In the following, let $I = \{ x \in \mathbb{R} : 0 \leq x \leq 1 \}$.

1. Let f be the real valued function defined on the interval I by
 $$f(x) = \begin{cases} \frac{1}{n} & \text{whenever } n > 0 \text{ is an integer and } 2^{-n} < x \leq 2^{-n+1}, \\ 0 & \text{whenever } x = 0. \end{cases}$$
 (i) Prove that f is integrable on I.
 (ii) Evaluate $\int_0^1 f(x) \, dx$.

2. For every integer $n > 0$, let $f_n(x) = \frac{x}{1 + n^4x^2}$ for $x \in I$.
 (i) Prove that for every $x \in I$ the series $\sum_{n=1}^{\infty} f_n(x)$ converges.
 (ii) Let $f(x) = \sum_{n=1}^{\infty} f_n(x)$ for $x \in I$. Prove that f continuous on I.

3. Let K be a nonempty compact subset of the Euclidean plane \mathbb{R}^2, and let $f : K \to \mathbb{R}$ be a function. Assume that for every $r \in \mathbb{R}$ there is an open subset $U(r)$ of \mathbb{R}^2 such that $\{(x, y) \in K : f(x, y) < r\} = K \cap U(r)$.
 (i) Prove that there is a $p \in \mathbb{R}$ such that $f(x, y) \leq p$ for all $(x, y) \in K$.
 (ii) Prove that there is a point $(a, b) \in K$ such that $f(x, y) \leq f(a, b)$ for all $(x, y) \in K$.

4. Let $V = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 - 3x_2 + 4x_3 - 5x_4 = 0\}$.
 (i) Prove that V is a vector subspace of \mathbb{R}^4.
 (ii) Find the dimension of V, and prove your answer.

5. Prove that the matrix $A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$ is diagonalizable, and find an invertible 3×3 matrix B such that $B^{-1}AB$ is diagonal.