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COUNTING ZEROS OF DEDEKIND ZETA FUNCTIONS

ELCHIN HASANALIZADE, QUANLI SHEN, AND PENG-JIE WONG

Abstract. Given a number field K of degree nK and with absolute discrim-
inant dK , we obtain an explicit bound for the number NK(T ) of non-trivial
zeros (counted with multiplicity), with height at most T , of the Dedekind zeta
function ζK(s) of K. More precisely, we show that for T ≥ 1,
∣∣∣NK(T )−T

π
log

(
dK

( T

2πe

)nK
)∣∣∣ ≤ 0.228(log dK+nK log T )+23.108nK+4.520,

which improves previous results of Kadiri and Ng, and Trudgian. The improve-
ment is based on ideas from the recent work of Bennett et al. on counting zeros
of Dirichlet L-functions.

1. Introduction

Given a number field K, the Dedekind zeta function ζK(s) of K is defined by

ζK(s) =
∑
a �=0

1

N(a)s
,

for Re(s) > 1, where the sum is over non-zero integral ideals of K. It is known that
ζK(s) has an analytic continuation to a meromorphic function on C with only a
simple pole at s = 1, and its zeros ρ = β+ iγ encode deep arithmetic information of
K. For instance, the generalised Riemann hypothesis, asserting that if ζK(ρ) = 0
and β ∈ (0, 1), then β = 1

2 , leads to the strongest form of the prime ideal theorem.
A related prominent question is to count the zeros of ζK(s) in the critical strip
0 < Re(s) < 1. For T ≥ 0, we set

NK(T ) = #{ρ ∈ C | ζK(ρ) = 0, 0 < β < 1, |γ| ≤ T},
counted with multiplicity if there are any multiple zeros. The estimate of NK(T ) is
crucial for proving effective versions of the Chebotarev density theorem as well as
bounding the least prime in the Chebotarev density theorem (see [4,5]). Moreover,
to make these results explicit, it is natural to further require a determination of the
implied constants for the estimate of NK(T ).

Adapting the arguments of Backlund [1], McCurley [6], and Rosser [8], in [3],
Kadiri and Ng showed that for T ≥ 1, one has

(1.1)
∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)∣∣∣ ≤ D1(log dK + nK log T ) +D2nK +D3,
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with admissible (D1, D2, D3) = (0.506, 16.950, 7.663), where nK and dK are the
degree and absolute discriminant of K, respectively; also, D1 can be taken as
small as (π log 2)−1 ≈ 0.459 at expense of larger D2nK + D3. This was im-
proved by Trudgian [9] (not only for Dedekind zeta functions but also for Dirichlet
L-functions). In particular, as asserted in [9], the estimate (1.1) is valid with
(D1, D2, D3) = (0.316, 5.872, 3.655), and the constant D1 in (1.1) could be made as
small as 0.247 (with larger D2nK +D3). Unfortunately, as pointed out by Bennett,
Martin, O’Bryant, and Rechnitzer [2], there is an error in [9] that appears as the
ranges of various parameters used in the argument of [9] were not verified properly.
In [2], Bennett et al. fixed this problem for Dirichlet L-functions.

The objective of this article is to prove Theorem 1.1.

Theorem 1.1. Given a number field K of degree nK and with absolute discriminant
dK and r1 real places, for any T ≥ 1, we have∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)
+

r1
4

∣∣∣
≤ 0.22737 log

(dK(T + 2)nK

(2π)nK

)
+ 23.02528nK + 4.51954.

(1.2)

In addition, writing the right of (1.2) as C1 log
(dK(T+2)nK

(2π)nK

)
+C2nK+C3, we have

further admissible triples (C1, C2, C3) recorded in Table 2 in Section 4. Moreover,
recalling that for T ≥ T0, log(T + 2)− log T ≤ log(1 + 2

T0
), from Theorem 1.1 and

the triangle inequality, we derive the following improved bound for NK(T ).

Corollary 1.2. Given a number field K of degree nK and with absolute discrimi-
nant dK , for any T ≥ 1, we have
(1.3)∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)∣∣∣ ≤ 0.228(log dK + nK log T ) + 23.108nK + 4.520.

Furthermore, by Table 2, writing the right of (1.3) as D1(log dK + nK log T ) +
D2nK + D3, we have Table 1 of admissible (D1, D2, D3) that not only repair but
also improve all triples given in [9, Table 2]. (Note that, for all number fields K,
our D2 and D3 yield a smaller vlaue of D2nK +D3 than the one given by Trudgian
[9].)

Table 1. Admissible (D1, D2, D3) in Corollary 1.2 and in [9]

Trudgian [9] Our improvement
T ≥ 1 T ≥ 10 T ≥ 1 T ≥ 10

D1 D2 D3 D2 D3 D1 D2 D3 D2 D3

0.247 8.851 3.024 8.726 2.081 0.245 6.735 4.213 6.449 3.124
0.265 7.521 3.178 7.396 2.101 0.264 5.276 4.082 4.968 3.051
0.282 6.776 3.335 6.651 2.123 0.281 4.478 4.010 4.149 3.012
0.299 6.262 3.494 6.138 2.146 0.296 3.971 3.969 3.622 2.990

The proof of Theorem 1.1 follows closely the arguments of Bennett, Martin,
O’Bryant, and Rechnitzer [2], Kadiri and Ng [3], and Trudgian [9], which are an
adaption of the methods of Backlund [1], McCurley [6], and Rosser [8]. We also take
advantage of the refined estimates for Gamma factors obtained in [2]. Moreover,
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following the strategy of Bennett et al. [2], we extend Rademacher’s convexity
bound for ζK(s) (cf. Propositions 3.8 and 3.9) that, together with “Backlund’s
trick” (see Section 3.2), plays a central role in improving the leading constants C1

and D1. Furthermore, we track all the parameters and related inequalities in a
similar manner of Bennett et al. [2] to fix the aforementioned error appearing in
[9]. Last but not least, we note that we obtain our results by a direct numerical
computation (with help from Maple) and that it may be possible to use the “interval
analysis” as in [2] to prove an estimate similar to [2, Theorem 1.1]. Nonetheless,
since Corollary 1.2 is already as strong as [2, Corollary 1.2], and it is sufficient
for most applications, we shall not devote ourselves to do such an interval analysis
here.

2. The main term and the gamma factor

2.1. The main term. Let K be a number field of degree nK and with absolute
discriminant dK . We let r1 and r2 be the numbers of real and complex places,
respectively, of K and note that nK = r1 + 2r2. We define the completed zeta
function ξK(s) as

(2.1) ξK(s) = s(s− 1)d
s/2
K γK(s)ζK(s),

where

γK(s) =
(
π− s+1

2 Γ
(s+ 1

2

))r2(
π− s

2Γ
(s
2

))r1+r2
.

We recall that ξK(s) extends to an entire function of order 1 and satisfies the
functional equation

(2.2) ξK(s) = ξK(1− s).

As in the introduction, we set

NK(T ) = #{ρ ∈ C | ζK(ρ) = 0, 0 < β < 1, |γ| ≤ T}.
To estimate NK(T ), we shall apply the argument principle as follows. For any

fixed σ1 > 1, we consider the rectangle R with vertices σ1−iT, σ1+iT, 1−σ1+iT ,
and 1 − σ1 − iT (that is away from zeros of ξK(s)).1 As ξK(s) is entire, it follows
from the argument principle that

NK(T ) =
1

2π
ΔR arg ξK(s).

1Throughout our argument, we will always assume T is away from zeros of ξK(s). As shall

be seen in Section 4, with this assumption, we will prove (4.2) for T away from zeros of ξK(s).
Nonetheless, if T is the exact height of a zero, we know that NK(T ) = NK(T+ε) for all sufficiently
small ε > 0 (in other words, T + ε is away from zeros). Then, by the triangle inequality, applying
(4.2) with T + ε, we see that

∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)
+

r1

4

∣∣∣

≤
∣∣∣NK(T + ε)− T + ε

π
log

(
dK

(T + ε

2πe

)nK
)
+

r1

4

∣∣∣

+
∣∣∣T + ε

π
log

(
dK

(T + ε

2πe

)nK
)
− T

π
log

(
dK

( T

2πe

)nK
)∣∣∣

≤ C1 log
(dK(T + ε+ 2)nK

(2π)nK

)
+ C2nK + C3

+
∣∣∣T + ε

π
log

(
dK

(T + ε

2πe

)nK
)
− T

π
log

(
dK

( T

2πe

)nK
)∣∣∣.

Now, taking ε → 0+, we conclude that (4.2) is also valid when T is the exact height of a zero.
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Let C be the part of the contour of R in Re(s) ≥ 1
2 and C0 be the part of the

contour of R in Re(s) ≥ 1
2 and Im(s) ≥ 0. Since ξK(s) = ξK(s̄), the functional

equation (2.2) then yields

ΔR arg ξK(s) = 2ΔC arg ξK(s) = 4ΔC0
arg ξK(s),

which implies that

NK(T ) =
2

π
ΔC0

arg ξK(s).(2.3)

Writing B = dK/πnK , by (2.1), we have

ΔC0
arg ξK(s) = ΔC0

arg s+ΔC0
argBs/2

+ (r1 + r2)ΔC0
arg Γ

(s
2

)
+ r2ΔC0

arg Γ

(
s+ 1

2

)

+ΔC0
arg ((s− 1)ζK(s)) .

(2.4)

It is clear that

ΔC0
arg s = arctan(2T ),

ΔC0
argBs/2 =

T

2
logB =

T

2
log

( dK
πnK

)
,

ΔC0
arg Γ(s) = ΔC0

(Im log Γ(s)) = Im log Γ
(1
2
+ iT

)
.

(2.5)

To control the Gamma factor, we shall appeal for the improved numerical bound
established in [2, Sec. 3]. For a ∈ {0, 1}, we set

ga(T ) =
2

π
Im log Γ

(1
4
+

a

2
+ i

T

2

)
− T

π
log

( T

2e

)
− 2a− 1

4
.

It follows from [2, Proposition 3.2] that for a ∈ {0, 1} and T ≥ 5/7,

|ga(T )| ≤
2− a

50T
.

Hence, setting

gK(T ) = (r1 + r2)g0(T ) + r2g1(T ),(2.6)

we then obtain

|gK(T )| ≤ 2nK

50T
− r2

50T
.(2.7)

Now, gathering (2.3), (2.4), (2.5), and (2.6), we obtain
(2.8)

NK(T )=
2

π
arctan(2T )+gK(T )+

T

π
log

(
dK

( T

2πe

)nK
)
−r1

4
+
2

π
ΔC0

arg((s−1)ζK(s)).

Let C1 denote the vertical line from σ1 to σ1 + iT and C2 denote the horizontal line
from σ1 + iT to 1

2 + iT . We require the following two estimates.

Lemma 2.1. For s = σ + it with σ > 1, one has

ζK(2σ)

ζK(σ)
≤ |ζK(s)| ≤ ζ(σ)nK ,

where, as later, ζ(s) denotes the Riemann zeta function.
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Lemma 2.2. For σ1 > 1,

|ΔC1
arg(s− 1)ζK(s)| ≤ π

2
+ nK log ζ(σ1).

Proof. Note that

ΔC1
arg(s− 1)ζK(s) = ΔC1

arg(s− 1) + ΔC1
arg ζK(s)

= arctan
( T

σ1 − 1

)
+ΔC1

arg ζK(s).

Now, the lemma follows from the estimate

|ΔC1
arg ζK(s)| = | arg ζK(σ1+iT )| ≤ | log ζK(σ1+iT )| ≤ log ζK(σ1) ≤ nK log ζ(σ1),

where the last inequality is due to Lemma 2.1. �

Thus, by Lemma 2.2 and (2.8), we arrive at∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)
+

r1
4

∣∣∣
≤ 2 + |gK(T )|+ 2nK

π
log ζ(σ1) +

2

π
|ΔC2

arg((s− 1)ζK(s))|.
(2.9)

2.2. Bounding the Gamma factor. For a ∈ {0, 1}, 0 ≤ d < 9/2 and T ≥ 5/7,
we set

Ea(T, d) =
∣∣∣Im log Γ

(σ + a+ iT

2

)∣∣∣
1
2+d

σ= 1
2

+ Im log Γ
(σ + a+ iT

2

)∣∣∣
1
2−d

σ= 1
2

∣∣∣,
and we define

(2.10) EK(T, d) = (r1 + r2)E0(T, d) + r2E1(T, d).
Following [2, p. 1463], we let

Ea(T, d) =
2T/3

(2a+ 2d+ 17)2 + 4T 2
+

2T/3

(2a− 2d+ 17)2 + 4T 2
− 4T/3

(2a+ 17)2 + 4T 2

+
T

2
log

(
1 +

(2a+ 17)2

4T 2

)
− T

4
log

(
1 +

(2a+ 2d+ 17)2

4T 2

)

− T

4
log

(
1 +

(2a− 2d+ 17)2

4T 2

)
+

(8 + 6π)/45

((2a+ 2d+ 17)2 + 4T 2)3/2

+
(8 + 6π)/45

((2a− 2d+ 17)2 + 4T 2)3/2
+

2(8 + 6π)/45

((2a+ 17)2 + 4T 2)3/2

+

3∑
k=0

(
2 arctan

2a+ 1 + 4k

2T

− arctan
2a+ 2d+ 1 + 4k

2T
− arctan

2a− 2d+ 1 + 4k

2T

)

+
2a+ 2d+ 15

4
arctan

2a+ 2d+ 17

2T
+

2a− 2d+ 15

4
arctan

2a− 2d+ 17

2T

− 2a+ 15

2
arctan

2a+ 17

2T
.

We shall further set

(2.11) EK(T, d) = (r1 + r2)E0(T, d) + r2E1(T, d).
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As shown in [2, p. 1462], Ea(T, d) ≤ Ea(T, d) for 0 ≤ d < 9/2 and T ≥ 5/7, and
thus

(2.12) EK(T, d) ≤ EK(T, d)

for 0 ≤ d < 9/2 and T ≥ 5/7. In addition, from [2, Lemma 3.4] and our definition
of EK(T, d), we have Lemma 2.3.

Lemma 2.3. For 0 ≤ δ1 ≤ d < 9/2 and T ≥ 5/7,

0 < EK(T, δ1) ≤ EK(T, d).

Furthermore, for d ∈ [ 14 ,
5
8 ] and T ≥ 5/7,

EK(T, d)

π
≤ (r1 + r2)

640d− 112

1536(3T − 1)
+ r2

(640 + 216)d− 112− 39

1536(3T + 3− 1)
+

nK

210
.

3. Backlund’s trick and the Jensen integral

3.1. Introducing the auxiliary function fN . For the sake of convenience, we
shall set Z(w) = (w − 1)ζK(w). In order to analyse the variation of the argument
of Z(w) on C2, we shall introduce an auxiliary function

fN (s) =
1

2

(
Z(s+ iT )N + Z(s− iT )N

)

for N ∈ N. For σ ∈ R, it is clear that

fN (σ) =
1

2

(
Z(σ + iT )N + Z(σ − iT )N

)
=

1

2

(
Z(σ + iT )N + Z(σ + iT )N

)

= Re(Z(σ + iT )N ).

We need Definition 3.1 that measures the variation of the argument of Z(w)N on
C2.

Definition 3.1. Let bN denote the non-negative integer, depending on N , such
that

bN ≤ 1

π

∣∣∣ΔC2
argZ(w)N

∣∣∣ < bN + 1.

From this definition and the fact that argZ(w)N = N argZ(w), we immediately
obtain

bN
N

≤ 1

π

∣∣∣ΔC2
argZ(w)

∣∣∣ < bN + 1

N
.(3.1)

In addition, we have Lemma 3.2 concerning the zeros of fN (σ).

Lemma 3.2. In the notation of Definition 3.1, the function fN (σ) has at least bN
zeros in [ 12 , σ1].

Proof. By Definition 3.1, there are at least bN different values of σ such that 1
2 +

1
π argZ(σ+ iT )N ∈ Z. Thus, for such values of σ, Z(σ+ iT )N is purely imaginary,
which means that

fN (σ) = Re(Z(σ + iT )N ) = 0

for at least bN different values σ. �

We shall also require Lemma 3.3 regarding the limiting behaviour of fN .
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Lemma 3.3. For any c > 1, there is an infinite sequence of natural numbers
(Nm)∞m=1 such that fNm

(c) �= 0. Moreover, we have

lim sup
m→∞

(
− 1

Nm
log |fNm

(c)|
)
≤ log

( 1√
(c− 1)2 + T 2

ζK(c)

ζK(2c)

)
.

Proof. Write Z(c+iT ) = Reiφ for some R, φ ∈ R. It is clear that Z(c−iT ) = Re−iφ.
Also, as Z(c+ iT ) �= 0 for any c > 1, we know that R > 0. Thus, we have

fN (c)

Z(c+ iT )N
=

1

2

(
1 +

Z(c− iT )N

Z(c+ iT )N

)
=

1

2
(1 + e−2Nφi)

for any N ∈ N.
Now, applying Dirichlet’s approximation theorem, for any φ, there is an infinite

sequence of natural numbers (Nm)∞m=1 such that as m → ∞, −2Nmφ → 0 modulo

2π and Nm → ∞. Thus,
fNm (c)

Z(c+iT )Nm
→ 1 as m → ∞, and hence

lim
m→∞

(
− 1

Nm
(log |fNm

(c)| −Nm log |Z(c+ iT )|)
)

=
(

lim
m→∞

−1

Nm

)(
lim

m→∞
log

∣∣∣ fNm
(c)

Z(c+ iT )Nm

∣∣∣) = 0.

Moreover, by the left inequality of Lemma 2.1, we have

|Z(c+ iT )| ≥
√
(c− 1)2 + T 2

ζK(2c)

ζK(c)
,

which, combined with the above identity, gives

0 ≥ lim sup
m→∞

(
− 1

Nm
log |fNm

(c)|+ log
(√

(c− 1)2 + T 2
ζK(2c)

ζK(c)

))

= lim sup
m→∞

(
− 1

Nm
log |fNm

(c)|
)
+ log

(√
(c− 1)2 + T 2

ζK(2c)

ζK(c)

)
.

Herein, we complete the proof. �

Let D(c, r) be the open disk centred at c with radius r. Let (Nm)∞m=1 be given
as in Lemma 3.3. For any N ∈ (Nm)∞m=1, we set

SN (c, r) =
1

N

∑
z∈SN (D(c,r))

log
r

|z − c| ,

where SN (D(c, r)) denotes the set of zeros of fN (s) in D(c, r). As in [2, Theorem
5.1], we have the following version of Jensen’s formula.

Theorem 3.4 (Jensen’s formula). For c ∈ C and r > 0, if fN (c) �= 0, then

SN (c, r) = − 1

N
log |fN (c)|+ 1

2π

∫ π

−π

1

N
log |fN (c+ reiθ)|dθ.

Applying Jensen’s formula and Lemma 3.3, we obtain the following upper bound
for SN (c, r).

Proposition 3.5. Let c, r, and σ1 be real numbers such that

c− r <
1

2
< 1 < c < σ1 < c+ r.
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Let Fc,r : [−π, π] → R be an even function such that Fc,r(θ) ≥ 1
Nm

log |fNm
(c +

reiθ)|. Then we have

lim sup
m→∞

SNm
(c, r) ≤ log

( 1√
(c− 1)2 + T 2

ζK(c)

ζK(2c)

)
+

1

π

∫ π

0

Fc,r(θ)dθ.

3.2. Backlund’s trick. We start with the following technical estimate.

Lemma 3.6. Let 0 ≤ d < 1/2 and T ≥ 5/7. Then we have∣∣∣ arg ((σ − 1 + iT )ζK(σ + iT )
)N ∣∣∣

1
2+d

σ= 1
2

∣∣∣ ≤ ∣∣∣ arg ((σ − 1 + iT )ζK(σ + iT )
)N ∣∣∣

1
2−d

σ= 1
2

∣∣∣
+NEK(T, d) +N

π

2
,

where EK(T, d) is defined as in (2.10).

Proof. By the functional equation (2.2) and the fact that ξK(s) = ξK(s̄), we have

arg ξK(σ + iT )
∣∣∣
1
2+d

σ= 1
2

= − arg ξK(σ + iT )
∣∣∣
1
2−d

σ= 1
2

.(3.2)

Since

arg(σ + iT ) + argB(σ+iT )/2 = arctan
T

σ
+

T

2
logB,

by (2.1), we have

arg ξK(σ + iT ) = arctan
T

σ
+

T

2
logB + (r1 + r2)Im log Γ

(σ + iT

2

)

+ r2Im log Γ
(σ + iT + 1

2

)

+ arg
(
(σ + iT − 1)ζK(σ + iT )

)
.

(3.3)

As we know that for ±xy < 1,

arctanx± arctan y = arctan
x± y

1∓ xy
,

for 0 ≤ d < 1/2, we have∣∣∣ arctan T
1
2 + d

− arctan
T
1
2

+ arctan
T

1
2 − d

− arctan
T
1
2

∣∣∣

=
∣∣∣ arctan

T
1
2+d

− T
1
2

1 + T
1
2+d

T
1
2

+ arctan

T
1
2−d

− T
1
2

1 + T
1
2−d

T
1
2

∣∣∣
≤ π

2
.

(3.4)

Now, applying the triangle inequality, by (3.2), (3.3), and (3.4), we obtain∣∣∣ arg ((σ − 1 + iT )ζK(σ + iT )
)∣∣∣

1
2+d

σ= 1
2

∣∣∣
≤

∣∣∣ arg ((σ − 1 + iT )ζK(σ + iT )
)∣∣∣

1
2−d

σ= 1
2

∣∣∣+ EK(T, d) +
π

2
.

Recalling that

arg
(
(σ − 1 + iT )ζK(σ + iT )

)N ∣∣∣
1
2±d

σ= 1
2

= N arg
(
(σ − 1 + iT )ζK(σ + iT )

)∣∣∣
1
2±d

σ= 1
2

,

we conclude the proof. �
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As argued in [2] and [9], we require the following version of “Backlund’s trick”.

Proposition 3.7 (Backlund’s trick). Let c and r be real numbers. Set

σ1 = c+
(c− 1/2)2

r
and δ = 2c− σ1 −

1

2
.

If 1 < c < r and 0 < δ < 1
2 , then∣∣∣ arg ((σ+iT−1)ζK(σ+iT )
)∣∣∣1/2

σ=σ1

∣∣∣ ≤ πSN (c, r)

2 log(r/(c− 1/2))
+
EK(T, δ)

2
+

π

N
+

π

2N
+
π

4
.

Proof. By the conditions on c and r and the definitions of σ1 and δ, we know that

c− r <
1

2
− δ ≤ 1

2
≤ 1

2
+ δ = 2c− σ1 ≤ c ≤ σ1 < c+ r.

As log r
|z−c| > 0 for z ∈ D(c, r), we see that

SN (c, r) =
1

N

∑
z∈SN (D(c,r))

log
r

|z − c| ≥
1

N

∑
z∈SN ((c−r,σ1])

log
r

|z − c| .

Recall that by Lemma 3.2, there are at least bN values of σ satisfying σ ∈ [1/2, σ1]
and fN (σ) = 0, where bN is defined as in Definition 3.1. For 1 ≤ k ≤ bN , we then
set δk as the smallest non-negative real number such that

fN (1/2 + δk) = 0 and k − 1 ≤ 1

π

∣∣∣ arg ((σ + iT − 1)ζK(σ + iT )
)N ∣∣∣1/2+δk

σ=1/2

∣∣∣.
(3.5)

Writing zk = 1
2 + δk, we let x1 denote the number of zk with zk ∈ [1/2, 1/2 + δ) =

[1/2, 2c− σ1) and let x2 denote the number of zk with zk ∈ [2c− σ1, σ1]. We note
that x2 = bN − x1 and that

0 ≤ δ1 < δ2 < · · · < δx1
< δ ≤ δx1+1 < · · · < δbN ≤ σ1 − 1/2.

From (2.12), (3.5), and Lemma 3.6, it follows that

k − 1 ≤ 1

π

∣∣∣ arg ((σ − 1 + iT )ζK(σ + iT )
)N ∣∣∣

1
2−δk

σ= 1
2

∣∣∣+ 1

π
NEK(T, δk) +

N

2

whenever 1 ≤ k ≤ x1 (which implies that δk < δ < 1
2 ).

For each j ≥ 1, if there exists a k (chosen to be minimal) such that

k − 1− 1

π
NEK(T, δk)−

N

2
≥ j,

then fN has at least j zeros in [1/2− δk, 1/2) since

1

π

∣∣∣ arg ((σ + iT − 1)ζK(σ + iT )
)N ∣∣∣1/2−δk

σ=1/2

∣∣∣ ≥ k − 1− 1

π
NEK(T, δk)−

N

2
≥ j.

For such an instance, we define δ−k as the smallest values of these zeros (to avoid
possible repetition), and we shall say that the zero zk = 1/2 + δk has a pair z−k =
1/2− δ−k. We note that δ−k ≤ δk by the construction.

By the same argument as in [2, pp. 1467-1468], we have

SN (c, r) ≥
2bN − NEK(T,δ)+Nπ

2 +π

π

N
log

( r

c− 1/2

)
,
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and thus
bN
N

≤ SN (c, r)

2 log(r/(c− 1/2))
+

EK(T, δ)

2π
+

1

4
+

1

2N
,

which combined with (3.1) completes the proof. �

3.3. Constructing and bounding Fc,r. We first recall the convexity bound for
ζK(s) established by Rademacher [7, Theorem 4].

Proposition 3.8. Let η ∈ (0, 12 ] and s = σ + it. If −η ≤ σ ≤ 1 + η, then one has

|ζK(s)| ≤ 3
∣∣∣1 + s

1− s

∣∣∣(dK
( |1 + s|

2π

)nK
) 1+η−σ

2

ζ(1 + η)nK .

Also, for σ ∈ [− 1
2 , 0), one has

|ζK(s)| ≤ 3
∣∣∣1 + s

1− s

∣∣∣(dK
( |1 + s|

2π

)nK
) 1

2−σ

ζ(1− σ)nK .(3.6)

We note that the second inequality follows from the first bound by taking η = −σ.
Moreover, Rademacher’s argument [7] can be used to extend (3.6) for σ < 0 as
follows (cf. [2, Theorem 5.7]). For x ∈ R, let [x] be the integer closest to x; when
there are two integers equally close to x, we shall choose the one closer to 0.

Proposition 3.9. Let s = σ + it with σ < 0. Then we have

|ζK(s)| ≤
( dK
(2π)nK

) 1
2−σ

|1 + s− [σ]|nK( 1
2+[σ]−σ)

−[σ]∏
j=1

|s+ j − 1|nK ζ(1− σ)nK .

Proof. From the functional equation (2.2) we have

|ζK(s)| ≤ d
1/2−σ
K

∣∣∣γK(1− s)

γK(s)

∣∣∣|ζK(1− s)|

= d
1/2−σ
K π(σ− 1

2 )nK

∣∣∣Γ( 12 + 1−s
2 )

Γ( 12 + s
2 )

∣∣∣r2
∣∣∣Γ( 1−s

2 )

Γ( s2 )

∣∣∣r1+r2
|ζK(1− s)|.

As σ < 0, by Lemma 2.1, we have |ζK(1 − s)| ≤ ζ(1− σ)nK . It remains to
estimate the ratios of gamma functions. It was obtained in the proof of [2, Theorem
5.7] that for a, b ∈ {0, 1} and k ∈ Z,

Γ(a2 + 1−s
2 )

Γ(a2 + s
2 )

=
Γ( b2 + 1−(s+k)

2 )

Γ( b2 + s+k
2 )

2−k
( k∏

j=1

(s+ j − 1)
) sin(π2 (s+ k + 1− b))

sin(π2 (s+ 1− a))
.

Setting a = 0 and a = 1 and taking b ≡ k (mod 2) and b ≡ k + 1 (mod 2),
respectively, we can make sine factors ±1. Thus, upon choosing k = −[σ] and

applying [7, Lemmata 1 and 2] to
Γ( b

2+
1−(s+k)

2 )

Γ( b
2+

s+k
2 )

, we conclude that

∣∣∣Γ( 1−s
2 )

Γ( s2 )

∣∣∣r1+r2
≤

(1
2
|1 + s− [σ]|

)( 1
2+[σ]−σ)(r1+r2)

2[σ](r1+r2)
(−[σ]∏

j=1

|s+ j − 1|
)r1+r2

and

∣∣∣Γ( 12 + 1−s
2 )

Γ( 12 + s
2 )

∣∣∣r2 ≤
(1
2
|1 + s− [σ]|

)( 1
2+[σ]−σ)r2

2[σ]r2
(−[σ]∏

j=1

|s+ j − 1|
)r2

.
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Collecting above estimates and recalling the fact that nK = r1+2r2, we obtain the
desired result. �

Lemma 3.10. Let η ∈ (0, 12 ], s = σ + it, and T > 0. If σ ≥ 1 + η, then we have

1

N
log |fN (s)| ≤ 1

2
log((σ − 1)2 + (|t|+ T )2) + nK log ζ(σ).

If −η ≤ σ ≤ 1 + η, then we have

1

N
log |fN (s)| ≤ log 3 +

nK(1 + η − σ) + 2

4
log((σ + 1)2 + (|t|+ T )2)

+
1 + η − σ

2
log

( dK
(2π)nK

)
+ nK log ζ(1 + η).

If σ ≤ −η, then we have

1

N
log |fN (s)| ≤ nK log ζ(1− σ) +

1

2
log((σ − 1)2 + (|t|+ T )2)

+
1− 2σ

2
log

( dK
(2π)nK

)

+
(1− 2σ + 2[σ])nK

4
log((1 + σ − [σ])2 + (|t|+ T )2)

+
nK

2

−[σ]∑
j=1

log((σ + j − 1)2 + (|t|+ T )2).

Proof. Since σ ≥ 1 + η > 1, by Lemma 2.1, we derive

|fN (s)| ≤ 1

2

(
|s+ iT − 1|N |ζK(s+ iT )|N + |s− iT − 1|N |ζK(s− iT )|N

)

≤
(
(σ − 1)2 + (|t|+ T )2

)N
2

ζ(σ)nKN .

Now, the first estimate follows from taking logarithms and dividing both sides by
N .

Secondly, if −η ≤ σ ≤ 1 + η, then by Proposition 3.8, we see that |fN (s)| is at
most

1

2

(
3N |s+ iT + 1|N + 3N |s− iT + 1|N

)

×
(
dK

(√(σ + 1)2 + (|t|+ T )2

2π

)nK
) (1+η−σ)N

2

ζ(1 + η)nKN

≤ 3N
(
(σ + 1)2 + (|t|+ T )2

)N
2

×
(
dK

(√(σ + 1)2 + (|t|+ T )2

2π

)nK
) (1+η−σ)N

2

ζ(1 + η)nKN .

Again, taking logarithms yields the second bound.
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Lastly, for σ ≤ −η, it follows from Proposition 3.9 that

|fN (s)| ≤
(
(σ − 1)2 + (|t|+ T )2

)N
2

×
( dK
(2π)nK

)N( 1
2−σ)

|(1 + σ − [σ])2 + (|t|+ T )2|
(1−2σ+2[σ])NnK

4

×
(−[σ]∏

j=1

((σ + j − 1)2 + (|t|+ T )2)
)nKN

2

ζ(1− σ)nKN .

We then conclude the proof by taking logarithms. �

Following [2], to proceed further, we introduce some notation and auxiliary func-
tions. We first set

Lj(θ) = log
(j + c+ r cos θ)2 + (|r sin θ|+ T )2

(T + 2)2
,

and note that Lj(θ) is an even function of θ. Moreover, if θ ∈ [0, π] and T ≥ 5/7,

by the inequality log x ≤ x− 1, one has Lj(θ) ≤
L�

j (θ)

T+2 , where

L�
j (θ) = 2r sin θ − 4 +

7

19
((j + c+ r cos θ)2 + (r sin θ − 2)2).

In light of the choice of Fc,r(θ) (for Dirichlet L-functions) in [2, Definition 5.10],
we shall use the following Fc,r(θ) for ζK(s).

Definition 3.11. For θ ∈ [−π, π], we let σ = c + r cos θ, with c − r > − 1
2 , and

t = r sin θ. For σ ≥ 1 + η, we define

Fc,r(θ) = nK log ζ(σ) +
1

2
L−1(θ) + log(T + 2).

For −η ≤ σ ≤ 1 + η, we define

Fc,r(θ)=nK log ζ(1 + η) +
nK(1 + η − σ) + 2

4
L1(θ) +

nK(1 + η − σ) + 2

2
log(T + 2)

+
1 + η − σ

2

(
log

dK
(2π)nK

)
+ log 3.

For σ < −η, we define

Fc,r(θ) = nK log ζ(1− σ) +
1

2
L−1(θ) + log(T + 2) +

1− 2σ

2
log

(dK(T + 2)nK

(2π)nK

)

+
(1− 2σ + 2[σ])nK

4
L1−[σ](θ) +

nK

2

−[σ]∑
j=1

Lj−1(θ).

We note that Fc,r(θ) is an even function of θ satisfying Fc,r(θ) ≥ 1
N log |fN (c+

reiθ)|. In order to bound Fc,r(θ), following [2], for c ∈ R and r > 0, we define

θy =

⎧⎪⎨
⎪⎩
0 if c+ r ≤ y;

arccos y−c
r if c− r ≤ y ≤ c+ r;

π if y ≤ c− r.
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For the sake of convenience, we define

κ1 =

∫ θ−η

θ1+η

1 + η − σ

2
dθ +

∫ π

θ−η

1− 2σ

2
dθ.

For J1, J2 ∈ N, we shall set

κ2(J1) =
π

4J1

(
log ζ(c+ r) + 2

J1−1∑
j=1

log ζ
(
c+ r cos

πj

2J1

))
,

and

κ3(J2) =
π − θ1−c

2J2

(
log ζ(1− c+ r) + 2

J2−1∑
j=1

log ζ
(
1− c− r cos

(πj
J2

+
(
1− j

J2

)
θ1−c

)))
.

In addition, we define

κ4 =
1

4

∫ θ−η

θ1+η

(1 + η − σ)L�
1(θ)dθ,

κ5 =
1

4

∫ θ−1/2

θ−η

(1− 2σ)L�
1(θ)dθ.

Similar to [2, Proposition 5.13], we have Proposition 3.12 regarding the upper
bound of

∫ π

0
Fc,r(θ)dθ.

Proposition 3.12. Let c, r, and η be positive real numbers satisfying

(3.7) −1

2
< c− r < −η < 1 + η < c

and 0 < η ≤ 1
2 . Then for T ≥ 5

7 , we have∫ π

0

Fc,r(θ)dθ ≤ nK

∫ θ1+η

0

log ζ(σ)dθ +
1

2(T + 2)

∫ θ1+η

0

L�
−1(θ)dθ + θ1+η log(T + 2)

+ nK(log ζ(1 + η))(θ−η − θ1+η) +
(
log

dK(T + 2)nK

(2π)nK

)
κ1

+
nK

T + 2
κ4 +

1

2(T + 2)

∫ θ−η

θ1+η

L�
1(θ)dθ + (θ−η − θ1+η) log(3(T + 2))

+ nK

∫ π

θ−η

log ζ(1− σ)dθ +
1

2(T + 2)

∫ π

θ−η

L�
−1(θ)dθ

+ (π − θ−η) log(T + 2) +
nK

T + 2
κ5.

Proof. We first write∫ π

0

Fc,r(θ)dθ =

∫ θ1+η

0

Fc,r(θ)dθ +

∫ θ−η

θ1+η

Fc,r(θ)dθ +

∫ π

θ−η

Fc,r(θ)dθ.

By the definition of Fc,r(θ), we have∫ θ1+η

0

Fc,r(θ)dθ

= nK

∫ θ1+η

0

log ζ(σ)dθ +
1

2

∫ θ1+η

0

L−1(θ)dθ +

∫ θ1+η

0

log(T + 2)dθ

≤ nK

∫ θ1+η

0

log ζ(σ)dθ +
1

2(T + 2)

∫ θ1+η

0

L�
−1(θ)dθ + θ1+η log(T + 2).
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Secondly, we compute

∫ θ−η

θ1+η

Fc,r(θ)dθ

= nK

∫ θ−η

θ1+η

log ζ(1 + η)dθ +
(
log

dK
(2π)nK

)∫ θ−η

θ1+η

1 + η − σ

2
dθ + log 3

∫ θ−η

θ1+η

1dθ

+

∫ θ−η

θ1+η

nK(1 + η − σ) + 2

4
L1(θ)dθ + log(T + 2)

∫ θ−η

θ1+η

nK(1 + η − σ) + 2

2
dθ.

(3.8)

The first three integrals on the right of (3.8) are

nK(log ζ(1 + η))(θ−η − θ1+η)

+
(
log

dK
(2π)nK

)∫ θ−η

θ1+η

1 + η − σ

2
dθ + (log 3)(θ−η − θ1+η).

As 1 + η − σ ≥ 0 for θ ∈ [θ1+η, θ−η], it follows that the last two integrals on the
right of (3.8) are

nK

4

∫ θ−η

θ1+η

(1 + η − σ)L1(θ)dθ +
1

2

∫ θ−η

θ1+η

L1(θ)dθ + nK log(T + 2)

∫ θ−η

θ1+η

1 + η − σ

2
dθ

+ (θ−η − θ1+η) log(T + 2)

≤ nK

(T + 2)
κ4 +

1

2(T + 2)

∫ θ−η

θ1+η

L�
1(θ)dθ + nK log(T + 2)

∫ θ−η

θ1+η

1 + η − σ

2
dθ

+ (θ−η − θ1+η) log(T + 2).

Lastly, we have

∫ π

θ−η

Fc,r(θ)dθ = nK

∫ π

θ−η

log ζ(1− σ)dθ +
1

2

∫ π

θ−η

L−1(θ)dθ +

∫ π

θ−η

log(T + 2)dθ

+
(
log

dK(T + 2)nK

(2π)nK

)∫ π

θ−η

1− 2σ

2
dθ + nK

∫ θ− 1
2

θ−η

1− 2σ

4
L1(θ)dθ

+ nK

∞∑
j=1

∫ θ−j− 1
2

θ−j+ 1
2

(1− 2σ − 2j

4
Lj+1(θ) +

1

2

j∑
k=1

Lk−1(θ)
)
dθ.

(3.9)

The first four integrals on the right of (3.9) are

≤ nK

∫ π

θ−η

log ζ(1− σ)dθ +
1

2(T + 2)

∫ π

θ−η

L�
−1(θ)dθ + log(T + 2)(π − θ−η)

+
(
log

dK(T + 2)nK

(2π)nK

)∫ π

θ−η

1− 2σ

2
dθ.

Note that as − 1
2 < c − r, we have θ−j+ 1

2
= θ−j− 1

2
= π for j ≥ 1. Thus, the

remaining integral and sum on the the right of (3.9) is

nK

∫ θ− 1
2

θ−η

1− 2σ

4
L1(θ)dθ ≤ nK

T + 2

∫ θ− 1
2

θ−η

1− 2σ

4
L�
1(θ)dθ =

nK

T + 2
κ5.

Putting all the estimates together, we complete the proof. �
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To control “zeta integrals” in the above proposition, we shall borrow two esti-
mates from [2, Lemmata 5.14 and 5.15] as follows.

Lemma 3.13. Let c, r and η be positive real numbers, satisfying (3.7), and J1 and
J2 be positive integers. If θ1+η ≤ 2.1, then for σ = c+ r cos θ, one has

∫ θ1+η

0

log ζ(σ)dθ ≤ log ζ(1 + η) + log ζ(c)

2

(
θ1+η −

π

2

)
+

π

4J1
log ζ(c) + κ2(J1).

In addition, assuming further r > 2c− 1, one has

∫ π

θ−η

log ζ(1− σ)dθ ≤ log ζ(1 + η) + log ζ(c)

2
(θ1−c − θ−η)

+
π − θ1−c

2J2
log ζ(c) + κ3(J2).

4. Completing the proof

Gathering (2.9) and Propositions 3.5 and 3.7, for

− 1

2
< c− r < 1− c < −η < 0 <

1

4
≤ δ = 2c− σ1 −

1

2
<

1

2
< 1 < 1 + η < c < σ1

= c+
(c− 1/2)2

r
< c+ r,

satisfying θ1+η ≤ 2.1, we have

∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)
+

r1
4

∣∣∣

≤ 5

2
+ |gK(T )|+ 2nK

π
log ζ(σ1) +

log
(

1√
(c−1)2+T 2

ζK(c)
ζK(2c)

)

log r
c− 1

2

+
1

π log r
c− 1

2

∫ π

0

Fc,r(θ)dθ +
EK(T, δ)

π
,

(4.1)

where gK(T ) and EK(T, δ) are defined as in (2.6) and (2.11), respectively, and

log
ζK(c)

ζK(2c)
=

∫ 2c

c

−ζ ′K
ζK

(σ)dσ ≤ nK

∫ 2c

c

−ζ ′

ζ
(σ)dσ ≤ nK log

ζ(c)

ζ(2c)
.

Finally, using (2.7), Lemma 2.3, Proposition 3.12, and Lemma 3.13 to bound (4.1)
and recalling that r1 + 2r2 = nK , for any T0 ≥ 5

7 , we obtain

(4.2)
∣∣∣NK(T )− T

π
log

(
dK

( T

2πe

)nK
)
+
r1
4

∣∣∣ ≤ C1 log
(dK(T + 2)nK

(2π)nK

)
+C2nK+C3
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whenever T ≥ T0, where

C1 = κ1

(
π log

r

c− 1
2

)−1

,

C2 =
1

25T0
+

2

π
log ζ(σ1) +

640δ − 112

1536(3T0 − 1)

+ max
{
0,

856δ − 151

1536(3T0 + 2)
− 640δ − 112

1536(3T0 − 1)

}
+

1

210

+
(
π log

r

c− 1
2

)−1( log ζ(1 + η) + log ζ(c)

2

(
θ1+η − π

2

)
+

π

4J1
log ζ(c) + κ2(J1)

)

+
(
π log

r

c− 1
2

)−1( log ζ(1 + η) + log ζ(c)

2
(θ1−c − θ−η) +

π − θ1−c

2J2
log ζ(c) + κ3(J2)

)

+
(
π log

r

c− 1
2

)−1(
(log ζ(1 + η))(θ−η − θ1+η) + max

{
0,

κ4 + κ5

T0 + 2

}
+ π log

ζ(c)

ζ(2c)

)
,

C3 =
5

2
+
(
π log

r

c− 1
2

)−1(
π log

(
1 +

2

T0

)
+ (θ−η − θ1+η) log 3

)

+max
{
0,
(
π log

r

c− 1
2

)−1( 1

2(T0 + 2)

(∫ θ1+η

0

L�
−1(θ)dθ

+

∫ θ−η

θ1+η

L�
1(θ)dθ +

∫ π

θ−η

L�
−1(θ)dθ

))}
.

For T0 = 1 and T0 = 10, choosing J1 = 64 and J2 = 39, via a Maple numerical
computation, we have Table 2 of admissible (C1, C2, C3).

Table 2. Choices of parameters (c, r, η) and resulting admissible (C1, C2, C3)

T ≥ 1 T ≥ 10
c r η C1 C2 C3 C2 C3

1.000011314 1.064340602 4.2826451 · 10−6 0.22737 23.02528 4.51954 22.97204 3.30668
1.042877508 1.259860485 0.01737451737 0.24493 6.66558 4.21201 6.60397 3.12362
1.079779637 1.410370323 0.03441682600 0.26304 5.22032 4.08149 5.15251 3.05074
1.114294066 1.538391756 0.05247813411 0.28032 4.43521 4.00936 4.36214 3.01124
1.145720440 1.645584376 0.07107039918 0.29590 3.93889 3.96852 3.86136 2.98903

One may find functioning Maple code at https://arxiv.org/abs/2102.04663
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[7] H. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72
(1959/1960), 192–204, DOI 10.1007/BF01162949.

[8] B. Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941),
211–232, DOI 10.2307/2371291.

[9] T. S. Trudgian, An improved upper bound for the error in the zero-counting formulae for
Dirichlet L-functions and Dedekind zeta-functions, Math. Comp. 84 (2015), no. 293, 1439–
1450, DOI 10.1090/S0025-5718-2014-02898-6.

Department of Mathematics and Computer Science, University of Lethbridge, 4401

University Drive, Lethbridge, Alberta T1K 3M4, Canada

Email address: e.hasanalizade@uleth.ca

Department of Mathematics and Computer Science, University of Lethbridge, 4401

University Drive, Lethbridge, Alberta T1K 3M4, Canada

Email address: quanli.shen@uleth.ca

Department of Mathematics and Computer Science, University of Lethbridge, 4401

University Drive, Lethbridge, Alberta T1K 3M4, Canada

Email address: pengjie.wong@uleth.ca

https://www.ams.org/mathscinet-getitem?mr=0447191
https://www.ams.org/mathscinet-getitem?mr=726004

	1. Introduction
	2. The main term and the gamma factor
	2.1. The main term
	2.2. Bounding the Gamma factor

	3. Backlund’s trick and the Jensen integral
	3.1. Introducing the auxiliary function 𝑓_{𝑁}
	3.2. Backlund’s trick
	3.3. Constructing and bounding 𝐹_{𝑐,𝑟}

	4. Completing the proof
	Acknowledgments
	References

