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1. Introduction

Let K/k be an extension of number fields. A celebrated conjecture of Dedekind
asserts that the quotient ζK(s)

ζk(s) is entire. By the work of Aramata and Brauer [4],
this conjecture is valid if K/k is a Galois extension. Moreover, if K is contained in
a solvable normal closure of k, Uchida [28] and van der Waall [29] independently
proved Dedekind’s conjecture in this case. However, this conjecture is still open in
general.

In a slightly different vein, to study zeros of Dedekind zeta functions, Heilbronn
[15] introduced what are now called Heilbronn characters. His innovation allowed
him to give a simple proof of the Aramata–Brauer theorem. This profound idea
was also used by Stark [25] to prove that if K/k is Galois and ζK(s) has a simple
zero at s = s0, then it must arise from a cyclic extension M of k. Moreover, in the
spirit of Heilbronn and Stark, Foote and Murty [13] showed that if K/k is a Galois
extension with Galois group G, for fixed s0 ∈ C,∑

χ∈Irr(G)

n(G,χ)2 ≤ (ords=s0 ζK(s))2,
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where n(G,χ) denotes the order of L(s, χ,K/k) at s = s0. Furthermore, if G is
solvable, this result has been improved by Murty–Raghuram in [24] and Lansky–
Wilson in [19] later. In particular, the result of Murty and Raghuram generalizes
the work of Uchida and van der Waall.

It is well known that Dedekind’s conjecture will follow if Artin’s (holomorphy)
conjecture is true [2]. Also, these two conjectures follow from either the “Langlands
program” or the “Selberg philosophy” (see, for example, [20, 21]). This connection
suggests that the method of Heilbronn shall play a role in studying L-functions.
Indeed, Murty and Murty [22] realized this idea to show that suitable quotients of
L-functions attached to elliptic curves are entire, which proves a consequence of the
Birch–Swinnerton–Dyer conjecture unconditionally.

As remarked in [24], the authors believe that Lemmata 2.1–2.5 in their paper,
which concern monomial representations of finite groups, will eventually be useful
in analytic number theory in much the same spirit as in Heilbronn [15] and Stark
[25]. We regard this paper as one of the steps to achieve such a goal. In fact, this
paper is devoted to building up a formalism setting for Heilbronn characters and
demonstrating how to apply this machinery to study L-functions.

This paper will be arranged as follows. Firstly, in Sec. 2, we will introduce
the notion of weak arithmetic Heilbronn characters that satisfy properties analo-
gous to some properties of the classical Heilbronn characters known by the work
of Heilbronn–Stark (Theorem 2.3), Aramata–Brauer (Corollary 2.5), Foote–Murty
(Theorem 2.4), and Murty–Murty (Theorem 2.7).

In Sec. 3, more conditions will be imposed on weak arithmetic Heilbronn char-
acters which take them closer to Heilbronn characters. These will be outlined in
Theorem 3.2 (Heilbronn–Stark lemma in full strength), Theorem 3.5 (known by
the work of Murty–Raghuram), and Theorem 3.6 (the Uchida–van der Waall Theo-
rem). We will go on to derive several extensions of results of Murty and Raghuram
for arithmetic Heilbronn characters. In particular, we prove the following variant
(Theorem 3.18):

Let K/k be a solvable Galois extension of number fields with Galois group G,
and let ρ be a 2-dimensional representation of G. Then for any subgroup H of G,
the quotient (of Artin L-functions)

L(s, IndGH ρ|H ,K/k)
L(s, ρ,K/k)

is holomorphic at s �= 1. Moreover, for every 1-dimensional character χ0 of G, an
inequality is derived for the sum of squares of ords=s0 L(s, χ,K/k) where χ runs
over all irreducible characters of G different from χ0.

In Sec. 4, we will apply the results from Sec. 3 to study Artin–Hecke L-functions
and L-functions of CM-elliptic curves. For instance, one such theorem is proved as
Theorem 4.5.

Suppose K/k is a solvable Galois extension with Galois group G, and let H be
a subgroup of G. Let χ and φ be abelian characters of G and H , respectively. Then
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for any CM-elliptic curve E over k, the quotient (of L-functions associated to E)

L(s, IndGH φ,E, k)
L(s, χ,E, k)(χ|H ,φ)

is entire. Also, for every 1-dimensional character χ0 of G, an inequality is obtained
for the sum of squares of ords=s0 L(s, χ,E, k) where the sum is over all irreducible
characters of G different from χ0. From the above, an interesting result about
quotients of L-functions of CM-elliptic curves is deduced in Corollary 4.6.

Furthermore, in Sec. 5, by applying the results from Sec. 3, we will study holo-
morphy of quotients of Rankin–Selberg L-functions arising from certain cuspidal
automorphic representations that allows one to investigate holomorphy of quo-
tients of L-functions associated to non-CM elliptic curves. Finally, in Sec. 6, we
will use properties of weak arithmetic Heilbronn characters along with the cele-
brated result of Taylor and his school on the potential automorphy for symmetric
power L-functions of non-CM elliptic curves to deduce generalizations of the results
of Foote, Murty and Murty. In particular, one such consequence, Theorem 6.4, is
predicted by the Birch–Swinnerton–Dyer conjecture.

2. Weak Arithmetic Heilbronn Characters

In this section, we will introduce weak arithmetic Heilbronn characters that gen-
eralize the classical Heilbronn characters, and we will discuss several properties of
such Heilbronn characters.

From now on, G always denotes a finite group. For any subgroup H of G, we
denote the trivial character and the regular representation of H by 1H and RegH ,
respectively. In addition, 〈h〉 denotes the cyclic subgroup of H generated by an
element h ∈ H , and eH is the identity element of H .

Definition 2.1. Suppose that there is a set of integers {n(H,φ)}(H,φ)∈I(G), where
I(G) = {(H,φ) |H is a cyclic subgroup of G or H = G, and φ is a character of H},
satisfying the following three properties:

WAHC1 n(H,φ1 + φ2) = n(H,φ1) + n(H,φ2) for any characters φ1 and φ2 of H ,
where H is a cyclic subgroup or an improper subgroup of G;

WAHC2 n(G, IndGH φ) = n(H,φ) for every cyclic subgroup H and every character
φ of H ; and

WAHC3 n(H,φ) ≥ 0 for all cyclic subgroups H of G and all characters φ of H .

Then the weak arithmetic Heilbronn character of a subgroupH of G, which is either
cyclic or improper, associated with such n(H,φ)’s is defined by

ΘH =
∑

φ∈Irr(H)

n(H,φ)φ,

which by condition WAHC2, is equal to
∑

φ∈Irr(H) n(G, IndGH φ)φ.
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Such a formalism technique was used by Foote in [11] as well as by Murty and
Murty in [22] to study certain L-functions. However, we will see such “abstract”
Heilbronn characters are of interest in their own right. In fact, weak Heilbronn
arithmetic characters and arithmetic Heilbronn characters, which will be dis-
cussed in the next section, inherit a lot of properties of the classical Heilbronn
characters. For instance, these Heilbronn characters also admit an Artin–Takagi
decomposition.

Theorem 2.2 (Artin–Takagi decomposition).

n(G,RegG) =
∑

χ∈Irr(G)

χ(1)n(G,χ).

Proof. Since RegG =
∑
χ∈Irr(G) χ(1)χ, the decomposition follows simply from con-

dition WAHC1.

By conditions WAHC2 and WAHC3, one can see n(G,χ) ≥ 0 for any character
χ of G induced from a character of a cyclic subgroup of G. On the other hand,
condition WAHC2 in fact implies a stronger condition: n(H̃, Ind

eH
H φ) = n(H,φ) for

any cyclic subgroup H̃ of G containing H , since

n(H̃, Ind
eH
H φ) = n(G, IndGeH Ind

eH
H φ) = n(G, IndGH φ) = n(H,φ).

Now we shall state and prove several properties of weak arithmetic Heilbronn char-
acters. Our methods are based on earlier works of Heilbronn, Stark, Foote, and
Murty.

Theorem 2.3 (Heilbronn–Stark Lemma). For every cyclic subgroup H of G,
one has

ΘG|H = ΘH .

Proof. By the definition, the first orthogonality property of irreducible characters,
and Frobenius reciprocity, we have

ΘG|H =
∑

χ∈Irr(G)

n(G,χ)χ|H =
∑

χ∈Irr(G)

n(G,χ)
∑

φ∈Irr(H)

(χ|H , φ)φ

=
∑

χ∈Irr(G)

n(G,χ)
∑

φ∈Irr(H)

(χ, IndGH φ)φ

=
∑

φ∈Irr(H)

 ∑
χ∈Irr(G)

(χ, IndGH φ)n(G,χ)

 φ.

Now we use conditions WAHC1 and WAHC2, and the first orthogonality property
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of irreducible characters again to get

ΘG|H =
∑

φ∈Irr(H)

n

G, ∑
χ∈Irr(G)

(χ, IndGH φ)χ

φ

=
∑

φ∈Irr(H)

n(G, IndGH φ)φ = ΘH .

Like the classical Heilbronn–Stark lemma, the above lemma enables us to bound
the coefficients of our Heilbronn characters.

Theorem 2.4. ∑
χ∈Irr(G)

n(G,χ)2 ≤ n(G,RegG)2.

Proof. We will give a proof based on the method developed in [13, 22]. By the
first orthogonality property and the definition of the (usual) inner product of class
functions of G, one has∑

χ∈Irr(G)

n(G,χ)2 = (ΘG,ΘG) =
1
|G|

∑
g∈G

|ΘG(g)|2.

Applying the Heilbronn–Stark lemma, for any g ∈ G, one has

ΘG(g) = Θ〈g〉(g) =
∑

φ∈Irr(〈g〉)
n(〈g〉, φ)φ(g).

Since 〈g〉 is cyclic, the triangle inequality and conditions WAHC2 and WAHC3 yield

|ΘG(g)| = |Θ〈g〉(g)| ≤
∑

φ∈Irr(〈g〉)
n(〈g〉, φ)

= n

〈g〉,
∑

φ∈Irr(〈g〉)
φ

 = n(〈g〉,Reg〈g〉) = n(G,RegG).

Therefore, the theorem follows.

Using this theorem and the fact that n(G,RegG) = n(G, IndG〈eG〉 1〈eG〉) ≥ 0, one
can immediately obtain the following analogues of several famous theorems.

Corollary 2.5 (Aramata–Brauer Theorem). n(G,RegG) ± n(G, 1G) ≥ 0.

Corollary 2.6 (Stark Lemma). If n(G,RegG) ≤ 1, then n(G,χ) ≥ 0 for all
irreducible characters χ of G.

Proof. If n(G,RegG) = 0, then the corollary follows from the above theorem imme-
diately. Otherwise, for n(G,RegG) = 1, by Artin-Takagi decomposition, one has∑

χ∈Irr(G)

χ(1)n(G,χ) = n(G,RegG) = 1.
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In addition, Theorem 2.4 forces that all integers n(G,χ) are bounded by 1. Thus,
we can conclude that there is exactly one abelian character χ0 of G such that
χ0(1) = 1 and n(G,χ0) = 1. In other words, for any irreducible character χ �= χ0

of G, n(G,χ) = 0.

In [22], Murty and Murty showed the following “twisting” result by using a for-
malism technique. We shall give a proof below by just checking that such “twisting”
indeed defines a set of integers satisfying conditions WAHC1 to WAHC3.

Theorem 2.7. Let n(H,φ)’s be integers defining a weak Heilbronn character, i.e.,
these integers satisfy conditions WAHC1 to WAHC3. Let ρ be an arbitrary character
of G. Suppose that for every cyclic subgroup H of G and irreducible character φ of
H, we have n(H, ρ|H ⊗ φ) ≥ 0, then∑

χ∈Irr(G)

n(G, ρ⊗ χ)2 ≤ n(G, ρ⊗ RegG)2.

Proof. For every cyclic subgroup H of G (or H = G) and every character φ of H ,
let n′(H,φ) = n(H, ρ|H ⊗ φ). By the linearity of tensor product and the assump-
tion of this theorem, it is easy to see that n′(H,φ)’s satisfy conditions WAHC1
and WAHC3. On the other hand, since tensoring “commutes” with induction,
we have

n′(H,φ) = n(H, ρ|H ⊗ φ) = n(G, IndGH(ρ|H ⊗ φ))

= n(G, ρ⊗ IndGH φ) = n′(G, IndGH φ).

Therefore, this theorem follows from Theorem 2.4 immediately.

3. Arithmetic Heilbronn Characters

In this section, we will put more conditions on n(H,φ)’s, which make weak arith-
metic Heilbronn characters catch almost all properties that we know for the classical
Heilbronn characters.

Definition 3.1. Suppose that there is a set of integers {n(H,φ)}(H,φ)∈I(G), where

I(G) = {(H,φ) |H is a subgroup of G, and φ is a character of H},
satisfying the following three properties:

AHC1 n(H,φ1 + φ2) = n(H,φ1) + n(H,φ2) for any subgroup H of G and any
characters φ1 and φ2 of H ;

AHC2 n(G, IndGH φ) = n(H,φ) for every subgroup H and every character φ of H ;
and

AHC3 n(H,φ) ≥ 0 for all 1-dimensional characters φ of subgroups H of G.
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Then the arithmetic Heilbronn character of a subgroup H of G associated with such
n(H,φ)’s is defined as

ΘH =
∑

φ∈Irr(H)

n(H,φ)φ,

which by condition AHC2, is equal to
∑

φ∈Irr(H) n(G, IndGH φ)φ.

It is clear that all arithmetic Heilbronn characters have properties discussed in
the previous section. Moreover, since n(H,φ)’s are now defined for all subgroups H
of G, we have the following full-powered Heilbronn–Stark Lemma.

Theorem 3.2 (Heilbronn–Stark Lemma). For every subgroup H of G, one has

ΘG|H = ΘH .

From now on, ΘG always denotes an arithmetic Heilbronn character of G. Fur-
thermore, we assume G is solvable. The following powerful lemma is essential due to
the work of Uchida and van der Waall, which is used by Murty–Murty [22] implicitly,
and is stated precisely by Murty and Raghuram in [24].

Lemma 3.3 ([24, Lemma 2.4]). Let G be a finite solvable group, and let H be a
subgroup of G. Then

IndGH 1H = 1G +
∑

IndGHi
φi,

where φi’s are non-trivial 1-dimensional characters of some subgroups Hi’s of G.

Following [24], we let G0 = G, and define Gi to be [Gi−1, Gi−1] for all i ≥ 1.
The series {Gi} is called the derived series of G. Since G is solvable, such a series
is eventually trivial. Using this series, one may define the level of an irreducible
character χ of G, denoted l(χ), as the least non-negative integer n such that χ is
trivial on Gn. For instance, the level one characters are exactly the non-trivial 1-
dimensional characters of G. In addition, Murty and Raghuram showed a stronger
version of the above lemma.

Lemma 3.4 ([24, Lemma 2.5]). Let G be a finite solvable group having more
than one element, and let H be a subgroup of G. Let {Gi} denote the derived series
of G, and let m be the least non-negative integer such that Gm+1 = 〈eG〉. Then for
all i ≥ 1,

IndGH 1H = IndGH·Gi 1H·Gi +
∑

IndGHj
φj ,

where φj ’s are non-trivial 1-dimensional characters of some subgroups Hj’s of G,
and the sum might be empty.

Using these lemmas and the method developed in [24], we are able to prove the
following sequence of properties for arithmetic Heilbronn characters.

Theorem 3.5. Let H be a subgroup of G. Let χ and φ be 1-dimensional characters
of G and H, respectively. Then

n(G, IndGH φ) − (χ|H , φ)n(G,χ) ≥ 0.
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Proof. Note that if (χ|H , φ) = 0, the theorem is clearly true by conditions AHC2
and AHC3. Suppose that (χ|H , φ) > 0. Since both χ and φ are 1-dimensional, we
obtain χ|H = φ and (χ|H , φ) = 1. Following the proof of [24, Theorem 4.1], by
Lemma 3.3, one has

IndGH 1H = 1G +
∑

IndGHi
φi,

where φi’s are non-trivial 1-dimensional characters of some subgroups Hi’s of G.
Since tensoring and induction “commute”, by tensoring χ on the both sides of the
above equation, we then get

IndGH χ|H = χ+
∑

IndGHi
(χ|Hiφi).

As χ|Hiφi’s are still 1-dimensional, by condition AHC3, n(H,χ|Hiφi) ≥ 0 for all i.
Hence, the theorem follows from condition AHC2 and the fact that (χ|H , φ) = 1
and χ|H = φ.

For any subgroup H of G, by taking χ = 1G and φ = 1H , one can deduce an
analogue of the Uchida–van der Waall theorem as below.

Theorem 3.6 (Uchida–van der Waall Theorem). Let G be a solvable group,
and H a subgroup. One has

n(G, IndGH 1H) − n(G, 1G) ≥ 0.

Moreover, by applying Lemma 3.4 and Theorem 3.5, it is possible to derive sev-
eral analogues of Murty and Raghuram’s results for arithmetic Heilbronn characters.

Theorem 3.7. Let χ0 be a 1-dimensional character of G. Then∑
χ∈Irr(G)\{χ0}

n(G,χ)2 ≤ (n(G,RegG) − n(G,χ0))2.

Proof. In light of the proof of [24, Theorem 4.4], we define a “truncated” (arith-
metic) Heilbronn character with respect to χ0 as

Θχ0
G =

∑
χ∈Irr(G)\{χ0}

n(G,χ)χ.

Taking norms on both sides of the above equation, one has

|Θχ0
G |2 =

1
|G|

∑
g∈G

|Θχ0
G (g)|2 =

∑
χ∈Irr(G)\{χ0}

n(G,χ)2.

On the other hand, by the Heilbronn–Stark lemma, we have

Θχ0
G (g) = ΘG(g) − n(G,χ0)χ0(g) = Θ〈g〉(g) − n(G,χ0)χ0(g)

=
∑

φ∈Irr(〈g〉)
n(〈g〉, φ)φ(g) − n(G,χ0)

∑
φ∈Irr(〈g〉)

(χ0|〈g〉, φ)φ(g)

=
∑

φ∈Irr(〈g〉)
(n(〈g〉, φ) − n(G,χ0)(χ0|〈g〉, φ))φ(g).
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Applying Theorem 3.5 with H = 〈g〉 and φ ∈ Irr(〈g〉), we get

n(〈g〉, φ) − n(G,χ0)(χ0|〈g〉, φ) ≥ 0

which combining with the triangle inequality gives

|Θχ0
G (g)| ≤

∑
φ∈Irr(〈g〉)

(n(〈g〉, φ) − n(G,χ0)(χ0|〈g〉, φ))

= n

〈g〉,
∑

φ∈Irr(〈g〉)
φ

 − n

G, ∑
φ∈Irr(〈g〉)

(χ0|〈g〉, φ)χ0


= n(〈g〉,Reg〈g〉) − n(G, (χ0|〈g〉,Reg〈g〉)χ0) = n(G,RegG) − n(G,χ0),

where the last equality holds provided that (χ0|〈g〉,Reg〈g〉) = χ0|〈g〉(1) = 1.

Theorem 3.8. Let H be a subgroup of G, and let φ be any 1-dimensional character
of H. Let Sφ denote the set of all 1-dimensional characters of G whose restrictions
on H are φ. Then

n(G, IndGH φ) −
∑
χ∈Sφ

n(G,χ) ≥ 0.

Proof. Note that if Sφ is empty, then the theorem is obviously true by condi-
tions AHC2 and AHC3. Now we may assume Sφ is non-empty, and take χ0 ∈ Sφ.
Applying Lemma 3.4 with i = 1, we have

IndGH 1H = IndGH·G1 1H·G1 +
∑

IndGHj
φj ,

where for each j, φj is a non-trivial 1-dimensional character of a subgroup Hj of G,
and the sum might be empty. Again, twisting the above equation by χ0, we have

IndGH φ = IndGH·G1 χ0|H·G1 +
∑

IndGHi
(χ0|Hiφi).

Since χ0|Hiφi’s are still 1-dimensional and IndGH·G1 χ0|H·G1 is exactly
∑

χ∈Sφ
χ, the

theorem follows.

Theorem 3.9. Let S be the set of all 1-dimensional characters of G. Then∑
χ∈Irr(G)\S

n(G,χ)2 ≤ (n(G,RegG) − n(G, IndGG1 1G1))2.

Proof. Following the proof of [24, Theorem 5.3], we define a truncated arithmetic
Heilbronn character with respect to S as

ΘS
G =

∑
χ∈Irr(G)\S

n(G,χ)χ.

Taking norms on both sides of the above equation gives
1
|G|

∑
g∈G

|ΘS
G(g)|2 =

∑
χ∈Irr(G)\S

n(G,χ)2.



May 19, 2017 6:54 WSPC/S1793-0421 203-IJNT 1750086

1556 P.-J. Wong

Thanks to the Heilbronn–Stark lemma, we have

ΘS
G(g) = ΘG(g) −

∑
χ∈S

n(G,χ)χ(g) = Θ〈g〉(g) −
∑
χ∈S

n(G,χ)χ(g)

=
∑

φ∈Irr(〈g〉)

n(〈g〉, φ) −
∑
χ∈S

n(G,χ)(χ, IndG〈g〉 φ)

φ(g).

Using Theorem 3.8 with H = 〈g〉 and φ ∈ Irr(〈g〉), we then obtain

n(G, IndG〈g〉 φ) −
∑
χ∈Sφ

n(G,χ) ≥ 0.

Observe that for every χ ∈ S, (χ, IndG〈g〉 φ) is either 0 or 1, and that (χ, IndG〈g〉 φ)
is equal to 1 if and only if χ ∈ Sφ. Thus, by condition AHC2, we may rewrite the
above inequality as

n(〈g〉, φ) −
∑
χ∈S

n(G,χ)(χ, IndG〈g〉 φ) ≥ 0.

Finally, by the triangle inequality and the fact that for χ ∈ S, (χ|〈g〉,Reg〈g〉) = 1,
and IndGG1 1G1 =

∑
χ∈S χ, one can deduce

|Θχ0
G (g)| ≤

∑
φ∈Irr(〈g〉)

n(〈g〉, φ) −
∑
χ∈S

n(G,χ)(χ, IndG〈g〉 φ)


= n(〈g〉,Reg〈g〉) −

∑
χ∈S

n(G,χ)(χ|〈g〉,Reg〈g〉)

= n(G,RegG) − n(G, IndGG1 1G1),

which completes the proof.

Corollary 3.10. Let G be a solvable group. Then n(G,RegG) − n(G, IndGG1 1G1)
cannot be 1.

Proof. Observe that RegG = IndGG1 1G1 +
∑
χ/∈S χ(1)χ where S denotes the set

of all 1-dimensional characters of G. If n(G,RegG) − n(G, IndGG1 1G1) was equal to
1, then conditions AHC1 and AHC2 tell us that

∑
χ/∈S χ(1)n(G,χ) = 1. However,

Theorem 3.9 forces that there is at most one character χ′ /∈ S of G such that
n(G,χ′) is nonzero. In addition, the Artin–Takagi decomposition asserts that there
should be a character χ′ /∈ S such that n(G,χ′) is nonzero. But χ′(1) ≥ 2, which
contradicts to the fact that χ′(1)n(G,χ′) =

∑
χ/∈S χ(1)n(G,χ) = 1.

In [19], Lansky and Wilson generalized results of Murty and Raghuram by prov-
ing the following lemma.

Lemma 3.11 ([19, Lemma 3.2]). Let G be a finite solvable group, and let H be a
subgroup of G. Let φ be a 1-dimensional character of H such that φ|H∩Gi is trivial,
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and let φ′ be the unique extension of φ to a character of H · Gi that is trivial on
Gi. Then for any irreducible character χ of G, one has

(χ, IndGH·Gi φ′) =

{
(χ, IndGH φ), if l(χ) ≤ i,

0, if l(χ) > i.

Adapting the method developed by Lansky and Wilson, it is possible now to
obtain a generalization of Murty and Raghuram’s work in the setting of arithmetic
Heilbronn characters as follows.

Corollary 3.12. Let d be the greatest common divisor of the degrees of the char-
acters in Irr(G))\Si, where Si denotes the set of irreducible characters of G of
level less than or equal to i. Then n(G,RegG) − n(G, IndGGi 1Gi) = kd for some
non-negative integer k.

Proof. By conditions AHC1 and AHC2, and Lemma 3.11 with H = 〈eG〉, we have

n(G,RegG) − n(G, IndGGi 1Gi) = n(G,RegG) −
∑
χ∈Si

χ(1)n(G,χ)

=
∑

χ∈Irr(G)\Si

χ(1)n(G,χ),

which is a multiple of the greatest common divisor of the degrees of the characters
χ of G with l(χ) > i. Since the Aramata–Brauer Theorem asserts that

n(Gi,RegGi) − n(Gi, 1Gi) ≥ 0,

by condition AHC2, we obtain n(G,RegG) − n(G, IndGGi 1Gi) ≥ 0 which completes
the proof.

Theorem 3.13. Let φ be a 1-dimensional character of a subgroup H of G. Then

n(G, IndGH φ) −
∑
χ∈Si

(χ, IndGH φ)n(G,χ) ≥ 0

where Si denotes the set of irreducible characters of G of level at most i.

Proof. The proof is exactly the same as the proof in [19], but for the sake of
completeness and clarity, we shall reproduce a proof in our setting. Firstly, we
assume φ is trivial on H ∩Gi, then φ extends uniquely to a character φ′ of H ·Gi.
Now Lemma 3.11 implies that∑

χ∈Si

(χ, IndGH φ)n(G,χ) =
∑

χ∈Irr(G)

(χ, IndGH·Gi φ′)n(G,χ)

= n(G, IndGH·Gi φ′).

By Lemma 3.3, we have

IndH·Gi

H 1H = 1H·Gi +
∑

IndH·Gi

Hj
φj
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where φj ’s are non-trivial 1-dimensional characters of some subgroupsHj ’s ofH ·Gi,
and the sum might be empty. By twisting the above equation by φ′, using the fact
that tensoring and induction commute, and inducing everything to G, one has

IndGH φ = IndGH·Gi φ′ +
∑

IndGHj
φ′|Hjφj .

Thus, the theorem follows in this case that φ is trivial on H ∩Gi.
We remark that none of φ′|Hjφj ’s is trivial. If φ �= 1H , then (1G, IndGH φ) = 0,

and thus 1G does not occur. On the other hand, if φ = 1H , then Lemma 3.11 and
Frobenius reciprocity imply that (1G, IndGH·Gi φ′) = (1G, IndGH φ) = 1, and thus 1G
cannot occur in the summation in the above equation.

For the case that φ is non-trivial on H ∩ Gi, Mackey’s theorem and Frobenius
reciprocity tell us that

((IndGH φ)|Gi , 1Gi) =
∑

Gi\G/H
(IndG

i

xHx−1∩Gi φx, 1Gi)

=
∑

Gi\G/H
(φx, 1xHx−1∩Gi) =

∑
Gi\G/H

(φ, 1H∩Gi) = 0,

where for each x ∈ G, φx is the character of xHx−1 ∩ Gi given by g 	→ φ(x−1gx).
Thus, IndGH φ contains no characters of level less than or equal to i, which means
that n(G, IndGH φ)−∑

χ∈Si(χ, IndGH φ)n(G,χ) = n(G, IndGH φ) in this case. Now the
theorem follows from conditions AHC2 and AHC3.

Corollary 3.14. Let φ0 be a 1-dimensional character of a subgroup H of G, and
Siφ0

the set of irreducible characters of level i occurring in IndGH φ0. Then∑
χ∈Si

φ0

(χ, IndGH φ0)n(G,χ) ≥ 0.

Proof. If φ0 is non-trivial on H ∩Gi, the last paragraph of the proof of Theorem
3.13 gives (χ, IndGH φ0) = 0 for all χ ∈ Siφ0

, and the corollary follows immediately.
Otherwise, φ0 extends uniquely to a character φ of H · Gi which is trivial on Gi.
Then Theorem 3.13 (by replacing H and i by H ·Gi and i−1, respectively) implies
that

n(G, IndGH·Gi φ) −
∑

χ∈Si−1

(χ, IndGH·Gi φ)n(G,χ) ≥ 0.

By Lemma 3.11, the above difference is equal to∑
χ∈Si

(χ, IndGH φ0)n(G,χ) −
∑

χ∈Si−1

(χ, IndGH φ0)n(G,χ) =
∑
χ∈Si

φ0

(χ, IndGH φ0)n(G,χ),

where Sj denotes the set of irreducible characters of G of level less than or equal
to j. Hence, the corollary follows.

We however are not able to show [19, Theorem 4.2]. But we can instead prove
the following weaker result conjectured by Murty and Raghuram in [24].
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Theorem 3.15. For each i ≥ 1,∑
χ∈Irr(G)\Si

n(G,χ)2 ≤ (n(G,RegG) − n(G, IndGGi 1Gi))2,

where Si denotes the set of irreducible characters of G of level at most i.

Proof. Again, we define a truncated Heilbronn character with respect to Si

ΘSi

G =
∑

χ∈Irr(G)\Si

n(G,χ)χ.

Taking norms on both sides of the above equation, we get
1
|G|

∑
g∈G

|ΘSi

G (g)|2 =
∑

χ∈Irr(G)\Si

n(G,χ)2.

Using the Heilbronn–Stark lemma, one has

ΘSi

G (g) = ΘG(g) −
∑
χ∈Si

n(G,χ)χ(g) = Θ〈g〉(g) −
∑
χ∈Si

n(G,χ)χ(g)

=
∑

φ∈Irr(〈g〉)
(n(〈g〉, φ) −

∑
χ∈Si

n(G,χ)(χ, IndG〈g〉 φ))φ(g).

Applying Theorem 3.13 with H = 〈g〉, we then obtain

n(〈g〉, φ) −
∑
χ∈Si

n(G,χ)(χ, IndG〈g〉 φ) ≥ 0.

Therefore, the triangle inequality and Frobenius reciprocity yield

|ΘSi

G (g)| ≤
∑

φ∈Irr(〈g〉)
(n(〈g〉, φ) −

∑
χ∈Si

n(G,χ)(χ, IndG〈g〉 φ))

= n(G,RegG) −
∑
χ∈Si

n(G,χ)(χ|〈g〉,Reg〈g〉)

= n(G,RegG) − n

G, ∑
χ∈Si

χ(1)χ

 .

Using Lemma 3.4 with H = 〈eG〉, we have

RegG = IndGGi 1Gi + (∗)
where (*) is a sum of monomial characters. Now IndGGi 1Gi is exactly the sum of
characters of G occurring in RegG which are “trivial” on Gi (or, equivalently, which
have level less than or equal to i). This means that IndGGi 1Gi =

∑
χ∈Si χ(1)χ.

Therefore, by conditions AHC1 to AHC3, we complete the proof.

By an analogous argument of the proof of Corollary 3.10, one can deduce the
following corollary.

Corollary 3.16. Let G be a solvable group. Then n(G,RegG) − n(G, IndGGi 1Gi)
cannot be 1.
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At the end of this section, we give a simple application of our arithmetic
Heilbronn characters to Artin L-functions.

Theorem 3.17. Let ΘG be an arithmetic Heilbronn character of a group G associ-
ated with integers n(H,φ). Let ρ be a character of G. Suppose that for every subgroup
H of G, and 1-dimensional irreducible character φ of H, we have n(H, ρ|H⊗φ) ≥ 0.
Then for every subgroup H of G, we have an arithmetic Heilbronn character
defined by

Θ′
H =

∑
φ∈Irr(H)

n′(H,φ)φ

where n′(H,φ) := n(H, ρ|H ⊗ φ). In particular, all properties we have shown for
arithmetic Heilbronn characters also hold for Θ′

H .

Proof. The proof is the same as the proof of Theorem 2.7. By linearity of tensor
product and the assumption of this theorem, it is easy to see that n′(H,φ)’s satisfy
conditions AHC1 and AHC3. Now since tensoring commutes with induction, by
condition AHC2, we have

n′(H,φ) = n(H, ρ|H ⊗ φ) = n(G, IndGH(ρ|H ⊗ φ))

= n(G, ρ⊗ IndGH φ) = n′(G, IndGH φ).

Therefore, the theorem follows.

Let K/k be a solvable Galois extension of number fields with Galois group G. A
deep theorem of Langlands–Tunnell asserts that all 2-dimensional representations
of subgroups of G are automorphic. As a consequence, for any 2-dimensional rep-
resentation ρ of G and any abelian character φ of a subgroup H of G, the Artin
L-function L(s, ρ|H ⊗ φ,K/KH) is holomorphic at s �= 1. Fix s0 �= 1 and set

n′(H,φ) = ords=s0 L(s, ρ|H ⊗ φ,K/KH).

We recall that n(H,φ) = ords=s0 L(s, φ,K/KH) define the classical Heilbronn char-
acter. Hence, the above theorem assures that these n′(H,φ)’s give a new arithmetic
Heilbronn character. In particular, we have the following variant of the Uchida–van
der Waall theorem and Murty–Raghuram’s inequality.

Theorem 3.18. Let K/k be a solvable Galois extension of number fields with Galois
group G, and let ρ be a 2-dimensional representation of G. Then for any subgroup
H of G, the quotient

L(s, IndGH ρ|H ,K/k)
L(s, ρ,K/k)

is holomorphic at s �= 1. Moreover, for every 1-dimensional character χ0 of G, one
has ∑

χ∈Irr(G)\{χ0}
(ords=s0 L(s, ρ⊗ χ))2 ≤

(
ords=s0

(
ζ2
K(s)

L(s, ρ⊗ χ0,K/k)

))2

.



May 19, 2017 6:54 WSPC/S1793-0421 203-IJNT 1750086

A variant of Heilbronn characters 1561

Proof. By Theorem 3.17, this theorem follows immediately from Theorems 3.6 and
3.7 and the identity

ρ⊗ RegG = ρ⊗ IndG〈eG〉 1〈eG〉 = IndG〈eG〉 ρ|〈eG〉 = 2 IndG〈eG〉 1〈eG〉 = 2 RegG .

4. Application to Artin–Hecke L-Functions and L-Functions
of CM-Elliptic Curves

To avoid the situation that this note becomes a loyal servant of Nicolas Bourbaki,
we shall apply our theory of arithmetic Heilbronn characters to study Artin–Hecke
L-functions and L-functions of CM-elliptic curves. The crucial idea is due to Murty
and Murty in [22] by setting n(G,χ) being equal to the orders of certain Artin–Hecke
L-functions to establish an elliptic analogues of the Uchida-van der Waall theorem.
As we will see, this brilliant idea will allow us to obtain several analytic properties
of Artin–Hecke L-functions and L-functions of CM-elliptic curves. In particular, we
obtain the non-existence of simple zeros for the quotients of suitable L-functions of
CM-elliptic curves.

We now recall the concept of Artin–Hecke L-functions developed by Weil [30].

Definition 4.1. Let K/k be a Galois extension of number fields with Galois group
G. Let ψ be a Hecke character of k and ρ be a complex representation of G with
underlying vector space V . The Artin–Hecke L-function attached to ψ and ρ is
defined by

L(s, ψ ⊗ ρ,K/k) =
∏
p

det(1 − ψ(p)ρ|V IP (σP)Np−s)−1

where the product runs over prime ideals in Ok, P denotes a prime ideal above
p, IP is the inertia subgroup at P, and V IP = {v ∈ V | ρ(g)v = v for all g ∈ IP}.
Usually we write L(s, ψ ⊗ χ,K/k) for L(s, ψ ⊗ ρ,K/k) where χ = trρ.

We remark that for every 1-dimensional character χ of G, the Artin–Hecke L-
function L(s, ψ ⊗ χ,K/k) extends to a meromorphic function over C with only
a possible pole at s = 1 since the corresponding L-function is a Hecke L-function.
Moreover, Weil proved each of these L-functions L(s, ψ⊗ρ,K/k) extends to a mero-
morphic function on C by showing the following lemma and applying the Brauer
induction theorem [5].

Lemma 4.2 ([30]). For any characters, χ1 and χ2 of G and every character φ of
H, we have

(1) L(s, ψ ⊗ (χ1 + χ2),K/k) = L(s, ψ ⊗ χ1,K/k)L(s, ψ ⊗ χ2,K/k),
(2) L(s, ψ⊗ IndGH φ,K/k) = L(s, ψ ◦NKH/k⊗φ,K/KH) where KH is a subfield of

K fixed by H and NKH/k is the usual norm of KH/k.

Now, we consider a (non-trivial) Hecke character ψ of infinite type of k, and fix
a point s0 ∈ C. We may set nψ(H,φ) = ords=s0 L(s, ψ ◦ NKH/k ⊗ φ,K/KH) for
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every character φ of any subgroup H of G. Using Lemma 4.2, it is easy to see that
such nψ(H,φ)’s define an arithmetic Heilbronn character. Moreover, by “linearity”
of tensor product, for any Hecke characters ψ1 and ψ2 of infinite type of k, the
integers nψ1,ψ2(H,φ) := nψ1(H,φ) + nψ2(H,φ) also give an arithmetic Heilbronn
character.

We now recall two necessary facts from the theory of elliptic curves that allow
us to apply our theory of arithmetic Heilbronn characters to L-functions of elliptic
curves.

Lemma 4.3 ([7–10]). Let E be an elliptic curve defined over k. Suppose that E
has CM by an order in an imaginary quadratic field F . If F ⊆ k, then the L-
function L(s, E, k) of E is the product of two Hecke L-functions of k. If F � k,

then L(s, E, k) is equal to a Hecke L-function of kF which is a quadratic extension
of k.

Using this lemma, Murty and Murty in [22] showed the following lemma, which
was proved earlier by Shimura for CM-elliptic curves over Q by using Weil’s converse
theorem.

Lemma 4.4 ([22, Lemma 2]). The generalized Taniyama conjecture is true for
CM-elliptic curves. In other words, every L-function of a CM-elliptic curve can be
written in terms of Hecke L-functions.

Now fix s0 ∈ C and suppose that K/k is a Galois extension of number fields
with Galois group G. Let L(s, E,KH) be the L-function of E/KH . By the above
theorems, this L-function is either a single Hecke L-function or a product of two
Hecke L-functions of KH . Following the proof of [22, Theorem 1], for each subgroup
H of G and complex character φ of H , let n(H,φ) be the order of the L-function
L(s, φ,E,KH) at s = s0, where L(s, φ,E,KH) is the “twist” (by φ) of L(s, E,KH)
(in particular, it is either a single Artin–Hecke L-function or a product of two
Artin–Hecke L-functions). According to the conclusion of our previous discussion
of Artin–Hecke L-functions, such integers n(H,φ) define an arithmetic Heilbronn
character, and we hence are able to use the theory developed in the previous sections
to these integers.

We do not intend to state all theorems and corollaries we can get, but just
mention two results. First of all, we have the following theorem that generalizes
Murty and Murty’s elliptic analogue of the Uchida–van der Waall theorem. Also,
this theorem gives an elliptic analogue of Murty–Raghuram’s inequality.

Theorem 4.5. Suppose K/k is a solvable Galois extension with Galois group G,

and let H be a subgroup of G. Let χ and φ be 1-dimensional characters of G and
H, respectively. Then

L(s, IndGH φ,E, k)
L(s, χ,E, k)(χ|H ,φ)
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is entire. In addition, for every 1-dimensional character χ0 of G, one has∑
χ∈Irr(G)\{χ0}

(ords=s0 L(s, χ,E, k))2 ≤
(

ords=s0

(
L(s, E,K)
L(s, χ0, E, k)

))2

.

Moreover, we have below an interesting result for L-functions of CM-elliptic
curves by just applying Corollary 3.16.

Corollary 4.6. Suppose K/k is a solvable Galois extension with Galois group G.
Then for all i ≥ 1,

L(s, E,K)
L(s, E,KGi)

cannot have any simple zero, where G0 = G, Gi = [Gi−1, Gi−1] for i ≥ 1, KGi

is
the fixed field of Gi, and L(s, E,KGi

) is the L-function of E/KGi

.

5. Application to Automorphic L-Functions and L-Functions
of Elliptic Curves

In this section, we will follow the path enlightened by [22] to demonstrate how
arithmetic Heilbronn characters play a role in studying automorphic L-functions.

We will begin by collecting some important results from the theory of automor-
phic L-functions.

Theorem 5.1 ([1, Arthur and Clozel]). Let K/k be a cyclic Galois extension
of number fields of prime degree, and π and Π denote automorphic representations
induced from cuspidal of GLn(Ak) and GLn(AK) respectively (or, in particular,
cuspidal automorphic representations of GLn(Ak) and GLn(AK) respectively). Then
the base change B(π) of π and the automorphic induction I(Π) of Π exist. Moreover,
I(Π) is induced from cuspidal.

We remark that Arthur–Clozel’s theorem in fact enables one to use the base
change and the automorphic induction if K/k is a solvable Galois extension of
number fields. Moreover, their theorem yields that all nilpotent groups are of auto-
morphic type, which is predicted by Langlands’ reciprocity conjecture. We refer the
reader to [1] for the complete details and to [20] for a nice introduction. We also
recall the theory of Rankin–Selberg L-functions due to Jacquet, Piatetski-Shapiro
and Shalika, and its connection with Arthur-Clozel’s theory.

Theorem 5.2 ([17, Jacquet, Piatetski-Shapiro and Shalika]). Let π and σ

be two cuspidal unitary automorphic representations of GLn(Ak) and GLm(Ak),
respectively. Then the Rankin–Selberg L-function L(s, π ⊗ σ) of π and σ extends to
a meromorphic function of s.

Theorem 5.3 ([16, Jacquet]). Let K/k be a cyclic Galois extension of number
fields of prime degree, and π and σ be two cuspidal unitary automorphic representa-
tions of GLn(Ak) and GLm(AK), respectively. Then the Rankin–Selberg L-functions
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satisfy the following formal identity:

L(s,B(π) ⊗ σ) = L(s, π ⊗ I(σ)).

In light of [22, Proof of Theorem 2], we prove the following lemma that allows
us to construct arithmetic Heilbronn characters later.

Lemma 5.4. Let K/k be a Galois extension of number fields with Galois group
G, ρ a representation of G, and n ≥ 2. Suppose that π is a cuspidal automorphic
representation of GLn(Ak) such that for every intermediate field M of K/k with
K/M solvable, π|M is automorphic (over M). Then the Rankin–Selberg L-function
L(s, π ⊗ ρ) extends to a meromorphic function of s.

Proof. By the Brauer induction theorem, one can write

trρ =
∑
i

mi IndGHi
χi,

where mi ∈ Z, χi is an abelian character of an elementary subgroup Hi of G,
which is nilpotent. By Artin reciprocity, for each i, χi corresponds to a cuspidal
automorphic representation of GL1(AKHi ). Since each Hi is nilpotent, Hi is solv-
able, and so π|KHi is automorphic. Now the Rankin–Selberg theory ensures that
every L(s, π|KHi ⊗ χi) extends to an entire function. Thus, L(s, π ⊗ ρ) extends to
a meromorphic function over C.

We first note that if Langlands’ reciprocity conjecture holds for K/k, then the
automorphy assumption on π|M can be easily removed by just applying the theory
of Rankin–Selberg L-functions. On the other hand, if one knows how to associate
Galois representations to π and its “descents”, then one can apply Arthur–Clozel’s
theory of base change to derive the desired automorphy result. In particular, if
K/k is a totally real solvable extension and π is a “RAESDC” (regular algebraic
essentially self-dual cuspidal) automorphic representation, then by the work of Tay-
lor and his school, the extra automorphy assumption in the above lemma can be
dropped (for more details and references, see the next section, especially, Theorems
6.2 and 6.3).

Under the above assumption and notation, we now further assume that K/k is
totally real and solvable. We let H be a subgroup of G and φ a character of H ,
and fix s0 ∈ C. We define n(H,φ) to be the order of the Rankin–Selberg L-function
L(s, π|KH ⊗ φ) at s = s0. Since K/KH is still a solvable Galois extension, by
Theorem 5.3 and Lemma 5.4, we know that n(H,φ)’s define an arithmetic Heilbronn
character. Again, we do not intend to restate all results established in the previous
section but just mention two of them.

First of all, applying Theorem 3.5, we obtain the following theorem that can be
seen as an analogue of Murty and Raghuram’s variant of the Uchida–van der Waall
theorem.
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Theorem 5.5. Under the assumption and notation as above. Let χ and φ be 1-
dimensional characters of G and H, respectively. Then the quotient

L(s, π|H ⊗ φ)
L(s, π ⊗ χ)(χ|H ,φ)

is entire. Moreover, for every 1-dimensional character χ0 of G, one has∑
χ∈Irr(G)\{χ0}

(ords=s0 L(s, π ⊗ χ))2 ≤
(

ords=s0

(
L(s,B(π))
L(s, π ⊗ χ0)

))2

,

where B(π) is the base change of π to K.

In fact, this also generalizes [22, Theorem 4] that asserts that L(s,π|H)
L(s,π) is entire.

On the other hand, one can use Theorem 3.16 to get the following.

Theorem 5.6. Under the assumption and notation as above. Then for all i ≥ 1,

L(s,B(π))
L(s,Bi(π))

cannot have any simple zero where G0 = G, Gi denotes [Gi−1, Gi−1] for all i ≥ 1,
KGi

is the fixed field of Gi, B(π) is the base change of π to K, and Bi(π) is the
base change of π to KGi

, the fixed field of Gi.

We note that the existence of Bi(π) in the above theorem is due to the Arthur-
Clozel theorem and the fact that each Gi is normal in G. We remark that these
theorems also have other arithmetic applications. For instance, as mentioned in [22],
the zeta function of any CM abelian variety over an arbitrary number field is given
in terms of Hecke L-functions, and the Jacobian of a modular curve has the zeta
function that is equal to a product of L-functions attached to modular forms by a
theorem of Shimura. In both instances, one may obtain appropriate generalization
by setting integers equal to the orders of suitable L-functions (at s = s0 ∈ C) to
define an arithmetic Heilbronn character.

At the end of this section, we shall apply the previous results to symmetric
power L-functions. Suppose that M/k is an extension of number fields contained in
a totally real solvable Galois extension K/k with G = Gal(K/k). We denote HM to
be a subgroup of G such that KHM = M . Let E be a non-CM elliptic curve defined
over k. For every intermediate field F of K/k, let ρF = ρE,F denote a compatible
system of �-adic representations attached to E over F , i.e. for each prime �,

ρF := ρ�,F : Gal(k/F ) → Aut(T�(E,F )),

where T�(E,F ) denotes (�-adic) Tate module of E/F (for more details, see [22] and
[23]). Now assuming the mth symmetric power of ρk is automorphic, Lemma 5.4
implies that for every character χ of G, the Rankin–Selberg L-function

L(s, Symm ρk ⊗ χ)
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extends to a meromorphic function over C. On the other hand, since for every
intermediate field F of K/k, T�(E,F ) = T�(E, k) as Gal(k/F )-modules, it follows
that

(Symm ρk)|Gal(k/F ) = Symm ρF .

But

IndGal(k/k)

Gal(k/F )

(
(Symm ρk)|Gal(k/F )

)
= Symm ρk ⊗ IndGal(k/k)

Gal(k/F )
1.

Putting everything together, we finally obtain

L(s, Symm ρF ) = L(s, (Symm ρk)|Gal(k/F ))

= L(s, Symm ρk ⊗ IndGHF
1), (5.1)

where HF is a subgroup of G such that KHF = F .
Now fix s = s0 ∈ C, and for every character φ, define n(H,φ) to be the order of

the L-function

L(s, (Symm ρk)|KH ⊗ φ)

at s = s0, where (Symm ρk)|KH is obtained in the same manner as in the proof
of Theorem 6.1 (we note that Arthur-Clozel’s theory of base change asserts that
(Symm ρk)|K is automorphic). Therefore, n(H,φ)’s define an arithmetic Heilbronn
character. As a consequence, we have the following elliptic analogue of the Uchida–
van der Waall theorem that generalizes [22, Theorem 2].

Theorem 5.7. Under the assumption and notation as above. Let χ and φ be 1-
dimensional representations of G and H, respectively. Then

L(s, Symm ρKH ⊗ φ)
L(s, Symm ρk ⊗ χ)(χ|H ,φ)

is entire. Moreover, by Eq. (5.1), for every intermediate field F of K/k,

L(s, Symm ρF )
L(s, Symm ρk)

is entire.

On the other hand, Theorem 5.6 and Eq. (5.1) give below a surprising result.

Theorem 5.8. Under the assumption and notation as above. Then for all i ≥ 1,
L(s, Symm ρK)
L(s, Symm ρKGi )

cannot admit any simple zero. In particular,
L(s, E,K)
L(s, E,KGi)

has no simple zeros, where for any intermediate field F of K/k, L(s, E, F ) denotes
the L-function of E/F .

Also, we have an elliptic analogue of Murty–Raghuram’s inequality.
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Theorem 5.9. Under the assumption and notation as above. Suppose K/k is
a totally real solvable Galois extension with Galois group G. Then for every 1-
dimensional character χ0 of G, one has∑
χ∈Irr(G)\{χ0}

(ords=s0 L(s, Symm ρk ⊗ χ))2 ≤
(

ords=s0

(
L(s, Symm ρK)

L(s, Symm ρk ⊗ χ0)

))2

.

6. Application of Weak Heilbronn Characters

As one can see, arithmetic Heilbronn characters indeed play a role which helps us to
obtain analytic properties of L-functions. Meanwhile, one may wonder if we really
need the notion of weak arithmetic Heilbronn characters, which seems impracti-
cal and unnecessary. Thanks to the recent groundbreaking work of Taylor and his
school, this wonder may not really be an issue.

In his paper [26], Taylor proved the potential automorphy for certain symmet-
ric power L-functions of non-CM elliptic curves, and then deduced the Sato–Tate
conjecture (over totally real fields). He was building on his earlier work [6] and
[14] with Clozel, Harris, and Shepherd-Barron. More recently, Barnet-Lamb, Ger-
aghty, Harris, and Taylor [3] proved the potential automorphy for symmetric power
L-functions in a more general setting.

As we will demonstrate, it is possible to utilize the above-mentioned results of
potential automorphy and our weak arithmetic Heilbronn characters to study L-
functions. However, for the sake of conceptual clarity, we shall only use Taylor’s
potential automorphy result here.

We recall that Taylor’s main theorem is: let k be a totally real field and E/k

a non-CM elliptic curve with at least one prime of multiplicative reduction. Then
for any finite set S of (odd) natural numbers, there is a (finite) totally real Galois
extension L/k such that for every m ∈ S, Symm ρk is automorphic over L, i.e.
(Symm ρk)|L is automorphic.

From now on, we fix a finite set S of natural numbers and let L be a (finite)
totally real Galois extension L/k such that for everym ∈ S, Symm ρk is automorphic
over L, which is given by Taylor’s theorem. We now recall two of key steps of the
proof of the Sato-Tate conjecture.

Theorem 6.1 ([14]). For any intermediate field F of L/k with L/F solvable,

(Symm ρk)|F
is automorphic.

This is proved in [14] by Harris, Shepherd-Barron and Taylor. The proof essen-
tially applies the above-mentioned Arthur–Clozel theorem of base change and the
fact that (Symm ρk)|L is Galois-invariant. Since every irreducible character φ of a
cyclic subgroup H of G = Gal(L/k) can be identified as an automorphic representa-
tion of GL1(ALH ) via Artin reciprocity, the above theorem and the Rankin-Selberg
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theory yield

L(s, (Symm ρk)|LH ⊗ φ)

is entire.
On the other hand, applying Theorem 6.1, Artin reciprocity, and the Brauer

induction theorem, Taylor and his school showed the following.

Theorem 6.2. L(s, Symm ρk) extends to a meromorphic function over C.

In light of their method, one can show the following.

Theorem 6.3. For every character χ of G = Gal(L/k), L(s, (Symm ρk) ⊗ χ)
extends to a meromorphic function over C.

Proof. As usual, the Brauer induction theorem asserts

χ =
∑
i

ni IndGHi
φi,

where for each i, ni is an integer, and φi is a 1-dimensional character of a nilpo-
tent subgroup Hi of G. According to Artin reciprocity, φi can be seen as a Hecke
character over LHi . Putting everything together, one has

L(s, (Symm ρk) ⊗ χ) =
∏
i

L(s, (Symm ρk)|LHi ⊗ φi)ni ,

where φi ∈ A(GL1(ALHi )). By Theorem 6.1, (Symm ρk)|LHi is automorphic over
LHi . Now the Rankin–Selberg theory tells us that each

L(s, (Symm ρk)|LHi ⊗ φi)

is entire, which completes the proof.

Therefore, for H cyclic or H = G, fixing s0 ∈ C and setting

n(H,φ) = ords=s0 L(s, (Symm ρk)|LH ⊗ φ),

the above discussion yields that n(H,φ)’s define a weak arithmetic Heilbronn char-
acter. In particular, by Theorem 2.4, we then deduce:

Theorem 6.4. ∑
χ∈Irr(G)

n(G,χ)2 ≤ (ords=s0 L(s, Symm ρL))2.

In particular, (if we choose S containing 1 in the very beginning)

| ords=s0 L(s, ρk)| ≤ ords=s0 L(s, ρL).

We remark that the last inequality of analytic ranks is a consequence predicted
by the Birch–Swinnerton–Dyer conjecture for s0 = 1.
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