Almost all primes satisfy the Atkin-Serre conjecture and are not extremal

Ayla Gafni ${ }^{*}{ }^{*}$ (, Jesse Thorner ${ }^{2}$ © ${ }^{(0)}$ and Peng-Jie Wong ${ }^{3}$

*Correspondence:
ayla.gafni@gmail.com
'Department of Mathematics, The University of Mississippi, Hume Hall 305, University, MS 38677, USA
Full list of author information is available at the end of the article

Abstract

Let $f(z)=\sum_{n=1}^{\infty} a_{f}(n) e^{2 \pi i n z}$ be a non-CM holomorphic cuspidal newform of trivial nebentypus and even integral weight $k \geq 2$. Deligne's proof of the Weil conjectures shows that $\left|a_{f}(p)\right| \leq 2 p^{\frac{k-1}{2}}$ for all primes p. We prove for 100% of primes p that $2 p^{\frac{k-1}{2}} \log \log p / \sqrt{\log p}<\left|a_{f}(p)\right|<\left\lfloor 2 p^{\frac{k-1}{2}}\right\rfloor$. Our proof gives an effective upper bound for the size of the exceptional set. The lower bound shows that the Atkin-Serre conjecture is satisfied for 100% of primes, and the upper bound shows that $\left|a_{f}(p)\right|$ is as large as possible (i.e., p is extremal for f) for 0% of primes. Our proofs use the effective form of the Sato-Tate conjecture proved by the second author, which relies on the recent proof of the automorphy of the symmetric powers of f due to Newton and Thorne.

1 Introduction and statement of main results

In this note, we study properties of Fourier coefficients of newforms. A newform f of weight k, level q, and trivial nebentypus, given by

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{f}(n) e^{2 \pi i n z} \in S_{k}^{\mathrm{new}}\left(\Gamma_{0}(q)\right), \tag{1}
\end{equation*}
$$

is a normalized cusp form (so that $a_{f}(1)=1$) that is an eigenform of all the Hecke operators and all of the Atkin-Lehner involutions $\left.\right|_{k} W(q)$ and $\left.\right|_{k} W\left(Q_{p}\right)$ for each prime $p \mid q$ (see [9, Sect. 2.5]). Throughout, we assume that f is non-CM, i.e., there is no imaginary quadratic field K with the property that p is inert in K if and only if $a_{f}(p)=0$ (for $p \nmid q$).
The study of the Fourier coefficients $a_{f}(n)$ of newforms is a central topic in the theory of modular forms. A key motivating case arises from newforms associated to non-CM elliptic curves via modularity. Indeed, any elliptic curve $E / \mathbb{Q}(\mathrm{CM}$ or non-CM) of conductor q has an associated newform

$$
f_{E}(z)=\sum_{n=1}^{\infty} a_{E}(n) e^{2 \pi i n z} \in S_{2}^{\mathrm{new}}\left(\Gamma_{0}(q)\right) .
$$

This newform encodes information about points on the elliptic curve; for each prime $p \nmid q$, we have the identity $a_{E}(p)=p+1-\# E\left(\mathbb{F}_{p}\right)$. There are also higher-weight newforms which

[^0]arise naturally, perhaps most notably
$$
\Delta(z)=\sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z} \in S_{12}^{\mathrm{new}}\left(\Gamma_{0}(1)\right)
$$
whose coefficients are given by the Ramanujan tau function.
As a consequence of Deligne's proof of the Weil conjectures, for each prime p, there exists $\theta_{p} \in[0, \pi]$ such that
$$
a_{f}(p)=2 p^{\frac{k-1}{2}} \cos \theta_{p}
$$

It is fruitful to study the distribution of $\cos \theta_{p}$ as p varies. The definitive conjecture in this direction is the Sato-Tate conjecture (as extended by Serre [12]), which was proved by Barnet-Lamb, Geraghty, Harris, and Taylor:

Theorem (Sato-Tate Conjecture [1]) If $H:[-1,1] \rightarrow \mathbb{C}$ is Riemann integrable, then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1}{\pi(x)} \sum_{p \leq x} H\left(\cos \theta_{p}\right)=\int_{-1}^{1} H(t) d \mu_{\mathrm{ST}}, \quad d \mu_{\mathrm{ST}}:=\frac{2}{\pi} \sqrt{1-t^{2}} d t \tag{2}
\end{equation*}
$$

where $\pi(x):=\#\{p \leq x\}$ is the usual prime counting function. ${ }^{1}$
In a recent breakthrough, Newton and Thorne $[7,8]$ proved that for all integers $n \geq 1$, the n-th symmetric power L-function $L\left(s, \operatorname{Sym}^{n} f\right)$ associated to f is the L-function of an automorphic representation of $\mathrm{GL}_{n+1}\left(\mathbb{A}_{\mathbb{Q}}\right)$, where $\mathbb{A}_{\mathbb{Q}}$ denotes the ring of adeles over \mathbb{Q}. The zeros of these L-functions dictate the distribution of the primes p such that θ_{p} lie in a given interval, much like how the zeros of Dirichlet L-functions dictate the distribution of primes in arithmetic progressions. Using the results of Newton and Thorne, the second author in [13] proved a strong version of (2) with an effective error term. The purpose of this note is to apply these results to make improvements toward important conjectures concerning the Fourier coefficients $a_{f}(p)$.

1.1 Improvements toward the Atkin-Serre conjecture

When $k=2$ and f corresponds with a non-CM elliptic curve E / \mathbb{Q}, Elkies [3] proved that $a_{f}(p)=0$ for infinitely many p (thus E has infinitely many supersingular primes). In contrast, when $k \geq 4$ we expect that for any fixed $t \in \mathbb{R}, a_{f}(p)=t$ holds for only finitely many primes p. This statement is quantified by a deep conjecture of Atkin and Serre:

Conjecture (Atkin-Serre [11]) Letf $\in S_{k}^{\text {new }}\left(\Gamma_{0}(q)\right)$ be a non-CM newform of weight $k \geq 4$. For each $\epsilon>0$, there exist constants $c_{\epsilon, f}>0$ and $c_{\epsilon, f}^{\prime}>0$ such that if $p>c_{\epsilon, f}^{\prime}$, then

$$
\begin{equation*}
\left|a_{f}(p)\right| \geq c_{\epsilon, f} p^{\frac{k-3}{2}-\epsilon} \tag{3}
\end{equation*}
$$

Rouse [10] proved that for each non-CM newform $f \in S_{k}^{\text {new }}\left(\Gamma_{0}(q)\right)$ of even integral weight $k \geq 4$, the bound (3) holds for almost all primes p, conditional on the generalized Riemann hypothesis for the symmetric power L-functions associated to f. Unconditionally, M. Ram Murty, V. Kumar Murty, and Saradha [5] and V. Kumar Murty [6] proved that there exists a density one subset of the primes for which $\left|a_{f}(p)\right| \geq(\log p)^{1-\epsilon}$ for any fixed $\epsilon>0$. Thus $\left|a_{f}(p)\right|$ cannot be "too small" often, but in a much weaker sense than Atkin and Serre predicted. Our first result establishes (3) unconditionally for almost all primes p, a noticeable improvement over the result of Murty, Murty, and Saradha.

[^1]Theorem 1.1 Let

$$
f(z)=\sum_{n=1}^{\infty} a_{f}(n) e^{2 \pi i n z} \in S_{k}^{\mathrm{new}}\left(\Gamma_{0}(q)\right)
$$

be a holomorphic normalized cuspidal non-CM newform of even integral weight $k \geq 2$ on $\Gamma_{0}(q)$ with trivial nebentypus. There exists an absolute and effectively computable constant $c_{1}>0$ such that for $x \geq 3$,

$$
\#\left\{x<p \leq 2 x:\left|a_{f}(p)\right| \leq 2 p^{\frac{k-1}{2}} \frac{\log \log p}{\sqrt{\log p}}\right\} \leq c_{1} \frac{x \log (k q \log x)}{(\log x)^{3 / 2}}
$$

Thus the set of primes p such that (3) holds at pforms a density one subset of the primes.

1.2 Unconditional bounds on extremal primes

Theorem 1.1 shows that it is rare for the Fourier coefficients of f to be "small" on the primes. In the opposite direction, one can ask how often the Fourier coefficients of f are "large" on the primes. To make this precise, consider first the holomorphic newforms $f \in S_{k}^{\text {new }}\left(\Gamma_{0}(q)\right)$ such that $a_{f}(n) \in \mathbb{Z}$ for all $n \geq 1$. In this case, since $\left|a_{f}(p)\right| \leq 2 p^{\frac{k-1}{2}}$, the largest value that $\left|a_{f}(p)\right|$ could assume is $\left\lfloor 2 p^{\left.\frac{k-1}{2}\right\rfloor}\right\rfloor$, where $\lfloor r\rfloor=\max \{t \in \mathbb{Z}: t \leq r\}$ is the usual floor function. If $\left|a_{f}(p)\right|$ assumes this value, we call p extremal for f. James, Tran, Trinh, Wertheimer, and Zantout [4] conjectured that if f is a non-CM newform of weight 2 corresponding with an elliptic curve over \mathbb{Q}, then

$$
\begin{equation*}
\#\left\{p \leq x: a_{f}(p)=\lfloor 2 \sqrt{p}\rfloor\right\} \sim \frac{8}{3 \pi} \frac{x^{\frac{1}{4}}}{\log x} \tag{4}
\end{equation*}
$$

David, Gafni, Malik, Prabhu, and Turnage-Butterbaugh [2] proved that (4) is $<_{f} \sqrt{x}$ under the generalized Riemann hypothesis for the symmetric power L-functions of f. We prove a nontrivial unconditional upper bound in a more general context than elliptic curves.

Theorem 1.2 Let $f \in S_{k}^{\text {new }}\left(\Gamma_{0}(q)\right)$ be a newform as in Theorem 1.1. There exists an absolute and effectively computable constant $c_{3}>0$ such that if $x \geq 16$, then

$$
\#\left\{x<p \leq 2 x:\left|a_{f}(p)\right| \geq\left\lfloor 2 p^{\frac{k-1}{2}}\right\rfloor\right\} \leq c_{3} \frac{x(\log (k q \log x))^{2}}{(\log x)^{2}} .
$$

Notation

The Vinogradov notation $F \ll G$ will be used to denote the existence of an effectively computable positive constant c (not necessarily the same in each occurrence) such that $|F| \leq c|G|$ in the range indicated. We write $F=G+O(H)$ to denote that $|F-G| \ll H$.

2 Preliminary lemmas

The main results of this paper follow from the work of Newton and Thorne [7,8] and of the second author [13]. For simplicity, it is assumed that the nebentypus is trivial so that $a_{f}(n) \in \mathbb{R}$ for all $n \geq 1$; with additional effort, this assumption can be removed.

Lemma 2.1 Let $f \in S_{k}^{\text {new }}\left(\Gamma_{0}(q)\right)$ be as in the statement of Theorem 1.1, and let $I=$ $[\alpha, \beta] \subseteq[-1,1]$ be a subinterval. If $x \geq 3$, then

$$
\pi_{f, I}(x):=\#\left\{x<p \leq 2 x: p \nmid q, \cos \theta_{p} \in I\right\}=(\pi(2 x)-\pi(x))\left(\mu_{\mathrm{ST}}(I)+O\left(\frac{\log (k q \log x)}{\sqrt{\log x}}\right)\right) .
$$

Lemma 2.1 is immediate from the work of the second author [13, Theorem 1.1]. (Note that $\pi(2 x)-\pi(x) \sim \pi(x) \sim x / \log x$ by the prime number theorem.) We will also use the key technical proposition proved in [13] which leads to Lemma 2.1. In what follows, let U_{n} be the n-th Chebyshev polynomial defined by

$$
U_{n}(\cos \theta)=\frac{\sin ((n+1) \theta)}{\sin \theta}, \quad n \geq 0
$$

The sequence $\left\{U_{n}(t)\right\}_{n=0}^{\infty}$ forms an orthonormal basis of $L^{2}\left([-1,1], \mu_{\mathrm{ST}}\right)$.
Lemma 2.2 Letf $\in S_{k}^{\text {new }}\left(\Gamma_{0}(q)\right)$ be a newform Lemma 2.1. There exist absolute and effectively computable constants $c_{5}>0$ and $c_{6}>0$ such that if $1 \leq n \ll \sqrt{\log x} / \sqrt{\log (k q \log x)}$, then

$$
\left|\sum_{x<p \leq 2 x} U_{n}\left(\cos \theta_{p}\right)\right| \ll \frac{x}{\log x}\left(n^{2} x^{-\frac{1}{c_{5} n}}+n^{2}\left(\exp \left[-c_{6} \frac{\log x}{n^{2} \log (k q n)}\right]+\exp \left[-c_{6} \frac{\sqrt{\log x}}{\sqrt{n}}\right]\right)\right) .
$$

Lemma 2.2 follows immediately from [13, Proposition 2.1] and partial summation.

3 Proof of Theorem 1.1

Since $a_{f}(p)=2 p^{\frac{k-1}{2}} \cos \theta_{p}$, we see that

$$
\#\left\{x<p \leq 2 x:\left|a_{f}(p)\right| \leq 2 p^{\frac{k-1}{2}} \frac{\log (k q \log p)}{\sqrt{\log p}}\right\} \leq \#\left\{x<p \leq 2 x:\left|\cos \theta_{p}\right| \leq \frac{\log (k q \log x)}{\sqrt{\log x}}\right\} .
$$

Writing $I=\left[-\frac{\log (k q \log x)}{\sqrt{\log x}}, \frac{\log (k q \log x)}{\sqrt{\log x}}\right]$, we find via a Taylor expansion that

$$
\mu_{\mathrm{ST}}(I)=\frac{4}{\pi} \frac{\log (k q \log x)}{\sqrt{\log x}}+O\left(\frac{(\log (k q \log x))^{3}}{(\log x)^{3 / 2}}\right) .
$$

Thus the desired result follows from Lemma 2.1.

4 Proof of Theorem 1.2

For an integer $N \geq 3$ (which we will later take to depend on x), let $I_{N}=\left[\cos N^{-1}, 1\right]$ and $I_{N}^{\prime}=\left[-1,-\cos N^{-1}\right]$. We take N large enough so that $\cos N^{-1} \leq 1-x^{-\frac{1}{2}}$. If $x<p \leq 2 x$, then we have $x<p<4 p^{k-1}$. With $\{t\}=t-\lfloor t\rfloor$, we deduce the chain of inequalities

$$
\cos N^{-1} \leq 1-x^{-\frac{1}{2}}<1-\frac{1}{2 p^{\frac{k-1}{2}}}<1-\frac{\left\{2 p^{\frac{k-1}{2}}\right\}}{2 p^{\frac{k-1}{2}}}<1 .
$$

Therefore, $\#\left\{x<p \leq 2 x:\left|a_{f}(p)\right| \geq\left\lfloor 2 p^{\frac{k-1}{2}}\right\rfloor\right\}$ equals

$$
\begin{array}{r}
\#\left\{x<p \leq 2 x: \frac{\left|a_{f}(p)\right|}{2 p^{\frac{k-1}{2}}} \geq 1-\frac{\left\{2 p^{\frac{k-1}{2}}\right\}}{2 p^{\frac{k-1}{2}}}\right\} \\
\leq \#\left\{x<p \leq 2 x: \cos \theta_{p} \in I_{N}\right\}+\#\left\{x<p \leq 2 x: \cos \theta_{p} \in I_{N}^{\prime}\right\} .
\end{array}
$$

We will estimate $\#\left\{x<p \leq 2 x: \cos \theta_{p} \in I_{N}\right\}$; the case for I_{N}^{\prime} is the same. By the work in [2] (Proposition 2.2, Equation 3.2, and the displayed equation preceding it), we find that if $N \geq 3$, then (note that $U_{0}\left(\cos \theta_{p}\right)$ is identically 1$)$

$$
\begin{equation*}
\#\left\{x<p \leq 2 x: \cos \theta_{p} \in I_{N}\right\} \ll \frac{\pi(2 x)-\pi(x)}{N^{2}}+\frac{1}{N^{2}} \sum_{n=1}^{N}\left|\sum_{x<p \leq 2 x} U_{n}\left(\cos \theta_{p}\right)\right| \tag{5}
\end{equation*}
$$

Theorem 1.2 follows once we apply Lemma 2.2 to (5) with $N=\lfloor\sqrt{\log x} / \log (k q \log x)\rfloor$.

Acknowledgements

The authors would like to thank Amir Akbary, Po-Han Hsu, and Wen-Ching Winnie Li for helpful comments. The third author is currently an NCTS postdoctoral fellow; he was supported by a PIMS postdoctoral fellowship and the University of Lethbridge during part of this research.

Author details

'Department of Mathematics, The University of Mississippi, Hume Hall 305, University, MS 38677, USA, ${ }^{2}$ Department of Mathematics, University of Illinois, Urbana, IL 61801, USA. e-mail: jesse.thorner@gmail.com, ${ }^{3}$ National Center for Theoretical Sciences, No. 1, Sec. 4, Roosevelt Rd., Taipei City, Taiwan. e-mail: pengjie.wong@ncts.tw.

Received: 3 March 2021 Accepted: 26 March 2021 Published online: 19 April 2021

References

1. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. 47(1), 29-98 (2011)
2. David, C., Gafni, A., Malik, A., Prabhu, N., Turnage-Butterbaugh, C.L.: Extremal primes for elliptic curves without complex multiplication. Proc. Am. Math. Soc. 148(3), 929-943 (2020)
3. Elkies, N.D.: The existence of infinitely many supersingular primes for every elliptic curve over Q. Invent. Math. 89(3), 561-567 (1987)
4. James, K., Tran, B., Trinh, M.-T., Wertheimer, P., Zantout, D.: Extremal primes for elliptic curves. J. Number Theory 164, 282-298 (2016)
5. Murty, M.R., Murty, V.K., Saradha, N.: Modular forms and the Chebotarev density theorem. Am. J. Math. 110(2), 253-281 (1988)
6. Murty, V.K.: Modular forms and the Chebotarev density theorem. II. In: Analytic Number Theory (Kyoto, 1996). London Math. Soc. Lecture Note Series, vol. 247, pp. 287-308. Cambridge Univ. Press, Cambridge (1997)
7. Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms. arXiv:1912.11261 (2019)
8. Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms, II. arXiv:2009.07180 (2020)
9. Ono, K.: The web of modularity: arithmetic of the coefficients of modular forms and q-series, vol. 102. In: CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI (2004)
10. Rouse, J.: Atkin-Serre type conjectures for automorphic representations on GL(2). Math. Res. Lett. 14(2), 189-204 (2007)
11. Serre, J.-P.: Divisibilité de certaines fonctions arithmétiques. Enseign. Math. (2) 3-4, 22227-22260 (1976)
12. Serre, J.-P.: Abelian I-adic representations and elliptic curves, vol. 7 of Research Notes in Mathematics. A K Peters, Ltd., Wellesley, MA, (1998) (With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original)
13. Thorner, J.: Effective forms of the Sato-Tate conjecture. Res. Math. Sci. 8(1): Paper No. 4, 21 (2021)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.

[^1]: ${ }^{1}$ Recall that the prime number theorem states that $\pi(x) \sim x / \log x$.

