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1. Introduction

Nearly a century ago, Emil Artin [3] introduced a new kind of L-function, which 
generalises both Dirichlet L-functions and Hecke L-functions, and made the following 
famous conjecture.
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Conjecture 1.1 (Artin’s (holomorphy) conjecture). Let K/k be a Galois extension of num-
ber fields with Galois group G. For every non-trivial irreducible character χ of G, the 
Artin L-function L(s, χ, K/k) attached to χ extends to an entire function.

Via his celebrated reciprocity law, Artin showed that all his L-functions attached to 
characters of degree 1 correspond to Hecke L-functions and then established his conjec-
ture in this case. After Artin, Langlands [22] and Tunnell [30] proved Artin’s conjecture 
for any 2-dimensional irreducible representation with solvable image, and it is a major 
result in the Langlands program. More recently, the case of odd 2-dimensional irreducible 
representations (of the absolute Galois group of Q) with non-solvable images was settled 
by Khare and Wintenberger [18]. Moreover, in light of Artin’s work, Langlands conjec-
tured that all Artin L-functions are automorphic, which is sometimes called the strong 
Artin conjecture or the Langlands reciprocity conjecture.

In a different vein, Brauer [6] showed that every Artin L-function admits a meromor-
phic continuation via his induction theorem. Also, it is well-known that Artin’s conjecture 
is true for any supersolvable Galois extension of number fields. This follows from the fact 
that supersolvable groups are M-groups, the groups all of whose irreducible characters are 
monomial. Undoubtedly, these results suggest that the group-theoretic method shall play 
a role in studying the (strong) Artin conjecture. In fact, by knowing that all subgroups 
of nilpotent groups are subnormal, the Arthur–Clozel theory, which will be discussed in 
Section 2, implies that the Langlands reciprocity holds for all nilpotent Galois extensions 
of number fields.

For non-nilpotent cases, the Langlands reciprocity has been derived for certain solvable 
Frobenius extensions by Zhang [32], which will be discussed in the next section. (We 
recall that a finite group G is said to be a Frobenius group if there is a non-trivial 
proper subgroup H of G such that g−1Hg ∩ H = 1 whenever g ∈ G\H. In this case, 
H is called a Frobenius complement of G.) More recently, Langlands reciprocity was 
established for A4, S4, SL2(F3), and GL2(F3)-extensions. The first two cases were proved 
by Cho [8,9] (although Cho in his Ph.D. thesis [8] said these two cases are well-known 
for experts). Indeed, Cho derived his theorem based on the work of Kim [20] on SL2(F3)
and GL2(F3)-extensions. Furthermore, under certain conditions, the automorphy of A5

and S5 was derived by Kim [19] and Calegari [7], respectively.
In this note, we will apply a method of “low-dimensional groups” developed by the 

author in [31] to study the strong Artin conjecture. (We call a group low-dimensional 
if ALL its irreducible characters are of “small degree”.) We will say a finite group G is 
nearly nilpotent if it admits a normal subgroup N , all of whose irreducible characters are 
of degree less than or equal to 2, such that G/N is nilpotent. These groups will be shown 
to be solvable and discussed in Sections 2 and 6. Besides, as a theorem of Shafarevich 
asserts every finite solvable group is realisable over Q, our results below actually present 
an enlargement of Galois extensions of number fields satisfying the Langlands reciprocity.
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Theorem 1.2. Let K/k be a Galois extension of number fields with Galois group G. If G
is either a direct product of two nearly nilpotent groups or a group of order less than 60, 
then the Langlands reciprocity is true for K/k.

Theorem 1.3. Suppose that K/k is a solvable Galois extension with Frobenius Galois 
group G (with a Frobenius complement H). Then the Artin conjecture holds for K/k. 
Let F(H) be the maximal normal nilpotent subgroup of H. If either H/F(H) is not 
isomorphic to S3 or a Sylow 2-subgroup of F(H) is abelian, then the Langlands reciprocity 
law is valid for K/k.

2. Reciprocity law for certain solvable extensions

Throughout this note, G always denotes a finite group, and H and N denote a 
subgroup and a normal subgroup of G, respectively. We let Z(G) denote the centre 
of G, and set G′ = [G, G], G′′ = [G′, G′], and G′′′ = [G′′, G′′]. The direct product of 
k-copies of G will be denoted as Gk or (G)k. The maximal normal nilpotent subgroup 
of G, the Fitting subgroup of G, is denoted by F(G). The cyclic group of order m will 
be denoted as Cm. We also let Irr(G) be the set of irreducible characters of G, and 
cd(G) := {χ(1)|χ ∈ Irr(G)}. The trivial group will often be denoted by 1. We will 
usually let p and q denote primes without mentioning.

For any χ ∈ Irr(G), χ is said to be of automorphic type if for every Galois extension 
K/k of number fields with Galois group G, Langlands’ reciprocity conjecture holds for the 
Artin L-function L(s, χ, K/k). In addition, G is of automorphic type if every irreducible 
character of G is of automorphic type.

In [32], Zhang showed that certain Frobenius extensions satisfy the Langlands reci-
procity conjecture as follows.

Theorem 2.1 ([32]). Let K/k be a Galois extension of number fields with Galois group G. 
Assume that G is a Frobenius group and H is a Frobenius complement of G. Let F(H) be 
the maximal normal nilpotent subgroup of H. If H/F(H) is nilpotent, then every Artin 
L-function attached to an irreducible representation of G are automorphic over k.

Zhang’s method employs the theory of Frobenius groups and nilpotent groups as well 
as Arthur–Clozel’s theory of base change and automorphic induction. In light of Zhang’s 
work, we will derive several results which enlarge the class of groups being of automorphic 
type. Before we state and prove our results, we shall review some concepts of SM-groups 
as well as the main theorem of Arthur–Clozel’s theory.

Theorem 2.2 ([2, Arthur and Clozel]). Let K/k be a cyclic Galois extension of number 
fields of prime degree, and π and Π denote automorphic representations induced from 
cuspidal of GLn(Ak) and GLn(AK) respectively (or, in particular, cuspidal automorphic 
representations of GLn(Ak) and GLn(AK) respectively). Then the base change B(π) of π
and the automorphic induction I(Π) of Π exist. Moreover, I(Π) is induced from cuspidal.
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Definition 1 ([12, Definition 2.3]). Let G be a finite group, and N be a normal subgroup 
of G. A character χ of G is called a relative SM-character with respect to N if there exist 
a subnormal subgroup H with N ≤ H ≤ G and an irreducible character ψ ∈ Irr(H)
such that IndG

H ψ = χ and ψ|N ∈ Irr(N). If every irreducible character of G is a relative 
SM-character with respect to N , then G is said to be a relative SM-group with respect 
to N .

Since all subgroups of a nilpotent group are monomial and subnormal, it is clear that 
all nilpotent groups are relative SM-groups with respect to the trivial group. Indeed, this 
fact together with the above-mentioned Arthur–Clozel theorem asserts that all nilpotent 
groups are of automorphic type as predicted by the Langlands reciprocity conjecture. 
We refer the interested reader to [2] for the complete details. Nevertheless, we will give 
a proof later by invoking below a result of Horváth that gives a sufficient condition for 
groups being relative SM-groups.

Proposition 2.3 ([12, Proposition 2.7]). Let G be a finite group and N be a normal 
subgroup of G such that G/N is nilpotent. Then G is a relative SM-group with respect 
to N .

We remark that in [12], Horváth considered the relation among subgroup-closed M-
groups, the groups whose all subgroups are M-groups, SM-groups, and supersolvable 
groups, and showed that these classes are all distinct.

In the proof of [32, Proposition 4], Zhang used the theory of relative M-groups, which 
will be discussed in the next section, to show that certain solvable groups are of auto-
morphic type. However, lacking of “subnormality”, it might not be possible to apply the 
Arthur–Clozel’s theory. Thanks to the above theorem of Horváth, we can overcome this 
obstacle. Moreover, by invoking below a result of Isaacs, we can drop the assumption on 
the solvability of groups in Zhang’s theorem.

Proposition 2.4 ([13, Theorems 12.5, 12.6 and 12.15]). If G is a finite group such that 
| cd(G)| ≤ 3, then G must be solvable.

Theorem 2.5. Let K/k be a Galois extension of number fields with Galois group G. If 
there is a normal subgroup N of G such that

1: G/N is nilpotent, and
2: all irreducible characters of N are of dimension 1 or 2,

then the Langlands reciprocity law is valid for K/k.

Proof. First of all, by Isaacs’ result, N must be solvable. As G/N is nilpotent, G/N is 
also solvable. Thus, G is necessarily solvable.
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We now prove this theorem by using mathematical induction on the order of G. Since 
G/N is nilpotent, Proposition 2.3 asserts that G is a relative SM-group with respect 
to N . Thus, for every χ ∈ Irr(G), there exist a subnormal subgroup N ≤ H of G and a 
character ψ ∈ Irr(H) such that IndG

H ψ = χ and ψ|N ∈ Irr(N).
If H is a proper subgroup of G, as H clearly satisfies conditions 1 and 2, one can apply 

the induction hypothesis on H. In particular, ψ is automorphic over the fixed field KH , 
i.e., there is a cuspidal automorphic form Π of GLψ(1)(AKH ) such that

L(s, ψ,K/KH) = L(s,Π).

On the other hand, since H is a subnormal subgroup of G, there is an invariant series

H = H0 � H1 � · · · � Hk−1 � Hk = G,

where for each i, Hi is a normal subgroup of Hi+1. As G is finite, we may require each 
Hi+1/Hi is a (finite) simple group. Since G is solvable, none of these quotient groups can 
be non-cyclic. Thus, each Hi+1/Hi is a cyclic group of prime order. Now applying the 
Arthur–Clozel theorem of automorphic induction successively, one can derive that IndG

H ψ

corresponds to an automorphic form over k. More precisely, there is an automorphic form 
π of GLχ(1)(Ak) such that

L(s,Π) = L(s, π).

Finally, since χ is irreducible, a result of Jacquet and Shalika (see [17, Theorem 4.7]) 
asserts that π is necessarily cuspidal, which completes the proof in this case.

Otherwise, suppose H = G. Since χ|N = ψ|N ∈ Irr(N) and all irreducible characters 
of N are of dimension 1 or 2, χ(1) is at most 2. Now Artin reciprocity together with the 
theorem of Langlands–Tunnell ensures that χ is automorphic over k. �

As one can tell, this theorem indeed implies that all nilpotent groups are of automor-
phic type, which covers the earlier-mentioned result of Arthur–Clozel. Now let us borrow 
the following results of Gow and Jacquet–Piatetski–Shapiro–Shalika that will enable us 
to obtain a slight improvement of Theorem 2.5.

Lemma 2.6 ([11]). Let χ be an irreducible character of odd degree of a solvable group G. 
If χ is real-valued, then χ is monomial and rational-valued.

Theorem 2.7 ([16]). Let K/k be a non-normal cubic extension of number fields. Let χ
be an idèle class character of K. Then the automorphic induction I(χ) of χ exists as an 
automorphic representation of GL3(Ak).



P.-J. Wong / Journal of Number Theory 178 (2017) 126–145 131
Combining the Arthur–Clozel theory and these two theorems together gives:

Proposition 2.8. Let G be a solvable group, and let ρ be an irreducible representation of 
G of dimension 3 whose character is real-valued. Then ρ is of automorphic type.

Using a similar argument as in the proof of Theorem 2.5, the above-mentioned result 
of Isaacs, and this proposition, we then derive:

Proposition 2.9. Assume that G has a normal subgroup N satisfying

1: G/N is nilpotent, and
2: all irreducible characters of N are of dimension ≤ 3.

Suppose, further, that all 3-dimensional irreducible characters (if any) of subnormal 
subgroups of G containing N are real-valued. Then G is of automorphic type.

Following Ramakrishnan [26], we let GO(n, C) denote the subgroup of GL(n, C) con-
sisting of orthogonal similitudes, i.e., matrices M such that M tM = λMI, with λM ∈ C, 
and we will say that a C-representation (ρ, V ) (of the absolute Galois group of a number 
field F ) is of GO(n)-type if and only if dim V = n and it factors as

ρ : Gal(F/F ) → GO(n,C) ⊂ GL(V ).

In his paper [26], Ramakrishnan derived the automorphy of solvable Artin representations 
of GO(4)-type as follows.

Theorem 2.10. Let F be a number field and let ρ be a continuous, 4-dimensional represen-
tation of Gal(F/F ) whose image is solvable and lies in GO(4, C). Then ρ is automorphic.

Applying this theorem together with a similar argument as before then gives:

Proposition 2.11. Suppose that there is a normal subgroup N of G so that

1: G/N is nilpotent, and
2: all irreducible characters of N are of dimension either 1, 2, or 4.

If all 4-dimensional irreducible representations (if any) of subnormal subgroups of G
containing N are of GO(4)-type. Then G is of automorphic type.

By the theory of Frobenius groups, if G is a Frobenius group with a Frobenius com-
plement H, there exists a normal subgroup N of G such that G = N �H, where N is 
called a Frobenius kernel of G. Moreover, one has a lemma below.



132 P.-J. Wong / Journal of Number Theory 178 (2017) 126–145
Lemma 2.12. Let N be a Frobenius kernel of a Frobenius group G. For χ ∈ Irr(G) with 
N � Kerχ, one has χ = IndG

N ψ for some ψ ∈ Irr(N).

Also, all Sylow subgroups of a Frobenius complement are cyclic or generalised quater-
nion groups. Furthermore, a deep theorem of Thompson asserts that every Frobenius 
kernel must be nilpotent. For more details, we refer the interested reader to [13, Chap-
ter 7]. From this, we have the following proposition.

Proposition 2.13. Let K/k be a Galois extension of number fields with Galois group G. 
Suppose G = N � H is a Frobenius group with a Frobenius kernel N and a Frobenius 
complement H. If H is solvable and of automorphic type, then so is G.

Proof. Let χ be an irreducible character of G. If Kerχ contains N , then χ can be seen 
as an irreducible character of H. As H is of automorphic type, χ is automorphic over k.

If N � Kerχ, then by Lemma 2.12, there is ψ ∈ Irr(N) such that χ = IndG
N ψ. 

Since N is nilpotent, N is of automorphic type. In addition, KN/k is a solvable Galois 
extension, Arthur–Clozel’s theory yields that χ is automorphic over k. �

Now suppose that G is a Frobenius group, and H is a Frobenius complement of G. As-
sume, further, that the Fitting subgroup F(H) of H satisfies that H/F(H) is nilpotent. 
As every Sylow subgroup of H is either cyclic or a generalised quaternion group, all irre-
ducible characters of F(H) are of degree 1 or 2. Thus, Theorem 2.5 and Proposition 2.13
assert that G is of automorphic type, which is Zhang’s theorem (cf. Theorem 2.1).

We now recall a result that gives a non-trivial bound of character degrees.

Lemma 2.14 ([13, p. 28]). Let G be a finite group and Z(G) its centre. Then for every 
irreducible character χ of G, one has

χ(1)2 ≤ [G : Z(G)].

We now give some sufficient conditions for (solvable) groups being of automorphic 
type. First of all, as any nilpotent group is isomorphic to a direct product of its Sylow 
subgroups and the derived subgroup of any supersolvable group is nilpotent, we then 
have the following corollary.

Corollary 2.15. If G is a supersolvable group of order 2npn1
1 · · · pnk

k with ni ≤ 2 and n ≤ 4, 
then G is of automorphic type.

In addition, since all Z-groups, the groups whose all Sylow subgroups are cyclic, are 
supersolvable, a moment’s reflection shows:

Corollary 2.16. All Z-groups are of automorphic type. In particular, all groups of square-
free order are of automorphic type.
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We recall that a group G is said to be abelian-by-nilpotent if G admits an abelian 
normal subgroup A with G/A nilpotent. By a result of Huppert, all abelian-by-nilpotent 
groups are M-groups. Thanks to Theorem 2.5, one can easily conclude that every abelian-
by-nilpotent group is even of automorphic type.

This section will close with some semi-numerical theorems, which in particular, present 
a simple proof for Cho and Kim’s automorphy results of A4, S4, and SL2(F3)-extensions. 
For GL2(F3), which has been shown to be of automorphic type by Kim, we will treat it 
in the next section via our method of low dimensional groups.

Corollary 2.17. Let p and q be distinct primes. If G is of order pq, p2q, or p2q2, then G
is of automorphic type.

Proof. By the Sylow theorems, G must have a normal Sylow subgroup N (see, for ex-
ample, [14, Theorems 1.30 and 1.31] and [28, 6.5.2]). It is clear that N must be abelian, 
and that G/N is either a p-group or a q-group. Now the claim follows from Theorem 2.5
immediately. �
Corollary 2.18. Let p be an odd prime. If G is of order 8p, then G is of automorphic 
type.

Proof. Again the Sylow theorems asserts G admits a normal Sylow subgroup N unless 
G ∼= S4 (see [14, Theorems 1.32 and 1.33]). Assuming that G is not isomorphic to S4, 
since all irreducible characters of N are of degree ≤ 2, and G/N is clearly nilpotent, 
Theorem 2.5 yields G is of automorphic type.

Now suppose G is isomorphic to S4. Then cd(G) = {1, 2, 3}. Since all irreducible 
characters of S4 are rational-valued, the Artin–Langlands–Tunnell theorem and Propo-
sition 2.8 assert that G is of automorphic type. �
3. Nearly supersolvable groups and nearly monomial groups

We recall that Taketa’s theorem [29] asserts that (finite) M-groups are necessarily solv-
able. In addition, Taketa’s theorem can be generalised (see, for example, [4, Chapter 14]) 
for groups whose irreducible characters are all induced from n-dimensional characters 
with n ≤ 2. We will call these groups nearly monomial (or NM for short). Thanks to the 
theorem of Artin–Langlands–Tunnell and the generalisation of Taketa’s theorem, Artin’s 
conjecture holds for every Galois extension of number fields whose Galois group is an 
NM-group. In light of Theorem 2.5, we have the notion of nearly supersolvable groups 
as introduced in [31].

Definition 2. A finite group G is said to be nearly supersolvable (or NSS for short) if it 
has a normal subgroup N ∈ C such that G/N is supersolvable, where C denotes the class 
consisting of groups whose irreducible representations are of dimension ≤ 2.
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By works of Amitsur and Isaacs (cf. [1] and Proposition 2.4), all groups belonging 
to C are necessarily solvable. Therefore, nearly supersolvable groups are indeed solvable. 
On the other hand, it is clear that all supersolvable groups are nearly supersolvable. 
For more properties of NSS-groups, we refer the interested reader to [31]. However, for 
the benefit of the reader, we recall some concepts of relative M-groups and a result 
concerning NSS-groups.

Definition 3 ([13, Definition 6.21]). Let G be a finite group, and N be a normal subgroup 
of G. A character χ of G is called a relative M-character with respect to N if there 
exist a subgroup H with N ≤ H ≤ G and an irreducible character ψ ∈ Irr(H) such 
that IndG

H ψ = χ and ψ|N ∈ Irr(N). If every irreducible character of G is a relative 
M-character with respect to N , then G is said to be a relative M-group with respect 
to N .

Proposition 3.1 ([13, Theorem 6.22]). Let G be a finite group and N be a normal subgroup 
of G such that G/N is supersolvable. Then G is a relative M-group with respect to N .

Via this theorem (and a moment’s reflection), the author [31] shows the following.

Theorem 3.2. All nearly supersolvable groups are NM-groups.

Now let us give a variant of Proposition 2.13 and borrow a classification of Frobenius 
complements below (see, for example, [27, Lemmata 18.3 and 18.4] or [15, Theorems 6.14 
and 6.15]).

Proposition 3.3. Let K/k be a Galois extension of number fields with Galois group G. 
Suppose G = N � H is a Frobenius group with a Frobenius kernel N and a Frobenius 
complement H. If Artin’s conjecture is true for KN/k, then Artin’s conjecture holds for 
K/k.

Proposition 3.4. If H is solvable Frobenius complement, then H satisfies one of the fol-
lowing.

Type 1: H = SQ, where S is a normal cyclic subgroup of H and Q is cyclic.
Type 2: H = SQ, where S � H is cyclic and Q is a generalised quaternion group.
Type 3: H is isomorphic to SL2(F3).
Type 4: H/F(H) ∼= S3, where F(H) is the maximal normal nilpotent subgroup of H.

We also remark that the above results indeed enable the author shows that the Artin 
conjecture is true for all solvable Frobenius extensions in [31]. Now, by Theorem 2.5, 
Corollary 2.17, and the fact that every Sylow subgroup of a Frobenius complement is 
either a cyclic or generalised quaternion group, we have the following theorem.
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Theorem 3.5. Suppose that K/k is a solvable Frobenius Galois extension with Galois 
group G. Then the Artin conjecture holds for K/k. Moreover, if a Frobenius complement 
of G is of Type 1, 2, or 3, then the Langlands reciprocity law is valid for K/k.

Moreover, applying our method of low-dimensional groups, we still can say a little 
more for Frobenius complements of Type 4.

Proposition 3.6. If G is a solvable Frobenius group G with a Frobenius kernel N and a 
Frobenius complement H, then any irreducible character χ of G is of automorphic type 
unless N ⊆ Kerχ, χ is of degree 6 and induced from a character of degree 2, and H is 
of Type 4.

Proof. As we have shown before, if N � Kerχ, χ is of automorphic type. Also The-
orem 3.5 asserts that if H is not of Type 4, G is of automorphic type. Thus, we may 
assume H/F(H) ∼= S3 and N ⊆ Kerχ. In this case, χ can be seen as a character of H. 
Since H/F(H) is isomorphic to S3, Proposition 3.1 implies that χ must be induced from 
an irreducible character ψ of degree ≤ 2 of a subgroup ˜H ≤ H of index 1, 2, 3, 6.

By the Arthur–Clozel theory and Theorem 2.7, it sufficient to show that χ is auto-
morphic type if ψ is of degree 1 or 2 and [H : ˜H] = 6. However, as S3 has a subgroup 
of index 2, there exists a subgroup ̂H with ˜H � ̂H � H and [H : ̂H] = 2. In other 
words, [ ̂H : ˜H] = 3, and hence Arthur–Clozel’s theory asserts Ind̂H

˜H
ψ is of automorphic 

type. Now inducing Ind̂H
˜H
ψ from ̂H to H and applying Arthur–Clozel’s induction again 

completes the proof. �
Corollary 3.7. Assume that G is a solvable Frobenius group G with a Frobenius comple-
ment H. If any Sylow 2-subgroup of the Fitting subgroup F(H) of H is abelian, then G
is of automorphic type. In particular, if 16 does not divide |G|, then G is of automorphic 
type.

Proof. By Theorem 3.5, we may assume H/F(H) is isomorphic to S3. Observe that if 
16 does not divide |G|, then 8 cannot divide F(H). In this case, any Sylow 2-subgroup of 
F(H) is abelian. Since for every p > 2, all Sylow p-subgroups of H are cyclic and F(H)
is nilpotent, F(H) is abelian if any Sylow 2-subgroup of F(H) is.

Now assuming F(H) is abelian, the theory of relative M-groups tells us that all irre-
ducible characters of H are monomial. Thus, Proposition 3.6 (together with its proof) 
implies H is of automorphic type. �

As discussed in the proof of Proposition 3.6, we cannot derive the automorphy for 
irreducible characters of degree 6, induced from a character of degree 2. Nevertheless, if 
the existence of the automorphic induction is assumed, one will have the following.
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Theorem 3.8 (Conditional). If the non-normal cubic automorphic induction exists for all 
2-dimensional cuspidal automorphic representations, then all solvable Frobenius groups 
are of automorphic type.

To end this section, we will apply Theorem 2.7 to derive some sufficient conditions 
for NSS groups being of automorphic type.

Proposition 3.9. Suppose G is NSS. If G has a normal subgroup N , whose irreducible 
characters are of degree ≤ 3, such that G/N is nilpotent, then G is of automorphic type.

Proof. We induct on the order of |G|. By Proposition 2.3, G is a relative SM-group 
with respect to N . Thus, for every irreducible character χ of G, there exist a subnormal 
subgroup H with N ≤ H ≤ G and an irreducible character ψ ∈ Irr(H) such that 
IndG

H ψ = χ and ψ|N ∈ Irr(N). If H 	= G, then the induction hypothesis assures that H
is of automorphic type, and so applying Arthur–Clozel’s theory completes the proof in 
this case.

Now assume that H = G. Since G is NSS, G is an NM-group, and χ must be induced 
from a character of degree 1 or 2. On the other hand, as χ|N = ψ|N is an irreducible 
character of N , χ is of degree ≤ 3. If χ(1) ≤ 2, then Artin reciprocity and the Langlands–
Tunnell theorem assert that χ is of automorphic type. Otherwise, for χ of degree 3, χ must 
be a monomial character. Now applying Arthur–Clozel’s theory and Theorem 2.7 com-
pletes the proof. �
Corollary 3.10. If G is a finite group of order 54 or 162, then G is of automorphic type.

Proof. By [28, 7.2.15], G is a supersolvable group. Since any Sylow 3-subgroup P of G
has index 2, P is a normal subgroup. As all non-trivial p-groups have non-trivial centre, 
[P : Z(P )] ≤ 27. Thus, Lemma 2.14 yields that cd(P ) ⊆ {1, 3}. Since G/P is cyclic, the 
corollary follows from Proposition 3.9 immediately. �
Corollary 3.11. Assume that G admits an abelian normal subgroup N with G/N ∼= Q, 
where S is a normal subgroup of Q of order 3. If Q/S is nilpotent then G is of automor-
phic type. In particular, if G has an abelian normal subgroup N with G/N ∼= S3, then G
is of automorphic type.

Proof. First, we observe that as Q/S is nilpotent, Q/S is supersolvable. Thus, Q is also 
supersolvable. Since N is abelian and G/N ∼= Q, we conclude that G is NSS.

Now lifting the invariant series 1 � S � Q gives a subgroup H with N � H � G

and [H : N ] = 3. Moreover, G/H is nilpotent. Now Proposition 3.1 implies that all 
irreducible characters of H are of degree 1 or 3, and hence applying Proposition 3.9
completes the proof. �
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4. Little groups

In this section, we will apply the machinery developed in the previous sections to 
derive the automorphy for groups of order less than 60. Clearly, the trivial group is 
always of automorphic type. On the other hand, by the theorem of Arthur and Clozel, 
we know that all p-groups are of automorphic type. Hence, if |G| belongs to

{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59} ∪ {4, 8, 16, 32, 9, 27, 25, 49},

then G is of automorphic type. There are 26 classes of groups.
According to Corollaries 2.17 and 2.18, any group of order pq, pq2, p2q2, or 8p for 

some primes p and q is of automorphic type (thanks to Artin reciprocity, the Langlands–
Tunnell theorem, and Arthur–Clozel’s theory). Thus, if G has order 6, 10, 12, 14, 15, 18, 
20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 50, 51, 52, 55, 56, 57, or 58, 
then G is of automorphic type. Here we have 29 classes of groups.

Now, there are only 4 remaining cases, namely, the groups of order 30, 42, 48, or 54. 
If G is of order 30, 42 or 54, G is of automorphic type by Corollaries 2.16 and 3.10.

For G of order 48, G has a normal subgroup N of order 8 or 16. According to 
Lemma 2.14, all irreducible characters of N are of degree ≤ 2. Since G/N is either of 
order 3 or 6, G/N must be supersolvable. Thus, G is clearly NSS and NM. In addition, 
if |G/N | = 3, Theorem 2.5 asserts that G is of automorphic type.

Now assume |N | = 8. As G is an NM-group, Artin reciprocity, the Langlands–Tunnell 
theorem, and Theorem 2.7 ensure that every irreducible character of G of degree ≤ 3
is of automorphic type. On the other hand, we note that all irreducible representations 
of G are of dimension ≤ 4, which can easily be checked via GAP [10] for instance. By 
the fact that G is nearly supersolvable, and [G : N ] = 6, we conclude that if χ is an 
irreducible character of degree 4, it must be induced from a 2-dimensional character of 
a subgroup H of G containing N . As [G : H] = 2, H is a normal subgroup, and so χ is 
of automorphic type.

To end this section, we note that our method can be applied to groups of order ≥ 60
in some cases. For example, if G is of order 60, as a consequence of the Sylow theorem, 
G is either isomorphic to A5, A4 × C5, or C15 � T where T = C4 or T = (C2)2.

Since A4 is of automorphic type, and C5 is abelian, Artin reciprocity and the func-
toriality of GL(n) × GL(1) assert that A4 × C5 is of automorphic type. (We, however, 
will still give another proof in the last section by developing general criteria.) On the 
other hand, for the third case, G is clearly of automorphic type thanks to Theorem 2.5. 
Therefore, we have the following.

Corollary 4.1. If G is a non-simple group of order 60, then G is of automorphic type.

Also, a straightforward application of Sylow’s theory yields that every group of order 
16p has a normal Sylow subgroup unless p = 3. As a consequence, Lemma 2.14 and 
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Theorem 2.5 assert every group of order 16p is of automorphic type unless p = 3. As 
shown above, for G of order 48, G is of automorphic type, and we hence have:

Corollary 4.2. If G is of order 16p, then G is of automorphic type.

Similarly, the Sylow theory yields that every group G of order 27p has a normal 
Sylow subgroup (cf. [14, Theorem 1.32]). Moreover, if p 	= 2 or p 	= 13, G has a normal 
Sylow p-subgroup. Therefore, if G is a group of order 27p with p 	= 13, Theorem 2.5 and 
Corollary 3.10 assert that G is of automorphic type.

For p = 13, by Burnside’s paqb-theorem (or the previous discussion), G must be 
solvable. In particular, G admits a non-trivial abelian normal subgroup A. Thus, G/A is 
either a 3-group or of order 3a13 for some a ≤ 2. Again, Sylow’s theorem asserts that all 
groups of order 3a13 with a ≤ 2 must have normal Sylow 13-subgroups, which implies 
that these groups are supersolvable. Thus, G/A is necessarily supersolvable, and so G is 
NNS. Now as mentioned above, G has a normal Sylow subgroup P (say). In particular, 
all irreducible characters of P are of degree ≤ 3. Proposition 3.9 then gives:

Corollary 4.3. If G is of order 27p, then G is of automorphic type.

5. Groups with few non-linear irreducible characters

As discussed in the previous sections, if a p-group G is “small” or with a “big” abelian 
normal subgroup, cd(G) will have only two elements, namely, 1 and p. Meanwhile, as G
is a p-group, it is of automorphic type. One may wonder if groups G with | cd(G)| = 2
are of automorphic type in general. It can be answered by knowing below a result due 
to Amitsur (for m = 2) and Isaacs–Passman.

Proposition 5.1 ([13, Theorem 12.5 and Corollary 12.6]). Let G be a finite group. Assume 
that cd(G) = {1, m}. Then the derived subgroup G′ of G is abelian.

Corollary 5.2. If | cd(G)| = 2, then G is of automorphic type.

Proof. By the above theorem, G′ is abelian. As G/G′ is also abelian, Theorem 2.5 asserts 
that G is of automorphic type immediately. �

As all irreducible characters of an abelian group have degree 1, Artin reciprocity 
asserts that all abelian groups are of automorphic type. In this spirit, one may read the 
above result as “if a group G has only one non-linear irreducible character, then G is of 
automorphic type”, and wonder if a similar assertion holds for groups having only two 
non-linear irreducible characters. Thanks to the following result of Berkovich, we will 
give an affirmative answer.
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Proposition 5.3 ([4, Chapter 31, Theorem 6]). Let G be a finite group with only two 
non-linear irreducible characters. Then G is one of the following groups:

1: extra-special groups of order 31+2m;
2: Frobenius groups (Cp)a � C 1

2 (pa−1);
3: the Frobenius group (C3)2 �Q8;
4: |G| = 2m, |Z(G)| = 4, |G′| = 2; or
5: (Cp)m � C2pm−2,

where Q8 is the quaternion group of order 8, and the fifth case is due to [4, Theo-
rem 24.7 (g)].

Corollary 5.4. Let G be a finite group with only two non-linear irreducible characters. 
Then G is of automorphic type.

Proof. For case 1, G is a 3-group and hence is of automorphic type. For the remaining 
cases, it is clear that G always has an abelian normal subgroup N (say) so that G/N is 
nilpotent. Thus, the corollary follows from Theorem 2.5 immediately. �

For the case that groups have only three non-linear irreducible characters, which is 
also classified by Berkovich (see [4, Chapter 31, Theorem 9]), it is possible to examine 
whether such groups are of automorphic type by applying Theorem 2.5. However, for 
the sake of conceptual clarity, we will not do it here. Instead, we will consider the other 
extreme, namely, finite groups in which all the non-linear irreducible characters have 
distinct degrees. This was considered by Berkovich, Chillag, and Herzog.

Proposition 5.5 ([5]). Let G be a non-abelian finite group whose all non-linear irreducible 
characters have distinct degrees. Then one of the following holds:

1: G is an extra-special 2-group;
2: G is a Frobenius group of order pn(pn−1) for some prime p with an abelian Frobenius 

kernel of order pn and a cyclic Frobenius complement; or
3: G is a Frobenius group of order 72 whose Frobenius complement is isomorphic to the 

quaternion group of order 8.

Applying this proposition and Proposition 2.13, we then obtain:

Corollary 5.6. If G is a non-abelian finite group whose all non-linear irreducible charac-
ters have distinct degrees, then G is of automorphic type.
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6. The principle of functoriality and nearly nilpotent groups

As we mentioned in the very beginning, Langlands conjectured that every (irreducible) 
Galois representation arises from a (cuspidal) automorphic representation. This is, in 
fact, a part of what is called the principle of functoriality. The principle of functoriality is 
the core of the Langlands program and has many remarkable consequences. For instance, 
it is well-known that Artin’s conjecture follows from this principle. One may regard this 
principle as the Holy Grail of number theory. However, since we could not afford to give 
all the necessary definitions to state the principle of functoriality, we direct the serious 
reader to Langlands’ inspiring article [23], and just discuss a small piece of this beautiful 
principle.

Let K/k be a Galois extension of number fields with Galois group G = G1×G2. On one 
hand, for every irreducible character χ of G, there exist irreducible characters χ1 and χ2

of G1 and G2, respectively, such that χ = χ1×χ2. On the other hand, assuming G1, G2, 
and G are all of automorphic type. Then for any Galois extension K/k of number fields 
with Galois group G, there is a cuspidal automorphic representation π of GLχ(1)(Ak)
such that

L(s, χ,K/k) = L(s, π).

Since for each i, Gi is of automorphic type, χi can be seen as a cuspidal automorphic 
representation πi of GLχi(1)(Ak) as well. Furthermore, as χ = χ1 × χ2, we then derive

L(s, π) = L(s, π1 ⊗ π2).

In this spirit, the Langlands program then predicts:

Conjecture 6.1 (The functoriality of GL(n) × GL(m)). Let π1 and π2 be cuspidal au-
tomorphic representations of GLn(Ak) and GLm(Ak), respectively. Then π1 ⊗ π2 is an 
automorphic representation of GLnm(Ak).

This implies that the direct product of any two groups of automorphic type is of auto-
morphic type; and it was recently proved in the case of GL(2) ×GL(2) by Ramakrishnan 
in [25] and GL(2) ×GL(3) by Kim and Shahidi in [21].

Now let us consider a direct product G = G1×G2, where G1 and G2 are NM-groups. As 
discussed above, for every irreducible character χ of G, there exist irreducible characters 
χ1 and χ2 of G1 and G2, respectively, such that χ = χ1 × χ2. Since both G1 and G2

are NM-groups, for each i, there exist a subgroup Hi of Gi and an irreducible character 
ψi ∈ Irr(Hi) of degree ≤ 2 such that χi = IndGi

Hi
ψi. Thus,

χ = IndG1×G2
H ×H (ψ1 × ψ2).
1 2
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However, now one can see that χ might not be induced from an irreducible character 
of degree ≤ 2. As a consequence, we cannot apply the Langlands–Tunnell theorem to 
deduce Artin’s conjecture directly. But as ψi is still of automorphic type (thanks to 
Artin reciprocity and the Langlands–Tunnell theorem), if we invoke the functoriality of 
GL(n) ×GL(1) and GL(2) ×GL(2), we then still are able to derive the automorphy of 
ψ1 × ψ2. Thus, we have the following.

Proposition 6.2. If K/k is a Galois extension of number fields whose Galois group is a 
direct product of two NM-groups, then Artin’s conjecture is true for K/k.

Moreover, by applying the Rankin–Selberg theory developed by Jacquet–Piatetski–
Shapiro–Shalika, the above discussion then yields:

Proposition 6.3. If K/k is a Galois extension of number fields whose Galois group is a 
direct product of three (or four) NM-groups, then Artin’s conjecture is true for K/k.

In a slightly different vein, since any (finite) direct product of nilpotent groups is 
nilpotent, the Arthur–Clozel theory implies that the principle of functoriality is valid in 
this case. Naturally, one may be desired to find some “non-nilpotent” examples. At the 
end of this note, we will give such examples of the principle of functoriality by showing 
that certain direct products of groups of automorphic type are again of automorphic 
type. In light of the discussion in the previous section, we define nearly nilpotent groups 
as follows.

Definition 4. A finite group G is called nearly nilpotent if it has a normal subgroup 
N ∈ C such that G/N is nilpotent, where C denotes the class consisting of groups whose 
irreducible representations are of dimension less than or equal to 2.

Since all subgroups and homomorphic images of a nilpotent group are nilpotent, 
a moment’s thought shows that all subgroups and homomorphic images of any nearly 
nilpotent group are also nearly nilpotent. As all nilpotent groups are supersolvable, all 
nearly nilpotent groups form a “closed” subclass of the class of NSS groups. On the other 
hand, one can read Theorem 2.5 as below.

Theorem 6.4. If G is a nearly nilpotent group, then all subgroups and homomorphic 
images of G are of automorphic type.

Unlike nilpotent groups, the direct product of two nearly nilpotent groups might not 
be nearly nilpotent. In fact, by the previous discussion, one even cannot expect this 
would be an NM-group. We however still have the following substitute.

Proposition 6.5. If G1 is a nearly nilpotent group and G2 is an abelian-by-nilpotent group, 
then G1 ×G2 is nearly nilpotent group and so is of automorphic type.
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Proof. Since G1 is a nearly nilpotent group, there is a normal subgroup N1 of G1 be-
longing to C such that G1/N1 is nilpotent. On the other hand, G2 has an abelian normal 
subgroup N2 such that G2/N2 is nilpotent. Thus, we have an invariant series

1 � N1 ×N2 � G1 ×G2.

Since (G1 ×G2)/(N1 ×N2) ∼= (G1/N1) × (G2/N2), which is a direct product of nilpotent 
groups, (G1 × G2)/(N1 × N2) is nilpotent. Moreover, as all irreducible characters of 
N1 ×N2 are clearly of degree ≤ 2, N1 ×N2 ∈ C. Thus, G1 ×G2 is nearly nilpotent. �

Moreover, by invoking Ramakrishnan’s functoriality of GL(2) ×GL(2), one can show 
the direct product of two nearly nilpotent groups is still of automorphic type.

Theorem 6.6. If G1 and G2 are nearly nilpotent, then G1 ×G2 is of automorphic type.

Proof. Assume that K/k is a Galois extension of number fields with Galois group 
G1×G2. Since both G1 and G2 are nearly nilpotent, for each i, there exists Ni such that 
Gi/Ni is nilpotent, and Proposition 2.3 then asserts that Gi is a relative SM-group with 
respect to Ni. As discussed above, for each irreducible character χ of G1 ×G2, there are 
irreducible characters χ1 and χ2 of G1 and G2, respectively, such that

χ = χ1 × χ2.

Moreover, for each i, there exist a subnormal subgroup Hi (containing Ni) of Gi and an 
irreducible character ψi ∈ Irr(Hi) such that χi = IndGi

Hi
ψi and ψi|Ni

∈ Irr(Ni). Thus,

χ = IndG1×G2
H1×H2

(ψ1 × ψ2).

Now on one hand, as ψ1 and ψ2 are of degree ≤ 2, Artin reciprocity and Langlands–
Tunnell’s theorem assert that for each i, (by regrading ψi as an irreducible character of 
H1 × H2) ψi corresponds to a cuspidal automorphic representation of dimension ψi(1)
over KH1×H2 . Thus, the functoriality of GL(n) ×GL(1) and GL(2) ×GL(2) imply that 
ψ1×ψ2 corresponds to a cuspidal automorphic representation (of dimension ψ1(1)ψ2(1)) 
over KH1×H2 . On the other hand, as H1 ×H2 is subnormal in G1 ×H2, and G1 ×H2 is 
subnormal in G1×G2, we can conclude that H1×H2 is subnormal in G1×G2. Putting ev-
erything together, the above-mentioned theorems of Arthur–Clozel and Jacquet–Shalika 
yield χ is of automorphic type. �
Proposition 6.7. Assume G1 is abelian-by-nilpotent and G2 is nearly supersolvable. Sup-
pose, further, that G2 has a normal subgroup N , whose irreducible characters are of 
degree ≤ 3, such that G2/N is nilpotent. Then G1 ×G2 is NSS of automorphic type.
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Proof. Since G1 is abelian-by-nilpotent, it admits an abelian normal subgroup N1 such 
that G1/N1 is nilpotent. On the other hand, as there is N2 ∈ C such that G2/N2 is 
supersolvable, we then have an invariant series

1 � N1 ×N2 � G1 ×G2,

where N1 × N2 belongs to C. Since (G1 × G2)/(N1 × N2) ∼= (G1/N1) × (G2/N2) is a 
direct product of supersolvable groups, (G1 × G2)/(N1 × N2) is supersolvable. Thus, 
G1 ×G2 is NSS. Finally, observing that G1 ×G2 has a normal subgroup N1 ×N , whose 
all irreducible characters are of degree ≤ 3, such that (G1 ×G2)/(N1 ×N) is nilpotent, 
Theorem 3.9 asserts that G1 ×G2 is of automorphic type. �

As one can tell, we in the above proof showed that G2 and G1 ×G2 are of the same 
type, i.e., they are both NNS groups that have normal subgroups whose irreducible 
characters are of degree ≤ 3. However, these groups are essentially NM-groups so that 
there is nothing new in the view of character theory. The reader may wonder if the above 
theorem can be improved in the same spirit of Theorem 6.6. To end this note, we present 
the following generalisation of Propositions 2.9, 3.9, and 6.7 by invoking the functionality 
due to Ramakrishnan and Kim–Shahidi.

Proposition 6.8. Assume that G1 is a nearly nilpotent group and that G2 has a normal 
subgroup N2, whose irreducible characters are of dimension ≤ 3, such that G2/N2 is 
nilpotent. Suppose either one of the following conditions is satisfied:

1: All 3-dimensional irreducible characters of every subnormal subgroup of G2 contain-
ing N2 are real-valued.

2: G2 is NSS.

Then G1 ×G2 is of automorphic type.

Proof. As before, there exists N1 ∈ C such that G1/N1 is nilpotent, and Proposition 2.3
then asserts that G1 is a relative SM-group with respect to N1. Also, for each irreducible 
character χ of G1 ×G2, there are irreducible characters χ1 and χ2 of G1 and G2, respec-
tively, such that χ = χ1 ×χ2. By our assumption on G1 and G2, Horváth’s theorem tells 
us that for each i, there exist a subnormal subgroup Hi (containing Ni) of Gi and an 
irreducible character ψi ∈ Irr(Hi) such that χi = IndGi

Hi
ψi and ψi|Ni

∈ Irr(Ni). Thus,

χ = IndG1×G2
H1×H2

(ψ1 × ψ2),

where ψ1(1) ≤ 2 and ψ2(1) ≤ 3. Thus, ψ1 × 1 and 1 ×ψ2 are of degree less than or equal 
to 2 and 3, respectively. Since both conditions 1 and 2 imply that ψ2 is a monomial 
character if ψ2(1) = 3, Arthur–Clozel’s theory and Theorem 2.7 yield that 1 × ψ2 is 
of automorphic type in this case. This fact together with Artin reciprocity and the 
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Langlands–Tunnell theorem asserts that both ψ1×1 and 1 ×ψ2 must be of automorphic 
type. Now observe that ψ1 × ψ2 = (ψ1 × 1) ⊗ (1 × ψ2). The above discussion and the 
functoriality of GL(n) ×GL(1), GL(2) ×GL(2) and GL(2) ×GL(3) assert that ψ1 ×ψ2
is also of automorphic type. Finally, as H1 × H2 is subnormal in G1 × G2, applying 
Arthur–Clozel’s theorem completes the proof. �
7. Concluding remarks

Our argument allows one to study the Langlands reciprocity conjecture for solvable 
Galois extensions via elementary group theory (e.g. Sylow’s theorems). Indeed, for solv-
able G, one can also argue using the derived subgroup G′. More precisely, as G/G′ is 
abelian, the results obtained in previous sections enable us to investigate the automor-
phy of G by simply considering cd(G′), the set of character degrees of G′, which can be 
easily computed via the computer algebra package [10].

We also remark that our results have several arithmetic applications. For instance, in 
the sieve theory, to study primes satisfying Chebotarev conditions, one of the main tools 
is a variant of the Bombieri–Vinogradov theorem due to M. Ram Murty and V. Kumar 
Murty [24], and the Langlands reciprocity plays the crucial role in obtaining a better 
“level of distribution” in their theorem.
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