Fractional Chromatic Number of Distance Graphs Generated by Two-Interval Sets

Daphne Der-Fen Liu *
Department of Mathematics
California State University, Los Angeles
Los Angeles, CA 90032, USA
Email: dliu@calstatela.edu

Xuding Zhu †
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung, Taiwan 80424
and
National Center for Theoretical Sciences
Email: zhu@math.nsysu.edu.tw

September 30, 2007

Abstract

Let \(D \) be a set of positive integers. The distance graph generated by \(D \), denoted by \(G(Z, D) \), has the set \(Z \) of all integers as the vertex

*Supported in part by the National Science Foundation under grant DMS 0302456.
†Supported in part by the National Science Council, R. O. C., under grant NSC94-2115-M-110-001.
set, and two vertices \(x \) and \(y \) are adjacent whenever \(|x - y| \in D \). For integers \(1 < a \leq b < m - 1 \), denote \(D_{a,b,m} = \{1, 2, \ldots, a - 1\} \cup \{b + 1, b + 2, \ldots, m - 1\} \). For the special case \(a = b \), the chromatic number for the family of distance graphs \(G(Z, D_{a,a,m}) \) was first studied by Eggleton, Erdős and Skilton [5] and was completely solved by Chang, Liu and Zhu [3]. For the general case \(a \leq b \), the fractional chromatic number for \(G(Z, D_{a,b,m}) \) was studied by Lam and Lin [14] and by Wu and Lin [23], in which partial results for special values of \(a, b, m \) were obtained. In this article, we completely settle this problem for all possible values of \(a, b, m \).

2000 Mathematics Subject Classification: Primary 05C15 and 11B05.

Keywords: distance graphs, fractional chromatic number, density of integral sequences, \(T \)-coloring.

1 Introduction

Let \(D \) be a set of positive integers. The distance graph generated by \(D \), denoted by \(G(Z, D) \), has the set \(Z \) of all integers as the vertex set, and two vertices \(x \) and \(y \) are adjacent whenever \(|x - y| \in D \). Initiated by Eggleton, Erdős and Skilton [5], the study of distance graphs has attracted considerable attention ([2–8, 11-18, 20-25]).

A fractional coloring of a graph \(G \) is a mapping \(f \) which assigns to each independent set \(I \) of \(G \) a non-negative weight \(f(I) \) such that for each vertex \(x \), \(\sum_{x \in I} f(I) \geq 1 \). The fractional chromatic number \(\chi_f(G) \) of \(G \) is the least total weight of a fractional coloring for \(G \).

The problem of determining the fractional chromatic number for distance graphs has been studied in different research areas under different names. Firstly, it is equivalent to a sequence density problem in number theory. For a set \(D \) of positive integers, a sequence \(S \) of non-negative integers is called a \(D \)-sequence if \(a - b \notin D \) for any \(a, b \in S \). Let \(S(n) \) denote \(\{0, 1, \ldots, n-1\} \cap S \). The upper density and the lower density of \(S \) are defined, respectively, by

\[
\overline{\delta}(S) = \lim_{n \to \infty} \frac{S(n)}{n}, \quad \underline{\delta}(S) = \lim_{n \to \infty} \frac{S(n)}{n}.
\]
We say S has density $\delta(S)$ if $\delta(S) = \bar{\delta}(S) = \bar{\delta}(S)$. The parameter of interest is the maximum density of a D-sequence, defined by

$$\mu(D) = \sup \{\delta(S) : S \text{ is a } D\text{-sequence}\}.$$

The problem of determining or estimating $\mu(D)$ was initially posed by Motzkin in an unpublished problem collection (cf. [1]), and has been studied in [1, 10, 19, 9, 18]. Note that, S is a D-sequence if and only if S (as a set of integers) is an independent set of $G(Z, D)$. It was proved by Chang et al. [3] that for any finite set D,

$$\mu(D) = \frac{1}{\chi_f(G(Z, D))}.$$

Secondly, the fractional chromatic number of a distance graph is equivalent to an asymptotic problem in T-coloring. The T-coloring problem was motivated by the channel assignment problem introduced by Hale [10], in which an integer broadcast channel is assigned to each of a given set of stations or transmitters so that interference among nearby stations is avoided. Interference is modeled by a set of non-negative integers T containing 0 as the forbidden channel separations. By using a graph G to represent the broadcast network, a valid channel assignment is defined as a T-coloring for G, which is a mapping $f : V(G) \to Z$ such that $|f(x) - f(y)| \not\in T$ whenever $xy \in E$. The span of a T-coloring f is the difference between the largest and the smallest numbers in $f(V)$, i.e., $\max \{|f(u) - f(v)| : u, v \in V\}$. Given T and G, the T-span of G, denoted by $\text{sp}_T(G)$, is the minimum span among all T-colorings of G. As for any graph G, $\text{sp}_T(G) \leq \text{sp}_T(K_{\chi(G)})$, it is useful to estimate $\text{sp}_T(K_n)$. Let σ_n denote $\text{sp}_T(K_n)$. Griggs and Liu [9] proved that for any set T the asymptotic T-coloring ratio

$$R(T) := \lim_{n \to \infty} \frac{\sigma_n}{n}$$

exists and is a rational number. It was proved in [3] that for any T, by letting $D = T - \{0\}$, we have $R(T) = \chi_f(G(Z, D))$.

Partially due to its rich connections to other problems, the fractional chromatic number for various classes of distance graphs has been studied in the literature (cf. [2, 3, 17, 18, 23, 14, 24, 25]). If D is a singleton, trivially
\(\chi_f(G(Z, D)) = 2.\) If \(D = \{a, b\}\) and \(\gcd(a, b) = 1,\) it is known [1] that \(\chi_f(G(Z, D)) = \frac{a+b}{\lfloor (a+b)/2 \rfloor} .\) For \(|D| \geq 3,\) the exact values of \(\chi_f(G(Z, D))\) are known only for some special sets \(D.\) For \(D = \{a, b, a+b\},\) upper and lower bounds for \(\chi_f(G(Z, D))\) were obtained by Rabinowitz and Proulx [19]. Let \(\chi(G)\) and \(\omega(G)\) denote, respectively, the chromatic number and the clique number of \(G.\) It is easy to see that \(\omega(G) \leq \chi_f(G) \leq \chi(G)\) holds for any graph \(G,\) and \(\chi(G(Z, D)) \leq |D| + 1 \) ([4, 20]) if \(D\) is finite. In [18], the sets \(D\) with \(\omega(G(Z, D)) \geq |D|\) were characterized and the value of \(\chi_f(G(Z, D))\) for most of this class of graphs, including \(D = \{a, b, a+b\},\) was determined.

For any two integers \(a \leq b,\) let \([a, b]\) denote the interval of consecutive integers \(\{a, a+1, \ldots, b\}.\) It is known that if \(D = [a, b],\) then \(\chi_f(G(Z, D)) = (a+b)/a\) [9, 2]. For the sets \(D\) of the form \(D = [1, m] - \{k, 2k, \ldots, sk\}\) for integers \(m, k\) and \(s,\) the values of \(\chi_f(G(Z, D))\) were determined in [17].

For \(1 < a \leq b < m - 1,\) let \(D_{a,b,m}\) denote the two-interval set

\[D_{a,b,m} = [1, a - 1] \cup [b + 1, m - 1].\]

Note, if \(a = b,\) then \(D_{a,a,m} = [1, m - 1] - \{a\}.\) The chromatic number for \(G(Z, D_{a,a,m})\) was first studied by Eggleton, Erdős and Skilton [5] and the problem was completely solved in [3]. For the general case \(a \leq b,\) both the fractional chromatic number and the chromatic number for \(G(Z, D_{a,b,m})\) were studied by Wu and Lin [23], and by Lam and Lin [14]. Some partial results were obtained. In this article, we completely determine the fractional chromatic number of \(G(Z, D_{a,b,m})\) for all \(1 < a \leq b < m - 1.\)

2 The main result and some preliminaries

For some special cases, the values of \(\chi_f(G(Z, D_{a,b,m}))\) for the two-interval set \(D_{a,b,m} = [1, a - 1] \cup [b + 1, m - 1]\) were solved in [23] and [14]. If \(b < 2a,\) then \(\chi_f(G(Z, D_{a,b,m}))\) is determined in [23]. Let \(\Delta = m - b.\) If \(\Delta \leq a\) or \(\Delta \geq 2a,\) then \(\chi_f(G(Z, D_{a,b,m}))\) is determined in [14]. Some other special cases (which cannot be easily described) are discussed in [14].

The main result of this article is the following which completely determines the value of \(\chi_f(G(Z, D_{a,b,m}))\) for all \(1 < a \leq b < m - 1.\)
Theorem 1 For integers $1 < a \leq b < m - 1$. Suppose $G = G(Z, D_{a,b,m})$ where $D_{a,b,m} = [1, a - 1] \cup [b + 1, m - 1]$. Let $\Delta = m - b$, $s = \lfloor b/a \rfloor$, and $q = \lfloor m/\Delta \rfloor$.

• If $\Delta \geq 2a$, then $\chi_f(G) = (sa + m)/(s + 1)$.

• If $\Delta \leq a$, then $\chi_f(G) = \max\{a, m/(s + 1)\}$.

• If $a < \Delta < 2a$, then

\[
\chi_f(G) = \begin{cases}
\frac{sa+m}{s+1}, & \text{if } 2qa \leq m < a + q\Delta \text{ or } m \geq (2q+1)a; \\
\frac{m}{q}, & \text{if } m < \min\{q\Delta + a, 2qa\}; \\
\frac{(2q-1)m+a}{2q^2}, & \text{if } q\Delta + a \leq m < (2q+1)a.
\end{cases}
\]

The cases for $\Delta \geq 2a$ and $\Delta \leq a$ were solved in [14]. However, for completeness, we include these cases in the statement and give a short proof for them.

Recall the result in [3] mentioned in Section 1, the fractional chromatic number of G is equal to the reciprocal of $\mu(D_{a,b,m})$, which is the maximum density of a $D_{a,b,m}$-sequence. Let $I = \{x_1, x_2, \cdots\}$ be a $D_{a,b,m}$-sequence where $x_i < x_{i+1}$. Let $\delta_i = x_{i+1} - x_i$. The sequence $\Omega = (\delta_1, \delta_2, \cdots)$ is called the gap sequence of I. In the following, we call a sequence $(\delta_1, \delta_2, \cdots)$ a D-gap sequence if it is the gap sequence of a D-sequence. Observe that a sequence $(\delta_1, \delta_2, \cdots)$ is a D-gap sequence if and only if for any $j \leq j'$, $\sum_{i=j}^{j'} \delta_i \notin D$. In particular, the following observation is frequently used, usually implicitly, in our proofs.

• A sequence $(\delta_1, \delta_2, \cdots)$ is a $D_{a,b,m}$-gap sequence if and only if

1. $\delta_i \geq a$ for each i; and
2. for any $j \leq j'$, either $\sum_{i=j}^{j'} \delta_i \leq b$ or $\sum_{i=j}^{j'} \delta_i \geq m$.

By definition,

$$
\mu(D_{a,b,m}) = \max \lim_{n \to \infty} \frac{|I \cap [0, n - 1]|}{n},
$$

5
where the maximum is taken over all \(D_{a,b,m}\)-sequences \(I\). Hence

\[
\chi_f(G) = \frac{1}{\mu(D_{a,b,m})} = \min \lim_{n \to \infty} \frac{n}{|I \cap [0, n-1]|} = \min \lim_{k \to \infty} \sum_{i=1}^{k} \frac{\delta_i}{k}.
\]

Again, the minimum is taken over all \(D_{a,b,m}\)-sequences \(I\) with gap sequence \((\delta_1, \delta_2, \cdots)\).

For an interval of integers \([a, b]\), we call its cardinality \(|[a, b]|\) the length of \([a, b]\). Given a \(D_{a,b,m}\)-gap sequence \(Y = (\delta_1, \delta_2, \delta_3, \cdots)\), the average gap length of \(Y\) is

\[
\langle \delta \rangle = \lim_{k \to \infty} \frac{\sum_{i=1}^{k} \delta_i}{k} \quad \text{if exists}.
\]

Thus to determine the fractional chromatic number of \(G(Z, D_{a,b,m})\), it amounts to determine the minimum average gap length of a \(D_{a,b,m}\)-gap sequence. Usually, the gap sequences we concern are periodic. For a periodic gap sequence, it suffices to present one period of the sequence. We shall denote by \(\langle y_1, y_2, \cdots, y_k \rangle\) the infinite periodic sequence with period \(k\). That is, \(\langle y_1, y_2, \cdots, y_k \rangle = \langle y_1, y_2, \cdots, y_j, \cdots \rangle\) where for \(j > k\), \(y_j = y_{j-k}\). For convenience, we denote by \(p \otimes t\), for any integers \(p\) and \(t\), the \(p\) repetitions of \(t\). For example, \(\langle 3 \otimes 5, 2 \otimes 7 \rangle\) is the periodic sequence \(\langle 5, 5, 5, 7, 7, 5, 5, 5, 7, 7, \cdots \rangle\).

We now give a short proof for the cases \(\Delta \leq a\) and \(\Delta \geq 2a\). As each gap of a \(D_{a,b,m}\)-gap sequence is at least \(a\), we have \(\chi_f(G) \geq a\). If \(m \leq (s+1)a\), then \(\langle a \rangle\) is a \(D_{a,b,m}\)-gap sequence with average gap length \(a\). Hence \(\chi_f(G) = a\).

Assume \(m > (s+1)a\) and \(\Delta \leq a\). Then the sequence \(\langle s \otimes a, m - sa \rangle\) is a \(D_{a,b,m}\)-gap sequence of average gap length \(m/(s+1)\). So \(\chi_f(G) \leq m/(s+1)\).

On the other hand, for any \(D_{a,b,m}\)-gap sequence \((\delta_1, \delta_2, \cdots)\), since \(\sum_{i=1}^{s+1} \delta_i \geq (s+1)a \geq b+1\), we must have \(\sum_{i=1}^{s+1} \delta_i \geq m\). Hence the average gap length is at least \(m/(s+1)\). So \(\chi_f(G) = m/(s+1)\).

Assume \(\Delta \geq 2a\). It is easy to verify that the sequence \(\langle s \otimes a, m \rangle\) is a \(D_{a,b,m}\)-gap sequence with average gap length \((m+sa)/(s+1)\). Hence \(\chi_f(G) \leq (m+sa)/(s+1)\)

On the other hand, if \(\chi_f(G) = 1/\mu(D_{a,b,m}) < (m+sa)/(s+1)\), then there is a \(D_{a,b,m}\)-sequence \(I\) with \(|[0, sa+m-1] \cap I| \geq s+2\). Without loss of generality, we may assume \(0 \in I\). Let \(I' = \{i : i \in I, i \leq b\} \cup \{i - m + a : i \in I, i \geq m - a\}\). It is easy to verify that \(|I| = |I'|, I' \subseteq [0, (s+1)a - 1]\) and for any \(x, y \in I', |x - y| \geq a\). This is in contrary to the assumption that \(|I| \geq s + 2\). Therefore we have \(\chi_f(G) = (m+sa)/(s+1)\).
3 Proof of the upper bound

In the rest of the paper, we assume that $a < \Delta < 2a$, and let

$$\tau(D_{a,b,m}) = \begin{cases} \frac{sa+m}{s+1}, & \text{if } 2qa \leq m < a + q\Delta \text{ or } m \geq (2q + 1)a; \\ \frac{m}{q}, & \text{if } m < \min\{q\Delta + a, 2qa\}; \\ \frac{(2q-1)m+a}{2q^2}, & \text{if } q\Delta + a \leq m < (2q + 1)a. \end{cases}$$

In this section, we prove that $\chi_f(G) \leq \tau(D_{a,b,m})$. This amounts to present a $D_{a,b,m}$-gap sequence whose average gap length is at most $\tau(D_{a,b,m})$.

Lemma 2 Suppose $G = G(Z, D_{a,b,m})$. Then $\chi_f(G) \leq \tau(D_{a,b,m})$.

Proof. First note that the following are two $D_{a,b,m}$-gap sequences:

$$\langle s \otimes a, m \rangle \text{ and } \langle (q-1) \otimes \Delta, m - ((q-1)\Delta) \rangle,$$

where the average gap lengths, respectively, are $(sa+m)/(s+1)$ and m/q. This proves the result for all the cases, except the very last one.

For the last case, $q\Delta + a \leq m < (2q + 1)a$, the gap sequence is more complicated. We shall define some special sequences, then combine them to form the required periodic sequence.

For $i = 1, 2, \ldots, q-1$, let Y_i and Y_i' and Z be finite sequences of integers defined as follows:

$$Y_i = (i \otimes \Delta, a, (q-1-i) \otimes \Delta, m - (a + (q-1)\Delta))$$

$$Y_i' = ((i-1) \otimes \Delta, \Delta + a, (q-1-i) \otimes \Delta, m - (a + (q-1)\Delta))$$

$$Z = (a)$$

Let $$Y_q' = ((q-1) \otimes \Delta, m - (q-1)\Delta).$$

For finite sequences $A = (a_1, a_2, \ldots, a_s)$ and $B = (b_1, b_2, \ldots, b_t)$, the concatenation of A and B, denoted by AB, is the sequence

$$AB = (a_1, a_2, \ldots, a_s, b_1, b_2, \ldots, b_t).$$
The concatenation of sequences is associative. Thus for finite sequences A_1, A_2, \cdots, A_t, the sequence $A_1A_2\cdots A_t$ is well-defined. Define the periodic gap sequence as

$$\langle Y'_qY'_{q-1}Y'_{q-2}Y'_{q-3}\cdots Y'_{1}Y'_1Z \rangle.$$

Now we show that this sequence is indeed a $D_{a,b,m}$-gap sequence. Since

$$m - (a + (q - 1)\Delta) = m - q\Delta - a + \Delta \geq \Delta > a,$$

each entry of the sequence is at least a. It remains to show that the sum of any number of consecutive entries of the sequence is either at most b or at least m. Observe that the sum of the entries in each Y_i or Y'_i is equal to m. Consider the sum of any t consecutive entries in the sequence. Straightforward calculation shows that if $t \geq q+1$, then the sum is at least m; if $t \leq q-1$, then the sum is at most b; if $t = q$, then the sum is either equal to m or at most b. (Here we use the condition that $(q-1)\Delta + a \leq (q-1)\Delta + m - q\Delta = b$.) Thus the sequence defined above is a $D_{a,b,m}$-gap sequence.

Straightforward calculation shows that this gap sequence has average gap length $\frac{(2q-1)m+a}{2q^2}$.

4 Proof of the lower bound

To complete the proof of Theorem 1, it remains to show that $\chi_f(G) \geq \tau(D_{a,b,m})$. To this end, we need some more definitions.

In the following, we assume that $I = \{x_1, x_2, \cdots \}$ is a $D_{a,b,m}$-sequence, i.e., an independent set in $G = G(Z, D_{a,b,m})$. We shall prove that the gap sequence of I has average gap length at least $\tau(D_{a,b,m})$.

Let

$$L = \{i : x_{i+1} - x_i \geq \Delta\}.$$

For each $x_i \in I$, we associate it with a set X_i of integers as follows.

$$X_i = \begin{cases}
[x_i, x_i + \Delta - 1], & \text{if } i \in L; \\
[x_i, x_i + a - 1] \cup [x_i + m, x_i + m + a - 1], & \text{if } i \not\in L.
\end{cases}$$

Lemma 3 If $i \neq j$, then $X_i \cap X_j = \emptyset$.

8
Proof. Assume \(i < j \). If \(i \in L \), then \(X_i = [x_i, x_i + \Delta - 1] \) and by definition, \(x_j \geq x_i + \Delta \). As \(t \in X_j \) implies that \(t \geq x_j \), we have \(X_i \cap X_j = \emptyset \). Assume \(i \notin L \). Then \(X_i = [x_i, x_i + a - 1] \cup [x_i + m, x_i + m + a - 1] \). As \(x_j \geq x_i + a \), we know that \(X_j \cap [x_i, x_i + a - 1] = \emptyset \). Assume \(X_j \cap [x_i + m, x_i + m + a - 1] \neq \emptyset \).

Then by the definition of \(X_j \), we have either \(x_j \in [x_i + m - \Delta + 1, x_i + m - 1] \) or \(x_j \in [x_i + m, x_i + m + a - 1] \). The former case implies \(b + 1 \leq x_j - x_i \leq m - 1 \); and the latter case implies \(b + 1 \leq x_j - x_i + 1 \leq m - 1 \) (since \(i \notin L \), we have \(a \leq x_{i+1} - x_i < \Delta \)). For both cases, it contradicts the assumption that \(I \) is a \(D_{a,b,m} \)-sequence.

We call intervals of the form \([x_i + m, x_i + m + a - 1]\) for \(i \notin L \) Type-B \(I \)-intervals. Intervals of the form \([x_i, x_i + \Delta - 1]\) for \(i \in L \), and intervals of the form \([x_i, x_i + a - 1]\) for \(i \notin L \) are called Type-A \(I \)-intervals. Both Type-A and Type-B \(I \)-intervals are referred as \(I \)-intervals. The length of an \(I \)-interval is either \(\Delta \) or \(a \), and they are called, respectively, long or short \(I \)-intervals.

Lemma 4 If \(T = [x_i, x_i + a - 1] \) is a short Type-A \(I \)-interval, then the first \(I \)-interval \(T' = [u,v] \) with \(u \geq x_i + a \) is Type-A.

Proof. Assume to the contrary that \(T' = [u,v] = [x_j + m, x_j + m + a - 1] \) for some \(j \). As \(x_j + m \geq x_i + a \), which implies \(x_i - x_j \leq m - a \), we have \(x_i - x_j \leq b \). So \(x_j + m \geq x_i + \Delta \). In addition, since \(T \) is a short Type-A \(I \)-interval, \(x_{i+1} < x_i + \Delta \). Hence, \(x_{i+1} < x_j + m \), contradicting the choice of \(T' \).

Lemma 5 There are at most \(s \) short consecutive \(I \)-intervals that are of the same type.

Proof. First we show that there are at most \(s \) short consecutive Type-A \(I \)-intervals. Assume \(T_1 = [u_1, v_1], T_2 = [u_2, v_2], \ldots, T_{j} = [u_{j}, v_{j}] \) are consecutive \(I \)-intervals and \(T_1, T_2, \ldots, T_{j-1} \) are short and Type-A. By Lemma 4, \(T_{j} \) is also Type-A. So \(u_1, u_2, \ldots, u_{j} \in I \). We prove by induction on \(i \) that \(u_i \leq u_1 + b \) for \(i = 1, 2, \ldots, j \). It is trivial for \(i = 1 \). Assume \(i < j \) and \(u_i \leq u_1 + b \). By definition of \(I \)-intervals, \(u_{i+1} - u_i < \Delta \). Hence \(u_{i+1} < u_i + \Delta \leq u_1 + m \). As \(u_1, u_{i+1} \in I \), it follows that \(u_{i+1} \leq u_1 + b \).
Because $s = \lfloor b/a \rfloor$ and $|T_i| \geq a$, we conclude that there are at most s consecutive short Type-A I-intervals. By definition, consecutive Type-B I-intervals correspond to consecutive short Type-A I-intervals. So the result follows.

Suppose T is an I-interval. Define the weight of T by

$$w(T) = \begin{cases} 1, & \text{if } T \text{ is long;} \\ 1/2, & \text{if } T \text{ is short.} \end{cases}$$

For any interval of integers $[u, v]$, let

$$w([u, v]) = \sum_{T \text{ is an } I\text{-interval and } T \subseteq [u, v]} w(T).$$

By definition, every integer in I creates either a long interval of weight 1 or two short intervals of weight $1/2$ each. By Lemma 3, all these intervals are disjoint, and by definition the two short intervals induced by an integer in I are of distance $m - a$ apart. Hence, by Lemma 5, for any n,

$$w([0, n - 1]) - s/2 \leq |I \cap [0, n - 1]| \leq w([0, n - 1]) + s/2.$$

Thus to prove that $\lim_{n \to \infty} \frac{|I \cap [0, n - 1]|}{w([0, n - 1])} \geq \tau(D_{a,b,m})$, it suffices to show that $\lim_{n \to \infty} \frac{n}{w([0, n - 1])} \geq \tau(D_{a,b,m})$.

An interval $W = [x, y]$ of integers is called **neat** if every I-interval is either contained in W or disjoint from W. Suppose W is a neat interval. We define the X-ratio of W to be

$$r(W) = \frac{|W|}{w(W)}.$$

To prove that $\lim_{n \to \infty} \frac{n}{|I \cap [0, n - 1]|} \geq \tau(D_{a,b,m})$, it suffices to find integers $a_1 < a_2 < \cdots$ such that for any i, $R_i = [a_i, a_{i+1} - 1]$ is a neat interval and $r(R_i) \geq \tau(D_{a,b,m})$.

We say an integer p has property (*) if

(*) for the first Type-B I-interval $[u, u + a - 1]$ with $u \geq p$, we have $u \geq p + \Delta$.

10
Lemma 6 Each $x_i \in I$ has property (*). Moreover, if $i \in L$, then $x_i + m$ also has property (*) and $[x_i, x_i + m - 1]$ is neat.

Proof. If $i \not\in L$, by Lemma 4, x_i has property (*). Assume $i \in L$. By definition, x_i has property (*). Suppose $x_i + m$ does not have property (*). Then, there exists some u with $x_i + m \leq u < x_i + m + \Delta$ such that $[u, u + a - 1]$ is a Type-B I-interval. By definition, $u - m \in I$ and $[u - m, u - m + a - 1]$ is Type-A. This is impossible as $x_i \leq u - m < x_i + \Delta \leq x_{i+1}$ but $i \in L$. Hence, $x_i + m$ has property (*).

Now, assume to the contrary that $[x_i, x_i + m - 1]$ is not neat. Let $T = [u, v]$ be an I-interval that $T \cap [x_i, x_i + m - 1] \neq \emptyset$ and $T \not\subseteq [x_i, x_i + m - 1]$. By definition and as $i \in L$, T must be Type-A. Hence, $u \in I$. Let $u = x_t$ for some t. Then $x_i + m - \Delta + 1 \leq t \leq x_i + m - 1$. This implies $b + 1 \leq t - x_i \leq m - 1$, a contradiction.

To complete the proof of Theorem 1, it suffices to find an infinite sequence of integers $a_1 < a_2 < \cdots$ such that the following hold for all i:

1. a_i has property (*),
2. $R_i = [a_i, a_{i+1} - 1]$ is neat, and
3. $r(R_i) \geq \tau(D_{a,b,m})$.

We shall construct such a sequence of integers $a_1 < a_2 < \cdots$ inductively. Initially, set $a_1 = x_1$. By Lemma 6, a_1 has property (*). Assume we have determined a_1, a_2, \ldots, a_i, where (1 - 3) in the above are satisfied. We shall determine a_{i+1} so that (1 - 3) still hold.

Let $[u, v]$ be the first I-interval with $u \geq a_i$. If $[u, v]$ is Type-B, then as a_i has property (*), $u \geq a_i + \Delta$. Let $a_{i+1} = x_t$, where x_t is the smallest element of I for which $x_t > a_i$. Then all the I-intervals contained in $R_i = [a_i, a_{i+1} - 1]$ are Type-B, and R_i is neat. Assume R_i contains j Type-B I-intervals. By Lemma 5, $j \leq s$. Since $w(R_i) = j/2$ and $|R_i| \geq \Delta + ja_i$, it follows that

$$r(R_i) \geq \frac{2(\Delta + ja_i)}{j} \geq 2a + \frac{2\Delta}{s} \geq \tau(D_{a,b,m}).$$
Observe that \(\frac{sa+m}{s+1} < a + \frac{b}{s+1} + \frac{\Delta}{s+1} < 2a + \frac{\Delta}{s+1} \). If \(m < 2qa \), then \(\frac{m}{q} < 2a \). If \(m < (2q+1)a \), then \(\frac{(2q+1)a+m}{2q^2} < 2a \). Moreover, by Lemma 6, \(a_{i+1} = x_t \) has property (*). Thus (1 - 3) in the above are satisfied.

In the following, assume \([u, v]\) is Type-A. Then \(u \in I \). Let \(x_h \) be the first element of \(I \) such that \(x_h \geq u \) and \(h \in L \). Let \(a_{i+1} = x_h + m \). By Lemma 6, \(R_i = [a_i, a_{i+1} - 1] \) is neat and \(a_{i+1} \) has property (*).

It remains to show (3). Assume the interval \([u, x_h - 1]\) contains \(j \) I-intervals for some \(j \geq 0 \). By Lemma 4, all the I-intervals contained in \([u, x_h - 1]\) are Type-A and short.

Since an I-interval of weight 1 has length \(\Delta \) and an I-interval of weight \(1/2 \) has length \(a > \Delta/2 \), so for any interval \(T \) of length \(m \), we have

\[
w(T) \leq \begin{cases}
q, & \text{if } m < q\Delta + a; \\
q + \frac{1}{2}, & \text{if } m \geq q\Delta + a.
\end{cases}
\]

Because \(R_i = [a_i, x_h - 1] \cup [x_h, x_h + m - 1] \), it follows that

\[
w(R_i) \leq \begin{cases}
q + \frac{j}{2}, & \text{if } m < q\Delta + a; \\
q + \frac{j + 1}{2}, & \text{if } m \geq q\Delta + a.
\end{cases}
\]

Now we consider three cases.

Case 1 \(m < q\Delta + a \). As \(|R_i| \geq ja + m \), by the above discussion, \(r(R_i) \geq \frac{ja+m}{q+j/2} \). Observe that \(\frac{ja+m}{q+j/2} \) is a function of \(j \) which is increasing if \(m \leq 2qa \) and decreasing if \(m \geq 2qa \). Hence, as \(j \leq s \), we have

- if \(m \geq 2qa \), then \(r(R_i) \geq \frac{sa+m}{q+1} \geq \frac{sa+m}{s+1} \);
- if \(m < 2qa \), then \(r(R_i) \geq \frac{0a+m}{q+0} \geq \frac{m}{q} \).

Hence, (3) holds.

Case 2 \(m \geq (2q+1)a \). Similar to Case 1, we have \(r(R_i) \geq \frac{ja+m}{q+(j+1)/2} \). Because \(m \geq (2q+1)a \), which implies that \(\frac{ja+m}{q+(j+1)/2} \) is a decreasing function of \(j \), we conclude that \(r(R_i) \geq \frac{sa+m}{q+(s+1)/2} \). As \(\frac{b}{a} = \frac{m}{a} - \frac{\Delta}{a} \geq 2q + 1 - 2 \), we
have \(s = [b/a] \geq 2q - 1 \), i.e., \(q \leq (s + 1)/2 \). Hence \(r(R_i) \geq (sa + m)/(s + 1) \), so (3) holds.

Case 3 \(a + q\Delta \leq m < (2q + 1)a \). Then \(r(R_i) \geq \frac{j a + m}{q + (j + 1)/2} \). Because \(m < (2q + 1)a \), \(\frac{j a + m}{q + (j + 1)/2} \) is an increasing function of \(j \). If \(j \geq 1 \), then \(r(R_i) \geq \frac{a + m}{q + 1} > \frac{(2q - 1)m + a}{2q^2} \). If \(j = 0 \) and \(w(R_i) \leq q \), then \(r(R_i) \geq \frac{m}{q} > \frac{(2q - 1)m + a}{2q^2} \), and we are done.

Assume \(j = 0 \) and \(w(R_i) = q + 1/2 \). Then \(u = h \) and \(r(R_i) \geq m/(q + 1/2) \). As \(\frac{m}{q + 1/2} < \frac{(2q - 1)m + a}{2q^2} = \tau(D_{a,b,m}) \), this “\(a_{i+1} \)” does not satisfy our requirement. We need to find a different \(a_{i+1} \) so that (1 - 3) are satisfied. In the following, we re-name the interval \([u, u + m - 1]\) just obtained by \(R_i^1 \). (The correct \(R_i \) is not found yet.)

Since \(w(R_i^1) = q + 1/2 \), \(R_i^1 \) contains a short \(I \)-interval. Let \(p_1 \leq q \) be the total weight of \(I \)-intervals preceding the last short \(I \)-interval in \(R_i^1 \). As \(w(R_i^1) = q + 1/2 \) and the first \(I \)-interval of \(R_i^1 \) is long, we know that \(p_1 \geq 1 \) is an integer.

Before reaching the correct interval \(R_i \), we may need a (finite) sequence of intervals \(R_i^j \), where \(R_i^1 \) is just the first one of them. In the following, we describe the inductive step of finding \(R_i^j \).

Suppose \(z \) is an integer, \(1 \leq z \leq 2q - 1 \), and for \(j = 1, 2, \cdots, z \), we have obtained \(R_i^j = [x_{i_j}, x_{i_j} + m - 1] \) with the following properties:

- \(x_{i_j} \in I \) and \(i_j \in L \), and for \(j \geq 2 \), \(x_{i_{j-1}} + m \leq x_{i_j} < x_{i_{j-1}} + m + a \).
- \(w(R_i^j) = q + 1/2 \).

Observe that if \(w(R_i^j) = q + 1/2 \), the \(I \)-intervals in \(R_i^j \) must be “tightly packed”. Namely, if a neat sub-interval \(H \) of \(R_i^j \) has length \(\geq \alpha\Delta + \beta a \), where \(\alpha, \beta \) are non-negative integers, then \(w(H) \geq \alpha + \beta/2 \). For otherwise, \(w(R_i^j) \) will be less than \(q + 1/2 \).

Let \(p_j \) be the total weight of \(I \)-intervals preceding the last short \(I \)-interval in \(R_i^j \). Since \(w(R_i^j) = q + 1/2 \), \(R_i^j \) does contain a short \(I \)-interval. Since the first interval of \(R_i^j \) is a long interval, we have \(p_j \geq 1 \).
Let \([x_{i'}, x_{i'} + \Delta - 1]\) be the first long \(I\)-interval with \(x_{i'} \geq x_i + m\). If \(x_{i'} \geq x_i + m + a\), let \(a_{i+1} = x_{i'}\). Then \(R_i = [a_i, a_{i+1} - 1]\) is neat, \(|R_i| \geq zm + ja\) for some \(j \geq 1\), and \(w(R_i) \leq z(q + 1/2) + j/2\). Hence

\[
r(R_i) \geq \frac{zm + ja}{z(q + 1/2)} + \frac{j}{2} \geq \frac{zm + a}{z(q + 1/2)} + \frac{1}{2} \geq \frac{(2q - 1)m + a}{2q^2}.
\]

Note, all the \(I\)-intervals contained in \([x_i + m, x_{i'} - 1]\), if any, are short. The last inequality in the above holds since \(z \leq 2q - 1\) and \(\frac{zm + a}{z(q + 1/2)}\) is a decreasing function of \(z\). As \(a_{i+1} \in I\) has property (*), we are done for this case.

Assume \(x_{i'} \leq x_i + m + a - 1\). Let \(R_{i+1}^{z+1} = [x_{i'}, x_{i'} + m - 1]\). If \(w(R_{i+1}^{z+1}) \leq q\), then let \(a_{i+1} = x_{i'} + m\). By Lemma 6, \(R_i = [a_i, a_{i+1} - 1]\) is neat and \(a_{i+1}\) has property (*). To verify (3), we note that \(w(R_i) \leq (z+1)q + z/2\) and

\[
r(R_i) \geq \frac{(z+1)m}{(z+1)q + z/2} \geq \frac{2qm}{2q^2 + q - 1/2} \geq \frac{(2q - 1)m + a}{2q^2}.
\]

The second inequality in the above holds because \(\frac{(z+1)m}{(z+1)q + z/2}\) is a decreasing function of \(z\). The third inequality holds because \(m \geq a(q + 1)\). Thus we assume \(w(R_{i+1}^{z+1}) = q + 1/2\).

Claim: \(p_{z+1} \leq p_z\). Moreover, if \(p_{z+1} = p_z\), then the last short \(I\)-interval contained in \(R_{i}^z\) is Type-A, and the last short \(I\)-interval in \(R_{i}^{z+1}\) is Type-B.

Proof of Claim. Let \(T = [u, u + a - 1]\) and \(T' = [u', u' + a - 1]\) be the last short \(I\)-interval in \(R_{i}^z\) and \(R_{i}^{z+1}\), respectively. If \(T'\) is Type-B, then \(T'' = [u' - m, u' - m + a - 1]\) is a short Type-A \(I\)-interval contained in \(R_{i}^z\). Note, as \([u' - m, x_{i'} - 1] = [u', x_{i'} + m - 1]\) and \(x_{i'} \geq x_i + m\), we have \([x_{i'}/u' - m - 1] = [x_{i'}/u' - m - 1]\). Hence, \([x_{i'}/u' - m - 1]\) is capable of containing \(I\)-intervals of total weight at least \(p_{z+1}\). As the \(I\)-intervals in \(R_{i}^{z+1}\) are “tightly packed,” the \(I\)-intervals contained in \([x_i, u' - m - 1]\) has total weight at least \(p_{z+1}\). Therefore \(p_z \geq p_{z+1}\), and if the equality holds then the last short \(I\)-interval in \(R_{i}^{z+1}\) is of Type A.

Assume \(T'\) is Type-A. Thus \(u' = x_{i'} \in I\) for some \(i'\). Since \(T'\) is short, \(x_{i'+1} \leq x_{i'} + \Delta - 1\). Note, as \(s' \in L\) and \(x_{i'}, x_{i'+1} \in I\), we have \(x_{i'+1} \leq x_{i'} + b\) and \([x_{i'} - m + 1, x_{i'+1} - b - 1] \cap I = \emptyset\).

Consider the interval \([x_{i'}, x_{i'+1} - b - 1]\). If this is a sub-interval of \(R_{i}^z\),
then since
\[|[x_{i_*}, x_{i_*+1} - 1]| \geq |x_{i_*,} x_{i_*+1} - 1| + \Delta, \]
and the interval \([x_{i_*}, x_{i_*+1} - 1]\) is tightly packed, we conclude that the total weight of the I-intervals that intersect with \([x_{i_*}, x_{i_*+1} - 1]\) is at least \(p_{z+1} + 1 + 1/2\). Moreover, since \(|[x_{i_*}, - m + 1, x_{i_*+1} - b - 1]| \geq \Delta + a - 1\) and \([x_{i_*} - m + 1, x_{i_*+1} - b - 1] \cap I = \emptyset\), we conclude that the last I-interval intersecting with \([x_{i_*}, x_{i_*+1} - 1]\) is Type-B. The total weight of the I-intervals of \(R_i^z\) preceding this Type-B I-interval is at least \(p_{z+1} + 1\). Therefore, \(p_{z+1} < p_z\).

Assume \([x_{i_*}, x_{i_*+1} - 1]\) is not a sub-interval of \(R_i^z\). Then \(x_{i_*+1} - b - 1 \geq x_{i_*} + m\). Since \(x_{i_*} \geq x_{i_*'} - m - a + 1\), we have \(x_{i_*+1} \geq x_{i_*'} + b - a + 3\). This implies that \([x_{i_*+1} + 1, x_{i_*'} + m] \cap I = \emptyset\), and \([x_{i_*+1}, x_{i_*+1} + \Delta - 1] \) is the last I-interval contained in \(R_i^{z+1}\). Hence \(p_{z+1} = q - 1\). If \(p_z \leq q - 2\), then the conclusion follows.

Assume \(p_z = q - 1\). Then the last I-interval in \(R_i^z\) is a long interval. Since \([x_{i_*} - m + 1, x_{i_*} + m - 1] \cap I = \emptyset\), the last integer of \(I\) in \(R_i^z\) is not greater than \(x_{i_*} - m\), implying the last short I-interval in \(R_i^z \) is contained in \([x_{i_*}, x_{i_*} - m - 1]\). Therefore, the interval \([x_{i_*}, x_{i_*} - m - 1]\) has length at least \((q - 1)\Delta + a\). Moreover, since
\[|[x_{i_*} - m, x_{i_*'} - 1]| \geq |[x_{i_*} - m, x_{i_*+1} - 1]| \geq \Delta + a, \]
we conclude, \([x_{i_*}, x_{i_*'} - 1]\) has length at least \(q\Delta + 2a\). Let \(a_{i+1} = x_{i_*'}\). Then
\[r(R_i) \geq \frac{(z - 1)m + q\Delta + 2a}{z(q + \frac{1}{2})} \geq \frac{(2q - 2)m + q\Delta + 2a}{(2q - 1)(q + \frac{1}{2})}. \]
The second inequality holds because the formula is a decreasing function on \(z\) and \(z \geq 2q - 1\). To complete the proof of the Claim, it suffices to show
\[\frac{(2q - 2)m + q\Delta + 2a}{(2q - 1)(q + \frac{1}{2})} \geq \frac{(2q - 1)m + a}{2q^2}. \]
Write \(m = q\Delta + 2a - \lambda\), where \(0 < \lambda \leq a\). The above inequality is equivalent to
\[2q^2\lambda - (2q^2 - 1)/2a - m(1/2 - q) \geq 0. \]
By definition, we have:
(1) \(\lambda \geq 2a - \Delta + 1 \) (since \(q = \lfloor m/\Delta \rfloor \))

(2) \(\Delta \leq 2a - 1 \) (since \(2a > \Delta \))

Therefore,

\[
2q^2\lambda - (2q^2 - 1/2)a - m(1/2 - q) \\
= (2q^2 - q + 1/2)\lambda - a(2q^2 - 2q + 1/2) - \Delta(q/2 - q^2) \\
\geq a(2q^2 + 1/2) - \Delta(q^2 - q/2 + 1/2) + (2q^2 - q + 1/2) \quad \text{(by (1))} \\
\geq a(q - 1/2) + 3q^2 - (3q)/2 + 1 \quad \text{(by (2))} \\
\geq 0 \quad \text{(since } q \geq 1)
\]

This completes the proof of the Claim. \(\Box \)

Since \(p_i \geq 1 \), so \(p_{2q} \) does not exist. Thus the procedure above terminates at the \(k \)-th step for some \(k \leq 2q \), when the valid \(a_{i+1} \) is obtained. This completes the proof of Theorem 1.

Acknowledgment

The authors wish to thank the anonymous referees for their comments which resulted in a better presentation of the article. Daphne also wishes to thank Professor Ko-Wei Lih and the Institute of Mathematics, Academia Sinica, Taiwan, for their hospitality during her visit in 2005, when part of the work was done.

References

