1. Suppose that 10 points, P_1, P_2, \ldots, P_{10}, are independently chosen at random on the perimeter of a circle. Let S denote the event that all the points are contained in some semicircle, i.e., there is a line passing through the center of the circle such that all the points are on one side of that line. Let S_i be the event that all the points lie in the semicircle beginning at the point P_i and going clockwise for 180°, $i = 1, 2, \ldots, 10$. (a) Express S in terms of the S_i. (b) Find $P(S)$.

解答:

(a) $S = \bigcup_{i=1}^{10} S_i$.

(b) Note that S_1, S_2, \ldots, S_{10} are mutually exclusive and $P(S_i) = 1/2^9$ for all i. Then by (a), we have $P(S) = \sum_{i=1}^{10} P(S_i) = 10/2^9 = 5/256$.

2. Let X and Y be independent random variables from $N(0, 1)$. (a) Find the probability density function of $|X|$. (b) Find the probability density function of $|X/Y|$.

解答:

(a) Since $X \sim N(0, 1)$, we have that for any $x \geq 0$,

$$P(|X| \leq x) = P(-x \leq X \leq x) = \frac{1}{\sqrt{2\pi}} \int_{-x}^{x} e^{-t^2/2} \, dt = \frac{2}{\sqrt{2\pi}} \int_{0}^{x} e^{-t^2/2} \, dt.$$

Hence the probability density function of $|X|$ is $2 \exp\{-x^2/2\}/\sqrt{2\pi}$, where $x \geq 0$.

(b) For any $z \geq 0$, since X and Y are independent and $|Y|$ has probability density function $f_{|Y|}(y) = 2 \exp\{-y^2/2\}/\sqrt{2\pi}$, $y \geq 0$, we have

$$P(|X/Y| \leq z) = \int_{0}^{\infty} P(|X| \leq zy)f_{|Y|}(y) \, dy = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} P(|X| \leq zy)e^{-y^2/2} \, dy.$$

Since $|X|$ also has probability density function $f_{|X|}(x) = 2 \exp\{-x^2/2\}/\sqrt{2\pi}$, $x \geq 0$, we see that

$$\frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} P(|X| \leq zy)e^{-y^2/2} \, dy = \frac{2}{\pi} \int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)/2} \, dx \, dy.$$

Then $|X/Y|$ has probability density function

$$f_{|X/Y|}(z) = \frac{2}{\pi} \int_{0}^{\infty} y e^{-(z^2y^2+y^2)/2} \, dy = \frac{-2}{\pi(z^2+1)} e^{-y^2(z^2+1)/2}|_{y=0}^{\infty} = \frac{2}{\pi(z^2+1)}.$$
where \(z \geq 0 \).

3. If \(X \) and \(Y \) are independent binomial random variables with identical parameters \(n \) and \(p \), find the conditional probability mass function of \(X \), given that \(X + Y = m \). State the name of the conditional distribution.

解答:

\[
P\{X = k|X + Y = m\} = \frac{P\{X = k, X + Y = m\}}{P\{X + Y = m\}}
= \frac{P\{X = k, Y = m - k\}}{P\{X + Y = m\}}
= \frac{\binom{n}{k} p^k (1 - p)^{n-k}\binom{m}{m-k} p^{m-k} (1 - p)^{n-m+k}}{\binom{2n}{m} p^m (1 - p)^{2n-m}}
= \frac{\binom{n}{k} \binom{n}{m-k}}{\binom{2n}{m}}
\]

\(X|X + Y = m \sim \) hypergeometric distribution\((2n, n, m)\).

4. Suppose that the random variable \(Y_1, Y_2, \ldots, Y_n \) satisfy

\[
Y_i = \beta x_i + \epsilon_i \quad i = 1, \ldots, n,
\]

where \(x_1, \ldots, x_n \) are fixed constants, and \(\epsilon_1, \epsilon_2, \ldots, \epsilon_n \) are iid \(N(0, \sigma^2) \), \(\sigma^2 \) unknown.

(a) Find a two-dimensional sufficient statistic for \((\beta, \sigma^2)\).

(b) Find the MLE of \(\beta \), and show that it is an unbiased estimator of \(\beta \).

(c) Find the distribution of the MLE of \(\beta \).

解答:

(a)

\[
L(\theta|y) = \prod_i \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{1}{2\sigma^2} (y_i - \beta x_i)^2 \right)
= (2\pi \sigma^2)^{-n/2} \exp \left(-\frac{1}{2\sigma^2} \sum_i (y_i^2 - 2\beta x_i y_i + \beta^2 x_i^2) \right)
= (2\pi \sigma^2)^{-n/2} \exp \left(-\frac{\beta^2}{2\sigma^2} \sum_i x_i^2 \right) \exp \left(-\frac{1}{2\sigma^2} \sum_i y_i^2 + \frac{\beta}{\sigma^2} \sum_i x_i y_i \right).
\]

By Theorem 6.1.2, \((\sum_i Y_i^2, \sum_i x_i Y_i)\) is a sufficient statistic for \((\beta, \sigma^2)\).

(b)

\[
\log L(\beta, \sigma^2|y) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_i y_i^2 + \frac{\beta}{\sigma^2} \sum_i x_i y_i - \frac{\beta^2}{2\sigma^2} \sum_i x_i^2.
\]
For a fixed value of σ^2,

$$\frac{\partial \log L}{\partial \beta} = \frac{1}{\sigma^2} \sum_i x_i y_i - \frac{\beta}{\sigma^2} \sum_i x_i^2 = 0 \quad \Rightarrow \quad \hat{\beta} = \frac{\sum_i x_i y_i}{\sum_i x_i^2}.$$

Also,

$$\frac{\partial^2 \log L}{\partial \beta^2} = \frac{1}{\sigma^2} \sum_i x_i^2 < 0,$$

so it is a maximum. Because $\hat{\beta}$ does not depend on σ^2, it is the MLE. And $\hat{\beta}$ is unbiased because

$$E[\hat{\beta}] = \frac{\sum_i x_i E[Y_i]}{\sum_i x_i^2} = \frac{\sum_i x_i \cdot \beta x_i}{\sum_i x_i^2} = \beta.$$

(c) $\hat{\beta} = \sum_i a_i Y_i$, where $a_i = x_i / \sum_j x_j^2$ are constants. By Corollary 4.6.10, $\hat{\beta}$ is normally distributed with mean β, and

$$\text{Var}(\hat{\beta}) = \sum_i a_i^2 \text{Var}(Y_i) = \sum_i \left(\frac{x_i}{\sum_j x_j^2}\right)^2 \sigma^2 = \frac{\sum_i x_i^2}{(\sum_j x_j^2)^2} \sigma^2 = \frac{\sigma^2}{\sum_i x_i^2}.$$

5. Consider a random sample $\{X_1, X_2, \ldots, X_n\}$ from a Pareto distribution. The CDF of a Pareto distribution is $F(x; \vartheta) = 1 - (1 + x)^{-\vartheta}, x > 0, \vartheta > 0$.

(a) Show that $-2 \sum_{i=1}^n \ln[1 - F(X_i; \vartheta)] \sim \chi^2(2n)$ has a chi-squared distribution with two degrees of freedom.

(b) Use the result of (a) to find a $100(1 - \alpha)$% confidence interval of the parameter ϑ.

解答:

(a) Since $F(x; \vartheta)$ is the CDF of X_i, $1 - F(X_i; \vartheta) \sim U(0, 1)$, and consequently $-\ln(1 - F(X_i; \vartheta)) \sim \exp(1)$ and $-2 \sum_{i=1}^n \ln[1 - F(X_i; \vartheta)] \sim \chi^2(2n)$.

(b) $\left(\frac{x_i^2 / \alpha(2n)}{2 \sum_{i=1}^n \ln(1+x_i)}, \frac{x_i^2 / \alpha(2n)}{2 \sum_{i=1}^n \ln(1+x_i)}\right)$

6. Let X_1, X_2, \ldots, X_n be independent r.v.'s with p.d.f. f given by

$$f(x; \vartheta) = \frac{1}{\vartheta} e^{-x/\vartheta} I_{(0, \infty)}(x), \quad \vartheta \in \Omega = (0, \infty)$$

Derive the UMP (uniformly most powerful test) for testing the hypothesis $H_0 : \vartheta \geq \vartheta_0$ against the alternative $\vartheta < \vartheta_0$ at level of significance α.

解答：Since the family of p.d.f. $\{f(x; \vartheta), \vartheta \in \Omega\}$ is a one-parameter exponential family, it has the MLR (monotone likelihood ratio) property in V, where $V(X_1, x_2, \ldots, x_n) = \sum_{j=1}^n x_j$. The UMP test rejects H_0 if $\sum_{i=1}^n x_j < C, C : P_{\vartheta_0}(\sum_{i=1}^n X_j < C) = \alpha$. Since $\sum_{i=1}^n X_j \sim \text{Gamma}(n, \vartheta), C$ is the α^{th} percentile of the Gamma(n, ϑ) distribution.