【双週一题】网络数学问题徵答
九十八学年度第二学期

第三题：99.03.26 公佈，99.04.9 中午 12 點截止

观察 6! = 8 · 9 · 10，即当 n = 6 时，6! 可以表示为 8, 9, 10 三个连续正整数的乘积。对所有的正整数 a 且 1 < a < n - 1，求最大值的正整数 n 使得 n! 能被表示成 n - a 個连续正整数的乘积，即请将 n 表为一个 a 的函数。

解答：【解法一】
设 (n - a) 个连续正整数中最大的数为 k，明显的 k 不可能小於或等於 n，同时其他 n - a - 1 个连续正整数的乘积一定小於 n!。要让 k 最大，那么此 (n - a) 个连续正整数最小的数越小越好，由此可推得 k 也是越小越好，但又因 k > n，所以 k = n + 1。所以此 (n - a) 个连续正整数为 a + 2, a + 3, ... , n + 1，推得
\[
\frac{(n+1)!}{(a+1)!} = n! \Rightarrow n + 1 = (a + 1)! \Rightarrow n = (a + 1)! - 1.
\]

【解法二】
设 n! = (k + n)(k + n - 1) · · · (k + a + 1) = \frac{(n+k)!}{(k+a)!}，其中 k ≥ 1 且为正整数。那
麼整理後可得
\[
1 = \frac{(n+k)!}{(k+a)!n!} = \frac{(n+k)(n+k-1) · · · (n+1)}{(k+a)!} = \frac{n + k}{k + a} \cdot \frac{n - 1}{k + a - 1} \cdot \frac{n + 2}{a + 2} \cdot \frac{n}{a + 1}.
\]
因
\[
\frac{n + k}{k + a} \geq 1, \frac{n + k - 1}{k + a - 1} \geq 1, \ldots, \frac{n + 2}{a + 2} \geq 1
\]

而且他们的乘积等 1，所以 \frac{n+1}{(a+1)!} ≤ 1，那么由此可知 n + 1 ≤ (a + 1)! \Leftrightarrow n ≤ (a + 1)! - 1。

解答请寄至-高雄市中山大学应数系图书馆的『双週一题』信箱，或传真 07-5253809，或利用电子邮件信箱 problem@math.nsysu.edu.tw (主旨为「双週一题」)。解答上请注明姓名、校名、校址县市、系所、年级、班班、学号和 E-mail。