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1. Introduction

LetK/k be a Galois extension of number fields with Galois groupG. A long-standing
conjecture of Artin asserts that every Artin L-function attached to a non-trivial irre-
ducible character of G extends to an entire function. Via his celebrated reciprocity
law, Artin showed that his conjecture is valid for all Artin L-functions attached to
1-dimensional characters. From this and the induction invariance property of Artin
L-functions, Artin established his conjecture when G is an M-group, namely, all irre-
ducible characters ofG are induced from 1-dimensional characters of subgroups ofG.

Inspired by Artin reciprocity, Langlands further conjectured that for every char-
acter χ of G, χ corresponds to an automorphic representation π of GLχ(1)(Ak),
where Ak denotes the adèle ring of k; and if χ is irreducible, then π will be cusp-
idal. This is often called the Langlands reciprocity conjecture or the strong Artin
conjecture. Indeed, Artin’s conjecture follows from Langlands’ conjecture and the
theory of automorphic L-functions.

By the works of Iwasawa and Tate, one knows that Langlands’ conjecture
for GL(1) is essentially Artin reciprocity. The next big step was taken by Lang-
lands [14] and Tunnell [21] who proved the Langlands reciprocity conjecture for all
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(irreducible) 2-dimensional representations with solvable image. In a slightly differ-
ent vein, from their theory of base change and automorphic induction, Arthur and
Clozel [1] derived Langlands reciprocity for all nilpotent Galois extensions. More-
over, they showed every accessible character of a solvable group is of automorphic
type. (We recall that an irreducible character χ of G is called accessible if χ is
an integral combination of characters induced from linear characters of subnormal
subgroups of G, and that a character χ of G is said to be of automorphic type if
for any Galois extension K/k with Galois group G, Langlands reciprocity is valid
for the Artin L-function L(s, χ,K/k). A group G is said to be of automorphic type
if all its characters are.)

More recently, Ramakrishnan [20] derived the automorphy of solvable Artin rep-
resentations of GO(4)-type. Also, Khare and Wintenberger [12] proved Serre’s mod-
ularity conjecture and then deduced Langlands reciprocity for any odd irreducible
2-dimensional representation over Q with non-solvable image. We will discuss some
of these deep results of the Langlands program in more detail in Sec. 3.

In [27], the author showed that Artin’s conjecture holds if K/k is nearly super-
solvable, i.e. G = Gal(K/k) admits a normal subgroup N with G/N supersolvable
such that all irreducible characters of N are of degree at most 2. Moreover, the
author [26] extended the above-mentioned result of Arthur and Clozel to nearly
nilpotent extensions. More precisely, if G is nearly nilpotent, i.e. G admits a normal
subgroup N with G/N nilpotent such that all irreducible characters of N are of
degree at most 2, then G is of automorphic type. As an application, the Langlands
reciprocity conjecture is established for all Galois extensions of square-free degree
as well as all non-A5 extensions of degree ≤ 60.

Now, let us consider a finite set S of natural numbers. We shall call an irreducible
character χ of G S-accessible if χ is an integral sum of characters induced from
irreducible characters ψi of subnormal subgroups of G where each ψi(1) belongs
to S. In particular, for S = {1}, this notion gives accessible characters introduced
by Arthur and Clozel. In Sec. 3, we deduce a mild generalization of the earlier-
mentioned result of Arthur and Clozel as follows. (We, however, note that the first
part of this proposition is known by experts, at least, implicitly.)

Proposition 1.1. Suppose G is solvable. If χ ∈ Irr(G) is a {1, 2}-accessible
character, then Langlands reciprocity holds for χ. Also, if |G| is not divisible by
36 and χ ∈ Irr(G) is a {1, 2, 3}-accessible character, then χ is of automorphic
type.

By studying the monomiality of finite groups, van der Waall [22, 23] proved the
Artin conjecture for all groups of order ≤ 100, 24 groups excepted. This work has
been extended by van der Waall [24, 25] himself to groups of order between 100 and
200 by giving necessary and sufficient conditions for these groups being monomial.

In light of the work of van der Waall, we are interested in investigating groups of
order between 60 and 200. Our method, referred to as a method of “low-dimensional
groups”, was utilized in [26, 27], which also allows us to deduce a result concerning
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the automorphy of groups of cube-free order (see Proposition 3.13 below) from the
above proposition. Our main result is the following theorem.

Theorem 1.2. Let G be a solvable group of order at most 200. If |G| is not equal
to 108, 160, nor 168, then G is of automorphic type.

In fact, among solvable groups of order at most 200, there are exactly three
exceptional groups G not being shown to be of automorphic type. The exceptional
group of order 108 has GAP ID [108, 15] and is not monomial. For the remaining
instances, G has GAP ID [160, 234] or [168, 43]. These two groups are monomial,
and hence Artin’s conjecture is already known.

2. Group-Theoretic Preliminaries

In this section, we will recall some results from the theory of groups. First, in this
note, G always denotes a finite group, and H and N denote a subgroup and a
normal subgroup of G, respectively. The direct product of n-copies of G will be
denoted by Gn, and Z(G) will stand for the center of G. We let Irr(G) be the set
of irreducible characters of G, and set cd(G) := {χ(1) |χ ∈ Irr(G)}. For any finite
set π of primes, Gπ denotes a Hall π-subgroup of G. The cyclic group of order m,
the Klein four-group, and the quaternion group of order 8 will be denoted as Cm,
V4, and Q, respectively.

A classical result of Hölder asserts that a (finite) group of square-free order must
be meta-cyclic. From this, the author [26] deduced that all groups of square-free
order are of automorphic type. In 2005, Dietrich and Eick [6] studied the class of
groups of cube-free order and, in particular, characterized non-solvable groups of
cube-free order. Their work was extended by Qiao and Li [19] who gave a description
of the class of solvable groups of cube-free order as follows.

Proposition 2.1 ([19]). Let G be a solvable group of cube-free order. Then one
of the following holds.

(1) G = (Ca × C2
b ) � (Cc × C2

d), or (C2
2 × Ca × C2

b ) � (Cc × C2
d); or

(2) G = A�B �G{2} = (Ca × C2
b ) � (Cc × C2

d) �G{2},

where a, b, c, and d are suitable odd integers such that (a, b) = (c, d) = 1, ac is
cube-free, bd is square-free, prime divisors of ab are not less than prime divisors of
cd, and B contains a Sylow 3-subgroup of G.

We remark that Qiao and Li showed that the first case happens if a Hall {2, 3}-
subgroup G{2,3} = G{2} �G{3} of G is non-abelian (cf. [19, Lemma 3.8]).

We now recall some concepts of relative M-groups and relative SM-groups (cf. [8
and 9, Chap. 6]), which will help us to study the Langlands reciprocity conjecture
later.

Definition 2.2. Let G be a finite group, and N be a normal subgroup of
G. A character χ of G is called a relative M-character (respectively, a relative



March 12, 2018 11:3 WSPC/S1793-0421 203-IJNT 1850053

884 P.-J. Wong

SM-character) with respect to N if there exists a subgroup (respectively, a subnor-
mal subgroup) H with N ≤ H ≤ G and an irreducible character ψ ∈ Irr(H) such
that IndGH ψ = χ and ψ|N ∈ Irr(N). If every irreducible character of G is a relative
M-character (respectively, a relative SM-character) with respect to N , then G is
said to be a relative M-group (respectively, a relative SM-group) with respect to N .

We note that if N is normal in G and G/N is nilpotent or supersolvable, then
G is a relative M-group with respect to N . In general, one has the following result
due to Price (cf. [2, Theorem 7.63; 9, Theorem 6.22]).

Proposition 2.3. Let G be a finite group, and N be a normal subgroup of G such
that G/N is solvable. Suppose that every chief factor of every non-trivial subgroup of
G/N has order equal to an odd power of some prime. Then G is a relative M-group
with respect to N .

Based on Proposition 2.3, Horváth [8] gave a sufficient condition for groups being
relative SM-groups as follows.

Proposition 2.4 ([8, Proposition 2.7]). Let G be a finite group and N be a
normal subgroup of G such that G/N is nilpotent. Then G is a relative SM-group
with respect to N .

We note that Horváth omitted the proof and remarked that it is similar to the
proof of Proposition 2.3. However, for the sake of completeness, we give below a
simple proof as an immediate consequence of Proposition 2.3.

Proof. By Proposition 2.3, we already know that each χ ∈ Irr(G) is a relative
M-character with respect to N , i.e. there exists a subgroup H with N ≤ H ≤ G

and an irreducible character ψ ∈ Irr(H) such that IndGH ψ = χ and ψ|N ∈ Irr(N).
Now as G/N is nilpotent, all its subgroups are subnormal. In particular, we have
an invariant series

H/N = H0 � H1 � · · · � Hm = G/N,

where for each i, Hi is a normal subgroup of Hi+1. Now by lifting this series (with
respect to N), we can see that H is subnormal in G. In other words, each χ is a
relative SM-character with respect to N , and hence G is a relative SM-group with
respect to N .

Recall that a Dedekind group is a group G such that every subgroup of G is
normal. In light of the above proof, we deduce the following variant that may be of
interest.

Proposition 2.5. Let G be a finite group and N be a normal subgroup of G such
that G/N is a Dedekind group. Then for every χ ∈ Irr(G), there exists a normal
subgroup H of G with N ≤ H and an irreducible character ψ ∈ Irr(H) such that
IndGH ψ = χ and ψ|N ∈ Irr(N).
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As a consequence, any irreducible character of a metabelian group G is induced
from a 1-dimensional character of a normal subgroup of G. To end this section, we
further collect more results from the representation theory of finite groups.

Lemma 2.6 ([9, pp. 28]). Let G be a finite group and Z(G) its center. Then for
every irreducible character χ of G, one has

χ(1)2 ≤ [G : Z(G)].

Via this lemma, Proposition 2.3, Sylow’s theory (or the computer algebra pack-
age [7]), one has the following lemma.

Lemma 2.7. If G is of order 1, 2, 4, 3, or 9, then cd(G) = {1}. If G is of order
8, 16, 6, 18, or 28, then cd(G) ⊆ {1, 2}. If |G| is 12, 24, or 36, then cd(G) ⊆
{1, 2, 3, 4} where 4 ∈ cd(G) only if |G′| = 9.

We also invoke the following result of Isaacs.

Lemma 2.8 ([9, Theorems 12.5, 12.6 and 12.15]). If G is a finite group with
| cd(G)| ≤ 3, then G must be solvable.

Let ρ be an irreducible representation of G. As the finite subgroups of PGL3(C)
have been classified by Blichfeldt [3, 18], one has the following.

Lemma 2.9 ([3, 18]). If ρ is primitive, 3-dimensional, and with solvable projective
image G in PGL3(C), then G is of order 36, 72, or 216.

3. Artin L-Functions and Automorphic Representations

Let K/k be a Galois extension of number fields with Galois group G, and χ an
irreducible character of G. As mentioned in the beginning, Langlands conjectured
that there exists a cuspidal automorphic representation π ∈ A(GLχ(1)(Ak)) such
that

L(s, χ,K/k) = L(s, π),

where L(s, π) denotes the automorphic L-function attached to π. Now, let H be a
subgroup of G and assume χ = IndGH ψ for some ψ ∈ Irr(H). According to the Lang-
lands reciprocity conjecture, there should be a cuspidal automorphic representation
Π ∈ A(GLψ(1)(AKH )) corresponding to ψ. Now, the induction invariance property
of Artin L-functions, i.e.

L(s, χ,K/k) = L(s, IndGH ψ,K/k) = L(s, ψ,K/KH),

suggests that there should be a map sending Π to π. This conjectural map is called
the automorphic induction and has been established by Arthur and Clozel [1] for
extensions of prime degree as stated in the following theorem.

Theorem 3.1 ([1, Arthur and Clozel]). Let K/k be a Galois extension of num-
ber fields of prime degree p, and Π denote an automorphic representation induced
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from cuspidal of GLn(AK) (or, in particular, a cuspidal automorphic representation
of GLn(AK)). Then the automorphic induction I(Π) of Π exists as an automorphic
representation of GLnp(Ak).

For non-normal extensions, one has a theorem due to Jacquet et al. [11] below.

Theorem 3.2 ([11]). Let K/k be a non-normal cubic extension of number fields.
Let χ be an idèle class character of K. Then the automorphic induction I(χ) of χ
exists as an automorphic representation of GL3(Ak).

Thus, by Theorems 3.1 and 3.2, all monomial characters of degree 3 are of
automorphic type.

As mentioned in the introduction, some special cases of the Langlands reciprocity
conjecture have been established. We first extract the works of Artin, Langlands
[14], and Tunnell [21] as follows.

Proposition 3.3. If a character χ of a solvable group G is of degree at most 2,
then χ is of automorphic type.

LetGOn(C) denote the subgroup ofGLn(C) consisting of orthogonal similitudes,
i.e. matrices M such that M tM = λMI, with λM ∈ C. We will say that a C-
representation (ρ, V ) (of the absolute Galois group of a number field k) is of GO(n)-
type if and only if dimV = n and it factors as

ρ : Gal(k/k) → GOn(C) ⊂ GL(V ).

In his paper [20], Ramakrishnan derived the automorphy of solvable Artin repre-
sentations of GO(4)-type as follows.

Proposition 3.4 ([20]). Let k be a number field and let ρ be a continuous 4-
dimensional representation of Gal(k/k) whose image is solvable and lies in GO4(C).
Then ρ is automorphic.

One also has below results concerning “symplectic” Galois representations and
“hypertetrahedral” Galois representations due to Martin [15, 16]. (Recall that the
(mth) symplectic similitude group is defined as

GSp2m(C) = {M ∈ GL2m(C) |M tJM = λMJ, λM ∈ C},
where the matrix J is defined as

J =
(

0 Im
−Im 0

)
,

and Im is the identity m×m matrix.)

Proposition 3.5 ([15]). Let K/k be a Galois extension of number fields and ρ

be an irreducible 4-dimensional representation of G = Gal(K/k) into GSp4(C).
Assume the projective image of ρ in PGL4(C) is isomorphic to E24 � C5, where
E24 denotes the elementary abelian group of order 24. Then ρ is automorphic.
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Proposition 3.6 ([16]). Let K/k be a Galois extension of number fields and ρ be
an irreducible 4-dimensional representation of G = Gal(K/k). Suppose the projec-
tive image G of ρ is an extension of A4 by V4, i.e. G/V4 is isomorphic to A4. Then
ρ is automorphic.

Moreover, for imprimitive 4-dimensional representations which are essentially
self-dual, one has a handy result due to Martin and Ramakrishnan (cf. [17, Propo-
sition 7.2]) below.

Proposition 3.7. If ρ is an irreducible 4-dimensional representation, which is
imprimitive and essentially self-dual, of solvable G = Gal(K/k), then ρ is auto-
morphic.

We now consider a character χ of G = Gal(K/k) which is induced from an
irreducible character ψ of a subnormal subgroup H of G. Assume, further, that
ψ is automorphic over the fixed field KH , i.e. there is a cuspidal automorphic
representation Π of GLψ(1)(AKH ) such that

L(s, ψ,K/KH) = L(s,Π).

Since H is a subnormal subgroup of G, H admits a subgroup series

H = H0 � H1 � · · · � Hm−1 � Hm = G,

where for each i, Hi is a normal subgroup of Hi+1. As G is finite and solvable, we
may require each Hi+1/Hi is a cyclic group of prime order. Thus, one has a tower
of Galois extensions of prime degree

K ⊃ KH1 ⊃ · · · ⊃ KHm−1 ⊃ k.

Now, applying the Arthur–Clozel theorem of automorphic induction, i.e. Theo-
rem 3.1, successively, one can derive that IndGH ψ corresponds to an automorphic
representation over k. In other words, Langlands reciprocity holds for χ. Following
Arthur–Clozel’s proof of the automorphy of accessible characters of solvable groups
(cf. [1, Proposition 7.2]), one has the following lemma.

Lemma 3.8. Assume G = Gal(K/k) is solvable and χ is irreducible. If χ is
an integral sum of characters induced from irreducible characters, which are of
automorphic type, of subnormal subgroups of G, then Langlands reciprocity holds
for χ.

Let S be a finite set of natural numbers. An irreducible character χ of G is
called S-accessible if χ is an integral combination of characters induced from irre-
ducible characters ψi of subnormal subgroups of G where each ψi(1) belongs to S.
Moreover, a group is called S-accessible if all its irreducible characters are. For exam-
ple, {1}-accessible characters (respectively, groups) are exactly accessible characters
(respectively, groups), and nilpotent groups are {1}-accessible. With this notion and
Lemma 3.8 in mind, one has the following corollary (à la Arthur et Clozel).
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Corollary 3.9. Suppose G is solvable. If χ is a {1, 2}-accessible character of G,
then Langlands reciprocity holds for χ. Also, if |G| is not divisible by 36 and χ is a
{1, 2, 3}-accessible character of G, then Langlands reciprocity holds for χ. Thus, if
G is nearly nilpotent (or, in particular, metabelian), then G is of automorphic type.

Proof. It suffices to show that any irreducible character ψ, with ψ(1) ≤ 3, of
any subgroup of G is of automorphic type. As all subgroups of G are solvable, if
ψ(1) ≤ 2, the assertion follows from Proposition 3.3. So we may assume ψ(1) = 3.
Since 36 does not divide the order of any quotient group of any subgroup of G,
Lemma 2.9 tells us that ψ must be monomial and hence of automorphic type.

We note that Langlands reciprocity for nearly nilpotent Galois extensions follows
from the fact that all nearly nilpotent groups are solvable (cf. Lemma 2.8) and {1, 2}-
accessible (cf. Proposition 2.4). As remarked in [1], Dade [5] has shown that if G
is solvable, then {1}-accessible characters are monomial. It would be interesting to
investigate whether a similar result holds or not. For example, are {1, 2}-accessible
characters of a solvable group G all induced from irreducible characters of degree
at most 2? We have no clue about this question; and instead of trying to answer
this question, we give a criterion for a group being {1, 2, 3}-accessible as follows.

Lemma 3.10. Let G = Gal(K/k). Suppose that 36 � |G|, and that G admits a nor-
mal subgroup N with G/N supersolvable and cd(N) ⊆ {1, 2, 3}. Then the Artin con-
jecture is true for K/k. Moreover, if G/N is nilpotent, then G is {1, 2, 3}-accessible
and hence of automorphic type.

Proof. We first note that Lemma 2.8 asserts that N is solvable and so is G. Accord-
ing to Proposition 2.3, every irreducible character χ of G is induced from an irre-
ducible character ψ of degree at most 3 of a subgroup H of G. If ψ(1) ≤ 2, ψ is
automorphic by Proposition 3.3. On the other hand, for ψ(1) = 3, Lemma 2.9 tells
us that ψ must be monomial as |H | is not divisible by 36. Thus, ψ is automorphic
(over KH). From this and the induction invariance property of Artin L-functions,
Artin’s conjecture follows.

Assume, further, that G/N is nilpotent. Then Proposition 2.4 enables us to
choose H to be subnormal in G. As now, χ is {1, 2, 3}-accessible, Corollary 3.9
yields χ is of automorphic type.

As mentioned in Sec. 1, these results enable one to study Artin’s conjecture via
“low-dimensional (sub)groups”. For instance, if G is of order 54 or 162, then the
Sylow 3-subgroup P (say) is normal in G. Observing that cd(P ) ⊆ {1, 3} and G/P
is of order 2, Lemma 3.10 tells us that G is of automorphic type. In much the same
spirit, Corollary 3.9 and Lemma 3.10 give the following results.

Corollary 3.11. If G is of order pq, p2q, p2q2, 8p, or 27p for some primes p and
q, then G is of automorphic type.
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Proof. As all p-groups are nilpotent and hence of automorphic type, we may
assume |G| has two distinct prime divisors. By applying the Sylow theorems, G
admits a normal Sylow subgroup N (see, for example, [10, Theorems 1.30–1.33 and
Problem 1E.1]) unless G is isomorphic to S4. Thus, for the first three cases, i.e. G
is of order pq, p2q, or p2q2, G is metabelian and the automorphy of G follows from
Corollary 3.9. Also, if G is not isomorphic to S4 and |G| is 8p or 27p, N is of order
8, 27, or p. By Lemma 2.6, we can see cd(N) ⊆ {1, 2, 3}. Since G/N is nilpotent
in these cases, Lemma 3.10 tells us that G is of automorphic type. Finally, the
automorphy of S4 follows from Lemma 3.10 and the fact that cd(S4) = {1, 2, 3}.

Corollary 3.12. If G is of order 16p for some prime p, then G is of automor-
phic type.

Proof. Since 2-groups are clearly of automorphic type, we may assume p is odd.
By the Sylow theorems, G has a normal Sylow p-subgroup P unless p ∈ {3, 5, 7}.
For p = 5, if Sylow 5-subgroups of G are not normal, then G must have 16 Sylow
5-subgroups, which give 4× 16 non-trivial elements. Thus, the Sylow 2-subgroup is
normal in this case. By a more careful argument (see, for example, [4, Lemma 3.6]),
if |G| = 112, then G also admits a normal Sylow subgroup. Therefore, for p �= 3, G
is nearly nilpotent and of automorphic type.

We note that the automorphy of groups of order 48 was obtained by the author
[26] via a computational method. In light of this, we shall give another proof
for the case |G| = 112 as follows. First, by GAP [7], it is easy to check that
|G′| ∈ {1, 2, 4, 7, 8, 14, 28}. Note that if |G′| �= 28, then cd(G′) ⊆ {1, 2}. Also, it
can be examined by [7] that if G′ has order 28, then it has GAP ID [28, 2] and is
abelian. Thus, all groups of order 112 are of automorphic type by Corollary 3.9.

Furthermore, by the work of Qiao and Li (Proposition 2.1), we have the following
proposition.

Proposition 3.13. Assume G = Gal(K/k) is of cube-free order. Then Langlands
reciprocity holds for K/k whenever |G| is odd or G is a solvable group with a non-
abelian Hall {2, 3}-subgroup G{2,3} = G{2} �G{3}.

Proof. By the celebrated Feit–Thompson theorem, if |G| is odd, then G must be
solvable. Thus, by Proposition 2.1, if |G| is odd or G is a solvable group with a non-
abelian Hall {2, 3}-subgroup G{2,3} = G{2} � G{3}, then G is metabelian. Hence,
the Langlands reciprocity conjecture follows from Corollary 3.9.

We remark that for prime p with 3 | p+1, Qiao and Li in [19] gave the following
examples of groups which are not metabelian.

(1) C2
p � S3.

(2) C2
p � C3 � C4.
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Observe that these groups contain normal subgroups isomorphic to C2
p � C3,

and that cd(C2
p � C3) ⊆ {1, 3}. Applying Lemma 3.10, we know that these groups

are of automorphic type.

4. Groups of Order at Most 100

In [22, 23], van der Waall applied group-theoretic methods to show that all groups
of order ≤ 100, 24 groups excepted, are monomial. Moreover, van der Waall gave a
description of the 24 exceptional groups that are non-monomial.

In light of the work of van der Waall, we will show that all groups, except A5,
of order at most 100, are of automorphic type. We first note that the author [26]
has established Langlands reciprocity for all non-A5 Galois extensions of degree
≤ 60. Now, by Arthur–Clozel’s theorem on the automorphy of nilpotent groups (cf.
[1, Theorem 7.1]), all groups of prime power order are of automorphic type. Thus,
G is of automorphic type if |G| ∈ {61, 67, 71, 73, 79, 83, 89, 97, 64, 81}. There are 10
classes of groups.

For any distinct primes p and q, Corollary 3.11 tells us that any group of order
pq, p2q, or p2q2 is of automorphic type. Also, the earlier-mentioned result of Hölder
asserts that a group of square-free order is meta-cyclic. Therefore, by Corollary 3.9,
if G has order 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 82, 85, 86, 87, 91, 92,
93, 94, 95, 98, 99, or 100, then G is of automorphic type. Here we have 24 classes
of groups.

Also, Corollaries 3.11 and 3.12 yield that every group of order 80 or 88 is of
automorphic type. On the other hand, any group of order 90 has a normal subgroup
of order 45, which is abelian. As a result, all groups of order 90 are metabelian and
of automorphic type.

Moreover, for G of order 84, by Proposition 2.1, G is either metabelian or of the
form G = C7 �C3 �G{2}. By Proposition 2.3, it is easy to see that cd(C7 �C3) ⊆
{1, 3}. As 36 � |G|, Lemma 3.10 asserts that G is of automorphic type. Thus, it
remains to consider groups of order 72 or 96.

4.1. The case |G| = 72

Consider a group G of order 72. van der Waall [23, Theorem II. 5.1 and Lemma II.
5.3] showed that G is not monomial if and only if G′ is the quaternion group of
order 8. Moreover, the derived subgroup G′ cannot have order 24. Hence, any non-
monomial group of order 72 must be nearly nilpotent and of automorphic type. For
G monomial, G′ must have order 1, 2, 4, 3, 6, 12, 9, 18, or 36. If G′ is of order 1, 2,
4, 3, 6, 9, or 18, we know that cd(G′) ⊆ {1, 2}, and so G is nearly nilpotent.

Now, we assume G′ is of order 12 or 36. By Lemma 2.7, one has cd(G′) ⊆
{1, 2, 3, 4}. On the other hand, Proposition 2.4 tells us that for every χ ∈ Irr(G),
there exists a subnormal subgroupH with G′ ≤ H ≤ G and an irreducible character
ψ ∈ Irr(H) such that IndGH ψ = χ and ψ|G′ ∈ Irr(G′). Since every proper subgroup
of a group of order 72 has been shown to be of automorphic type, if H �= G, then
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Theorem 3.1 yields χ is of automorphic type. Thus, we may assume H = G. As G
is monomial and solvable, if χ(1) ≤ 3, then χ is of automorphic type. Furthermore,
if 4 ∈ cd(G′), Lemma 2.7 tells us that G′ must be of order 36 and G′′ is of order 9.
Thus, G/G′′ is a 2-group and G is nearly nilpotent.

4.2. The case |G| = 96

For the last case, |G| = 96, if G′ is of order 1, 2, 4, 8, 16, 3, 6, 12, or 24, then as
above, we have cd(G′) ⊆ {1, 2, 3}. Hence, by Lemma 3.10, G is of automorphic type.

Let |G′| be 48. Then [23, Theorem II. 6.2] tells us that G′′ is of order 16
and abelian. As now G/G′′ is supersolvable, Proposition 2.3 asserts that for every
χ ∈ Irr(G), there exists a subgroup H with G′′ ≤ H ≤ G and an irreducible
character ψ ∈ Irr(H) such that IndGH ψ = χ and ψ|G′′ ∈ Irr(G′′), and hence
cd(G) ⊆ {1, 2, 3, 6}. We note that if χ(1) = 6, then it must be induced from a
linear character of G′′, which is normal in G. Thus, Theorem 3.1 implies that χ is
of automorphic type. Again, as G is monomial and solvable, if χ(1) ≤ 3, then χ is
of automorphic type.

Now, it remains to consider the case |G′| = 32. Let Φ(G′) stand for the Frattini
subgroup of G′, i.e. the intersection of all maximal subgroups of G′. We recall
that a p-group is termed extra-special if its center, derived subgroup, and Frattini
subgroup all coincide. By the classification due to van der Waall [23, Theorem II.
6.5], we have either:

(1) G is not monomial if and only if Z(G′) is of order 8 and Φ(G′) is of order 8 or
2 [23, Cases (4-a) and (4-b)]; or

(2) G is monomial if and only if G′ = Q ∗Q, the extra-special group of order 32 of
(+)-type [23, Case (4-d-2)].

For the first case, we note that if |Z(G′)| = |Φ(G′)| = 8, then van der Waall
showed that |G′′| = 2, which implies thatG′ ∈ Γ2. (Here, Γ2 is the Hall-Senior family
of groups with the derived subgroups isomorphic to C2 and the inner automorphism
groups isomorphic to V4.) It can be checked, by using the computer algebra package
[7] (or even rather easily, but more tediously, by hand), that it has GAP ID [32, 2]
and cd(G′) = {1, 2} in this case. On the other hand, if |Z(G′)| = 8 and |Φ(G′)| = 2,
then van der Waall proved that G′ 	 C2

2 × Q, which gives cd(G′) = {1, 2}. Thus,
G is nearly nilpotent and of automorphic type.

For the second case, van der Waall (see [23, pp. 125–126]) showed that for every
irreducible representation ρ of G, either

(1) ρ can be regarded as a representation of G/Z(G′); or
(2) ρ is faithful, monomial, and of dimension 4.

As remarked by van der Waall, G/Z(G′) has the abelian derived subgroup and
hence is monomial. We further note that this remark, in fact, tells us that G/Z(G′)
is metabelian and hence of automorphic type.
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Finally, we assume ρ is faithful. Thus, ρ(G) is a solvable subgroup of order 96 of
GL4(C). Since any scalar matrix in ρ(G) lies in its center Z(ρ(G)) and Schur’s lemma
implies that Z(ρ(G)) is contained inside the scalar matrices, the projective image of
ρ in PGL4(C) is isomorphic to ρ(G)/Z(ρ(G)) 	 G/Z(G). Since G = (Q∗Q)�C3, as
may be checked in GAP [7] for example, one can deduce that G/Z(G) is isomorphic
to V4 �A4. By a result of Martin, Proposition 3.6, ρ is of automorphic type which
completes the proof.

5. Groups of Order Between 100 and 200

In this section, we will further investigate the automorphy of groups of order between
100 and 200. First, as discussed before, by the results of Arthur–Clozel and Hölder
and Corollaries 3.11 and 3.12, if G is of prime power order, square-free order, or
order pq, p2q, p2q2, 8p, 16p, or 27p, then G is of automorphic type

Moreover, for G of order 126, 132, 140, 150, 156, 180, or 198, we know that if
G is non-solvable then G 	 A5 × C3. On the other hand, by Proposition 2.1, G is
either metabelian or of the form G = G{2}′ �G{2}. We note that G{2}′ is either of
order 63, 33, 35, 75, 39, 45, or 99. If |G{2}′ | is 33, 35, 45, or 99, then G{2}′ is abelian
and G is hence metabelian. Also, as we can require G{2}′ = A�B where B contains
a Sylow 3-subgroup of G, if G is of order 63, 75, or 39, then cd(G{2}′) ⊆ {1, 3}.
Since none of 126, 150, and 156 is divisible by 36, Lemma 3.10 yields these groups
are of automorphic type.

For |G| = 162, we know that G is supersolvable and its Sylow 3-subgroup P

(say) is normal. By Lemma 2.6, cd(P ) ⊆ {1, 3}. Again, Lemma 3.10 asserts G is of
automorphic type.

For |G| = 200, Sylow’s theory tells us that the Sylow 5-subgroup of G is normal.
Therefore, G is nearly nilpotent.

Thus, we only have to consider the following cases:

(1) |G| = 108 = 22 · 33

(2) |G| = 120 = 23 · 3 · 5
(3) |G| = 144 = 24 · 32

(4) |G| = 160 = 25 · 5
(5) |G| = 168 = 23 · 3 · 7
(6) |G| = 192 = 26 · 3

5.1. The case |G| = 108

As remarked by van der Waall [24], G is monomial unless |G′| = 27 or |G′| = 54
where the latter possibility cannot occur. Also, as shown by van der Waall, there is
exactly one non-monomial group G of order 108 which has GAP ID [108, 15] and
cd(G) = {1, 3, 4}. This non-monomial group presents an example of 3-dimensional
Galois representations that Artin’s conjecture is unknown. We further note that if
|G′| is 1, 2, 4, 3, 6, 12, 9, 18, 36, or 27, then cd(G′) ⊆ {1, 2, 3, 4} where 4 ∈ cd(G′)
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only if |G′| = 36 and |G′′| = 9. However, as may be checked in GAP, G with
|G′| = 36 does not exist.

Thus, unless |G′| is 27, G is monomial. For cd(G′) ⊆ {1, 2, 3}, applying Propo-
sition 2.4, for every χ ∈ Irr(G), there is a subnormal subgroup H with G′ ≤ H

and ψ ∈ Irr(H) such that IndGH ψ = χ and ψ|G′ ∈ Irr(G′). As all proper subgroups
of G have been shown to be of automorphic type, Theorem 3.1 tells us that if
H �= G, then χ is of automorphic type. So we may assume H = G. Now as G
is monomial, the works of Artin, Langlands–Tunnell, Arthur–Clozel, and Jacquet–
Piatetski–Shapiro–Shalika imply that χ is of automorphic type.

Also, if |G′| = 27, G has the derived subgroup isomorphic to either C27, C3
3 ,

C9 × C3, or C2
3 � C3. Clearly, for the first three cases, G is metabelian and of

automorphic type.
If G′ 	 C2

3 �C3, then cd(G′) ⊆ {1, 3}. Thus, Proposition 2.4 implies that cd(G)
is contained in {1, 2, 3, 4, 6}. Moreover, for χ ∈ Irr(G) of degree 2, 4, or 6, χ must
be induced from a character of a subnormal subgroup of G. Again, as all proper
subgroups of G have been shown to be of automorphic type, Theorem 3.1 yields χ
is of automorphic type. Also, if G is monomial, then its irreducible characters of
degree 3 must be of automorphic type.

5.2. The case |G| = 120

For non-monomial G of order 120, van der Waall [24] showed that G is either
C5 × SL2(F3), C2 × A5, S5, or SL2(F5), where the later three cases are only non-
solvable groups of order 120. We also note that the functoriality of GL(n)×GL(1)
tells us that C5 × SL2(F3) is of automorphic type.

Now we may assume G is monomial (and solvable) and look at its derived
subgroup. As shown by van der Waall, |G′| cannot be 24 nor 40. In other words,
G′ is possibly of order 1, 2, 4, 8, 3, 6, 12, 5, 10, 20, 15, 30, or 60. It is not hard to
see that as before, cd(G′) ⊆ {1, 2, 3} unless |G′| is 20 or 60. However, as one can
check by GAP or hand, if G′ is of order 20, then G′ is abelian. Also, if |G′| = 60,
then G′ 	 C5 × A4. Thus, cd(G′) = {1, 3} in this case. Now, the automorphy of G
follows from Lemma 3.10.

5.3. The case |G| = 144

Suppose |G| is 144. By [24, Theorem 4.1], |G′| cannot be 48. Also, if G′ is of order
1, 2, 4, 8, 16, 3, 6, 12, 9, or 18, then as above, we have cd(G′) ⊆ {1, 2, 3}. Since G
is either monomial (unless 8 | |G′|) or nearly nilpotent in these cases, the argument
used in the second paragraph of Sec. 5.1 yields the automorphy of G.

On the other hand, if |G′| = 36, cd(G′) ⊆ {1, 2, 3, 4} where 4 ∈ cd(G′) only if G′′

is of order 9. Similarly, if 4 /∈ cd(G′), G is of automorphic type. Otherwise, G/G′′

is of order 16 and G is nearly nilpotent.
According to [24, Theorem 4.6], if G′ is equal to 24, then G′ is isomorphic to

SL2(F3) or C3 ×Q. For the latter possibility, G is nearly nilpotent. Therefore, we
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may assume G′ 	 SL2(F3). In this case, G′′ is of order 8 and cd(G′) = {1, 2, 3}. Via
Proposition 2.4, for any χ ∈ Irr(G), there exist a subnormal group H containing G′

and ψ ∈ Irr(H) with ψ(1) ≤ 3 such that χ = IndGH ψ. If H is a proper subgroup,
then Arthur–Clozel’s automorphic induction and the fact that we have derived the
automorphy for all proper subgroups of G imply that χ is of automorphic type.
Thus, it suffices to consider the case when H = G and χ(1) ≤ 3. Furthermore, as
G/G′′ is supersolvable, Proposition 2.3 tells us that if χ ∈ Irr(G) is of degree 3, then
it is monomial and automorphic. Hence, for χ(1) ≤ 3, χ is of automorphic type.

Finally, assume |G′| = 72. By [24, Theorem 4.3], G′ is either C3 × SL2(F3) or
Q � C9. In both cases, G/G′′ is supersolvable and |G′′| = 8. Using GAP, we find
that cd(G) = {1, 2, 3, 4, 6}. As above, Proposition 2.3 implies that if χ ∈ Irr(G)
is of degree at most 3, then χ is of automorphic type. On the other hand, for
χ(1) = 4, as |G/G′′| = 18 and 4 � 18, Proposition 2.3 yields that it is induced from
a 2-dimensional character of a normal subgroup, and hence of automorphic type.
Thus, we may assume χ(1) = 6. As cd(C3 ×SL2(F3)) = cd(Q�C9) = {1, 2, 3} and
|G/G′| = 2, Proposition 2.4 asserts that χ must be induced from a 3-dimensional
character of G′. Since G′ is normal in G and has been shown to be of automorphic
type, applying Theorem 3.1 completes the proof.

5.4. The case |G| = 160

Assume G is solvable and of order 160. By [24, Theorem 5.2], if |G′| = 40, then G′

is cyclic. Similarly, one can show that if |G′| = 20, then G′ is abelian (which can be
examined by GAP as well). Therefore, if |G′| is not 32 nor 80, then cd(G′) ⊆ {1, 2}
and G is nearly nilpotent.

For |G′| = 80, van der Waall derived that the Sylow 2-subgroup P of G′ is
normal and elementary abelian. Hence, G/P is supersolvable, and G is monomial.
However, there is a 5-dimensional character of G which is not induced from any
(sub)normal subgroup of G. Indeed, this group has GAP ID [160, 234].

If G′ is of order 32, van der Waall showed that G′ = Q ∗ D, the extra-special
group of order 32 of (−)-type. Moreover, for every irreducible representation ρ of
G, either

(1) ρ can be regarded as a representation of G/Z(G′); or
(2) ρ is non-monomial and of dimension 4.

As mentioned by van der Waall, Z(G′) = G′′ is of order 2. Thus, G/Z(G′) is
metabelian and hence of automorphic type. Therefore, we may just consider the
second case. First, if ρ is not faithful, then it can be seen as a representation of
G/Ker(ρ). Since all groups of order dividing (but not equal to) 160 have been
shown to be of automorphic type, ρ is of automorphic type.

Thus, we may assume ρ is faithful, and ρ(G) is a solvable subgroup of order 160
of GL4(C). By Schur’s lemma, the projective image of ρ in PGL4(C) is isomorphic
to ρ(G)/Z(ρ(G)) 	 G/Z(G). Since G = (Q∗D)�C3, as may be checked in GAP [7]
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for example, one can deduce that G/Z(G) is isomorphic to E24 � C5. By Martin’s
result (Proposition 3.5), ρ is of automorphic type.

5.5. The case |G| = 168

First of all, we know that there is only one non-solvable group, GL3(F2), of order
168, and hence we may assume G is solvable. For G′ of order 1, 2, 4, 8, 3, 6, 12, 24,
7, 14, 28, or 21, cd(G′) ⊆ {1, 2, 3}. Also, if |G′| = 42 or |G′| = 84, then it can be
checked by [7] that either G′ is abelian or cd(G′) = {1, 3} (in fact, their GAP ID
are [42, 6] and [84, 10], respectively). Since 36 � 168, Lemma 3.10 asserts that G is
of automorphic type in these cases.

Now it remains to consider the case |G′| = 56. By [25, Theorem 7.3], G′′ is either
of order 8 or 2. For the latter case, van der Waall noted that G′ is isomorphic to
C7 × Q; and hence G is nearly nilpotent. On the other hand, if |G′′| = 8, then it
is elementary abelian and G is monomial. However, there exists a 7-dimensional
character of G which is not induced from any (sub)normal subgroup of G. In fact,
this group G has GAP ID [168, 43], where cd(G) = {1, 3, 7}.

5.6. The case |G| = 192

In this section, G means a group of order 192. As before, if G′ is of order 1, 2,
4, 8, 16, 3, 6, 12, or 24, then cd(G′) ⊆ {1, 2, 3}. For |G′| = 48, it can be checked
that cd(G′) ⊆ {1, 2, 3} by using [25, Theorem 8.4] or GAP. Moreover, as 36 � 192,
Lemma 3.10 asserts that G is of automorphic type in these cases.

It remains to consider that |G′| is equal to 32, 64, or 96.
Now assume |G′| = 32. Then [25, Theorem 8.6] says

(1) G is not monomial if and only if G′ is isomorphic to C2
2 ×Q or

〈a, b | a4 = b4 = c2 = 1, [a, b] = c, [a, c] = [b, c] = 1〉.
(2) G is monomial if and only if G′ = Q ∗Q, the extra-special group of order 32 of

(+)-type.

For the first case, G′ has GAP ID [32, 2] or [32, 47] and cd(G′) = {1, 2}. Thus,
G is nearly nilpotent. For the second case, G has GAP ID [192, 201], [192, 202],
[192, 1508], or [192, 1509]. For the latter two possibilities, cd(G) = {1, 3, 4}. By
Lemma 2.9, we only need to deal with χ ∈ Irr(G), afforded by ρ, of degree 4. As
discussed in Sec. 5.4, if ρ is not faithful, then it can be seen as a representation of
G/Ker(ρ). Since all groups of order dividing (but not equal to) 192 have been shown
to be of automorphic type, ρ is of automorphic type. If ρ is faithful, the projective
image of ρ in PGL4(C) is isomorphic to ρ(G)/Z(ρ(G)) 	 G/Z(G). Again, as may
be checked in GAP [7] for example, one can deduce that G/Z(G) is isomorphic to
V4 �A4. Now, Proposition 3.6 tells us that ρ is of automorphic type.

If G has GAP ID [192, 201] or [192, 202], then cd(G) = {1, 3, 4, 6}. As now
cd(G′) = {1, 4} and G/G′ is an abelian group of order 6, if χ ∈ Irr(G) has degree
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Table 1. The case |G| = 192 with |G′| = 64.

G cd(G) G′ cd(G′) G/Z(G)

[192, 3] — [64, 2] {1} —

[192, 4] {1, 2, 3, 4, 6} [64, 19] {1, 2, 4} V4 · A4

[192, 1020] — [64, 192] {1} —

[192, 1021] {1, 2, 3, 4, 6} [64, 224] {1, 2, 4} V4 � A4

[192, 1022] {1, 2, 3, 4, 6} [64, 239] {1, 2, 4} V4 � A4

[192, 1023] {1, 3, 12} [64, 242] {1, 4} —

[192, 1024] {1, 3, 4} [64, 242] {1, 4} V4 � A4

[192, 1025] {1, 3, 12} [64, 245] {1, 4} —

[192, 1541] — [64, 267] {1} —

3, it is monomial. Also, if χ(1) = 6, then GAP library tells us that χ is not faithful
and hence of automorphic type. On the other hand, in each case, all irreducible 4-
dimensional characters of G are faithful and G/Z(G) has GAP ID [96, 70]. Although
here we no longer have any analogue of a result of Martin (Proposition 3.6), GAP
tells us that all irreducible 4-dimensional representations of these two groups are of
GO(4)-type, and thus of automorphic type by Proposition 3.4.

We now consider the case |G′| = 64. By GAP, we have Table 1.
For the first, third, and last cases, G is metabelian and hence of automorphic

type. For the remaining cases, as |G/G′| = 3, if χ ∈ Irr(G) is of order 3, 6, or 12, then
it must be induced from G′ and hence of automorphic type. Also, by Proposition 3.3,
we now only need to consider the case χ(1) = 4. By a similar argument as above,
it suffices to consider faithful irreducible 4-dimensional representations ρ of G. For
such instances, G/Z(G) must be an extension of A4 by V4 and Proposition 3.6
implies that ρ is of automorphic type.

Finally, it remains to consider the case |G′| = 96. Again, the GAP library gives
Table 2.

As mentioned in Table 2 (or by [25, Theorem 8.7]), G′′ is of order 32 and G/G′′

is supersolvable. Thus, every irreducible 3-dimensional character of G is monomial.

Table 2. The case |G| = 192 with |G′| = 96.

G cd(G) G′ cd(G′) G′′ cd(G′′)

[192, 180] {1, 2, 3, 4, 6} [96, 3] {1, 2, 3, 6} [32, 2] {1, 2}
[192, 181] {1, 2, 3, 4, 6} [96, 3] {1, 2, 3, 6} [32, 2] {1, 2}
[192, 1489] {1, 2, 3, 4, 6} [96, 203] {1, 2, 3, 6} [32, 47] {1, 2}
[192, 1490] {1, 2, 3, 4, 6} [96, 203] {1, 2, 3, 6} [32, 47] {1, 2}
[192, 1491] {1, 2, 3, 4, 6, 8} [96, 204] {1, 3, 4} [32, 49] {1, 4}
[192, 1492] {1, 2, 3, 4, 6, 8} [96, 204] {1, 3, 4} [32, 49] {1, 4}
[192, 1493] {1, 2, 3, 4, 6, 8} [96, 204] {1, 3, 4} [32, 49] {1, 4}
[192, 1494] {1, 2, 3, 4, 6, 8} [96, 204] {1, 3, 4} [32, 49] {1, 4}
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As a consequence, if χ ∈ Irr(G) is of degree at most 3, then it is of automorphic
type.

For the first four cases, it is clear that if χ ∈ Irr(G) is of degree 4, then it must
be induced from a 2-dimensional character of G′ (of index 2 in G), and hence it is of
automorphic type. According to GAP, each of these four groups has three irreducible
6-dimensional characters χ1, χ2, and χ3 (say) where χ1 and χ2 are tensor products
of irreducible 2-dimensional characters and irreducible 3-dimensional characters (of
G), and χ3|G′ is reducible. As all irreducible characters of G of degree at most 3
are of automorphic type, the functoriality of GL(2) × GL(3), proved by Kim and
Shahidi [13], implies that χ1 and χ2 are of automorphic type. On the other hand,
by Proposition 2.4, χ3 is induced from a 3-dimensional character of G′. Thus, χ3 is
of automorphic type.

Similarly, for the last four cases, if χ ∈ Irr(G) is of degree 6 or 8, then it must
be induced from a character of G′ since |G/G′| = 2. As any group of order 96 is
of automorphic type, Theorem 3.1 implies that χ is of automorphic type in this
case. Therefore, it only remains irreducible characters of degree 4. Indeed, as may
be checked in GAP, each group has exactly two faithful irreducible 4-dimensional
characters. In all these instances, G/Z(G) has GAP ID [96, 227]. Unfortunately, we
do not have any analogue of a result of Martin (again). However, GAP tells us that
for these groups, their irreducible 4-dimensional representations are all imprimitive
and essentially self-dual (where if G has GAP ID [192, 1491] or [192, 1493], then its
irreducible 4-dimensional representations are indeed of GO(4)-type). Now, applying
a result of Martin and Ramakrishnan (Proposition 3.7) completes the proof.
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