Chromatic numbers of distance graphs with distance sets missing multiples

Walter Deuber
Facultät für Mathematik
Universität Bielefeld
33501, Bielefeld, Germany

Xuding Zhu
Department of Applied Mathematics
National Sun Yat-sen University
Kaoshing, Taiwan 80424
Email: zhu@math.nsysu.edu.tw

March 5, 2003

Abstract

Given positive integers \(m, k \) and \(s \) with \(m > ks \), let \(D_{m,k,s} \) represents the set \(\{1, 2, \ldots, m\} - \{k, 2k, \ldots, sk\} \). The distance graph \(G(Z, D_{m,k,s}) \) has as vertex set all integers \(Z \) and edges connecting \(i \) and \(j \) whenever \(|i - j| \in D_{m,k,s} \). This paper investigates the chromatic numbers of the distance graphs \(G(Z, D_{m,k,s}) \).

It is proved that if \(m \geq (s+1)k \), then \(\chi(G(Z, D_{m,k,s}) \leq [(m+sk+1)/(s+1)]+1 \), while the lower bound \(\chi(G(Z, D_{m,k,s}) \geq [(m + sk + 1)/(s + 1)] \) was known. This upper bound improves previous known upper bounds.

1 Introduction

Given a set \(D \) of positive integers, the distance graph \(G(Z, D) \) has all integers as vertices; and two vertices are adjacent if their difference falls within \(D \), that is, the vertex set is \(Z \) and the edge set is \(\{uv : |u - v| \in D\} \). We call \(D \) the distance set. The chromatic number of \(G(Z, D) \) is denoted by \(\chi(Z, D) \).

For different types of distance sets \(D \), the problem of determining \(\chi(Z, D) \) has been studied extensively (see [2, 3, 4, 5, 6, 7, 8, 11, 16, 14, 17].) For instance, suppose \(D \) is a subset of prime numbers and \(\{2, 3\} \in D \), Eggleton, Erdős and Skilton [8] proved \(\chi(Z, D) \) is either 3 or 4. The problem of classifying \(G(Z, D) \) with distance sets \(D \) of primes into chromatic number 3 or 4 was studied by Eggleton, Erdős and Skilton [8],
by Voigt [15], and by Voigt and Walther [16]. However, a complete classification is not obtained yet.

The case that \(D \) contains at most three integers were studied by Eggleton, Erdős and Skilton [5], Chen, Chang, and Huang [3], Voigt [14], and Zhu [17]. The chromatic number of such distance graphs has now been completely determined [17].

Given integers \(m, k \) and \(s \) with \(m > ks \), let \(D_{m,k,s} \) denote the distance set \(D_{m,k,s} = \{1, 2, 3, \ldots, m\} - \{k, 2k, 3k, \ldots, sk\} \). This article studies the chromatic number \(\chi(Z, D_{m,k,s}) \) of \(G(Z, D_{m,k,s}) \).

For \(s = 1 \), the chromatic number of \(G(Z, D_{m,k,1}) \) was first studied by Eggleton, Erdős and Skilton [5], in which \(\chi(Z, D_{m,k,1}) \) was solved as \(k = 1 \) and partially solved as \(k = 2 \). The same results for the case \(k = 1 \) were also obtained in [11] by a different approach. If \(k \) is an odd number, or \(k = 2 \), or \(k = 4 \), then \(\chi(Z, D_{m,k,1}) \) were determined in [12]. Finally, the exact values of \(\chi(Z, D_{m,k,1}) \) for all \(m \) and \(k \) were determined in [2]. For \(s = 2 \), the chromatic number of \(G(Z, D_{m,k,1}) \) was recently determined in [13]. Some results concerning the problem for general \(s \) were also obtained in [13]. In this paper, we extend the study of \(\chi(Z, D_{m,k,s}) \) for general values of \(s \).

Note that the chromatic number is easy to determine if \(m < (s + 1)k \): Define a coloring \(f \) of \(G(Z, D_{m,k,s}) \) by: for any \(x \in Z \), \(f(x) = y \pmod k \), \(1 \leq y \leq k \). Since \(D_{m,k,s} \) contains no multiples of \(k \), it can be easily verified that \(f \) is a proper coloring. Thus, \(\chi(Z, D_{m,k,s}) \leq k \). As any consecutive \(k \) vertices in \(G(Z, D_{m,k,s}) \) form a complete graph, \(\chi(Z, D_{m,k,s}) \geq k \). This implies \(\chi(Z, D_{m,k,s}) = k \), if \(m < (s + 1)k \). Therefore, throughout the article, we shall assume \(m \geq (s + 1)k \).

We prove in this paper that for any integers \(m, k, s \), \(\chi(Z, D_{m,k,s}) \leq \lceil (m + sk + 1)/(s + 1) \rceil + 1 \) hold for arbitrary \(s \). Combined with the lower bound \(\chi(Z, D_{m,k,s}) \geq \lfloor (m + sk + 1)/(s + 1) \rfloor \) obtained in [12], we conclude that for any values of \(m, k, s \), either \(\chi(Z, D_{m,k,s}) = \lceil (m + sk + 1)/(s + 1) \rceil + 1 \) or \(\chi(Z, D_{m,k,s}) = \lfloor (m + sk + 1)/(s + 1) \rfloor \).
2 An upper bound

We shall use extensively the pre-coloring method introduced in [13] (a simpler version of this coloring method was used in [2]).

It is known and easy to verify, for any distance set \(D \), \(\chi(Z, D) = \chi(Z^+ \cup \{0\}, D) \), where \(G(Z^+ \cup \{0\}, D) \) is the subgraph of \(G(Z, D) \) induced by the set of non-negative integers \(Z^+ \cup \{0\} \). Therefore, to color the graph \(G(Z, D_{m,k,s}) \), it suffices to color the subgraph of \(G(Z, D_{m,k,s}) \) induced by \(Z^+ \cup \{0\} \).

There are two steps in the pre-coloring method. First, we partition the set of non-negative integers \(Z^+ \cup \{0\} \) into \(s + 1 \) parts by a mapping \(c : Z^+ \cup \{0\} \rightarrow \{0, 1, 2, \cdots, s\} \). Second, for each non-negative integer \(x \), according to the value of \(c(x) \), we assign a color to \(x \) by the rule defined as follows.

Definition 1 Suppose \(m, k, s \) are positive integers. For a given mapping \(c : Z^+ \cup \{0\} \rightarrow \{0, 1, 2, \cdots, s\} \), define a coloring \(c' \) of \(Z^+ \cup \{0\} \) recursively by:

\[
c'(j) = \begin{cases}
 j, & \text{if } j < k; \\
 c(j - k), & \text{if } j \geq k \text{ and } c(j) \neq 0; \\
 n, & \text{if } j \geq k \text{ and } c(j) = 0,
\end{cases}
\]

where \(n \) is the smallest non-negative integer (color) not been used in the \(m \) vertices preceding \(j \), that is, \(n = \min \{ t \in Z^+ \cup \{0\} : c'(j - i) \neq t \text{ for } i = 1, 2, \cdots, m \} \).

Note that \(c' \) defined above is uniquely determined by \(c \). We call \(c \) the pre-coloring, and \(c' \) the coloring induced by \(c \). For any \(x \in Z^+ \cup \{0\} \), \(c(x) \) and \(c'(x) \) are called the pre-color and the color of \(x \), respectively.

The following Lemmas are proved in [13]:

Lemma 2 Suppose \(c \) is a pre-coloring of \(Z^+ \cup \{0\} \). If for any integer \(j \geq sk \), \(c(j), c(j - k), c(j - 2k), \cdots, c(j - sk) \) are all distinct, then the induced coloring \(c' \) is a proper coloring for \(G(Z, D_{m,k,s}) \).
Lemma 3 Suppose c is a pre-coloring and c' is the induced coloring. Then the number of colors used by c' is $k + \ell$, where ℓ is the maximum number of vertices with pre-color 0 among any $m - k + 1$ consecutive integers greater than k.

Lemma 4 Given integers m, k and s, $\chi(Z, D_{m,k,s}) \leq n$ if there exists a pre-coloring c such that the following two conditions are satisfied:

1. for any integer $j \geq sk$, $c(j), c(j + k), c(j + 2k), \ldots, c(j + sk)$ are all distinct, and

2. among any consecutive $m - k + 1$ integers, there are at most $n - k$ vertices with pre-color 0.

Theorem 5 For any integers m, k, s with $m \geq (s + 1)k$, we have $\chi(Z, D_{m,k,s}) \leq \lfloor (m+sk+1)/(s+1) \rfloor + 1$. Moreover, if $m-k+1 \equiv 1 \pmod{s+1}$ then $\chi(Z, D_{m,k,s}) = \lfloor (m+sk+1)/(s+1) \rfloor$.

Proof. It was proved in [13] that $\chi(Z, D_{m,k,s}) \geq \lfloor (m+sk+1)/(s+1) \rfloor$. Therefore by Lemma 4, it suffices to find a pre-coloring c of $Z^+ \cup \{0\}$ such that for any integer $j \geq sk$, $c(j), c(j - k), c(j - 2k), \ldots, c(j - sk)$ are all distinct, and that among any consecutive $m - k + 1$ integers, there are at most $n - k$ vertices with pre-color 0, where $n = \lfloor (m+sk+1)/(s+1) \rfloor$ if $m-k+1 \equiv 1 \pmod{s+1}$ and $n = \lfloor (m+sk+1)/(s+1) \rfloor + 1$ otherwise.

Let $d = (s + 1, k)$, and let $q = (s + 1)k/d$. For any integer i, we write i in the form $i = u(s + 1)k + qx + (s + 1)y + z$, where u, x, y, z are non-negative integers such that $x < d, y < k/d$ and $z < s + 1$. Obviously u, x, y, z are uniquely determined by i. Let $c(i) = x + z \pmod{s + 1}$. We shall prove that c satisfies the conditions above.

First for any j, we prove that $j, j + k, \ldots, j + sk$ have different pre-colors.

Assume to the contrary that $c(j + ak) = c(j + bk)$ for some $0 \leq a < b \leq s$. Suppose $j + ak = u(s + 1)k + qx + (s + 1)y + z$ and that $j + bk = u'(s + 1)k + qx' +$
\[(s + 1)y' + z'.\] Then
\[(b - a)k = (u' - u)(s + 1)k + (x' - x)q + (y' - y)(s + 1) + (z' - z).\]

Since \(d\) divides each of the terms \((b - a)k, (u' - u)(s + 1)k, (x' - x)q, (y' - y)(s + 1)\), it follows that \(d\) divides \(z' - z\). Because \(c(j + ak) = x + z \pmod{s + 1} = c(j + bk) = x' + z' \pmod{s + 1}\), it follows that \(z' - z = x - x' \pmod{s + 1}\). As \(d\) divides both \(z' - z\) and \(s + 1\), we conclude that \(d\) divides \(x - x'\). As \(|x - x'| < d\), it follows that \(x - x' = 0\). Therefore \(z' - z = 0 \pmod{s + 1}\), which implies that \(z = z'\). Thus \((b - a)k - (u' - u)(s + 1)k = (s + 1)(y' - y)\), which implies that \(k\) divides \((s + 1)(y' - y)\).

Since \(\left\lfloor (s - 1)/d, k \right\rfloor = 1\), we conclude that \(k\) divides \(d(y' - y)\). However \(|y' - y| < k/d\), i.e., \(|k(y' - y)| < k\), therefore \(y' - y = 0\). Hence \((b - a)k = (u' - u)(s + 1)k\). This implies that \(u' - u = 0 = b - a\) (as \(0 \leq (b - a) \leq s\)), contrary to the assumption that \(b > a\).

Next we prove that among any consecutive \(m - k + 1\) integers, there are at most \(n - k\) vertices with pre-color 0, where \(n = \left\lfloor (m + sk + 1)/(s + 1) \right\rfloor\) if \(m - k + 1 = 1 \pmod{s + 1}\), and \(n = \left\lceil (m + sk + 1)/(s + 1) \right\rceil + 1\) otherwise.

Divide the set \(Z^+ \cup \{0\}\) into segments \(I_0, I_1, \ldots\), such that \(I_j = \{j(s + 1), j(s + 1) + 1, \ldots, (j + 1)(s + 1) - 1\}\). It follows from the definition of the pre-coloring \(c\) that each segment \(I_j\) contains exactly one element of pre-color 0. Let \(X\) be a set of \(m - k + 1\) consecutive integers. If \(m - k + 1 = 1 \pmod{s + 1}\), then \(X\) intersect at most \(\left\lfloor (m + sk + 1)/(s + 1) \right\rfloor\) of the segments \(I_j\), hence it contains at most \(n = \left\lfloor (m + sk + 1)/(s + 1) \right\rfloor\) vertices of pre-color 0. In general, i.e., if \(m - k + 1 \neq 1 \pmod{s + 1}\), \(X\) intersect at most \(\left\lceil (m + sk + 1)/(s + 1) \right\rceil + 1\) of the segments \(I_j\), hence it contains at most \(\left\lceil (m + sk + 1)/(s + 1) \right\rceil + 1\) vertices of pre-color 0.

It was proved in [13] that for any integers \(m, k, s\) with \(m \geq (s + 1)k\), \(\chi_f(Z, D_{m,k,s}) = (m + sk + 1)/(s + 1)\), which implies that \(\chi(Z, D_{m,k,s}) \geq \left\lfloor (m + sk + 1)/(s + 1) \right\rfloor\). Therefore when \(m \geq (s + 1)k\), \(\chi(Z, D_{m,k,s})\) is equal to either \(\left\lfloor (m + sk + 1)/(s + 1) \right\rfloor\) or \(\left\lceil (m + sk + 1)/(s + 1) \right\rceil + 1\). The results in [13], as well as the results in Section 3 of
this paper, show that both the upper bound and lower bound are sharp. It remains an open problem to determine for which $D_{m,k,s}$ the lower bound is attained, and for which $D_{m,k,s}$ the upper bound is attained. For $s = 1$ and $s = 2$, the problem is completely solved in [2] and [13] respectively. The results in [13] shows that the problem is more difficult when $s + 1$ is not a prime. In the next section, we consider the case $s = 3$, and present some partial solutions.

3 $s=3$

In this section, we consider the case that $s = 3$. We shall divide the discussion into a few cases, according to value of $k \pmod{4}$.

If k is odd, then it follows from a result (Theorem 13) in [13] that $\chi(Z, D_{m,k,3}) = [(m + sk + 1)/(s + 1)]$. In the following, we assume that k is even.

Our next two theorems give the answer for the case $m - k + 1 = 2 \pmod{4}$.

Theorem 6 If $k = 4t + 2$ for some integer t and $m - k + 1 \neq 0 \pmod{4}$, then $\chi(Z, D_{m,k,3}) = [(m + 3k + 1)/4]$.

Proof. Define a pre-coloring c as follows: for any integer i, write i in the form $i = 4ku + 2kx + 4y + z$, where u, x, y, z are non-negative integers such that $x \leq 1$, $y \leq 2t$ and $z \leq 3$. If $x = 0$, then let $c(i) = z \pmod{4}$; if $x = 1$, then let $c(x) = 3 + z \pmod{4}$.

In the following we show that for any integer $j \geq 3k$, $c(j), c(j + k), c(j + 2k), c(j + 3k)$ are all distinct, and that among any consecutive $m - k + 1$ integers, there are at most $n - k$ vertices with pre-color 0, where $n = [(m + sk + 1)/(s + 1)]$.

Assume to the contrary that there exist $j \geq 0$ and $0 \leq a < b \leq 3$ such that $c(j + ak) = c(j + bk)$. Suppose $j + ak = 4ku + 2kx + 4y + z$, $j + bk = 4ku' + 2kx' + 4y' + z'$. Then $j + bk - (j + ak) = (b - a)k = 4k(u' - u) + 2k(x' - x) + 4(y' - y) + (z' - z)$. As each of the terms $(b - a)k, 4k(u' - u), 2k(x' - x), 4(y' - y)$ is even, we conclude that
\[z' - z \] is even, i.e., \(z, z' \) have the same parity. Because \(c(j + ak) = c(j + bk) \), it follows from the definition of \(c \) that \(x = x' \), and hence \(z = z' \). This implies that \(k = 4t + 2 \) divides \(2(y' - y) \), which implies that \(y' - y = 0 \) (because \(|y' - y| < k/2 \)). Therefore \(b - a = 4(u' - u) \). This implies that \(u' - u = 0 \) (because \(0 \leq b - a \leq 3 \)), and hence \(b = a \), contrary to our assumption.

Next we show that among any consecutive \(m - k + 1 \) integers, there are at most \(n - k \) vertices with pre-color 0, where \(n = \lceil (m + sk + 1)/(s + 1) \rceil \). Let \(X \) be a set of \(m - k + 1 \) consecutive integers. We divide the set \(Z^+ \cup \{0\} \) into segments \(I_j \), where \(I_j = \{4j, 4j + 1, 4j + 2, 4j + 3\} \). Then each \(I_j \) has exactly one vertex of pre-color 0. Indeed, the pre-colors of the elements of \(I_j \) are either 0123 or 3012 (in that order). The set \(X \) intersects either with \(n - k \) of the segments \(I_j \), or with \(n - k + 1 \) of the segments \(I_j \). In the former case, of course \(X \) contains at most \(n - k \) elements of pre-color 0. In the latter case, assume the \(n - k + 1 \) segments \(I_j \) that intersects \(X \) are \(I_{q}, I_{q+1}, \ldots, I_{q+n-k} \). Since \(|X| = m - k + 1 \not\equiv 0 \pmod{4} \), we conclude that \(|X \cap I_q| \leq 2 \). Note that the pre-colors of the elements of segment \(I_q \) are either 0123 or 3012, hence none of the last two elements of \(I_q \) are of pre-color 0. Therefore \(X \cap I_q \) contains no vertex of pre-color 0. So \(X \) contains at most \(n - k \) vertices of pre-color 0.

Theorem 7 Suppose \(k = 4t + 2 \) for some integer \(t \), and that \(m - k + 1 = 4p \) for some integer \(p \). Then \(\chi(Z, D_{m,k,3}) = \lceil (m + 3k + 1)/4 \rceil \) if \(p \) is even, and \(\chi(Z, D_{m,k,3}) = \lceil (m + 3k + 1)/4 \rceil + 1 \) if \(p \) is odd.

Proof. First consider the case that \(p \) is odd. Assume to the contrary that \(\chi(Z, D_{m,k,3}) = (m + 3k + 1)/4 \). For any two integers \(i \) and \(j \), let \(G[i, j] \) be the subgraph of \(G(Z, D_{m,k,3}) \) induced by vertices \(\{i + 1, i + 2, \ldots, j\} \). Then for any integer \(i \), the graph \(G[i, i + m + 3k + 1] \) has \(m + 3k + 1 \) vertices and maximum independent set of size 4. Since \(f \) is an \((m + 3k + 1)/4 \)-coloring, exactly 4 vertices of \(G[i, i + m + 3k + 1] \)
are colored by the same color. It follows that \(f(i) = f(i + m + 3k + 1) \) for any integer \(i \).

Define a circulant graph \(G \) on the set \(\{0, 1, \cdots, m + 3k\} \) with generating set \(D_{m,k,3} \), that is, \(ij \) is an edge of \(G \) if and only if \(j - i \pmod{m + 3k + 1} \in D_{m,k,3} \) or \(i - j \pmod{m + 3k + 1} \in D_{m,k,3} \). The argument in the previous paragraph shows that \(f \) induces a proper \(n \)-coloring of \(G \). Moreover, each color class consists of 4 vertices in \(G \). It is not difficult to verify that all 4-independent sets of \(G \) are of the form \(\{i, i + k, \cdots, i + 3k\} \) (here each number is calculated by modulo \(m + 3k + 1 \)).

Let \(d = (k, m + 3k + 1) \) and \(u = (m + 3k + 1)/d \). Divide the vertex set of \(G \) into \(d \) subsets of the form \(\{i, i + k, i + 2k, \cdots, i + (u - 1)k\} \pmod{4} \), each of size \(u \). Then each of these \(d \) subsets is the union of some color classes of size 4, so 4 divides \(u \). However, this would implies that \(m - k + 1 \) is a multiple of 8, because \(d \) is certainly even.

Suppose \(p \) is even. Let \(d, u \) be as defined in the previous section. Then 4 divides \(u \). Indeed, as \(k = 4t + 2 \) and \(m + 3k + 1 = m - k + 1 + 4k = 4(p + k) \), we know that \(d = 2a \) for some odd integer \(a \). Hence \(u = (m + 3k + 1)/d = 4(p + k)/d \) is a multiple of 4. One can easily define a proper \(u \)-coloring \(f \) on \(G \) by using \(u/4 \) colors to each of the subsets \(\{i, i + k, i + 2k, \cdots, i + (u - 1)k\} \pmod{4} \): the first 4 vertices in a subset use one color and the next 4 vertices use the next, and continue the process until all vertices are colored. It is easy to check that \(f \) is a proper coloring of \(G \). Furthermore, \(f \) can be extended to a proper coloring of \(G(Z, D_{m,k,3}) \) by letting \(f'(y) = f(x), x = y \pmod{m + 3k + 1} \). Therefore, \(G(Z, D_{m,k,3}) \) is \(u \)-colorable, where \(u = (m + 3k + 1)/4 \). This completes the proof of Theorem 7.

In the following we consider the case that \(k \equiv 0 \pmod{4} \). Suppose \(k = 4^a k' \), where \(a \geq 1 \) and \(k' \neq 0 \pmod{4} \). Suppose \(m + 3k + 1 = 4^b q \), where \(b \geq 0 \) and \(q \neq 0 \pmod{4} \). The following theorem is a special case of Theorem 3 of [13]:

Theorem 8 If \(a < b \) and \(k' \) is odd, then \(\chi(Z, D_{m,k,3}) = (m + 3k + 1)/4 \). If \(0 < b \leq a \),
then \(\chi(Z, D_{m,k,3}) = (m + 3k + 1)/4 + 1 \).

By this theorem, it remains to consider the following two cases:

1. \(a < b \) and \(k' \) is even;

2. \(b = 0 \).

Theorem 9 Suppose \(a < b \) and \(k' \) is even. If \(b \geq a + 2 \) or \(q \) is odd, then \(\chi(Z, D_{m,k,3}) = (m + 3k + 1)/4 + 1 \). Otherwise \(\chi(Z, D_{m,k,3}) = (m + 3k + 1)/4 + 1 \).

Proof. The proof of this result is parallel to the proof of Theorem 7. First we consider the case that \(b = a + 1 \) and \(q \) is even. Let \(n = (m + 3k + 1)/4 \). We shall prove that \(G(Z, D_{m,k,3}) \) is not \(n \)-colorable. Assume to the contrary, there exists an \(n \)-coloring \(f \) of \(G(Z, D_{m,k,3}) \).

For any two integers \(i \) and \(j \), let \(G[i, j] \) be the subgraph of \(G(Z, D_{m,k,3}) \) induced by vertices \(\{i+1, i+2, \cdots, j\} \). Then for any integer \(i \), the graph \(G[i, i + m + 3k + 1] \) has \(m + 3k + 1 \) vertices and maximum independent set of size 4. Since \(f \) is an \((m + 3k + 1)/4\)-coloring, exactly 4 vertices of \(G[i, i + m + 3k + 1] \) are colored by the same color. It follows that \(f(i) = f(i + m + 3k + 1) \) for any integer \(i \).

Define a circulant graph \(G \) on the set \(\{0, 1, \cdots, m + 3k\} \) with generating set \(D_{m,k,3} \), that is, \(ij \) is an edge of \(G \) if and only if \(j - i \pmod{m + 3k + 1} \in D_{m,k,3} \) or \(i - j \pmod{m + 3k + 1} \in D_{m,k,3} \). The argument in the previous paragraph shows that \(f \) induces a proper \(n \)-coloring of \(G \). Moreover, each color class consists of 4 vertices in \(G \). It is not difficult to verify that all 4-independent sets of \(G \) are of the form \(\{i, i + k, \cdots, i + 3k\} \) (here each number is calculated by modulo \(m + 3k + 1 \)).

Let \(d = (k, m + 3k + 1) \) and \(u = (m + 3k + 1)/d \). Since \(k', q \) are both even, it follows that \(d = 2 \cdot 4^r d'' \) for some odd integer \(d'' \). As \(b = a + 1 \), this implies that \(u \) is not a multiple of 4.

Divide the vertex set of \(G \) into \(d \) subsets of the form \(\{i, i + k, i + 2k, \cdots, i + (u - 1)k\} \pmod{4} \), each of size \(u \). Then each of these \(d \) subsets is the union of some
color classes of size 4. However this is impossible because \(u \) is not a multiple of 4.

On the other hand, if \(b \geq a + 2 \) or \(q \) is odd, then the integer \(u \) defined as above is a multiple of 4. In this case, one can easily partition each of the \(d \) sets
\[\{ i, i + k, i + 2k, \ldots, i + (u - 1)k \} \pmod{4} \]
into independent sets of size 4. This implies that the circulant graph \(G \) defined as above is indeed \(n \)-colorable, and hence \(G(Z, D_{m,k,3}) \) is \(n \)-colorable.

For the remaining part of the paper, we assume that \(b = 0 \). If \(m + 3k + 1 \equiv 1 \pmod{4} \), then it follows from Theorem 5 that \(\chi(Z, D_{m,k,3}) = (m + 3k + 1)/4 \).

Theorem 10 If \(m + 3k + 1 \equiv 2 \pmod{4} \), then \(\chi(Z, D_{m,k,3}) = \lceil (m + 3k + 1)/4 \rceil \).

Proof. Let \(n = \lceil (m + 3k + 1)/4 \rceil \). Suppose \(m + 3k + 1 = 4ck + d \), where \(c, d \) are integers such that \(0 < d < 4k \) (since \(b = 0 \), we know that \(d \neq 0 \)). If \(d \leq 2k \), then define a pre-coloring \(c \) of \(Z^+ \cup \{0\} \) as follows:

For any non-negative integer \(i \), write \(i \) in the form \(i = kx + y \), where \(x, y \) are non-negative integers such that \(y \leq k - 1 \). Let \(c(i) = x + y \pmod{4} \). We show that for any integer \(j \), the vertices \(j, j + k, j + 2k, j + 3k \) have distinct pre-colors, and that any \(m - k + 1 \) consecutive integers contains at most \(n - k \) integers of pre-color 0.

Assume to the contrary that \(c(j + uk) = c(j + vk) \) for some integers \(j, u, v \) such that \(0 \leq u < v \leq 3 \). Assume that \(j + uk = kx + y \) and \(j + vk = kx' + y' \). Then
\[
(v - u)k = (x' - x)k + (y' - y).
\]
It follows that \(k \) divides \(y' - y \), which implies that \(y' - y = 0 \) (because \(|y' - y| \leq k - 1 \)). As \(c(j + uk) = c(j + vk) \), it follows that \(x' \equiv x \pmod{4} \). This implies that \(v - u \equiv 0 \pmod{4} \), contrary to the assumption that \(0 \leq u < v \leq 3 \).

Next, let \(X \) be a set of \(m - k + 1 \) consecutive integers. We divide the set \(Z^+ \cup \{0\} \) into segments \(I_j \), where \(I_j = \{4j, 4j + 1, 4j + 2, 4j + 3\} \). Each of the segments \(I_j \) contains exactly one integer of pre-color 0. Since \(\lceil (m - k + 1)/4 \rceil = n \), we know that \(X \) either intersects with \(n - k \) of the segments \(I_j \), or \(n - k + 1 \) of the segments \(I_j \). If \(X \) intersect
with \(n - k \) of the segments \(I_j \), then of course \(X \) contains at most \(n - k \) integers of pre-color 0. Assume that \(X \) intersect with \(n - k + 1 \) segments \(I_j \). Since \(m + 3k + 1 \equiv 2 \pmod{4} \), it follows that \(m - k + 1 \equiv 2 \pmod{4} \). Thus \(m - k + 1 = 4(n - k) - 2 \). Let \(I_i, I_{i+1}, \ldots, I_{i+n-k} \) be the segments that intersect \(X \). Then \(|X \cap I_i| = |X \cap I_{i+n-k}| = 1 \). If the last element of \(I_i \) does not have pre-color 0, or the first element of \(I_{i+n-k} \) does not have pre-color 0, then \(X \) contains at most \(n - k \) elements of pre-color 0. Assume that the last element of \(I_i \) has pre-color 0, and the first element of \(I_{i+n-k} \) also have pre-color 0. Then by the definition of \(c \), \(4i = kx + y \) for some \(x \equiv 1 \pmod{4} \) and \(y \leq k - 1 \), and that \(4(i + (n - k)) = kx' + y' \) for some \(x' \equiv 0 \pmod{4} \) and \(y' \leq k - 1 \). Now \(m - k + 1 = 4(i + (n - k)) - 4i + (y' - y) - 2 = k(x' - x) + (y' - y) - 2 \), where \(x' - x \equiv 3 \pmod{4} \). Hence if \(m - k + 1 = 4(c - 1)k + d \) for some integers \(c, d \) such that \(d \leq 4k \), then \(d > 2k \) (because \(|y' - y| \leq k - 2 \), and that \(m - k + 1 \) is not a multiple of \(k \)), contrary to the assumption that \(d \leq 2k \).

If \(d > 2k \), then define a pre-coloring \(c \) of \(Z^+ \cup \{0\} \) as follows:

For any non-negative integer \(i \), write \(i \) in the form \(i = kx + y \), where \(x, y \) are non-negative integers such that \(y \leq k - 1 \).

1. If \(x \equiv 0 \pmod{4} \), then let \(c(i) = y \pmod{4} \).

2. If \(x \equiv 1 \pmod{4} \), then let \(c(i) = 3 + y \pmod{4} \).

3. If \(x \equiv 2 \pmod{4} \), then let \(c(i) = 2 + y \pmod{4} \).

4. If \(x \equiv 3 \pmod{4} \), then let \(c(i) = 1 + y \pmod{4} \).

We show that for any integer \(j \), the vertices \(j, j + k, j + 2k, j + 3k \) have distinct pre-colors, and that a set of any \(m - k + 1 \) consecutive integers contains at most \(n - k \)
integers of pre-color 0. The proof is similar to the proof for the case that $d \leq 2k$, and we omit the details.

Theorem 11 Suppose $m + 3k + 1 \equiv 3 \pmod{4}$ and that $m + 3k + 1 = 4k + d$, where $d \leq 4k$. If $d \leq k$ or $d \geq 3k$, then $\chi(Z, D_{m,k,3}) = [\frac{m + 3k + 1}{4}]$.

The proof of Theorem 11 is parallel to the proof of Theorem 10. We omit the details.

The case that $s = 3$, $m + 3k + 1 \equiv 3 \pmod{4}$ and that $m + 3k + 1 = 4k + d$ for some $k < d < 3k$ remains unsolved.

Remark Since the circulation of this manuscript, the problem of determining the chromatic number and circular chromatic number of the distance graphs $G(Z, D_{m,k,3})$ has been completely solved in [10] and [19].

References

Omitted details for the proof of Theorem 10:

Assume to the contrary that \(c(j + uk) = c(j + vk) \) for some integers \(j, u, v \) such that \(0 \leq u < v \leq 3 \). Assume that \(j + uk = kx + y \) and \(j + vk = kx' + y' \). Then \((v-u)k = (x'-x)k + (y'-y)\). It follows that \(k \) divides \(y' - y \), which implies that \(y' - y = 0 \) (because \(|y' - y| \leq k - 1\)). As \(c(j + uk) = c(j + vk) \), it follows that \(x' \equiv x \) (mod 4). This implies that \(v - u \equiv 0 \) (mod 4), contrary to the assumption that \(0 \leq u < v \leq 3 \).

Next, let \(X \) be a set of \(m - k + 1 \) consecutive integers. We divide the set \(\mathbb{Z}^+ \cup \{0\} \) into segments \(I_j \), where \(I_j = \{4j, 4j+1, 4j+2, 4j+3\} \). Each of the segments \(I_j \) contains exactly one integer of per-color 0. Since \(\lceil (m-k+1)/4 \rceil = n \), we know that \(X \) either intersects with \(n-k \) of the segments \(I_j \), or \(n-k+1 \) of the segments \(I_j \). If \(X \) intersect with \(n-k \) of the segments \(I_j \), then of course \(X \) contains at most \(n-k \) integers of pre-color 0. Assume that \(X \) intersect with \(n-k+1 \) segments \(I_j \). Since \(m + 3k + 1 \equiv 2 \) (mod 4), it follows that \(m - k + 1 \equiv 2 \) (mod 4). Thus \(m - k + 1 = 4(n - k) - 2 \). Let \(I_i, I_{i+1}, \ldots, I_{i+n-k} \) be the segments that intersect \(X \). Then \(|X \cap I_i| = |X \cap I_{i+n-k}| = 1\). If the last element of \(I_i \) does not have pre-color 0, or the first element of \(I_{i+n-k} \) does not have pre-color 0, then \(X \) contains at most \(n-k \) elements of pre-color 0. Assume that the last element of \(I_i \) has pre-color 0, and the first element of \(I_{i+n-k} \) also have pre-color 0. Then by the definition of \(c \), \(4i = kx + y \) for some \(x \equiv 3 \) (mod 4) and \(y \leq k - 1 \), and that \(4(i + (n-k)) = kx' + y' \) for some \(x' \equiv 0 \) (mod 4) and \(y' \leq k - 1 \). Now \(m - k + 1 = 4(i + (n-k)) - 4i + (y' - y) - 2 = k(x' - x) + (y' - y) - 2 \), where \(x' - x \equiv 1 \) (mod 4). Hence if \(m - k + 1 = 4(c - 1)k + d \) for some integers \(c, d \) such that \(d \leq 4k \), then \(d < 2k \) (because \(|y' - y| \leq k - 2 \), and that \(m - k + 1 \) is not a multiple of \(k \)), contrary to the assumption that \(d > 2k \).

Proof of Theorem 11:

Let \(n = \lceil (m+3k+1)/4 \rceil \). Suppose \(m + 3k + 1 = 4ck + d \), where \(c, d \) are integers such that \(0 < d < 4k \) (since \(b = 0 \), we know that \(d \neq 0 \)). If \(d \leq k \), then define a
pre-coloring c of $Z^+ \cup \{0\}$ as follows:

For any non-negative integer i, write i in the form $i = kx + y$, where x,y are non-negative integers such that $y \leq k - 1$. Let $c(i) = x + y \pmod{4}$. This is the same pre-coloring as defined in the proof of Theorem 10. Hence for any integer j, the vertices $j,j + k, j + 2k, j + 3k$ have distinct pre-colors. We need to show that any $m - k + 1$ consecutive integers contains at most $n - k$ integers of pre-color 0.

Let X be a set of $m - k + 1$ consecutive integers. We divide the set $Z^+ \cup \{0\}$ into segments I_j, where $I_j = \{4j, 4j + 1, 4j + 2, 4j + 3\}$. Each of the segments I_j contains exactly one integer of pre-color 0. Since $\lceil (m - k + 1)/4 \rceil = n$, we know that X either intersects with $n - k$ of the segments I_j, or $n - k + 1$ of the segments I_j. If X intersect with $n - k$ of the segments I_j, then of course X contains at most $n - k$ integers of pre-color 0. Assume that X intersect with $n - k + 1$ segments I_j. Since $m + 3k + 1 \equiv 3 \pmod{4}$, it follows that $m - k + 1 \equiv 3 \pmod{4}$. Thus $m - k + 1 = 4(n - k) - 1$. Let $I_i, I_{i+1}, \ldots, I_{i+n-k}$ be the segments that intersect X. Then $|X \cap I_i| + |X \cap I_{i+n-k}| = 3$.

First we consider the case that $|X \cap I_i| = 2$ and $|X \cap I_{i+n-k}| = 1$.

If the last two elements of I_i does not have pre-color 0, or the first element of I_{i+n-k} does not have pre-color 0, then X contains at most $n - k$ elements of pre-color 0. Assume that one of the last two elements of I_i has pre-color 0, and the first element of I_{i+n-k} also have pre-color 0. Then by the definition of c, $4i = kx + y$ for some $x \equiv 1 \pmod{4}$ and $y \leq k - 1$, and that $4(i + (n - k)) = kx' + y'$ for some $x' \equiv 0 \pmod{4}$ and $y' \leq k - 1$. Now $m - k + 1 = 4(i + (n - k)) - 4i + (y' - y) - 2 = k(x' - x) + (y' - y) - 2$, where $x' - x \equiv 3$ or 2 (mod 4). Hence if $m - k + 1 = 4(c - 1)k + d$ for some integers c, d such that $d \leq 4k$, then $d > k$ (because $|y' - y| \leq k - 2$, and that $m - k + 1$ is not a multiple of k), contrary to the assumption that $d \leq k$.

Next we consider the case that $|X \cap I_i| = 1$ and $|X \cap I_{i+n-k}| = 2$.

If the last element of I_i does not have pre-color 0, or the first two elements of I_{i+n-k} do not have pre-color 0, then X contains at most $n - k$ elements of pre-color 0.
Assume that the last two element of I_i has pre-color 0, and one of the first two elements of I_{i+n-k} has pre-color 0. Then by the definition of c, $4i = kx + y$ for some $x \equiv 1 \pmod{4}$ and $y \leq k - 1$, and that $4(i + (n - k)) = kx' + y'$ for some $x' \equiv 0$ or $3 \pmod{4}$ and $y' \leq k - 1$. Now $m - k + 1 = 4i + (n - k) - 4i + (y' - y) - 2 = k(x' - x) + (y' - y) - 2$, where $x' - x \equiv 3$ or $2 \pmod{4}$. Hence if $m - k + 1 = 4(c - 1)k + d$ for some integers c, d such that $d \leq 4k$, then $d > k$ (because $|y' - y| \leq k - 2$, and that $m - k + 1$ is not a multiple of k), contrary to the assumption that $d \leq k$.

If $d \geq 3k$, then define a pre-coloring c of $\mathbb{Z}^+ \cup \{0\}$ as follows:

For any non-negative integer i, write i in the form $i = kx + y$, where x, y are non-negative integers such that $y \leq k - 1$.

1. If $x \equiv 0 \pmod{4}$, then let $c(i) = y \pmod{4}$.

2. If $x \equiv 1 \pmod{4}$, then let $c(i) = 3 + y \pmod{4}$.

3. If $x \equiv 2 \pmod{4}$, then let $c(i) = 2 + y \pmod{4}$.

4. If $x \equiv 3 \pmod{4}$, then let $c(i) = 1 + y \pmod{4}$.

Again this is one of the pre-coloring defined in the proof of Theorem 10, where it is proved that that for any integer j, the vertices $j, j + k, j + 2k, j + 3k$ have distinct pre-colors. We need to show that any set of $m - k + 1$ consecutive integers contains at most $n - k$ integers of pre-color 0.

Let X be a set of $m - k + 1$ consecutive integers. We divide the set $\mathbb{Z}^+ \cup \{0\}$ into segments I_j, where $I_j = \{4j, 4j + 1, 4j + 2, 4j + 3\}$. Each of the segments I_j contains exactly one integer of pre-color 0. Since $\lfloor (m - k + 1)/4 \rfloor = n$, we know that X either intersects with $n - k$ of the segments I_j, or $n - k + 1$ of the segments I_j. If
X intersect with $n - k$ of the segments I_j, then of course X contains at most $n - k$
integers of pre-color 0.

Assume that X intersect with $n - k + 1$ segments I_j. Since $m + 3k + 1 \equiv 3$
(mod 4), it follows that $m - k + 1 \equiv 3$ (mod 4). Thus $m - k + 1 = 4(n - k) - 1$. Let
$I_i, I_{i+1}, \ldots, I_{i+n-k}$ be the segments that intersect X. Then $|X \cap I_i| + |X \cap I_{i+n-k}| = 3$.

First we consider the case that $|X \cap I_i| = 2$ and $|X \cap I_{i+n-k}| + 1$.

If the last two elements of I_i does not have pre-color 0, or the first element of
I_{i+n-k} does not have pre-color 0, then X contains at most $n - k$ elements of pre-color 0.
Assume that one of the last two elements of I_i has pre-color 0, and the first element of
I_{i+n-k} also have pre-color 0. Then by the definition of c, $4i = kx + y$ for some $x \equiv 2$ or 3
(mod 4) and $y \leq k - 1$, and that $4(i + (n - k)) = kx' + y'$ for some $x' \equiv 0$ (mod 4)
and $y' \leq k - 1$. Now $m - k + 1 = 4(i + (n - k)) - 4i + (y' - y) - 2 = k(x' - x) + (y' - y) - 2$,
where $x' - x \equiv 1$ or 2 (mod 4). Hence if $m - k + 1 = 4(c - 1)k + d$ for some integers
c, d such that $d \leq 4k$, then $d < 3k$ (because $|y' - y| \leq k - 2$, and that $m - k + 1$ is
not a multiple of k), contrary to the assumption that $d \geq 3k$.

Next we consider the case that $|X \cap I_i| = 1$ and $|X \cap I_{i+n-k}| = 2$.

If the last element of I_i does not have pre-color 0, or the first two elements of
I_{i+n-k} do not have pre-color 0, then X contains at most $n - k$ elements of pre-color 0.
Assume that the last two element of I_i has pre-color 0, and one of the first two elements
of I_{i+n-k} has pre-color 0. Then by the definition of c, $4i = kx + y$ for some $x \equiv 3$
(mod 4) and $y \leq k - 1$, and that $4(i + (n - k)) = kx' + y'$ for some $x' \equiv 0$ or 1 (mod 4)
and $y' \leq k - 1$. Now $m - k + 1 = 4(i + (n - k)) - 4i + (y' - y) - 2 = k(x' - x) + (y' - y) - 2$,
where $x' - x \equiv 3$ or 2 (mod 4). Hence if $m - k + 1 = 4(c - 1)k + d$ for some integers
c, d such that $d \leq 4k$, then $d < 3k$ (because $|y' - y| \leq k - 2$, and that $m - k + 1$ is
not a multiple of k), contrary to the assumption that $d \geq 3k$.

17