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Abstract

For a graph G, let diam(G) denote the diameter of G. For any
two vertices u and v in G, let d(u,v) denote the distance between u
and v. A multi-level distance labeling (or distance labeling) for G is a
function f that assigns to each vertex of G a non-negative integer such
that for any vertices u and v, |f(u) — f(v)| > diam(G) — dg(u,v) + 1.
The span of f is the largest number in f(V). The radio number of G,
denoted by rn(G), is the minimum span of a distance labeling for G.
This paper determines the radio numbers for paths and cycles.
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1 Introduction

Multi-level distance labeling can be regarded as an extension of distance two
labeling which is motivated by the channel assignment problem introduced
by Hale [10]. For a set of given cities (or stations), the task is to assign to
each city a channel, which is a non-negative integer, so that interference is
prohibited, and the span of the channels assigned is minimized.

Usually, the level of interference between any two stations is closely re-
lated to the geographic locations of the stations — the closer are the stations
the stronger is the interference. Suppose we consider two levels of inter-
ference, major and minor. Major interference occurs between two very close
stations; to avoid it, the channels assigned to a pair of very close stations have
to be at least two apart. Minor interference occurs between close stations;
to avoid it, the channels assigned to close stations have to be different.

To model this problem, we construct a graph G by representing each
station by a vertex and connecting two vertices by an edge if the geographical
locations of the corresponding stations are very close. Two close stations are
represented by, in the corresponding graph G, a pair of vertices that are
distance two apart.

Let dg(u,v) denote the distance (the shortest length of a path) between
v and v in G (or simply d(u,v) when G is clear in the context). Thus, for
a graph G, a distance two labeling (or L(2,1)-labeling) with span k is a
function, f : V(G) — {0,1,2,---,k}, such that the following are satisfied:
1) 1f(@) = f(9)] > 2 d(z,y) = 1; and 2) |f(2) — f(y)] > 1 i d(z,y) = 2.

Distance two labeling has been studied extensively in the past decade (cf.
[1,2,5,6,7, 8,9, 11, 12, 13, 14, 15]). One of the main research focuses has
been the A-number for a graph G, denoted by A(G), which is the smallest

span k of a distance two labeling for G.



Practically, interference among channels might go beyond two levels. We
consider interference levels from 1 through the largest possible value — the
diameter of G, denoted by diam(G), which is the largest distance between
two vertices of G.

A multi-level distance labeling (or distance labeling for short), with span

k, is a function f : V(G) — {0,1,2,---,k}, so that for any vertices u and v,
|f(u) — f(v)] > diam(G) — dg(u,v) + 1.

The radio number (as suggested by the FM radio frequency assignment [4])
for G, denoted by rn(G), is the minimum span of a distance labeling for
G. Note that if diam(G) = 2, then distance two labeling coincides with
multi-level distance labeling, and in this case, A(G) = rn(G).

The radio number for paths and cycles has been studied, respectively, by
Chartrand et al. [4] and by Chartrand et al. [3]. In [4, 3], bounds of the
radio numbers for paths and cycles, respectively, were presented.

In this article, we completely settle the radio numbers for paths and
cycles. Note that, to be consistent with distance two labelings, we allow 0
to be used as a color (or channel). However, in [4, 3], only positive integers
can be used as colors, so 0 is not allowed. Therefore, the radio number
defined in this article is one less than the radio number defined in [4, 3].
Being consistent, throughout the article, we make necessary adjustments,

reflecting this “one less” difference, for all the results quoted from [4, 3].

2 The Radio Number for Paths

Let P, be the path on n vertices. The upper bounds for rn(P,) are obtained
by Chartrand, Erwin and Zhang [4]:



Theorem 1 [4] For any positive integer n,

2k + k ifn=2k+1;
< ) 7
rn(Pa) < {2(k2—k)+1, if n = 2k.

Moreover, the bound is sharp when n <5.

In this section, we completely settle the radio numbers for paths. We first

prove the following Lemma.

Lemma 2 Let P, be a path and f an assignment of distinctive non-negative
integers to V(P,). Let (x1,xq,---,x,) be the ordering of V(P,) such that

f(x;) < f(zip1). The following three statements are equivalent.
(1) For any 1 <i<n—2, min{d(z;, z;i11),d(Ti1,Tir2)} < n/2.

(2) If f(zip1) — f(2:) > n—d(xi,zi41) for any 1 <i<n—1, then f is a

distance labeling.

(3) If [(zit1) — f(@:) = n —d(xi, xis1) for any 1 <i<n—1, then f is a

distance labeling.

Proof. Note that diam(P,) =n — 1.

(1) = (2) |Assume: 1) Forany 1 <i < n—2, min{d(z;, z;11),d(Tit1, Tiy2)} <
n/2; and 2) f(x;1) — f(z;) > n—d(z;,x;11) forany 1 <i <n—1. We need
to show that for any 7, j, | f(2;) — f(x;)| > n —d(x;, z).

Foreachi=1,2,---,n—1, set

fi = [(@ig1) — f(x3).

Assume ¢ < j. Then

f(zj) = flxg) = fi+ figr + -+ fi1-



Assumptions 1) and 2) imply that f; > n—d(x;, i11), fiy1 > n—d(Tit1, Tiv2),
and for any 1,

max{ fi, fi;1} > n/2.

Thus, if j > i+ 4, then f(z;) — f(z;) > n > n —d(x;, z;), and we are done.
It suffices to consider the cases that j =¢+ 2 or j =1+ 3.

Assume 7 = i + 2. Without loss of generality, we may assume that
d(x;,xip1) > d(xit1, Tiy2), and hence d(z;41, xiv2) < n/2. Then d(x;, x;12) >

d(x;,xip1) — d(zi11, Tiv2). Therefore

f(@;) = flzi) = fi+ fin

> (n—d(z, 3i41)) + (0 — d(Ti41, Tig2))
= 21— 2d(%i1, Ti2) — (d(2i, Tig1) — d(Tiy1, Tiga))
Z n— d(ZUZ, l'i+2).

Assume j = i + 3. If the sum of any two of the distances d(z;, x;11),
d(Tig1, Tiva), d(Tit2,7iy3) is at most n, then f(ziyz) — f(zi) = fi + fis1 +
fire > n, so we are done.

Thus, we assume that the sum of any two of the distances d(z;, x;11),

d(xir1, Tiva), d(Tiro, Tir3) is greater than n. This implies that
d(Tiy1, Tiv2) < /2, and d(zi, Tiy1), d(Tive, Tivs) > n/2.

Let x; = vy, Tit1 = Uy, Tiza = Ve, Tizz = vg. Let m and m’ be, respectively,
the maximum and the minimum of {a, b, c,d}. Then {m,m'} = {a,d}. For
otherwise, say m’ = b, then we have b < ¢ < d, implying that d(z; 1, x;12) +

d(x;12,2;43) < n, in contrary to our assumption. Hence, one has
d(xiaxi-i-?)) = d(%, $i+1) + d($i+2, $i+3) - d($i+1axi+2) > n/2.
So, f(xits) — f(xi) = fi+ fix1 + fire > firn > n/2 > n —d(x;, wigs).
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(2) = (3) | Trivial.

(3) = (1) |Let f(z1) =0, and f(z;) = f(zim1) +n — d(2;, 2541) for all 4.
By (3), f is a distance labeling of P,. Assume, to the contrary of (1), that

there is an index ¢ such that
mln{d(l’“ ZUZ'+1), d(xi+1, l‘i+2)} > Tl/2
Without loss of generality, we assume that d(z;, z;41) > d(2;41, Tir2). Then

d($i,$i+2) = d(% $z‘+1) - d($i+1,$i+2)

and
f@ive) = f(zi) = n—dz,zi) +n— d(@ipr, Tigo)
= 2n — 2(d(@iy1, Tiy2)) — (T, Tiva)
< n-— d(l‘l, .'L'H_Q),
contrary to the assumption that f is a distance labeling. | |

Theorem 3 For any n > 3,

e =ty e, n
Proof. Note that, for even paths, by Theorem 1, it suffices to show that
rn(Pyy) > 2(k* — k) + 1. However, for completeness, we present a proof here
without using Theorem 1.
First, we show that rn(Pyy1) < 2k? + 2 and rn(Py) < 2(k* — k) + 1.
Assume Py 1 = (v1,v9, -+, Ugry1), Where v; ~ v;4q. Order the vertices of

Py as follows:

Vky Uk+ky U1, Vi4ky Ul+k+k> U3, Us+k, V4, Vdtk, Us, Usqky = 5 Uk—1, Vk—1+k, U2, V21k-
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Rename the vertices of P in the above ordering by 1, %9, -+, Tor 1.
Namely, let z; = vy, To = Vkqr, =+ ) Top1 = Vo

Let f be the mapping defined as f(x;) =0, and for i = 2,3,---,2k + 1,
f(xi) = f(wi1) +2k+ 1 —d(z; 1, ).

It is easy to verify that the ordering and the mapping f satisfy the conditions
of Lemma 2 (1), (3). Therefore f is a distance labeling of Pyj1. It remains

to show that f(zary1) = 2k? + 2. By definition,

2k

flrasr) = D [2k+1—d(wi, wi41)]

=1

2k
i=1

Thus, it suffices to show that

2k
Zd(l‘i,l’prl) = 2k + 2k — 2.

i=1

Note that if z; = v;, ;41 = vj then d(x;, xi11) = [j— 7’|, which is equal to
either j—j' or j'—j, whichever is positive. By replacing each term d(z;, x;11)
with the corresponding j — j' or j' — j, whichever is positive, we obtain a
summation whose entries are +j for j € {1,2,---,2k + 1}.

For the ordering above, if j < k, then the vertex preceding v; is vy for
some j' > k + 2, and the vertex following v; is v;» for some j" > k + 1.
Therefore, for each 1 < 57 < k, whenever 4+ occurs in the summation above,
it occurs as a —j. Similarly, if k+2 < 57 < 2k+1, then whenever +75 occurs in
the summation it occurs as a +j. The number &+ 1 occurs once as +(k + 1)
and once as —(k + 1). Also it is easy to see that each j occurs twice in the

summation, except for each of j = k and 7 = k£ + 2 occurring only once in



the summation. Hence, we have

2k+1

2k
Yod(zi,wig) = 2() J-Z] (k+2—k)
=1

j=k+2 j=1
= 2k24+2k—2.

The case for even paths is similar. Order the vertices of P as follows:

Uk Uk+ks V2, U24+k> U3, Us+ks * * * 5 Uk—1, Vk—1+k> U1, Ul+k-
Rename the vertices so that the ordering above is x1, To, - - -, 9,. Namely,
let 1 = vk, Ty = Vi, -+ + 5 T2k = V1pke

Let f be the mapping defined as f(x;) =0, and for i = 2,3,---, 2k,
f(ib'z) = f(l‘ifl) + 21{? — d(l‘i,h :L‘Z)

Then the ordering and the mapping f satisfy the conditions of Lemma 2.
Therefore f is a distance labeling of Pyy.

Similarly, in the summation Y27 d(x;, z;,1), each j € {1,2,---,k — 1}
occurs twice as —j, k occurs once as a —k, each of j € {k+2,k+3,---,2k}

occurs twice as +7, and k + 1 occurs once as a +(k + 1). Therefore,

2% 1
Yo d(wy, wig1) = Z]—Z] )+k+1—k
i=1 =kt
= 2k*—1.
This implies,
2% 1
flaar) = D [2k — d(2, 2i41))
-1

2k—1

= 2k(2k—-1) del,xzﬂ
= 4k? —2k—2k2+1
= 2> —k)+1
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Next, we show that rn(Pyy1) > 2k* + 2. Let f be a distance labeling
of Pyryq. Order the vertices of Pyyq as xy, g, - -+, Toky1 such that f(z;) <
f(#i41) for alli. Assume x; = v,(;). Then o is a permutation of {1,2,-- -, 2k+
1}. We shall prove that f(xopy1) > 2k% + 2.

By definition, f(z;) > 0 and f(z;) > f(z; 1) + 2k + 1 — d(z; 1, ;) for
1=2,3,---,2k+ 1. Thus

%
f@or1) = D0 [2k+1 —d(xi, xi41)]

=1

2k
=1

If 2% d(wy, w501) < 2k% +2k — 2, then f(w9r41) > 2k% + 2, and we are done.
Hence, assume 2% d(z;, i11) > 2k% + 2k — 2.

Claim. If X2 d(x, z541) > 2k2+2k—2, then 2 d(xy, z41) = 2k>+2k—1
and there is an index ¢ such that f(z; 1) = f(z;) +n — d(vip1, z;) + 1.

Proof of Claim) Note that d(z;,;41) is equal to either o(i) — o(i + 1) or
o(i+1) —o(i), whichever is positive. By replacing each term d(z;, x;11) with
the corresponding o (i) —o(i+ 1) or o(i + 1) — (i), whichever is positive, we
obtain a summation whose entries are +j for j € {1,2,---,2k + 1}.

All together, there are 4k terms in the summation 2% d(z;, z;11), half
of them are positive and half are negative. Each j € {1,2,---,2k+ 1} occurs
as tj exactly twice in the summation, except for two j’s where each occurs
as +j only once.

To maximize the summation Y%*, d(x;, 2;41), one needs to minimize the
absolute values for the negative terms while maximize the values of the posi-
tive terms. It is easy to verify that there are two combinations achieving the

maximum summation:



Case 1) Each of the numbers in {k + 2,k + 3,k +4,---,2k + 1} occurs twice
as a positive, each of {1,2,---,k — 1} occurs twice as a negative, and

each of k£ and k£ + 1 occurs once as a negative.

Case 2) Each of the numbers in {k + 3,k +4,---,2k + 1} occurs twice as a
positive, each of {1,2, -, k} occurs twice as a negative, and each of

k + 1 and k + 2 occurs once as a positive.

In both cases,
2k

Zd(l’i,l'i+1) = 2k2 + 2k — 1.
i=1
In the first case, we must have {o(1),0(2k + 1)} = {k + 1,k}. Moreover,

o(i) > k+ 2 if and only if (i + 1) < k + 1. In particular, if o(i) = 1, then
o(i—1)>k+2and o(i +1) > k+ 2. This violates (1) in Lemma 2. As f
is a distance labeling, it follows from Lemma 2 (3) that there exists some i
such that f(zi41) — f(2i) > n —d(w;, xiq1) + 1.

In the second case, we must have {o(1),0(2k + 1)} = {k + 1,k + 2}.
Moreover, (i) > k + 1 if and only if (i + 1) < k. In particular, if o(i) =
2k + 1, then o(i — 1) < k and o(i + 1) < k. Again, this violates (1) in
Lemma 2, and it follows from Lemma 2 (3) that there exists some i such
that f(ziz1) — f(@i) > n —d(w;, vi41) + 1. 0

It follows from the Claim that if Y2, d(z;, 7,,1) > 2k* 4+ 2k — 2, we also
have f(zor11) > 2k? + 2, completing the proof for odd paths.

We now show that rn(Py,) > 2(k? — k) + 1. Let f be a distance labeling
of Py. Let x1,x9,---, 29 be the ordering of the vertices of Py such that

f(z;) < f(z;41) for all . Then
2k—1

fxor) > ; 2k — d(w, Ti41)]
= 2]{)(2]{} — 1) — 2%31 d(l‘z, ZUZ'+1).
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Similarly, in the summation Y 27! d(x;, 244,), each j € {1,2,---,2k}
occurs as +j twice, except two j’s, each of which occurs once. Moreover, 2k —
1 of the terms are positive and 2k —1 of them are negative. Thus to maximize
the summation subject to the constraint, each number in {1,2,--- k — 1}
occurs twice as negative terms, each number in {k + 2,k + 3,---,2k} occurs
twice as positive terms, while £ and k£ + 1 occurs once, respectively, as a
negative term and a positive term. Hence, we have 27 d(z;, 7541) < 2(k*—

1) + 1, implying f(wox) > 2k(2k — 1) — 2(k* — 1) — 1 > 2(k* — k) + 1. i

3 The Radio Number for Cycles

Let C, denote the cycle on n vertices. Chartrand et al. [3] proved the
following bounds for rn(C,,).

Theorem 4 [3] For k > 3,

k2 ifn=2k+1;
< ) 7
rn(Ch) < {k?—k+1, if n = 2k.

Moreover, rn(C,) > 3[5 — 1] — 1, forn > 6.
In this section, we completely determine the radio number for cycles. For
any integer n > 3, let

d)(n)—{k+1’ ifn=4k+1;
L k+2, if n=4k+r for somer =0,2,3.

Theorem 5 Let C, be the n-vertex cycle, n > 3. Then

n—2 1
“2p(n) + 1, ifn =4k or 4k + 2;
_ 2

First we prove that the desired numbers in Theorem 5 are lower bounds

for rn(Cy). Assume V(C,) = {vo,v1,v2,--,vy_1}, where v; ~ v;1; and

11



v,_1 ~ vy. Let f be a distance labeling for C),. We order the vertices of
V(Cy) by o, 21, T, -+, Ty With f(2;) < f(@i41).
Denote d = diam(C},). Then d = [n/2]. For i =0,1,2,---,n — 2, set

di = d(vi, vit1), fi = f(xig1) — f(2).
By definition, f; > d — d; + 1 for all s.
Lemma 6 For any0<i<n—2, f; + fis1 > &(n).

Proof. Assume to the contrary that for some 7, f; + fir1 < ¢(n) — 1. Then
fis fix1 < ¢(n) — 2. So, we have d; > d — f; +1 > d — ¢(n) + 3 and
div1 > d — ¢(n) + 3, implying that d;, d; 1 > d/2. Therefore, d(x;, r;19) is
equal to either |d; — d; 1| or n — (d; + d;11). In the former case, d(z;, z;42) <
d—(d— ¢(n) +3) = ¢(n) — 3, implying that

fit+ finn = f(wig2) — f(@:) > d = (o(n) = 3) + 1 > ¢(n),
contrary to our assumption. If it is the latter case, we have:

f(@ig1) — ) d—d;+1,
f(@iye) = f@ip1) > d—dip + 1,

f(@iv2) = f(2:)) > d—(n—di—diza) + 1.

v

Hence, 2(f(xit2)— f(x;)) > 3d—n+3. Easy calculation shows that f;+ fi11 =
f(xiv2) — f(x;) > ¢(n), a contradiction. i

Corollary 7 For any integer n > 3,

rn(Cy) > {nT_2¢(”) +1, ifn=4k or 4k +2;

2=Lo(n), if n =4k + 1 or 4k + 3.

12



Proof. If n = 4k or n = 4k + 2, by Lemma 6, the span of a distance labeling
f for C, is f(x, 1) and

(n—4)/2 n— 2
f(wp_1) Zfz = Z (f2i + faig1)
=0

(n)+ 1.

If n =4k + 1 or n = 4k + 3, by Lemma 6, the span of a distance labeling f
for C), is:

(n—3)/2
f(wp-1) Zfz = Y (foi+ foirr) >
=0

n—1

¢(n).

To complete the proof of Theorem 5, it remains to find distance labelings
for C,, with spans equal to the desired numbers. We consider four cases. For
each case, we present a distance labeling f of C),, achieving the bound.

In each of the four cases, the labeling is generated by two sequences of

positive integers, the distance gap sequence
D = (dy,dy, dy, d3, - - -, dy_3),
and the color gap sequence
F = (an Ji, fe e fn—Z)-
Let 7:{0,1,---,n—1} = {0,1,--+,n — 1} be defined by 7(0) = 0, and
T(i+1)=7() +d; (mod n).

We will show that 7 is a permutation. Let x; = v, fori=10,1,2,---,n—1.

Then xg, zq, -+, xn_1 is an ordering of the vertices of C,,. For the distance gap

sequence, we shall let 1 < d; < d for each i. This would imply d(x;, z;11) = d;.
The labeling f is defined by f(z) = 0, and for ¢ > 1,

f(@ig1) = fz) + fi.

13



Or equivalently,
fi= f(xip1) — f(zi).
Therefore, to show that f is indeed a distance labeling, it suffices to prove

that all the following hold, for any i:
1) 7 is a permutation,
2) fi>d—di+1,
3) fit fir1 2 d—d(zi,xipe) + 1,
4) fi+ fixr + fige > d — d(ws, w443) + 1,
5) fi++ firs 2.

For all the labelings we shall give below, 5) is trivial, 2) is obvious, 3) and 4)
are easy to verify. Thus, for each labeling, we sketch a proof for 1) and leave

the verifications of 2) to 5) to the readers.

‘Case 1. n= 4k‘ In this case, d = 2k. The distance gap sequence D =

(do,dy,dy, ds, - -+, d,_5) is given by:

2k, if 7 is even,;
d =1 k, ifi=1 (mod 4);
k+1, ifi=3 (mod 4),

The color gap sequence F' = (fo, f1, fo, f3,- "+, fu_2) iS given by:

f-—{l’ if 7 is even;
o lk+1, ifiisodd.

This implies, for i = 0,1,---,k — 1, we have

(44) = 2ik+i ( )
(4i+1) = (2i+2)k+i )
T(4i+2) = (2i+3)k+i  (mod n),
T(4i+3) = 2i+Dk+i ( )

14



We prove that 7 is a permutation. Assume to the contrary that 7(4i+j) =

7(47" + j') for some 0 < 4i + j < 4i' + j' < 4k — 1. Then
(2i+t)k+i=(2i' +t)k+4" (mod n) for some t,¢' =0,1,2,3.

This implies, 2(i' — i)k + (' —t)k =4 —i (mod n), which is impossible, as
0<i —i<kand2(i'—i)k+ (¢ —t)k =sk (mod n) for some integer s.
The span of f is equal to fo+ fi+ fs+ -+ faeo = (K +2)(2k — 1) + 1.

‘Case 2. n =4k + 2‘ In this case, d = 2k + 1. The distance gap sequence
D= (dg, dl, dg, d3, Tty dn_g) is defined by

d~—{2k+1’ if 7 is even;
o lk+1, ifsisodd,

The color gap sequence F' = (fo, f1, fo, f3,- -, fu_2) is defined by:

f = { 1, if 7 is even;
o lk4+1, ifiis odd.
Hence, for : = 0,1, -, 2k, we have
7(2i) = i(3k +2) (mod n),

T(2i+1) = i3k +2)+2k+1  (mod n).

We show that 7 is a permutation. Note that (n,k) < 2 and 3k + 2 = —k
(mod n). Thus, (i —#)(3k+2) = k(i —i) #0 (mod n), if i —i' < n/2.
This implies that 7(2i) # 7(2¢') and 7(20 + 1) # 7(2¢' + 1) if 4 # 7.

If 7(2¢) = 7(2i + 1), then similarly, we get (i — ')k =2k + 1 (mod n).
This is impossible, because (n,k) < 2 and i —i' <2k <n/2 =2k + 1.

The span of fis fo+ fi + -+ fu_2 = 2k(k +2) + 1.

‘Case 3. n=4k + 1‘ In this case, d = 2k. The distance gap sequence D =
(do, dl, dg, T, dn—Z) is defined by

dyi = dajro = 2k — 0, dyjp = dajrz3 =k + 1+

15



The color gap sequence F = (fo, f1,--

-, fn_2) is defined by:

fi=d—d;+1=2k—d; +1.

Then, the mapping 7 on the vertices of C), has:

7(21) = i(3k+1) (mod n)

= —ik (mod n), 0<i<2k
T(4i+1) = 2i(3k+1)+2k—14 (modn)

= 2(t+1)k (mod n), 0<i<k-—1
T(4i+3) = (2i+1)3k+1)+2k—i (mod n)

= (2i4+ 1)k (mod n), 0<i<k-—1.

We show that 7 is a permutation. Let

S =

{=i:0<i<2k}U{26+1):0<i<k—1}
U{2i4+1:0<i<k—1}
{=2k, —(2k — 1),---,0,1,---, 2k}

Then for any 0 < j < 4k, 7(j) = ak
and 7(j) = ak (mod n), 7(j') = d'k
since (n, k) =1

(a—a)k#0

(mod n) for some a € S. If j # j'

(mod n), then a # a'. Moreover,

(mod n), it follows that for any a,a’ € S, if a # @', then
(mod n). Therefore 7(j) # 7(5') if j # 5.

Using the fact that do; 4+ do;11 = 3k + 1 for any ¢, the span of f is

fot it fot o+ faoe

(4k)(2k) — (do + dy + -+ - + dp_2) + 4k
8k* — 2k(3k + 1) + 4k
2k(k +1).

‘Case 4. n =4k + 3‘ In this case, d = 2k + 1. The distance gap sequence
D= (dg, dl, dg, d3, Tty dn_g) is defined by

dyg = dgiyo =2k +1—i, dygy =k +1+14, dygr3=k+2+i.
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The color gap sequence F' = (fo, f1,-- -, fn_2) is defined by:

f__{d—di+1:2k—di+2, i#£3 (mod 4);
' ld—d;+2=2k—d;+3, otherwise.

Then, the mapping 7 on the vertices of C), has:

7(47) = i(6k+5) (mod n)
= 2i(k+1) (mod n), 0<i<k.

T(4i+1) = 2i(k+1)+2k+1—14 (modn)
= ({+1)(2k+1) (modn)

_ —2(i+1)(k+1) (mod n), 0<i<k.
T(4i+2) = (2+1)(2k+1)+k+1+z (mod n)

= (i+1)(2k+2)+k (modn)

= 2(i+1)(k+1)— 3(k +1) (mod n)

= (20—-1)(k+1) (modn), 0<i<k.

T(4i+3) = 2i(k+1)+3k+2+2k+1—i (modn)
= i(2k+1)+% (modn)
= —i(2k+2)—3(k+1) (modn)
= —(20+3)(k+1) (modn), 0<i<k-—1.

We prove that 7 is a permutation. Let

S = {20:0<i<k}u{=2i+1):0<i<k}
U{2i—1:0<i<k}U{—(20i+3):0<i<k—1}
= {—(k+2),—(2k+1),---,0,1,---,2k}.

Then for any 0 < j <4k +2, 7(j) = a(k +1) (mod n) for some a € S. If
j# 7 and 7(j) = a(k+1) (mod n), 7(j') = a’'(k+1) (mod n), then a # a'.
Moreover, since (n,k+ 1) =1 (mod n), it follows that for any a,a’ € S, if
a#a', then (a —a')(k+1)#0 (mod n). Therefore 7(j) # 7(j') if j # 5.

So 7 is a permutation.
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The span of f is

fo+rfit+ -+ foo = 2k(4k+2)—(do+di+ - +dpo)+2(4k+2)+ &

= 2k(4k +2) — [k(6k +5) + 3k +2]+ 9k + 4
= (k+2)2k+1).
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