ, E,KH) is the twist of L(s, E,KH) by φ (in

particular, it is either a single Artin-Hecke L-function or a product of two Artin-Hecke

L-functions). According to the conclusion of our previous discussion of Artin-Hecke

L-functions, such integers n(H,φ) define an arithmetic Heilbronn character, and we

hence can use the theory developed in the previous sections to these integers.

We do not intend to state all theorems and corollaries we can get but just mention

two results. First of all, we have the following theorem that generalises M. R. Murty

and V. K. Murty’s elliptic analogue of the Uchida-van der Waall theorem (cf. [46]).

Also, this theorem gives an elliptic analogue of M. R. Murty-Raghuram’s inequality.

Theorem 5.25. Suppose K/k is a solvable Galois extension with Galois group G,

and let H be a subgroup of G. Let E be an elliptic curve over k and let χ and φ be
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1-dimensional characters of G and H, respectively. Then

L(s, IndGH φ,E, k)

L(s, χ, E, k)(χ|H ,φ)

is entire. In addition, for every 1-dimensional character χ0 of G, one has

∑
χ∈Irr(G)\{χ0}

(ords=s0 L(s, χ, E, k))2 ≤
(

ords=s0

(
L(s, E,K)

L(s, χ0, E, k)

))2

.

Moreover, we have an interesting result for L-functions of CM-elliptic curves below

by applying Corollary 5.22.

Proposition 5.26. Suppose K/k is a solvable Galois extension with Galois group G.

Then for all i ≥ 1,

L(s, E,K)

L(s, E,KGi)

cannot have any simple zero, where G0 = G, Gi = [Gi−1, Gi−1] for i ≥ 1, KGi is the

fixed field of Gi, and L(s, E,KGi) is the L-function of E/KGi.

Remark 5.27. Note that as KGi is a subfield of K, it is clear that the group E(KGi)

of KGi-rational points of E is a subgroup of E(K). In other words, the algebraic rank

of E/KGi is smaller than the algebraic rank of E/K. The above result then tells us

that under the Birch-Swinnerton-Dyer conjecture, the difference between the algebraic

ranks of E/K and E/KGi cannot be one, which is not obvious by only considering

KGi as a subfield of K. It might be interesting to find a heuristic reason (or even a

theoretic proof) to explain this phenomenon.
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5.4 Applications to Automorphic L-Functions and Elliptic Curves with-

out CM

In this section, we will follow the path enlightened by [46] to demonstrate how arith-

metic Heilbronn characters play a role in studying automorphic L-functions. First of

all, in light of [46, Proof of Theorem 2], we prove the following lemma that allows us

to construct arithmetic Heilbronn characters later.

Lemma 5.28. Let K/k be a Galois extension of number fields with Galois group

G, ρ a representation of G, and n ≥ 2. Suppose that π is a cuspidal automorphic

representation of GLn(Ak) such that for every intermediate field M of K/k with

K/M solvable, π|M is automorphic (over M). Then the Rankin-Selberg L-function

L(s, π ⊗ ρ) extends to a meromorphic function of s.

Proof. By the Brauer induction theorem, one can write

tr ρ =
∑
i

mi IndGHi χi,

where mi ∈ Z, χi is an abelian character of an elementary subgroup Hi of G, which is

nilpotent. By Artin reciprocity, for each i, χi corresponds to a cuspidal automorphic

representation of GL1(AKHi ). Since each Hi is nilpotent, Hi is solvable, and so π|KHi

is automorphic. Now the Rankin-Selberg theory ensures that every L(s, π|KHi ⊗ χi)

extends to an entire function. Thus, L(s, π ⊗ ρ) extends to a meromorphic function

over C.

We first note that if the Langlands reciprocity conjecture holds for K/k, then the

automorphy assumption on π|M can be easily removed by just applying the theory of
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Rankin-Selberg L-functions. On the other hand, if one knows how to associate Galois

representations to π and its “descents”, then one can apply Arthur-Clozel’s theory of

base change to derive the desired automorphy result. In particular, if K/k is a totally

real solvable extension and π is a “RAESDC” (regular algebraic essentially self-dual

cuspidal) automorphic representation, then by the work of Taylor and his school, the

extra automorphy assumption in the above lemma can be dropped (for more details

and references, see Section 3.3.5).

Under the above assumption and notation, we now further assume that K/k

is totally real and solvable. We let H be a subgroup of G and φ a character of

H, and fix s0 ∈ C. We define n(H,φ) to be the order of the Rankin-Selberg L-

function L(s, π|KH ⊗ φ) at s = s0. Since K/KH is still a solvable Galois extension,

by Lemmata 3.22 and 5.28, we know that n(H,φ)’s define an arithmetic Heilbronn

character. Again, we do not intend to restate all results established in the previous

section but just mention two of them.

First of all, applying Proposition 5.11, we obtain the following theorem that can

be seen as an analogue of M. R. Murty and Raghuram’s variant of the Uchida-van

der Waall theorem.

Theorem 5.29. Under the assumption and notation as above. Let χ and φ be 1-

dimensional characters of G and H respectively. Then the quotient

L(s, π|H ⊗ φ)

L(s, π ⊗ χ)(χ|H ,φ)
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is entire. Moreover, for every 1-dimensional character χ0 of G, one has

∑
χ∈Irr(G)\{χ0}

(ords=s0 L(s, π ⊗ χ))2 ≤
(

ords=s0

(
L(s, B(π))

L(s, π ⊗ χ0)

))2

,

where B(π) is the base change of π to K.

In fact, this also generalises [46, Theorem 4] that asserts that L(s, π|H)/L(s, π) is

entire. On the other hand, one can use Corollary 5.22 to get the following.

Proposition 5.30. Under the assumption and notation as above. Then for all i ≥ 1,

L(s, B(π))

L(s, Bi(π))

cannot have any simple zero where G0 = G, Gi denotes [Gi−1, Gi−1] for all i ≥ 1,

KGi is the fixed field of Gi, B(π) is the base change of π to K, and Bi(π) is the base

change of π to KGi, the fixed field of Gi.

We note that the existence of Bi(π) in the above theorem is due to the Arthur-

Clozel theorem and the fact that each Gi is normal in G. We remark that our results

also have other arithmetic applications. For instance, as mentioned in [46], the zeta

function of any CM abelian variety over an arbitrary number field is given in terms of

Hecke L-functions, and the Jacobian of a modular curve has the zeta function that is

equal to a product of L-functions attached to modular forms by a theorem of Shimura.

In both instances, one may obtain appropriate generalisation by setting integers equal

to the orders of suitable L-functions (at s = s0 ∈ C) to define an arithmetic Heilbronn

character.

At the end of this section, we shall apply the previous results to symmetric power
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L-functions. Suppose that M/k is an extension of number fields contained in a totally

real solvable Galois extension K/k with G = Gal(K/k). We denote HM to be the

subgroup of G such that KHM = M . Let E be a non-CM elliptic curve defined over

k. As discussed in Section 3.1.4, for every intermediate field F of K/k, let ρF = ρE,F

denote a compatible system of `-adic representations attached to E over F , i.e., for

each prime `,

ρF := ρ`,F : Gal(k/F )→ Aut(T`(E,F )),

where T`(E,F ) denotes (`-adic) Tate module of E/F . Moreover, we have

L(s, Symm ρF ) = L(s, Symm ρk ⊗ IndGHF 1), (5.2)

where HF is a subgroup of G such that KHF = F . Assuming the m-th symmetric

power of ρk is automorphic, Lemma 5.28 implies that for every character χ of G, the

Rankin-Selberg L-function

L(s, Symm ρk ⊗ χ)

extends to a meromorphic function over C.

Now fix s = s0 ∈ C, and for every character φ, define n(H,φ) to be the order of

the L-function

L(s, (Symm ρk)|KH ⊗ φ)

at s = s0, where (Symm ρk)|KH is obtained in the same manner as in the proof

of Theorem 3.24 (we note that Arthur-Clozel’s theory of base change asserts that

(Symm ρk)|K is automorphic). Therefore, n(H,φ)’s define an arithmetic Heilbronn
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character. As a consequence, we have the following elliptic analogue of the Uchida-

van der Waall theorem that generalises [46, Theorem 2].

Proposition 5.31. Under the assumption and notation as above. Let χ and φ be

1-dimensional representations of G and H, respectively. Then

L(s, Symm ρKH ⊗ φ)

L(s, Symm ρk ⊗ χ)(χ|H ,φ)

is entire. Moreover, by equation (3.3), for every intermediate field F of K/k,

L(s, Symm ρF )

L(s, Symm ρk)

is entire.

On the other hand, Proposition 5.30 and equation (3.3) give below an interesting

result.

Proposition 5.32. Under the assumption and notation as above. Then for all i ≥ 1,

L(s, Symm ρK)

L(s, Symm ρKGi )

cannot admit any simple zero. In particular,

L(s, E,K)

L(s, E,KGi)

has no simple zeros, where for any intermediate field F of K/k, L(s, E, F ) denotes

the L-function of E/F .

Also, we have an elliptic analogue of M. R. Murty-Raghuram’s inequality.
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Theorem 5.33. Under the assumption and notation as above. Suppose K/k is a to-

tally real solvable Galois extension with Galois group G. Then for every 1-dimensional

character χ0 of G, one has

∑
χ∈Irr(G)\{χ0}

(ords=s0 L(s, Symm ρk ⊗ χ))2 ≤
(

ords=s0

(
L(s, Symm ρK)

L(s, Symm ρk ⊗ χ0)

))2

.

5.5 An Application of Weak Heilbronn Characters

As one can see, arithmetic Heilbronn characters indeed play a role which helps us to

obtain analytic properties of L-functions. Meanwhile, one may wonder if we really

need the notion of weak arithmetic Heilbronn characters, which seems impractical and

unnecessary. Thanks to the recent groundbreaking work of Taylor and his school (cf.

Section 3.3.5), this wonder may not be an issue. As we will demonstrate, it is possible

to utilise all the results of potential automorphy and our weak arithmetic Heilbronn

characters to study L-functions. However, for the sake of conceptual clarity, we shall

only use Taylor’s potential automorphy result here.

We again recall that Taylor’s main theorem is: let k be a totally real field and

E/k a non-CM elliptic curve. Then for any finite set S of natural numbers, there is

a (finite) totally real Galois extension L/k such that for every m ∈ S, Symm ρk is

automorphic over L, i.e., (Symm ρk)|L is automorphic.

As before, we fix a finite set S of natural numbers and let L be a (finite) totally

real Galois extension L/k such that for every m ∈ S, Symm ρk is automorphic over

L, which is given by Taylor’s theorem. We recall another key aspect in the proof of

the Sato-Tate conjecture (cf. Theorem 3.24):

For any intermediate field F of L/k with L/F solvable, (Symm ρk)|F is automorphic.
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We first note that since every irreducible character φ of a cyclic subgroup H of

G = Gal(L/k) can be identified as an automorphic representation of GL1(ALH ) via

Artin reciprocity, the above theorem and the Rankin-Selberg theory yield

L(s, (Symm ρk)|LH ⊗ φ)

is entire.

In light of the method developed by Taylor et al., one can show the following.

Proposition 5.34. For every character χ of G = Gal(L/k), L(s, (Symm ρk) ⊗ χ)

extends to a meromorphic function over C.

Proof. As usual, the Brauer induction theorem asserts

χ =
∑
i

ni IndGHi φi,

where for each i, ni is an integer, and φi is a 1-dimensional character of a nilpotent

subgroup Hi of G. According to Artin reciprocity, φi can be seen as a Hecke character

over LHi . Putting everything together, one has

L(s, (Symm ρk)⊗ χ) =
∏
i

L(s, (Symm ρk)|LHi ⊗ φi)ni ,

where φi ∈ A(GL1(ALHi )). By Theorem 3.24, (Symm ρk)|LHi is automorphic over LHi .

Now the Rankin-Selberg theory tells us that each L(s, (Symm ρk)|LHi ⊗ φi) is entire,

which completes the proof.
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Therefore, for H cyclic or H = G, fixing s0 ∈ C and setting

n(H,φ) = ords=s0 L(s, (Symm ρk)|LH ⊗ φ),

the above discussion yields that n(H,φ)’s define a weak arithmetic Heilbronn char-

acter. In particular, by Theorem 5.3, we then deduce:

Theorem 5.35.

∑
χ∈Irr(G)

n(G,χ)2 ≤ (ords=s0 L(s, Symm ρL))2.

In particular, (if we choose S containing 1 in the very beginning)

| ords=s0 L(s, ρk)| ≤ ords=s0 L(s, ρL).

We remark that the last inequality of analytic ranks is as predicted by the Birch-

Swinnerton-Dyer conjecture for s0 = 1 (cf. Remark 5.27).
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Chapter 6

Conjectures of Artin and Langlands

6.1 Nearly Supersolvable Groups and Nearly Monomial Groups

As a consequence of Artin reciprocity, Artin’s conjecture is true for any Galois exten-

sion of number fields whose Galois group is a nilpotent group, a supersolvable group,

or an M-group. These classes of groups became an area of interest in their own right.

For instance, Taketa’s theorem [63] asserts that (finite) M-groups are necessarily solv-

able (cf. [5, Section 5.10]). Besides, it is also possible to generalise Taketa’s theorem

(see, for example, [5, Theorem 14.58]) to groups all of whose irreducible characters

are induced from n-dimensional characters with n ≤ 2. We will call these groups

nearly monomial groups (or NM-groups for short).

Thanks to the works of Artin, Langlands, and Tunnell as well as the generalisation

of Taketa’s theorem as mentioned earlier, Artin’s conjecture holds for every Galois

extension of number fields whose Galois group is an NM-group. Undoubtedly, it is

desired to classify the class of NM-groups not only for the purely group-theoretic

interest but also for the purpose of studying L-functions.

By a result of Huppert (Proposition 2.4), if a group G admits an abelian normal
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subgroup N such that G/N is supersolvable, then G is an M-group. In light of this, we

will introduce the notion of nearly supersolvable groups and discuss some properties

of these groups. In fact, one goal of this section is showing that nearly supersolvable

groups belong to the class of NM-groups. Now we shall start by defining nearly

supersolvable groups.

Definition 6.1. A finite group G is said to be nearly supersolvable (or NSS for short)

if it has an invariant series of subgroups

1 = N0 E N1 E · · · E Nk−1 E Nk = G,

where each subgroup is normal in G, the quotient Ni+1/Ni is cyclic for every i ≥ 1,

and N1 belongs to the class C consisting of groups whose irreducible representations

are of dimension less than or equal to 2.

We note that the class C was classified by Amitsur (cf. [1, Theorem 3]).

Proposition 6.1. Let G be a finite group. Then all irreducible characters of G are

of degree 1 or 2 if and only if either

1. G is abelian,

2. G has an abelian subgroup of index 2, or

3. G/Z(G) is an abelian 2-group of order 8.

This result has been generalised by Isaacs that if G is a group with | cd(G)| ≤ 3,

where cd(G) = {χ(1) | χ ∈ Irr(G)}, then G must be solvable (cf. Theorem 2.11).

Thus, by the results of Amitsur and Isaacs, all groups belonging to C are necessarily
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solvable. Therefore, nearly supersolvable groups are indeed solvable. On the other

hand, it is clear that all supersolvable groups are nearly supersolvable. In fact, we

will see that nearly supersolvable groups behave exactly like supersolvable groups.

To state and prove this formally, we first recall below a lemma that assures that the

class C is “closed” (cf. [51, Chapter 6, Lemma 1.3]).

Lemma 6.2. Let G be a finite group. Suppose that all irreducible representations of

G are of dimension 1 or 2. Assume that H is either a subgroup or a homomorphic

image of G. Then every irreducible representation of H is of dimension 1 or 2.

From this lemma, we can show that the class of NSS-groups is also “closed” as

the following.

Proposition 6.3.

1. Every subgroup of an NSS-group is NSS.

2. Every homomorphic image of an NSS-group is NSS. In particular, every quotient

group of an NSS-group is NSS.

Proof. Let G be a nearly supersolvable group with an invariant series of subgroups

1 = N0 E N1 E · · · E Nk−1 E Nk = G,

where each subgroup is normal in G, the quotient Ni+1/Ni is cyclic for every i ≥ 1,

and N1 belongs to the class C. Then for any subgroup H of G,

1 = H ∩N0 E H ∩N1 E · · · E H ∩Nk−1 E H ∩Nk = H
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is an invariant series of H in which each quotient (H ∩Ni)/(H ∩Ni−1) is isomorphic

to the subgroup (H ∩Ni)Ni−1/Ni−1 of Ni/Ni−1.

On the other hand, let φ : G→ H be a surjective homomorphism, then

1 = φ(N0) E φ(N1) E · · · E φ(Nk−1) E φ(Nk) = H

is an invariant series of H. Moreover, for each i, φ(Ni)/φ(Ni−1) is a homomorphic

image of the quotient groupNi/Ni−1. Now Lemma 6.2 implies thatH is NSS whenever

H is a subgroup or a homomorphic image of G.

Like supersolvable groups, it is false in general that if both N and G/N are nearly

supersolvable, then G is a nearly supersolvable group. However, we have the following

weak substitute.

Lemma 6.4. Let G be a group and N its normal subgroup. If N belongs to the class

C, and G/N is supersolvable, then G is nearly supersolvable.

Proof. By lifting an invariant series of G/N to G, we have

N = N0 E N1 E · · · E Nk−1 E Nk = G,

where each subgroup is normal in G and every quotient Ni+1/Ni is cyclic. Since

N ∈ C, extending the above invariant series to the trivial subgroup completes the

proof.

Now we can state and prove our main theorem for this section.

Theorem 6.5. All nearly supersolvable groups are NM-groups.
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Proof. According to the definition, for any nearly supersolvable group G, there is an

invariant series of subgroups

1 = N0 E N1 E · · · E Nk−1 E Nk = G,

where each subgroup is normal in G, the quotient Ni+1/Ni is cyclic for every i ≥ 1,

and N1 belongs to the class C consisting of groups whose irreducible representations

are of dimension less than or equal to 2. Quotienting the above invariant series by

N1 then gives

〈e〉 = N1 E N2 E · · · E Nk = G/N1,

where for each i ≥ 1, Ni = Ni/N1. According to the third isomorphism theorem,

each Ni+1/Ni is isomorphic to Ni+1/Ni, which is cyclic. In other words, G/N1 is

supersolvable. Now by applying Theorem 2.3, G is a relative M-group with respect

to N1. As all irreducible characters of N1 are of degree ≤ 2, we conclude that G is

an NM-group.

We recall below a result (cf. [71, pp. 6]) that gives sufficient conditions for groups

being supersolvable, which will enable one to obtain some examples of NSS-groups.

Lemma 6.6.

1. If |G| = qpn and q|(p − 1), then G is supersolvable. In particular, if |G| = 2pn,

then G is supersolvable.

2. Suppose that q2|(p− 1) and |G| = q2pn. Then G is supersolvable. In particular, if

|G| = 4pn with 4|(p− 1), then G is supersolvable.
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By Proposition 6.1, a moment’s reflection shows that all irreducible characters of

any group of order 2p or 2p2 are of degree ≤ 2. Thus, one has

Corollary 6.7. Let p be a prime. If |G| = 4pn, and G admits a normal subgroup of

order 2, 4, 2p, or 2p2. Then G is NSS. If |G| = 8pn, and G has a normal subgroup

of order 4 or 8, then G is NSS. Moreover, if |G| = 8pn with 4|(p− 1), and G admits

a normal subgroup of order 2, 2p, or 2p2, then G is NSS.

To end this section, we give below a sufficient condition for groups of derived

length ≤ 3 being NSS-groups.

Proposition 6.8. Suppose that G has derived length ≤ 3. If G′/G′′ is cyclic, then G

is an NSS-group.

Proof. Quotienting the derived series of G by G′′ gives

1 E G′/G′′ E G/G′′.

Since G/G′ is abelian, the third isomorphism theorem yields that the quotient

(G/G′′)/(G′/G′′)

is also abelian. As G′/G′′ is cyclic, one can conclude that G/G′′ is supersolvable.

Moreover, since G′′ is abelian, Lemma 6.4 asserts that G is NSS.
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6.2 Nearly Nilpotent Groups

As discussed in Section 3.3, Arthur and Clozel showed that all Galois representations

with nilpotent image are automorphic via Artin reciprocity, their theory of automor-

phic induction, and the fact that all subgroups of a nilpotent group are subnormal.

From this, one may ask for a classification of subnormally monomial groups, the

groups all of whose irreducible characters are induced from 1-dimensional characters

of subnormal subgroups.

We, however, note that due to the Langlands-Tunnell theorem, the theory of

Arthur and Clozel indeed implies that all Artin L-functions attached to characters

induced from 2-dimensional characters of subnormal groups are automorphic under a

certain solvability condition. In light of this, we are interested in the classification of

subnormally NM-groups, which leads us to consider nearly nilpotent groups as follows.

Definition 6.2. A finite group G is called nearly nilpotent if it has a normal subgroup

N ∈ C such that G/N is nilpotent, where C denotes the class consisting of groups

whose irreducible representations are of dimension less than or equal to 2.

Since all subgroups and homomorphic images of a nilpotent group are nilpotent,

a moment’s thought shows that all subgroups and homomorphic images of any nearly

nilpotent group are nearly nilpotent. Also, as all nilpotent groups are supersolvable,

all NN-groups form a “closed” subclass of the class of NSS-groups. In particular, all

NN-groups are solvable.

Now let us consider a direct product G = G1 × G2, where G1 and G2 are NM-

groups. Note that for every irreducible character χ of G, there exist irreducible

characters χ1 and χ2 of G1 and G2, respectively, such that χ = χ1 × χ2. Since both
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G1 and G2 are NM-groups, for each i, there exists a subgroup Hi of Gi with an

irreducible character ψi ∈ Irr(Hi) of degree ≤ 2 such that χi = IndGiHi ψi. Thus,

χ = IndG1×G2
H1×H2

(ψ1 × ψ2).

However, now one can see that χ might not be induced from an irreducible character

of degree ≤ 2. As a consequence, we cannot apply the Langlands-Tunnell theorem

to deduce Artin’s conjecture directly. But as each ψi is still of automorphic type

(thanks to Artin reciprocity and the Langlands-Tunnell theorem), if we invoke the

functoriality of GL(n) × GL(1) and GL(2) × GL(2) (cf. Section 3.3.3), then we are

able to derive the automorphy of ψ1 × ψ2. Thus, we have the following.

Proposition 6.9. If K/k is a Galois extension of number fields whose Galois group

is a direct product of two NM-groups, then Artin’s conjecture is true for K/k.

Moreover, by applying the Rankin-Selberg theory developed by Jacquet-Piatetski-

Shapiro-Shalika, the above discussion then further yields:

Proposition 6.10. If K/k is a Galois extension whose Galois group is a direct prod-

uct of three (or four) NM-groups, then Artin’s conjecture is true for K/k.

In a slightly different vein, since any finite direct product of nilpotent groups

is nilpotent, the Arthur-Clozel theory implies that the principle of functoriality is

valid in this case. Naturally, one may want to find some “non-nilpotent” examples.

Unfortunately, unlike nilpotent groups, the direct product of two nearly nilpotent

groups might not be nearly nilpotent. In fact, by the previous discussion, one even

cannot expect this would be an NM-group. Nevertheless, we have the following result.
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Proposition 6.11. If G1 is a nearly nilpotent group and G2 is an abelian-by-nilpotent

group, i.e., G2 admits an abelian normal subgroup N2 with G2/N2 nilpotent, then

G1 ×G2 is a nearly nilpotent group and so is of automorphic type.

Proof. Since G1 is a nearly nilpotent group, there is a normal subgroup N1 of G1

belonging to C such that G1/N1 is nilpotent. On the other hand, G2 has an abelian

normal subgroup N2 such that G2/N2 is nilpotent. Thus, we have an invariant series

1 E N1 ×N2 E G1 ×G2.

Since (G1×G2)/(N1×N2) ' (G1/N1)×(G2/N2), which is a direct product of nilpotent

groups, (G1 × G2)/(N1 ×N2) is nilpotent. Moreover, as all irreducible characters of

N1×N2 are clearly of degree ≤ 2, N1×N2 ∈ C. Thus, G1×G2 is nearly nilpotent.

In addition, by invoking Ramakrishnan’s functoriality of GL(2)×GL(2), one can

show the direct product of two nearly nilpotent groups is still of automorphic type.

Theorem 6.12. If G1 and G2 are nearly nilpotent, then G1 ×G2 is of automorphic

type.

Proof. Assume that K/k is a Galois extension of number fields with Galois group

G1 × G2. Since both G1 and G2 are nearly nilpotent, for each i, there exists Ni ∈ C

such that Gi/Ni is nilpotent. Now Theorem 2.5 asserts that Gi is a relative SM-group

with respect to Ni. As discussed above, for each irreducible character χ of G1 ×G2,

there are irreducible characters χ1 and χ2 of G1 and G2, respectively, such that

χ = χ1 × χ2.
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Also, for each i, there exist a subnormal subgroup Hi (containing Ni) of Gi and an

irreducible character ψi ∈ Irr(Hi) such that χi = IndGiHi ψi and ψi|Ni ∈ Irr(Ni). Thus,

χ = IndG1×G2
H1×H2

(ψ1 × ψ2).

On the one hand, as ψ1 and ψ2 are of degree ≤ 2, Artin reciprocity and Langlands-

Tunnell’s theorem assert that for each i, (by regrading ψi as an irreducible character of

H1×H2) ψi corresponds to a cuspidal automorphic representation of dimension ψi(1)

over KH1×H2 . Thus, the functoriality of GL(n)×GL(1) and GL(2)×GL(2) implies

that ψ1 × ψ2 corresponds to a cuspidal automorphic representation (of dimension

ψ1(1)ψ2(1)) over KH1×H2 . Note that as H1 × H2 is subnormal in G1 × H2, and

G1 × H2 is subnormal in G1 × G2, we can conclude that H1 × H2 is subnormal in

G1×G2. Putting everything together, the above-mentioned theorems of Arthur-Clozel

and Jacquet-Shalika yield that χ is cuspidal.

We now give some sufficient conditions for solvable groups to be of automorphic

type. First of all, as any nilpotent group is isomorphic to a direct product of its Sylow

subgroups and the derived subgroup of any supersolvable group is nilpotent, we have

the following corollary.

Corollary 6.13. If G is a supersolvable group of order 2npn1
1 · · · p

nk
k with ni ≤ 2 and

n ≤ 4, then G is of automorphic type.

Also, since all Z-groups, the groups whose all Sylow subgroups are cyclic, are

supersolvable, a moment’s reflection shows:

Corollary 6.14. All Z-groups are of automorphic type. In particular, all groups of

square-free order are of automorphic type.
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This section will close with below a semi-numerical result, which in particular,

presents a simple proof for Cho and Kim’s automorphy results of A4, S4, and SL2(F3).

Corollary 6.15. Let p and q be distinct primes. If G is of order pq, p2q, or p2q2,

then G is of automorphic type.

Proof. By the Sylow theorems, G must have a normal Sylow subgroup N (see, for

example, [27, Theorems 1.30 and 1.31] and [61, 6.5.2]). Note that N is abelian, and

that G/N is either a p-group or a q-group. Now the claim follows from Theorem 6.12

immediately.

6.3 S-Accessible Characters

In light of the work of Arthur-Clozel on accessible characters, we prove the following.

Proposition 6.16 (à la Arthur et Clozel). Assume G is solvable and χ is irreducible.

If χ is an integral sum of characters induced from irreducible characters, which are

of automorphic type, of subnormal subgroups of G, then Langlands reciprocity holds

for χ.

Proof. As discussed in Section 3.3.4, all characters induced from irreducible char-

acters, which are of automorphic type, of subnormal subgroups of G must be of

automorphic type. Hence, χ corresponds to a (formal) integral sum of cuspidal auto-

morphic representations. Thus, we can write

L(s, χ,K/k) =
∏
i

L(s, πi)
ni ,

where for each i, ni is an integer, and {πi}i is a finite set of distinct cuspidal auto-

morphic representations (over k) such that πi ' πj only if i = j.
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As in [2], one can utilise Jacquet-Shalika’s result, [33, Theorem 4.7], to complete

the proof. However, for the sake of completeness, we sketch their argument as follows.

By applying the theory of Rankin-Selberg convolutions and looking at the order of

pole at s = 1 of L(s, χ⊗ χ,K/k), one has

1 =
∑
i

n2
i .

Since ni’s are integers, one can easily deduce that |n1| = 1 (say) and ni = 0 for any

i 6= 1. Finally, if n1 = −1, the Artin L-function would have “trivial poles” at some

negative integers, which is impossible.

Let S be a finite set of natural numbers. An irreducible character χ of G is called

S-accessible if χ is an integral combination of characters induced from irreducible

characters ψi of subnormal subgroups of G, where each ψi(1) belongs to S. Moreover,

a group is called S-accessible if all its irreducible characters are. For example, {1}-

accessible characters (resp., groups) are exactly accessible characters (resp., groups)

introduced by Arthur and Clozel, and nilpotent groups are {1}-accessible. Indeed, the

author learned the above argument from Arthur and Clozel who showed all solvable

accessible groups are of automorphic type and derived Langlands reciprocity for all

nilpotent extensions. We now present below a generalisation of Arthur-Clozel’s result.

Corollary 6.17. Suppose G is solvable. If χ is a {1, 2}-accessible character of G,

then Langlands reciprocity holds for χ. Also, if |G| is not divisible by 36 and χ is a

{1, 2, 3}-accessible character of G, then Langlands reciprocity holds for χ.

Proof. It suffices to show that any irreducible character ψ, with ψ(1) ≤ 3, of any

subgroup of G is of automorphic type. As all subgroups of G are solvable, if ψ(1) ≤ 2,
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the assertion follows from the Artin-Langlands-Tunnell theorem. So we may assume

ψ(1) = 3. Since 36 does not divide the order of any subgroup of G, Lemma 2.12 tells

us that ψ must be monomial and hence of automorphic type.

We note that all nearly nilpotent groups are solvable and {1, 2}-accessible. Thus,

Langlands reciprocity holds for all nearly nilpotent extensions. However, all irre-

ducible characters of a nearly nilpotent group are in fact induced from irreducible

characters of degree at most 2 (cf. Theorem 2.3). As remarked in [2], Dade [14] has

shown that if G is solvable, then {1}-accessible characters are monomial. It would

be interesting to investigate whether a similar result holds or not. For example, are

{1, 2}-accessible characters of a solvable group G all induced from irreducible charac-

ters of degree at most 2? We have no clue about this question; and instead of trying

to answer this question, we will give a family of {1, 2, 3}-accessible groups in the next

section.

6.4 Variants of Nearly Nilpotent and Nearly Supersolvable Groups

As before, K/k denotes a Galois extension of number fields with Galois group G. We

first give below a result which presents a partial generalisation of the above-mentioned

automorphy result of nearly nilpotent groups.

Theorem 6.18. Suppose that 36 - |G|, and that G admits a normal subgroup N with

G/N supersolvable and cd(N) ⊆ {1, 2, 3}. Then the Artin conjecture is true for K/k.

Moreover, if G/N is nilpotent, then G is of automorphic type.

Proof. We first note that Theorem 2.11 asserts that N is solvable, and so is G.

According to Theorem 2.3, every irreducible character χ of G is induced from an
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irreducible character ψ of degree at most 3 of a subgroup H of G. If ψ(1) ≤ 2,

ψ is automorphic by the Artin-Langlands-Tunnell theorem. On the other hand, for

ψ(1) = 3, Lemma 2.12 tells us that ψ must be monomial as |H| is not divisible by 36.

Thus, ψ is automorphic (over KH). From this and the induction invariance property

of Artin L-functions, Artin’s conjecture follows.

Assume, further, that G/N is nilpotent. Then Theorem 2.5 enables us to choose

H being subnormal in G. As now χ is {1, 2, 3}-accessible, Corollary 6.17 yields that

χ is of automorphic type.

We give below a simple application of this theorem.

Corollary 6.19. Let p be an odd prime. If |G| is 8p, then G is of automorphic type.

Proof. Again the Sylow theorems asserts that G admits a normal Sylow subgroup N

unless G ' S4 (cf. [27, Theorems 1.32 and 1.33]). Assuming that G is not isomorphic

to S4, since all irreducible characters of N are of degree ≤ 2, and G/N is clearly

nilpotent, Theorem 6.12 yields that G is of automorphic type.

Now suppose G is isomorphic to S4. Then cd(G) = {1, 2, 3}. Since 36 - |S4|,

Theorem 6.18 asserts that G is of automorphic type.

Also, we have the following variant that generalises NSS-groups.

Proposition 6.20. Suppose that G = G1×G2. For each i, assume that 160 - |Gi|, and

that Gi admits a normal subgroup Ni with Gi/Ni supersolvable and cd(Ni) ⊆ {1, 2, 4}.

Then the Artin conjecture is true for K/k.

Proof. Again, G is solvable as Theorem 2.11 ensures that each Ni is solvable. We
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observe that every irreducible character χ of G can be written as

χ = χ1 × χ2

for some χi ∈ Irr(Gi). Moreover, Theorem 2.3 implies that each χi is induced from

an irreducible character ψi of degree 1, 2, or 4 of a subgroup Hi of Gi. Also, the

Artin-Langlands-Tunnell theorem yields ψi is automorphic if ψi(1) ≤ 2.

For ψi(1) = 4, if ψi is imprimitive, then it must be induced from a character of de-

gree at most 2, which can also be treated by the works of Artin and Langlands-Tunnell.

So we may assume ψi is 4-dimensional and primitive. As 160 - |Gi|, Theorems 3.17

and 3.18 together with Lemma 2.13 assert that ψi is automorphic immediately.

Thus, one can conclude that χ is induced from a product of two irreducible char-

acters of automorphic type. Now applying the theory of Rankin-Selberg L-functions,

Artin’s conjecture is valid for the Artin L-function attached to χ.

By a similar argument, one can easily obtain a variant of Theorem 6.12.

Proposition 6.21. Suppose that G = G1 × G2 with 36 - |Gi|, and that each Gi

admits a normal subgroup Ni with Gi/Ni supersolvable and cd(Ni) ⊆ {1, 2, 3}. Then

the Artin conjecture is true for K/k.

We remark that one can, in fact, improve the above results via the classification

of finite subgroups of linear groups. For instance, Lemma 2.13 tells us that the

condition on indivisibility of |Gi| by 160 can be weakened by only requiring that

any subgroup of Gi has no quotient group isomorphic to E24 o D10 or E24 o F20.

Similarly, the indivisibility of |G| by 36 can be replaced by the condition that none of

the subgroups of G has a quotient group isomorphic to the groups of order 36, 72, or



6.4. VARIANTS OF NEARLY NILPOTENT AND NEARLY
SUPERSOLVABLE GROUPS 118

216 appearing in Lemma 2.12 whose precise description can be found, for example,

in [43, Chapter 8].

We also have a variant of Theorem 6.18.

Proposition 6.22. Suppose G is NSS. If G has a normal subgroup N with G/N

nilpotent and cd(N) ⊆ {1, 2, 3}, then G is of automorphic type.

Proof. We induct on the order of |G|. By Theorem 2.5, G is a relative SM-group with

respect to N . Thus, for every irreducible character χ of G, there exists a subnormal

subgroup H with N ≤ H ≤ G and an irreducible character ψ ∈ Irr(H) such that

IndGH ψ = χ and ψ|N ∈ Irr(N). If H 6= G, then the induction hypothesis assures

that H is of automorphic type, and so applying Arthur-Clozel’s theory completes the

proof in this case.

Now assume that H = G. Since G is NSS, G is an NM-group, and χ must be

induced from a character of degree 1 or 2. On the other hand, as χ|N = ψ|N is an

irreducible character of N , χ is of degree ≤ 3. If χ(1) ≤ 2, then Artin reciprocity and

the Langlands-Tunnell theorem assert that χ is of automorphic type. Otherwise, for

χ of degree 3, χ must be a monomial character. Now applying Arthur-Clozel’s theory

and Theorem 3.23 completes the proof.

Corollary 6.23. If G is a group of order 54 or 162, then G is of automorphic type.

Proof. By [61, 7.2.15], G is a supersolvable group. Since any Sylow 3-subgroup P of

G has index 2, P is a normal subgroup. As all non-trivial p-groups have non-trivial

centre, [P : Z(P )] ≤ 27. Thus, Lemma 2.9 yields that cd(P ) ⊆ {1, 3}. Since G/P is

cyclic, the corollary follows from Proposition 6.22 immediately.

Now let us put our attention on groups of cube-free order. Firstly, we note that
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any Sylow subgroup of a group of cube-free order is abelian. Thus, by applying

Proposition 2.4 with N = G, all solvable groups of cube-free order are M-groups.

Thanks to the work of Qiao and Li, Proposition 2.1, we have the following refinement.

Theorem 6.24. Assume G = Gal(K/k) is of cube-free order. If either |G| is odd or

G is a solvable group with a non-abelian Hall {2, 3}-subgroup G{2,3} = G{2} o G{3},

then Langlands reciprocity holds for K/k.

Proof. By the celebrated Feit-Thompson theorem, if |G| is odd, then G is solvable.

Thus, by Proposition 2.1, if |G| is odd or G is solvable with a non-abelian Hall {2, 3}-

subgroup G{2,3} = G{2} oG{3}, then G is metabelian, which is {1}-accessible. Thus,

the Langlands reciprocity conjecture follows.

We recall that for a prime p with 3 | p+ 1, Qiao and Li in [52] gave the following

examples of groups which are not metabelian.

1. C2
p o S3.

2. C2
p o C3 o C4.

Observe that these groups contain normal subgroups isomorphic to C2
p oC3, and

that cd(C2
p o C3) ⊆ {1, 3}. Applying Theorem 6.18, we know that these groups

are of automorphic type. Finally, we present the following result that gives another

(non-nilpotent) example of the functoriality of the tensor product.

Proposition 6.25. Assume that G1 is a nearly nilpotent group and that G2 is of

order which is not divisible by 36. If G2 has a normal subgroup N2, whose irreducible

characters are of dimension at most 3, such that G2/N2 is nilpotent, then G1×G2 is

of automorphic type.
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Proof. Since G1 is nearly nilpotent, there exists N1, with cd(N1) ⊆ {1, 2}, such that

G1/N1 is nilpotent. Also, for each irreducible character χ of G1 × G2, there are

irreducible characters χ1 and χ2 of G1 and G2, respectively, such that χ = χ1 × χ2.

Now Horváth’s theorem tells us that for each i, there exist a subnormal subgroup Hi

(containing Ni) of Gi and ψi ∈ Irr(Hi) such that χi = IndGiHi ψi and ψi|Ni ∈ Irr(Ni).

Thus, χ = IndG1×G2
H1×H2

(ψ1 × ψ2), where ψ1(1) ≤ 2 and ψ2(1) ≤ 3. Thus, ψ1 × 1 and

1× ψ2 are of degree less than or equal to 2 and 3, respectively.

By the assumption on the order of G2, if ψ2(1) = 3, then ψ2 is a monomial

character. Thus, Theorems 3.21 and 3.23 yield that 1× ψ2 is of automorphic type in

this case. From the above discussion and the Artin-Langlands-Tunnell theorem, both

ψ1 × 1 and 1× ψ2 must be of automorphic type. Observing that

ψ1 × ψ2 = (ψ1 × 1)⊗ (1× ψ2),

the functoriality of GL(n)×GL(1), GL(2)×GL(2), and GL(2)×GL(3) asserts that

ψ1 × ψ2 is also of automorphic type. Finally, as H1 × H2 is subnormal in G1 × G2,

applying Arthur-Clozel’s theorem completes the proof.

6.5 Applications to Frobenius Groups

We recall that G is said to be Frobenius if there is a non-trivial proper subgroup H

of G such that g−1Hg ∩ H = 1 whenever g ∈ G\H. From the theory of Frobenius

groups (cf. Chapter 2), we have the following lemma.

Lemma 6.26. Suppose G = N o H is a Frobenius group with Frobenius kernel N

and solvable Frobenius complement H. If H is of automorphic type, then so is G.
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Proof. Let χ be an irreducible character of G = Gal(K/k). If Kerχ contains N , then

χ can be seen as an irreducible character of H. As H is of automorphic type, χ is

automorphic over k. Otherwise, if N * Kerχ, then by Proposition 2.7, there is a

ψ ∈ Irr(N) such that χ = IndGN ψ. Since N is nilpotent, N is of automorphic type.

In addition, KN/k is a solvable Galois extension, Arthur-Clozel’s theory yields that

χ is automorphic over k.

Now suppose that G is a Frobenius group, and H is a Frobenius complement of

G. Assume, further, that the Fitting subgroup F(H) of H satisfies that H/F(H) is

nilpotent. As every Sylow subgroup of H is either cyclic or a generalised quaternion

group, all irreducible characters of F(H) are of degree ≤ 2. Thus, Theorem 6.12 and

Lemma 6.26 assert that G is of automorphic type, which gives Zhang’s result [75].

By a similar argument, one has a criterion below.

Lemma 6.27. Let G = Gal(K/k) be a Frobenius group with Frobenius kernel N . If

Artin’s conjecture is true for KN/k, then Artin’s conjecture holds for K/k.

Let us further borrow below a structure theorem of Frobenius complements (see,

for example, [50, Lemmata 18.3 and 18.4] or [28, Theorems 6.14 and 6.15]). (We note

that Frobenius complements are called Frobenius subgroups in [28].)

Proposition 6.28. If H is a solvable Frobenius complement, then either:

Type 1. H = SQ, where S is a normal cyclic subgroup of H and Q is cyclic.

Type 2. H = SQ, where S E H is cyclic and Q is a generalised quaternion group.

Type 3. H is isomorphic to SL2(F3).

Type 4. H/F(H) ' S3, where F(H) is the Fitting subgroup of H.
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Now, by the results discussed previously, and the fact that every Sylow subgroup

of a Frobenius complement is either cyclic or a generalised quaternion group, we have

below a theorem.

Theorem 6.29. Suppose that K/k is a solvable Frobenius Galois extension with

Galois group G. Then the Artin conjecture holds for K/k. Moreover, if a Frobenius

complement of G is of Type 1, 2, or 3, then Langlands reciprocity holds for K/k.

Moreover, applying our method of low-dimensional groups, we still can say a little

more for Frobenius complements of Type 4.

Proposition 6.30. If G is a solvable Frobenius group G with Frobenius kernel N and

Frobenius complement H, then any irreducible character χ of G is of automorphic type

unless N ⊆ Kerχ, χ is of degree 6 and induced from a non-monomial character of

degree 2, and H is of Type 4.

Proof. As we have shown before, if N * Kerχ, χ is of automorphic type. Also

Theorem 6.29 asserts that if H is not of Type 4, G is of automorphic type. Thus,

we may assume H/F(H) ' S3 and N ⊆ Kerχ. In this case, χ can be seen as a

character of H. Since H/F(H) is isomorphic to S3, Theorem 2.3 implies that χ must

be induced from an irreducible character ψ of degree ≤ 2 of a subgroup H̃ ≤ H of

index 1, 2, 3, 6. Now by the Arthur-Clozel theory, Theorem 3.23, and the fact that

the only non-subnormal subgroup of S3 has index 3, the assertion follows.

Corollary 6.31. Assume that G is a solvable Frobenius group G with Frobenius

complement H. If any Sylow 2-subgroup of the Fitting subgroup F(H) of H is abelian,

then G is of automorphic type. In particular, if 16 does not divide |G|, then G is of

automorphic type.
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Proof. By Theorem 6.29, we may assume H/F(H) is isomorphic to S3. Observe that

if 16 does not divide |G|, then 8 cannot divide F(H). In this case, any Sylow 2-

subgroup of F(H) is abelian. Since for every p > 2, all Sylow p-subgroups of H are

cyclic and F(H) is nilpotent, F(H) is abelian if any Sylow 2-subgroup of F(H) is.

Now assuming F(H) is abelian, the theory of relative M-groups tells us that all

irreducible characters of H are monomial. Thus, Proposition 6.30 (together with its

proof) implies H is of automorphic type.

As shown in the proof of Proposition 6.30, we cannot derive the automorphy for

irreducible characters of degree 6, induced from a character of degree 2. Nevertheless,

if the existence of automorphic induction is assumed, one will have the following.

Theorem 6.32 (Conditional). If the non-normal cubic automorphic induction exists

for all 2-dimensional cuspidal automorphic representations, then all solvable Frobenius

groups are of automorphic type.

6.6 Groups of Order at most 100

In [68], van der Waall applied group-theoretic methods together with a generalisation

of Proposition 2.4 to show that all groups of order≤ 100, twenty-four groups excepted,

are monomial. Moreover, van der Waall described the 24 exceptional groups that are

non-monomial. In light of the work of van der Waall, we will show that all groups,

except A5, of order at most 100, are of automorphic type.

Clearly, the trivial group is always of automorphic type. On the other hand, by

the theorem of Arthur and Clozel, we know that all p-groups are of automorphic type.
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Hence, if |G| belongs to

{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

or

{4, 8, 16, 32, 64, 9, 27, 81, 25, 49},

then G is of automorphic type. There are 36 classes of groups.

According to Corollaries 6.15 and 6.19, any group of order pq, pq2, p2q2, or 8p

for some primes p and q is of automorphic type (thanks to Artin reciprocity, the

Langlands-Tunnell theorem, and Arthur-Clozel’s theory). Thus, if G has order 6, 10,

12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 50, 51, 52,

55, 56, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95,

98, 99, or 100, then G is of automorphic type. Here we have 51 classes of groups.

Now, there are only 13 remaining cases, namely, the groups of order 30, 42, 48,

54, 60, 66, 70, 72, 78, 80, 84, 90, or 96. If G is of order 30, 42, 54, 66, 70, or 78, G is

of automorphic type by Corollaries 6.14 and 6.23. On the other hand, any group of

order 90 has a normal subgroup of order 45, which is abelian. As a result, all groups

of order 90 are metabelian and thus of automorphic type.

6.6.1 The Case |G| = 48

For G of order 48, G has a normal subgroup N of order 8 or 16. According to Lemma

2.9, all irreducible characters of N are of degree ≤ 2. Since G/N is either of order

3 or 6, G/N must be supersolvable. Thus, G is clearly NSS and NM. In addition, if

|G/N | = 3, Theorem 6.12 asserts that G is of automorphic type.
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Now assume |N | = 8. As G is an NM-group, Artin reciprocity, the Langlands-

Tunnell theorem, and Theorem 3.23 ensure that every irreducible character of G of

degree ≤ 3 is of automorphic type. On the other hand, we note that all irreducible

representations of G are of dimension ≤ 4, which can easily be checked via GAP

[20] for instance. By the fact that G is nearly supersolvable, and [G : N ] = 6, we

conclude that if χ is an irreducible character of degree 4, it must be induced from a

2-dimensional character of a subgroup H of G containing N . As [G : H] = 2, H is a

normal subgroup, and thus χ is of automorphic type.

6.6.2 The Case |G| = 60

If G is of order 60, as a consequence of the Sylow theorems, G is either isomorphic to

A5, A4 × C5, or C15 o T where T = C4 or T = C2
2 .

Since A4 is of automorphic type, and C5 is abelian, Artin reciprocity and the

functoriality of GL(n) × GL(1) assert that A4 × C5 is of automorphic type. On the

other hand, for the third case, G is clearly of automorphic type thanks to Theorem

6.12. Therefore, we have the following.

Corollary 6.33. Every non-simple group of order 60 is of automorphic type.

6.6.3 The Case |G| = 72

Consider a group G of order 72. According to [68, Theorem II. 5.1], G is not monomial

if and only if G′ is the quaternion group of order 8. Moreover, a group G of order

72 with |G′| = 24 does not exist. Hence, any non-monomial group of order 72 must

be nearly nilpotent and of automorphic type. For G monomial, G′ must have order

1, 2, 4, 3, 6, 12, 9, 18, or 36. If G′ is of order 1, 2, 4, 3, 6, 9, or 18, we know that
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cd(G′) ⊆ {1, 2}, and so G is nearly nilpotent.

Now we assume G′ is of order 12 or 36. By Lemma 2.10, cd(G′) ⊆ {1, 2, 3, 4}. On

the other hand, Horváth’s theorem tells us that for every χ ∈ Irr(G), there exists a

subnormal subgroup H with G′ ≤ H ≤ G and an irreducible character ψ ∈ Irr(H)

such that IndGH ψ = χ and ψ|G′ ∈ Irr(G′). Since every proper subgroup of a group of

order 72 has been shown to be of automorphic type, if H 6= G, then Arthur-Clozel’s

theory of automorphic induction yields χ is of automorphic type. Thus, we may

assume H = G. As G is monomial and solvable, if χ(1) ≤ 3, then χ is of automorphic

type. Furthermore, if 4 ∈ cd(G′), Lemma 2.10 tells us that G′ must be of order 36

and G′′ is of order 9. Thus, G/G′′ is a 2-group and G is nearly nilpotent.

6.6.4 The Case |G| = 80

Also a straightforward application of Sylow’s theory yields that every group of order

16p has a normal Sylow subgroup unless p = 3. As a consequence, Lemma 2.9 and

Theorem 6.12 assert every group of order 16p is of automorphic type unless p = 3.

As shown above, for G of order 48, G is of automorphic type, and we hence have:

Corollary 6.34. If G is of order 16p, then G is of automorphic type. In particular,

if |G| = 80, then G is of automorphic type.

6.6.5 The Case |G| = 84

For G of order 84, by Proposition 2.1, G is either of the form G = C7 oC3 oG{2} or

metabelian. By Theorem 2.3, it is easy to see that cd(C7 oC3) ⊆ {1, 3}. As 36 - |G|,

Theorem 6.18 asserts that G is of automorphic type. Thus, it remains to consider

groups of order 96.
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6.6.6 The Case |G| = 96

For the last case, |G| = 96, if |G′| is 1, 2, 4, 8, 16, 3, 6, 12, or 24, then as above, we

have cd(G′) ⊆ {1, 2, 3}. Hence, by Theorem 6.18, G is of automorphic type.

Let |G′| be 48. Then [68, Theorem II. 6.2] tells us that G′′ is of order 16 and

abelian. Since G/G′′ is supersolvable, Theorem 2.3 asserts that for any χ ∈ Irr(G),

there exists a subgroup H with G′′ ≤ H ≤ G and an irreducible character ψ ∈ Irr(H)

such that IndGH ψ = χ and ψ|G′′ ∈ Irr(G′′), and hence cd(G) ⊆ {1, 2, 3, 6}. We note

that if χ(1) = 6, then it must be induced from a linear character of G′′, which is

normal in G. Thus, Arthur-Clozel’s theory implies that χ is of automorphic type.

Again, as G is monomial and solvable, if χ(1) ≤ 3, then χ is of automorphic type.

Now it remains to consider the case |G′| = 32. Let Φ(G′) stand for the Frattini

subgroup of G′, i.e., the intersection of all maximal subgroups of G′. We recall that a

p-group is termed extra-special if its centre, derived subgroup and Frattini subgroup

all coincide. By the classification, [68, Theorem II. 6.5], we have either:

1. G is not monomial if and only if Z(G′) is of order 8 and Φ(G′) is of order 8 or 2

([68, Cases (4-a) and (4-b)]); or

2. G is monomial if and only if G′ = Q ∗ Q, the extra-special group of order 32 of

(+)-type ([68, Case (4-d-2)]).

For the first case, we note that if |Z(G′)| = |Φ(G′)| = 8, then van der Waall

showed that |G′′| = 2, which implies that G′ ∈ Γ2. (Here, Γ2 is the Hall-Senior family

of groups with the derived subgroups isomorphic to C2 and the inner automorphism

groups isomorphic to V4.) It can be checked, by using the computer algebra package

[20] (or even rather easily, but more tediously, by hand), that cd(G′) = {1, 2} in this
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case. On the other hand, if |Z(G′)| = 8 and |Φ(G′)| = 2, then van der Waall proved

that G′ ' C2
2 ×Q, which gives cd(G′) = {1, 2}. Thus, G is nearly nilpotent.

For the second case, van der Waall (see [68, pp. 125-126]) showed that for every

irreducible representation ρ of G, either ρ can be regarded as a representation of

G/Z(G′), or ρ is faithful, monomial, and of dimension 4.

As remarked by van der Waall, G/Z(G′) has the abelian derived subgroup and

hence is monomial. We further note that this comment, in fact, tells us that G/Z(G′)

is metabelian and hence of automorphic type.

Finally, we assume ρ is faithful. Thus, ρ(G) is a solvable subgroup of order

96 of GL4(C). As noted in [43, Chapter 4], since any scalar matrix in ρ(G) lies

in its centre Z(ρ(G)) and Schur’s lemma implies that Z(ρ(G)) is contained inside

the set of scalar matrices, the projective image of ρ in PGL4(C) is isomorphic to

ρ(G)/Z(ρ(G)) ' G/Z(G). Since G ' (Q ∗ Q) o C3, as may be checked in GAP [20]

for example, one can deduce that G/Z(G) is isomorphic to V4 o A4. By a result of

Martin, Theorem 3.19, ρ is of automorphic type which completes the proof.
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Chapter 7

Concluding Remarks and Future Directions

Problems in arithmetic or, more generally, in mathematics enlighten the path for us

to discover and understand new concepts. As discussed earlier, for any extension K/k

of number fields, Dedekind conjectured that the quotient ζK(s)/ζk(s) of the Dedekind

zeta functions is entire. This indeed led Artin to his L-functions and holomorphy con-

jecture. It may be that we shall not see the complete resolution of either Dedekind’s

conjecture or Artin’s conjecture shortly. However, they illuminate a deep relation

among algebra, analysis, and arithmetic.

We recall that via works of Aramata-Brauer and Uchida-van der Waall, Dedekind’s

conjecture is valid whenever K/k is Galois, or K is contained in a solvable normal

closure of k. Two key ingredients in their proofs are Artin reciprocity and the the-

ory of monomial representations. Furthermore, they provide the background for the

theory of Heilbronn characters. In light of these and the automorphy result for

certain 2-dimensional (Galois) representations due to Langlands-Tunnell and Khare-

Wintenberger, it may be interesting and possible to extend previous results via char-

acter theory as follows.

1. Investigate Dedekind’s conjecture for non-solvable cases.
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2. Study Heilbronn characters involving characters induced from characters of degree

at most 2.

Also, via Arthur-Clozel’s theory of automorphic induction, if K/k is a solvable

Galois extension, then the quotient ζK(s)/ζk(s) is equal to an automorphic L-function

over k. Inspired by the result of Uchida and van der Waall, we further propose the

following:

3. Study the strong Dedekind conjecture for K contained in a solvable normal closure

of k. (That is, we want to show ζK(s)/ζk(s) is automorphic over k.)

In a slightly different theme, we remark that the methods introduced in Chapter 6

allow one to study the Langlands reciprocity conjecture for solvable Galois extensions

via elementary group theory (e.g. Sylow’s theorems). Indeed, for solvable G, one can

also argue using the derived subgroup G′. More precisely, as G/G′ is abelian, our

results obtained enable one to investigate the automorphy of G by simply considering

cd(G′), the set of character degrees of G′, which can be easily computed via the

computer algebra package [20]. From this, we have the following project in our minds.

4. Use a mix of theory and computation to investigate the automorphy of solvable

groups of order greater than 100.

The Langlands program has provided us with an exuberant interplay of number

theory and representation theory. Indeed, since the analytic theory of automorphic

L-functions is well-developed, the “automorphy connection” allows us to study L-

functions associated to arithmetic objects easier and resolve several famous conjec-

tures including Fermat’s last theorem (which follows from the modularity theorem

of Wiles) and the Sato-Tate conjecture (which follows from the potential automor-

phy results of Taylor et al.). Thus, it is interesting and natural to seek arithmetic
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applications of the results presented in this thesis. For instance, in sieve theory, to

study primes satisfying Chebotarev conditions, one of the main tools is a variant of

the Bombieri-Vinogradov theorem due to M. Ram Murty and V. Kumar Murty [45],

and Langlands reciprocity plays the crucial role in obtaining a better “level of distri-

bution” in their theorem. From this, we propose our last project:

5. Find more applications of Langlands reciprocity in analytic number theory, espe-

cially, in sieve theory. We hope to apply this research to classical questions such as the

Goldbach conjecture, the twin prime conjecture, the Artin primitive root conjecture,

and the Lang-Trotter conjectures.
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