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From the recent work of Barnet-Lamb et al., we derive some 
unconditional results in the case of Hilbert modular forms. 
Furthermore, under the Langlands functoriality conjecture 
and the generalised Riemann hypothesis, we give two effec-
tive versions of such distributions, which present a modular 
variant of the results of Bucur, Kedlaya, and V.K. Murty.
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1. Introduction

Over fifty years ago, the following conjecture of Sato and Tate was born.

Conjecture. Let E be a non-CM elliptic curve defined over Q. The Frobenius angles θp
at p of E are equidistributed over [0, π] with respect to the probability measure μST , now 
called the Sato–Tate measure for E,
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sin2 θdθ.

In [34], Serre reformulated Weyl’s equidistribution criterion in the language of L-
functions associated to compact groups and used the Wiener–Ikehara Tauberian theorem 
to show that the Sato–Tate conjecture would follow from the certain holomorphy and 
non-vanishing result of L-functions associated to SU(2), the Sato–Tate group for E. 
Shortly after Serre’s observation, inspired by the Taniyama–Shimura conjecture, which 
is now the celebrated modularity theorem of Wiles and Breuil–Conrad–Diamond–Taylor, 
Langlands conjectured that these L-functions associated to E are automorphic. This 
is, in fact, a part of the Langlands functoriality conjecture and implies the Sato–Tate 
conjecture. In this direction, several instances have been established by Shimura [37], 
Gelbart–Jacquet [18], Shahidi [36], and Kim [24].

In a slightly different vein, following Serre, one may consider the Sato–Tate distribu-
tion for the Fourier coefficients of the Ramanujan τ -function (or, more generally, non-CM 
normalised Hecke eigenforms). Indeed, for any non-CM normalised Hecke eigenform f
of weight k ≥ 2, by writing its p-th Fourier coefficient as ap(f) = 2p(k−1)/2 cos θp, it 
is expected that θp’s are equidistributed in [0, π] with respect to μST . It is worth to 
note that from the above-mentioned modularity theorem, such consideration is stronger 
than the Sato–Tate conjecture for elliptic curves. Also, it shall be natural to extend 
Serre’s consideration to non-CM Hilbert modular forms or even pairs of non-CM Hilbert 
modular forms that are not twist-equivalent.

Over the past decade, Barnet-Lamb, Clozel, Gee, Geraghty, Harris, Shepherd-Barron, 
Taylor, and Thorne in a series of papers [2–4,13–16,20,38–41] showed that the L-functions 
in the consideration are potentially automorphic, and then established the Sato–Tate con-
jecture via the theory of base change due to Arthur–Clozel [1] and the Brauer induction 
theorem [8]. (For more historical details, we refer the interested reader to inspiring arti-
cles of Clozel [12] and Harris [19]. For the state-of-the-art development, we indicate the 
reader to the articles [13–15] of Clozel and Thorne.)

Following the grand tradition of analytic number theory, once there is a distribution 
result, one may ask for the error. Indeed, this has been studied, under the generalised 
Riemann hypothesis (denoted GRH) and the holomorphy assumption, by V.K. Murty 
[27] (for non-CM elliptic curves defined over Q) and by Bucur and Kedlaya [10] (for pairs 
of two non-Q-isogenous elliptic curves not of CM-type). Also, assuming the Langlands 
functoriality conjecture, Thorner [42] gave an error term for the modular variant of the 
Sato–Tate distribution considered by Serre.

In light of Serre’s formalism [34], M.R. Murty and V.K. Murty applied the early poten-
tial automorphy result, established in [16,38], to derive a hybrid Chebotarev–Sato–Tate 
theorem that asserts that the Artin symbols and Frobenius angles (of any given suitable 
Galois extension and non-CM elliptic curve over a totally real number field, respectively) 
are equidistributed.

In this note, we will emphasise the role of classical analytic number theory in studying 
the Chebotarev–Sato–Tate phenomenon for Hilbert modular forms. Throughout this 
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note, by a Hilbert modular form, we mean a Hilbert newform whose weights are at least 
2 and have the same parity; we shall further assume every Hilbert modular form over 
a totally real number field k in the consideration is not of CM, that is, not obtained 
by automorphic induction from any algebraic Hecke character of any totally imaginary 
quadratic extension of k.

First of all, by invoking the result of Barnet-Lamb et al. [2,4] on the potential au-
tomorphy of symmetric powers of Hilbert modular forms, we generalise the work of 
M.R. Murty and V.K. Murty in the context of Hilbert modular forms as follows.

Theorem 1.1. Let π1 and π2 be non-CM Hilbert modular forms of k that are not twist-
equivalent. Let K/k be a Galois extension of totally real number fields with Galois group 
G1 ×G2, and C a conjugacy class of G. Suppose that KG1/k is totally real and that G1
is abelian. Let θ1,v and θ2,v be Frobenius angles at v of π1 and π2, respectively. Then the 
density of (good) primes v of k for which the Artin symbol σv = C and θ1,v ∈ [α, β], with 
0 ≤ α ≤ β ≤ π, is

2|C|
π|G|

β∫
α

sin2 θdθ.

Also, the density of primes v of k for which the Artin symbol σv = C and the Frobenius 
angles θi,v ∈ [αi, βi], with 0 ≤ αi ≤ βi ≤ π, is

4|C|
π2|G|

β1∫
α1

sin2 θdθ

β2∫
α2

sin2 θdθ.

In Section 4, we shall study the error of such Chebotarev–Sato–Tate distributions, 
which gives a modular analogue of the works of Bucur–Kedlaya and V.K. Murty.

Theorem 1.2. Let K/k be a Galois extension of totally real number fields with Galois 
group G, and let π be a non-CM Hilbert modular form of k with conductor q = q(π). 
Suppose that all the irreducible characters χ of G and all the symmetric powers Symm π

of π are cuspidal over k, and that each L(s, Symm π⊗χ) satisfies GRH. Assuming Serre’s 
bound (2.3) for π, then

∑
C

1
|C|

∣∣∣∣πC,I(x) − |C|
|G|μST (I) Li(x)

∣∣∣∣2 �
(
x

3
4n

3
2
k (log(xM(K/k)q)) 1

2

)2
,

where πC,I(x) denotes number of primes v for which Nv ≤ x, the Artin symbol σv = C, 
and the Frobenius angle θv ∈ I = [α, β], nk = [k : Q] is the degree of k/Q, M(K/k) is a 
computable constant, defined in (2.7), depending only on K/k, and the implied constant 
depends only on π. In particular, we have
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πC,I(x) − |C|
|G|μST (I) Li(x) � x

3
4 |C| 12n

3
2
k (log(xM(K/k)q)) 1

2 .

Also, we have the following variant for the pairs of Hilbert modular forms.

Theorem 1.3. Let K/k be a Galois extension of totally real number fields with Galois 
group G. Let π1 and π2 be non-twist-equivalent Hilbert modular forms of k not of CM 
type. Suppose that all the irreducible characters χ of G and all the symmetric powers 
Symmi πi are cuspidal over k, and that each L(s, Symm1 π1 ⊗ Symm2 π2 ⊗ χ) satisfies 
GRH and the analytic properties predicted by the functoriality of tensor product. If Serre’s 
bound holds for π1 and π2, then

∑
C

1
|C|

∣∣∣∣πC,I1,I2(x) − |C|
|G|μST (I1)μST (I2) Li(x)

∣∣∣∣2 �
(
x

5
6n

4
3
k (log(xM(K/k)q1q2))

1
3

)2
,

where the sum is over conjugacy classes of G, πC,I1,I2(x) denotes number of primes v
for which Nv ≤ x, σv = C, and θi,v ∈ Ii = [αi, βi], qi = q(πi) is the conductor of πi, nk

and M(K/k) are defined as before, and the implied constant depends only on π1 and π2. 
In particular, we have

πC,I1,I2(x) − |C|
|G|μST (I1)μST (I2) Li(x) � x

5
6 |C| 12n

4
3
k (log(xM(K/k)q1q2))

1
3 .

2. Preliminaries on L-functions

2.1. Standard automorphic L-functions

In order to study Chebotarev–Sato–Tate distributions, we shall first recall some def-
initions and analytic properties of standard automorphic L-functions. To do this, we 
closely follow the exposition in [9]. For an (irreducible unitary) cuspidal representation 
π = ⊗vπv of GLn(Ak), where as later, Ak stands for the adèle ring of k, the (incomplete) 
L-function of π is given by

L(s, π) =
∏
v<∞

L(s, πv),

for Re(s) > 1, where for unramified v of π, the local L-function L(s, πv) is defined by

L(s, πv) =
n∏

i=1
(1 − απ(v, i)Nv−s)−1, (2.1)

and απ(v, i) are Satake parameters of πv. For ramified v of π, one may use the Langlands 
parameters of πv to define L(s, πv), which is the reciprocal of a polynomial, in Nv−s, of 
degree at most n, and can be written in the form of (2.1). For each infinite place v, the 
local L-function L(s, πv) is defined by
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L(s, πv) =
n∏

i=1
Γkv

(s + μπ(v, i)),

where ΓR(s) = π−s/2Γ(s/2), ΓC(s) = 2(2π)−sΓ(s), and μπ(v, i) are Langlands parame-
ters of πv. Luo–Rudnick–Sarnak [25] showed that for each finite v,

|απ(v, i)| ≤ Nv1/2−(n2+1)−1
,

and that for each infinite place v,

|Re(μπ(v, i))| ≤ 1
2 − 1

n2 + 1 .

We shall note that these bounds may be improved as predicted by the Ramanujan–
Petersson conjecture (denoted RPC). We will address this for Hilbert modular forms 
in Section 2.3, and indicate the interested reader to the beautiful articles [6] and [7] of 
Blomer and Brumley for a comprehensive discussion and the contemporary development. 
Also, the bound above implies that L(s, π) converges on Re(s) > 3/2 − (n2 + 1)−1. The 
convergence of L(s, π) on Re(s) > 1 is established by the Rankin–Selberg theory.

Attached to π is the contragredient π̌, which is also a cuspidal representation of 
GLn(Ak), such that for every place v of k, π̌v is equivalent to the complex conjugation πv. 
In particular, one has

{απ̌(v, i)} = {απ(v, i)}, and {μπ̌(v, i)} = {μπ(v, i)}.

The complete L-function of π is defined as

Λ(s, π) = L(s, π)
∏
v|∞

L(s, πv),

which extends to an entire function of order 1 unless π is trivial so that L(s, π) is the 
Dedekind zeta function of k; Λ(s, π) satisfies the functional equation

Λ(s, π) = W (π)q(π)1/2−sΛ(1 − s, π̌),

where W (π) is a complex number of absolute value 1, called the root number of π, and 
q(π) is the (arithmetic) conductor of π. The analytic conductor of π is defined by

q(t, π) = q(π)
∏
v|∞

n∏
j=1

(1 + |it + μπ(v, j)|).

It shall be convenient to denote q(π) = q(0, π).
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2.2. Rankin–Selberg L-functions

Let π = ⊗vπv and π′ = ⊗vπ
′
v be cuspidal representations of GLn(Ak) and GLn′(Ak), 

respectively. The (incomplete) Rankin–Selberg L-function attached to π and π′ is defined 
to be

L(s, π × π′) =
∏
v<∞

L(s, πv × π′
v),

for Re(s) > 1, as established in [23], where

L(s, πv × π′
v) =

n∏
i=1

n′∏
j=1

(1 − απ×π′(v, i, j)Nv−s)−1,

with

|απ×π′(v, i, j)| ≤ Nv1−(n2+1)−1−(n′ 2+1)−1
.

In addition, for finite unramified v of either π or π′,

{απ×π′(v, i, j)} = {απ(v, i)απ′(v, j)}.

For each infinite place v, the local L-function L(s, πv × π′
v) is defined by

L(s, πv × π′
v) =

n∏
i=1

n′∏
j=1

Γkv
(s + μπ×π′(v, i, j)),

with

|Re(μπ×π′(v, i, j))| ≤ 1 − 1
n2 + 1 − 1

n′ 2 + 1 .

Also, for infinite unramified v for both π or π′,

{μπ×π′(v, i, j)} = {μπ(v, i) + μπ′(v, j)}.

Define the complete Rankin–Selberg L-function by

Λ(s, π × π′) = L(s, π × π′)
∏
v|∞

L(s, πv × π′
v).

It has been shown that Λ(s, π×π′) extends to an meromorphic function, of order 1, over 
C; from the normalisation of central characters of both π and π′, it follows that Λ(s, π×π′)
is entire if and only if π′ �� π̌. If Λ(s, π×π′) admits poles, then such poles are simple and 
at s = 0, 1. Also, Shahidi proved that the Rankin–Selberg L-function is non-vanishing 
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on Re(s) = 1, and extended narrow zero-free regions for such L-functions are obtained 
by Brumley [9] (see also [21]). Furthermore, Λ(s, π×π′) satisfies the functional equation

Λ(s, π × π′) = W (π × π′)q(π × π′)1/2−sΛ(1 − s, π̌ × π̌′),

where W (π × π′) is the root number of π × π′, a complex number of modulus 1, and 
q(π × π′) is the conductor of π × π′. The analytic conductor of π × π′ is set to be

q(t, π × π′) = q(π × π′)
∏
v|∞

n∏
j=1

n′∏
j′=1

(1 + |it + μπ×π′(v, j, j′)|).

We will often write q(π × π′) = q(0, π × π′).
To derive effective Chebotarev–Sato–Tate distributions (see Section 4), it is crucial 

to bound the conductors of Rankin–Selberg L-functions. To bound the Rankin–Selberg 
conductors at finite places, one may use a result of Bushnell–Henniart [11]. For the 
conductors at infinite places, one may invoke [21, Lemma A.2]. (We note that Brumley 
has commented that such a bound has been claimed and utilised without proof in many 
sources; [21, Lemma A.2] finally provides a proof.) From these bounds, as done in [9, 
Eq. (8)], it can be shown that

q(t, π × π′) ≤ q(π)n
′
q(π′)n(1 + |t|)nn′[k:Q]. (2.2)

2.3. Symmetric power L-functions of Hilbert modular forms

Let k be a totally real number field, and let π be a cuspidal representation correspond-
ing to a non-CM Hilbert modular form of k. (Recall that for any totally real number 
field k, if π is cuspidal and with essentially square-integrable π∞, then π is associated to 
Hilbert modular forms of weights ≥ 2 at all infinite places of k, and vice versa.)

By writing the local L-function of π at finite unramified v as

L(s, πv) = (1 − αvNv−s)−1(1 − βvNv−s)−1,

Langlands conjectured that for each m ≥ 2, there exists an automorphic representation 
Symm π of GLm+1(Ak) such that

L(s, (Symm π)v) =
m∏
j=0

(1 − αj
vβ

m−j
v Nv−s)−1.

(Indeed, that the local Langlands correspondence predicts that there are appropriate 
local L-functions L(s, (Symm π)v) for all places v.) We note that for m = 1, Sym1 π = π; 
and we set L(s, Sym0 π) = ζk(s), the Dedekind zeta function of k. We also remark 
that by the works of Shimura, Gelbart–Jacquet, Shahidi, and Kim, such a functoriality 
conjecture is true for m ≤ 4.
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By the work of Blasius [5], rooting in Deligne’s proof of the classical Ramanujan 
conjecture, RPC holds for π, which in particular, demands that for any unramified v,

|αv| = |βv| = 1.

Also, we shall remark that Barnet-Lamb, Gee, Geraghty, and Taylor [4], in fact, showed 
that any irreducible, totally odd, essentially self-dual, regular, weakly compatible system 
of 
-adic representations of the absolute Galois group of a totally real number field is 
potentially automorphic. (This implies the potential automorphy of symmetric powers 
of the cuspidal automorphic representations associated to Hilbert modular forms in our 
consideration.) However, as we cannot afford to provide all the necessary details here, 
we will only consider the instance of Hilbert modular forms and indicate the reader to 
the references mentioned in the introduction.

For k = Q and π corresponding to a normalised Hecke eigenform, Serre (see [32, 
Section 5]) derived the bound q(Symm π) = O(q(π)am) for some a not depending on m. 
In light of this, for cuspidal π, we shall say Serre’s bound holds for π if there is a constant 
a that does not depend on m such that

q(Symm π) = O(q(π)am). (2.3)

This bound was used by V.K. Murty in [27]. In general, Rouse in [32, Lemma 2.1] gave 
a bound q(Symm π) = O(q(π)am3) via Bushnell–Henniart’s bound [11].

For the infinite places, if k = Q, Serre gave the gamma factors of the symmetric power 
L-functions associated to the Ramanujan τ -function. In general, Moreno and Shahidi [26]
derived an explicit description, which implies that

Re(μSymm π(i)) ≤ 0, |μSymm π(i)| ≤ (m + 1) max
j

|μπ(j)|. (2.4)

2.4. Artin L-functions

To end this section, we recall some properties concerning the conductors of Artin 
L-functions.

Let K/k be a Galois extension of number fields with Galois group G. Let χ be a 
character of G, and Lv(s, χ, K/k) denote the local Artin L-function attached to χ at v. 
For each infinite place v of k, Lv(s, χ, K/k) is defined by

Lv(s, χ,K/k) =
{

ΓC(s)χ(1) if v is complex,
ΓR(s)n+(χ)ΓR(s + 1)n−(χ) if v is real,

where n+(χ) and n−(χ) denote the dimensions of (+)-eigenspace and (−)-eigenspace of 
complex conjugation for χ, respectively, and hence n+(χ) + n−(χ) = χ(1).
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The conductor of the Artin L-function attached to χ is defined as

Aχ = d
χ(1)
k N f(χ), (2.5)

where dk is the absolute discriminant of k and f(χ) denotes the (global) Artin conductor 
of χ. By Hensel’s estimate (for complete details, see [29] and [35]), one has

logAχ = χ(1) log dk + logN f(χ) � nkχ(1) logM(K/k), (2.6)

where the implied constant is absolute, M(K/k) is defined as

M(K/k) = nd
1/nk

k

∏
p∈P (K/k)

p, (2.7)

nk = [k : Q], n = [K : k], and P (K/k) denotes the set of rational primes p for which 
there is a prime v of k with v|p so that v is ramified in K.

Finally, we remark that the Langlands reciprocity conjecture predicts that for any 
χ ∈ Irr(G), there is a cuspidal πχ of GLχ(1)(Ak) such that

L(s, (πχ)v) = Lv(s, χ,K/k).

(Here, as later, Irr(G) stands for the set of irreducible characters of G.) For such an 
instance, we will often write the analytic conductor of πχ as

q(t, χ) = q(t, πχ),

and set q(χ) = q(0, χ). (We note that in the language introduced in Section 2.1, q(πχ) =
Aχ and each μπχ

(v, i) is either 0 or 1.)

3. Chebotarev–Sato–Tate distributions

Let k be a number field. In light of the potential automorphy discussed previously, 
we consider the following automorphy hypotheses concerning representations related to 
a given Galois representation ρ of the absolute Galois group Gal(k/k) of k. Let π be 
a representation, of degree n, obtained from ρ by a representation-theoretic operation 
(such as symmetric or exterior powers) and satisfy the following hypotheses.

• (Potential automorphy, denoted PA(L, k)): there exists a (finite) Galois extension 
L/k so that π|L is associated to a cuspidal representation of GLn(AL).

• (Automorphic descent, denoted AD(L, k)): if L/k is a Galois extension and π|L is 
associated to a cuspidal automorphic representation of GLn(AL), then for any solv-
able Galois subextension L/F , containing k, one knows how to associate π|F with a 
cuspidal automorphic representation of GLn(AF ).
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Under the above automorphy hypotheses, we have the following proposition.

Proposition 3.1. Let K/k be a Galois extension of number fields with Galois group G. 
Let ρ1 and ρ2 be irreducible Galois representations of Gal(k/k). Assume there is a 
finite Galois extension L/K such that Symm1 ρ1 and Symm2 ρ2 satisfy PA(L, k) and 
AD(L, k). Then for every χ ∈ Irr(G) and idèle class character ψ of k, the L-functions 
L(s, Symm1 ρ1 ⊗ χ ⊗ ψ) and L(s, Symm1 ρ1 ⊗ Symm2 ρ2 ⊗ χ ⊗ ψ) extend to meromor-
phic functions over C, which are holomorphic and non-vanishing on Re(s) ≥ 1, with a 
possible pole at s = 1 that appears only if Symm2 ρ2 and the contragredient of Symm1 ρ1
(after certain base change) are twist-equivalent.

Proof. The proof makes a use of the “Brauer–Taylor reduction” as follows. Observing 
L/k is a Galois extension and regrading χ ∈ Irr(G) as a character of G̃ := Gal(L/k), the 
Brauer induction theorem asserts that

χ =
∑
i

ni IndG̃
Hi

ψi,

where for each i, ni ∈ Z, Hi is a nilpotent subgroup of G̃, and ψi is an abelian character 
of Hi. By Artin reciprocity, each ψi can be seen as an idèle class character of LHi . 
Furthermore, the automorphic descent hypothesis AD(L, k) tells us that (Symm1 ρ1)|LHi

and (Symm2 ρ2)|LHi are cuspidal over LHi (since L/LHi is nilpotent and hence solvable).
By the base change of GL(1), ψ|LHi is an idèle class character of LHi and so is 

φi := ψi⊗ψ|LHi . Now the functoriality of GL(n) ×GL(1) tells us that (Symm1 ρ1)|LHi⊗φi

is cuspidal over LHi for every i. Thus, it follows from the Rankin–Selberg theory that

L(s, (Symm1 ρ1)|LHi ⊗ φi), L(s, (Symm1 ρ1)|LHi ⊗ (Symm2 ρ2)|LHi ⊗ φi)

are holomorphic and non-vanishing on Re(s) ≥ 1 except for a possible pole at s = 1
that appears only if (Symm2 ρ2)|LHi ⊗ φi is the contragredient of (Symm1 ρ1)|LHi for 
some i. �

We note that the automorphy hypotheses above cover the consideration 
-adic repre-
sentations (and their symmetric powers) arising from non-CM elliptic curves defined over 
totally real number fields and Hilbert modular forms (see, e.g., [2–4]). Also, as mentioned 
in Section 2.2, the non-vanishing of Rankin–Selberg L-functions on Re(s) = 1 is derived 
by Shahidi. We further remark that if ρ1 and ρ2 arise from non-CM Hilbert modular 
forms that are not twist-equivalent, then the only pole at s = 1 appears when the cor-
responding L-function is ζk(s), the Dedekind zeta function of k (cf. [30, Theorem 2] and 
[31, Section 5]). Herein, following Serre [34], one can apply the Wiener–Ikehara Taube-
rian theorem to deduce Theorem 1.1, immediately. However, for the benefit of the reader, 
we sketch the argument below.
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Proof of Theorem 1.1. Recall that π1 and π2 are (corresponding to) non-CM Hilbert 
modular forms of k that are not twist-equivalent. We fix a Galois extension K/k of 
totally real number fields with Galois group G1 × G2 such that KG1/k is totally real 
and G1 is abelian. (We again note that each πi is associated to a compatible system 
of 
-adic representations.) From Serre’s formalism, it suffices to show that for any χ ∈
Irr(Gal(KG1/k)), ψ ∈ Irr(Gal(KG2/k)), and m ∈ N, the L-function

L(s,Symm π1 ⊗ χ⊗ ψ)

is holomorphic and non-vanishing on Re(s) ≥ 1 except for the case that both χ and ψ
are trivial and m = 0, i.e., the Dedekind zeta function of k.

Now as Gal(KG2/k) = G1 is abelian, Artin reciprocity asserts that each ψ can be 
seen as an idèle class character of k. Also, since KG1/k is totally real, for every m, 
there is a totally real Galois extension Lm/k such that (Symm π1)|Lm

is automorphic 
and cuspidal over Lm (we remark that one may choose Lm such that Lm/KG1 is Galois 
by an analogous argument used in [44, Section 2], which is, in fact, a consequence of 
[4, Theorem 4.5.1], and can be applied not only for Hilbert modular forms but also 
for a more general family of (finite collections of) 
-adic representations). By the work 
of Barnet-Lamb, Gee, Geraghty, and Taylor [2,4] (together with Arthur–Clozel’s base 
change), (Symm π1)|F is cuspidal whenever Lm/F is solvable and Galois. Thus, applying 
Proposition 3.1 to KG1/k and ψ completes the proof for this case.

For the pair (π1, π2), we then consider the L-function

L(s,Symm1 π1 ⊗ Symm2 π2 ⊗ χ⊗ ψ).

Again, from a similar argument as used in [44, Section 2], one can deduce the simul-
taneously potential automorphy of Symm1 π1 and Symm2 π2 over a totally real Lm1,m2

from the results of Barnet-Lamb et al. (i.e., (Symm1 π1)|Lm1,m2
and (Symm2 π2)|Lm1,m2

are cuspidal over Lm1,m2), and again each (Symmi πi)|F is cuspidal whenever Lm1,m2/F , 
containing k, is solvable. Hence, we conclude the proof by applying Proposition 3.1. �

We shall first remark that although referring to as the potential automorphy, what 
was really established is the potential cuspidality for the symmetric powers. Also, from 
the above reduction argument, it follows that the corresponding L-functions satisfy the 
expected functional equations.

Secondly, in [28], the authors established a similar Chebotarev–Sato–Tate distribution 
for pairs of elliptic curves (E1, E2) by assuming that E2 is of CM. Indeed, they applied the 
potential automorphy result, established in [16,38], to deduce the potential automorphy 
for the odd symmetric powers of 
-adic representations ρ arising from E1, and then 
invoked the Clebsch–Gordan branching rule for SL2, i.e.,

Symm−1 ρ⊕ Symm+1 ρ = Symm ρ⊗ Sym1 ρ,
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to handle the even symmetric powers. As the Rankin–Selberg theory for quadruple prod-
ucts of automorphic representations is still unknown, the authors [28] were forced to make 
the CM-assumption. Nevertheless, as now the (simultaneously) potential automorphy is 
valid for all the symmetric powers of the representations in our consideration (in other 
words, the construction of Lm1,m2 above became possible), the CM-assumption can be 
dropped. Indeed, this was also pointed out by Harris [19, pp. 716–719]. (We shall note 
that as remarked in the abstract of the article, [19, Theorems 2.4 and 2.5] are no longer 
conditional, which reflects the notable progress that has been made.)

Thirdly, comparing our result with Murty–Murty’s version, it may be noticed that 
the solvability assumption on the Galois extensions has been removed. We shall briefly 
explain this refinement for the case of the 
-adic representations ρ arising from elliptic 
curves over a totally real number field k as they were considered in [28]. Assume M/k is 
a Galois extension of number fields. In the argument of [28], the authors first applied the 
automorphy result from [16,38] to obtain a field L so that ρ|L is automorphic and L/k is 
finite and Galois. Under further the assumption on the solvability of M/k, Murty–Murty 
used the base change of Arthur–Clozel to deduce the automorphy of ρ|LM . In contrast, 
from the argument of Virdol [44] as used previously, we instead choose L, containing
M , such that ρ|L is automorphic, which relies on the assumption that M is totally real. 
(Note that M here corresponds to KG1 in the argument above.) Herein, we avoid the 
use of Arthur–Clozel’s base change, which requires the solvability of M/k.

Nonetheless, the solvability is still used subtly and implicitly as follows. Note that in 
our argument, we used the Brauer induction theorem to decompose χ ∈ Irr(Gal(L/k))
into the 1-dimensional representations ψi over LHi for some nilpotent Hi ≤ Gal(L/k). 
It is crucial that the nilpotency of Hi implies that Hi is solvable, and hence L/LHi is 
a solvable Galois extension, which allows one to complete the reduction argument by 
invoking Arthur–Clozel’s base change to deduce the automorphy of ρ|LHi from ρ|L.

Finally, recalling that Gal(K/k) = G1 × G2, we shall address the assumption that 
G1 = Gal(KG2/k) is abelian. Note that any irreducible character of G1×G2 is of the form 
χ ⊗ ψ for some χ ∈ Irr(G2) and ψ ∈ Irr(G1). As discussed above, we used the reduction 
argument to handle the Galois representations arising from G2 = Gal(KG1/k), where 
the total reality of KG1/k was utilised. Now as G1 is abelian, every ψ is 1-dimensional, 
which by Artin reciprocity, can be regarded as an idèle class character over k. Hence, we 
can write the L-functions, considered in the proof of Theorem 1.1, in the form required 
by Proposition 3.1.

4. Effective versions

In this section, we will give two effective versions of the Chebotarev–Sato–Tate dis-
tributions under blessings of the “Langlands philosophy” and the generalised Riemann 
hypothesis. (We remind the reader that RPC is established for Hilbert modular forms 
by Blasius [5].) As shall be seen below, apart from controlling the analytic conductors of 
Rankin–Selberg convolutions, the proofs do follow the strategies developed in [10,27,29]. 
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Nonetheless, for the sake of completeness and concept clarity, we shall emphasise the 
critical steps for the proof of Theorem 1.2 and sketch the proof for the second instance. 
Furthermore, as pointed out by the anonymous referee, to control the analytic conduc-
tors of Rankin–Selberg convolutions in the consideration, we do assume the cuspidality 
and functoriality of the involved representations (cf. Section 2.2).

Now we are in a position to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let K/k be a Galois extension of totally real number fields with 
Galois group G. Let π be a cuspidal representation, arising from a non-CM Hilbert 
modular form of k, with conductor q = q(π). Furthermore, we suppose that all the 
irreducible characters χ of G and all the symmetric powers Symm π of π are cuspidal 
over k, and that each L(s, Symm π ⊗ χ) satisfies GRH. Also, we assume Serre’s bound 
holds for π, namely, q(Symm π) = O(qam), for some a independent of m.

Setting D(χ, m) = (m + 1)χ(1)[k : Q]2 and assuming GRH, the standard analytic 
number theory machinery (see, e.g., [22, Theorem 5.15]) yields that

∑
Nv≤x

χ(σv)
m∑
j=0

αj
vβ

m−j
v logNv = δ(m,χ)x + O

(
x

1
2 (log x) log(xD(χ,m)q(χ⊗ Symm π))

)
,

where the implied constant is absolute, δ(m, χ) = 1 if m = 0 and χ is trivial, and 
δ(m, χ) = 0 otherwise. Now (2.2), combined with Serre’s bound, (2.4) and (2.6), gives

q(χ⊗ Symm π) ≤ q(χ)m+1q(Symm π)χ(1) � A(m+1)
χ qamχ(1)mD(χ,m),

where Aχ is the conductor of χ as defined in (2.5). Thus, we have

∑
Nv≤x

χ(σv)
m∑
j=0

αj
vβ

m−j
v = δ(m,χ) Li(x) + O

(
x

1
2mχ(1)[k : Q]2 log(xAχqm)

)
. (4.1)

Following V.K. Murty [27] (see also [10]), we need the following result of Vinogradov 
[43, Lemma 12]. For any A, B ∈ R, and δ with δ ∈ (0, 12 ) and δ ≤ B − A ≤ 1 − δ, there 
is a continuous function D = DA,B on R of period 1 satisfying the following properties.

• D(x) = 1 on [A + δ
2 , B − δ

2 ].
• D(x) = 0 on [B + δ

2 , 1 + A − δ
2 ].

• 0 ≤ D(x) ≤ 1 in the rest of interval.
• The Fourier expansion of D(x) is

B −A +
∑
m≥1

(am cos 2πmx + bm sin 2πmx),

where |am|, |bm| ≤ min
{
2(B −A), 2

mπ ,
2

mπ

(
r

mπδ

)r} for all m ≥ 1. Consider the even 
function FA,B(θ) = D( θ ) + D(−θ ), which is of period 2π and hence of the form
2π 2π
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FA,B(θ) =
∑
m∈Z

cm,A,Be
imθ,

where c0,A,B = 2a0 = 2(B − A) and cm,A,B = c−m,A,B = am for all m ≥ 1. In addition, 
by taking r = 1, one has, for any integer M ≥ 3,

FA,B(θ) =
∑

|m|≤M

cm,A,Be
imθ + O

(
1

δM

)
.

Furthermore, recalling the characters of SU(2) are of the form

χk(θ) =
k∑

j=0
eiθ(k−2j),

one has

FA,B(θ) = (c0,A,B − c2,A,B) +
M−2∑
m=1

(cm,A,B − cm+2,A,B)χm(θ) + O

(
1

δM

)
.

Also, the fourth part of Vinogradov’s lemma implies

M−2∑
m=1

m|cm,A,B − cm+2,A,B | = O

(
logM

δ

)
.

Recalling that αv = eiθv and βv = e−iθv , and applying the above estimate together with 
(4.1), we then have

∑
Nv≤x

χ(σv)FA,B(θv) =
(
(c0,A,B − c2,A,B) + O

(
1

δM

))
δ(χ) Li(x)

+ O

(
logM

δ
x

1
2χ(1)[k : Q]2 log(xAχqM)

)
,

where δ(χ) = δ(0, χ). As mentioned in [10], the indicator function χI of the interval 
I = [2πα, 2πβ] is bounded from above by Fα− δ

2 ,β+ δ
2

and from below by Fα+ δ
2 ,β− δ

2
. Also, 

the quantities c0,α− δ
2 ,β+ δ

2
− c2,α− δ

2 ,β+ δ
2

and c0,α+ δ
2 ,β− δ

2
− c2,α+ δ

2 ,β− δ
2

differ from μST (I)
by O(δ). Choosing M = 
δ−2�, we now have∑

Nv≤x

χ(σv)χI(θv) = (μST (I) + O(δ))δ(χ) Li(x)

+ O

(
log δ−2

δ
x

1
2χ(1)[k : Q]2 log(xAχqδ

−2)
)
.
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Balancing the error terms by setting δ = x
−1
4 χ(1) 1

2 [k : Q](log x)(log(xAχq))
1
2 , we obtain

∑
Nv≤x

χ(σv)χI(θv) = μST (I)δ(χ) Li(x) + O
(
x

3
4χ(1) 1

2 [k : Q](log(xAχq))
1
2

)
. (4.2)

To obtain the final estimate, we borrow a lemma from [29, Proposition 1.3] stating

∑
C

1
|C|

∣∣∣∣π(x, δC) − |C|
|G|π(x, 1G)

∣∣∣∣2 = 1
|G|

∑
χ �=1G

|π(x, χ)|2, (4.3)

where δC is the indicator function of C, the sum on the left is over conjugacy classes C
of G, and the sum on the right is over the non-trivial irreducible characters of G. (Here, 
for any class functions h of G, we set π(x, h) =

∑
Nv≤x h(σv)χI(θv).)

Now applying the Cauchy–Schwarz inequality and (4.3), we have

∑
C

1
|C|

∣∣∣∣π(x, δC) − |C|
|G|
(x)

∣∣∣∣2 ≤
∑
C

2
|C|

∣∣∣∣π(x, δC) − |C|
|G|π(x, 1G)

∣∣∣∣2

+
∑
C

2
|C|

∣∣∣∣ |C|
|G|π(x, 1G) − |C|

|G|
(x)
∣∣∣∣2

= 2
|G|

∑
χ �=1G

|π(x, χ)|2 + 2
|G| (π(x, 1G) − 
(x))2

� 1
|G|

∑
χ∈Irr(G)

χ(1)2
(
x

3
4 [k : Q] 3

2 (log(xM(K/k)q)) 1
2

)2
,

where 
(x) = μST (I) Li(x), M(K/k) is defined as in (2.7), and the last estimate follows 
from the estimates (2.6) and (4.2). Finally, by recalling that 

∑
χ∈Irr(G) χ(1)2 = |G|, we 

conclude the proof. �
To end this section, we give a sketch of the proof for Theorem 1.3.

Proof of Theorem 1.3. Let π1 and π2 be cuspidal representations, arising from non-CM 
Hilbert modular forms of k that are non-twist-equivalent, with conductors q1 = q(π1) and 
q2 = q(π2), respectively. We assume that all the irreducible characters χ of G = Gal(K/k)
and all the symmetric powers Symmi πi of each πi are cuspidal over k, and that each 
L(s, Symm1 π1 ⊗ Symm2 π2 ⊗ χ) satisfies GRH and the analytic properties predicted by 
the functoriality of tensor product. In addition, we assume Serre’s bounds for π1 and π2.

As before, let θ1,v and θ2,v be Frobenius angles of π1 and π2 at v, respectively, and 
let σv denote the Frobenius element at v. Also, one can bound the analytic conductor of 
χ ⊗ Symm1 π1 ⊗ Symm2 π2 as
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q(χ⊗ Symm1 π1 ⊗ Symm2 π2)

� A(m1+1)(m2+1)
χ q

a1m1(m2+1)χ(1)
1 q

a2m2(m1+1)χ(1)
2 (m1 + m2)D(χ,m1,m2),

for some a1 and a2, where D(χ, m1, m2) = 2(m1 + 1)(m2 + 1)χ(1)[k : Q]3. Thus,

∑
Nv≤x

χ(σv)
m1∑
j=0

αj
1,vβ

m1−j
1,v

m2∑
j′=0

αj′

2,vβ
m2−j′

2,v

� δ(m1,m2, χ) Li(x) + O
(
x

1
2 (m1 + 1)(m2 + 1)χ(1)[k : Q]3 log(xAχq1q2(m1 + m2))

)
,

where δ(m1, m2, χ) = 1 if m1 = m2 = 0 and χ is trivial, and δ(m, χ) = 0 otherwise. 
Under the same use of notation as before, Vinogradov’s lemma (with r = 1) yields that

FA1,B1(θ1)FA2,B2(θ2) =
M∑

m1,m2=0
dm1,A1,B1dm2,A2,B2χm1(θ1)χm2(θ2) + O

(
1

δ2M

)
,

where dmi,Ai,Bi
= cmi,Ai,Bi

− cmi+2,Ai,Bi
; the fourth part of Vinogradov’s lemma gives

M−2∑
m1,m2

(m1,m2) �=(0,0)

m1m2|dm1,A1,B1dm2,A2,B2 | = O

(
(logM)2

δ2

)
.

By a similar argument as in the previous proof, we have

∑
Nv≤x

χ(σv)FA1,B1(θv1)FA2,B2(θv2) =
(
d0,A1,B1d0,A2,B2 + O

(
1

δ2M

))
δ(χ) Li(x)

+ O

(
(logM)2

δ2 x
1
2χ(1)[k : Q]3 log(xAχq1q2M)

)
,

where δ(χ) = δ(0, 0, χ). Moreover, balancing everything by taking

δ = x
−1
6 [k : Q]χ 1

3 (1)(log x)(log(xAχq1q2))
1
3 , M = 
δ−3�,

it follows that∑
Nv≤x

χ(σv)χI1(θ1,v)χI2(θ2,v) = μST (I1)μST (I2)δ(χ) Li(x)

+ O
(
x

5
6 [k : Q]χ 1

3 (1)(log(xAχq1q2))
1
3

)
.

Finally, applying [29, Proposition 1.3], and observing 1 ∑
χ∈Irr(G) χ(1) 4

3 ≤ 1, we obtain
|G|
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∑
C

1
|C|

∣∣∣∣πC,I1,I2(x) − |C|
|G|μST (I1)μST (I2) Li(x)

∣∣∣∣2 �
(
x

5
6n

4
3
k (log(xM(K/k)q1q2))

1
3

)2
,

where πC,I1,I2(x), nk, and M(K/k) are defined as before. �
5. Final remarks

We first remark that subject to the modularity conjecture our Chebotarev–Sato–Tate 
theorems cover the cases of elliptic curves defined over any totally real number field k, 
which is the case whenever k = Q (by Wiles and Breuil–Conrad–Diamond–Taylor) and 
k is a real quadratic field (by Freitas, Le Hung, and Siksek [17]).

We also note that one may adapt the method developed in [33] to obtain an extra 
log-saving for Theorems 1.2 and 1.3. Furthermore, it would be interesting to obtain error 
terms for the Chebotarev–Sato–Tate distributions unconditionally. However, as the fields 
obtained by the current potential automorphy result are ineffective, it seems difficult to 
move forward in this direction at present. Nevertheless, under the Langlands functoriality 
conjecture, it shall be possible to establish effective Chebotarev–Sato–Tate distributions 
by the standard analytic machinery as in [42].

Last but not least, as the proofs of Theorems 1.2 and 1.3 require (conjectural) Serre’s 
bound on the conductors of symmetric powers of GL(2)-forms, it may be of interest to 
improve the bound obtained by Rouse [32], and to extend Serre’s argument to Hilbert 
modular forms. We shall reserve these directions for future study.
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