1. (10分) Show that the function

\[f(x) = \begin{cases}
 x \sin \frac{1}{x}, & x \neq 0, \\
 0, & x = 0,
\end{cases} \]

is continuous on \(\mathbb{R} \) but not differentiable at \(x = 0 \).

2. (10分) Let \(n \times n \) matrix \(A \) have all entries 1. Find all of its eigenvalues and corresponding eigenvectors.

3. (15分) Let \(\{z_n\} \) be a sequence in \(\mathbb{R} \). If \(z_n \to \alpha \), show that

\[\frac{z_1 + z_2 + \cdots + z_n}{n} \to \alpha. \]

4. (15分) Assume \(f : \mathbb{R}^n \to \mathbb{R} \) is a function whose partial derivatives of order \(\leq 2 \) are everywhere defined and continuous. Let \(a \in \mathbb{R}^n \) be a critical point of \(f \) (i.e. \(\frac{\partial f}{\partial x_i}(a) = 0, i = 0, 1, 2, \ldots, n \)). Prove that \(a \) is a local minimum provided the Hessian matrix

\[\left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right) \]

is positive definite at \(x = a \).

5. (15分) Prove the Second Fundamental Theorem of Calculus:

Let \(f \) be continuous on an interval \(I \) and define \(F(x) = \int_a^x f(t)dt \) for some \(a \in I \). Then \(F'(x) = f(x) \) for each \(x \) in \(I \).
6. (15分) Let \(T : V \rightarrow W \) be a linear transformation between finite-dimensional vector spaces. Prove that
\[
\dim(\ker T) + \dim(\text{range } T) = \dim V.
\]

7. Let \(A = (a_{ij}), B = (b_{ij}) \) be \(n \times n \) matrices where
\[
a_{ij} = \begin{cases}
0 & \text{if } i = j, \\
1 & \text{if } i \neq j,
\end{cases}
\]
\[
b_{ij} = \begin{cases}
2 & \text{if } i = j = 1, \\
0 & \text{otherwise}.
\end{cases}
\]

(a) (10分) Find the characteristic polynomial of \(A \).

(b) (10分) Find \(\det(A + B) \).

End.