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Abstract

For 1 <d <k, let Ky /4 be the graph with vertices 0,1,---,k — 1,
in which i ~ j if d <|i — j| < k —d. The circular chromatic number
Xc(G) of a graph G is the minimum of those k/d for which G admits
a homomorphism to K} /4. The circular clique number w:(G) of G is
the maximum of those k/d for which K ,; admits a homomorphism
to G. A graph G is circular perfect if for every induced subgraph H
of G we have x.(H) = w.(H). In this paper we prove that if G is
circular perfect then for every vertex = of G, N¢[z] is a perfect graph.
Conversely, we prove that if for every vertex = of G, N¢[z] is a perfect
graph and G — N|z] is a bipartite graph with no induced Py, then G
is a circular perfect graph. In a companion paper, we apply the main
result of this paper to prove an analogue of Hajos theorem for circular
chromatic number for k/d > 3. Namely, we shall design a few graph
operations and prove that for any k/d > 3, starting from the graph
K} /4, one can construct all graphs of circular chromatic number at
least k/d by repeatedly applying these graph operations.

1 Introduction

Suppose G = (V, E) and H = (V', E') are graphs. A homomorphism of G
to H is a mapping f : V — V' such that f(z)f(y) € E' whenever xy € F.

*This research was partially supported by the National Science Council under grant
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Homomorphism of graphs are studied as a generalization of graph colorings.
A vertex coloring of a graph G with n-colors is equivalent to a homomorphism
of G to K,,. We write G < H if there exists a homomorphism from G to
H. Then < defines a partial order on the set of all finite graphs, which we
denote by (F, <).

We denote by Zg the set of complete graphs, i.e., Zg = {K;, Ky, -, }.
Then Z; forms an infinite increasing chain in (F, <). Every graph G € F
admits a homomorphism to some member of the set Zg, and contains some
member of Zg as its subgraphs. The chromatic number x(G) is the minimum
n such that G < K,,. The clique number w(G) is the maximum n such that
K, = G. We may view the set Zg as a representation of natural numbers,
with K, be a representation of the integer n. Then x(G) is the least element
of the set Zg which is “above” G in the order <, and w(G) is the maximum
element of Z; which is “below” G in the order <. In this sense, we may view
the set Zg as a scale that measures a dimension of graphs.

Just as the set of natural numbers are extended to the set of rational
numbers, we can “extend” the set Zg into a larger set. For those fractions
k/d with (k,d) = 1 and k > 2d, we construct a graph K}, 4, which has vertices
{0,1,---,k — 1} and edges {ij : d < |i — j| < k — d}. We shall denote by
Qg the set {Ky/q : (k,d) = 1 and k > 2d} U {K;}. Note that K, = K,
and hence Qg is indeed an extension of Z;. Moreover, the set Qg is also
linearly ordered. It was shown in [2, 9] that if ¥'/d’" > 2 and k/d > 2, then
k'/d < k/d if and only if Ky /o < K. Thus the set Qg together with the
order < may be viewed as a representation of those rational numbers r» > 2
or r = 1. The circular chromatic number x.(G) of a graph is the infimum
of the rational numbers k/d for which G < Kj /4. The circular chromatic
number of graphs has been studied extensively in the literature (see [11] for
a comprehensive survey on this subject). Similar to the definition of clique
number, we define the circular clique number of a graph as follows:

Definition 1.1 Suppose G is a graph. The circular clique number w.(G) of
G to defined as

we(G) = sup{k/d : Kj/q admits a homomorphism to G'}.

It was shown in [9] that the infimum in this definition of x.(G) is always
attained, and hence the infimum can be replaced by minimum. Therefore
Xc(G) is the least member of Qg which is above G in the order <. We
shall show in this paper that the supremum in the definition of w.(G) is also
always attained, and hence can be replaced by the maximum. So w.(G) is
the largest member of Qg which is below G in the order <.
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If the set Zg is considered as a scale that measures a dimension of graphs,
then the set Qg is a refinement of that scale, just as the set of rational
numbers provides a finer scale that measures the length of an object than
that of integers. The chromatic number x(G) of a graph G maybe regarded as
an approximation of its circular chromatic number y.(G). The clique number
of G’ maybe regarded as an approximation of its circular clique number.

It follows from the definition that

W(G) < w(G) < xe(G) < X(G), w(G) = |we(G) ], and X(G) = [xe(G)]-

A graph G is perfect if for every induced subgraph H of G we have x(G) =
w(@). The following definition is a natural generalization of this concept to
circular coloring.

Definition 1.2 A graph G is called circular perfect if for every induced sub-
graph H of G we have x.(H) = w.(H).

This paper investigates the circular clique number of a graph and con-
siders necessary and sufficient conditions for a graph to be circular perfect.
First we discuss basic properties of the circular clique number of a graph. It
is proved that the circular clique number w,.(G) of a finite graph G is a ratio-
nal number, and w.(G) is equal to the maximum k/d for which G' contains
K}/q as an induced subgraph.

For necessary conditions for a graph to be circular perfect, it is proved
that for any circular perfect graph G and for any vertex = of G, Ng[z]
is a perfect graph. Here Ng[z] denote the subgraph induced by the set
{lyeV(G):y~z, ory=uz}

Conversely, we prove that if G is a graph for which Ng[z] is perfect for any
vertex x, then G is circular perfect, provided for every vertex z, G — Ng[z]
is a bipartite graph which contains no induced P;.

In a companion paper [12], we shall use this result to prove an analogue of
Hajos theorem for k/d > 3. Namely we shall prove that for k/d > 3, starting
from K} /4, one can construct all graphs G with x.(G) > k/d by repeatedly
applying a few graph operations.

All the graphs in this paper are finite and simple. We write x ~g y (or
x ~ y when the graph G is clear from the context) to mean that z is adjacent
to y in G. For a vertex z of G, Ng(z) = {y € V(G) : © ~ y} denotes the set
of neighbours of z, and Ng[z] = Ng(z) U {z}. We also use Ng(z) and Ng[z]
to denote the subgraphs induced by these sets. When the graph G is clear



from the context, we write N(x) and N[z] for Ng(x) and Ng[z]. We denote
by G — Nlz] the subgraph of G induced by V(G) — N|[z].

For two sets A, B, we write A C B to mean that A is a subset of B, and
write A C B to mean that A is a proper subset of B.

Suppose a is a positive integer and b is an integer. We denote by “b
(mod a)” the unique integer ¢ such that 0 <t <a—1land b=t (mod a).

When we consider the graph Kj /4, we may view the vertices 0,1,---,k—1
of Kjq as cyclically ordered to form a circle. We shall denote this cycle by
C*k. For a,b € C*, we denote by [a,b], the interval of the circle C* from a
to b. To be precise, if a < b then [a,b], = {a,a+ 1,---,b}, if a > b then
la,b]y = {a,a+1,---,k—1,0,1,---,b}. Similarly we define (a,b)s, [a,b)
and (a,b],. When the integer £ is clear from the context, we shall write
[a, b], [a,b), (a,b) for [a, bk, [a,b), (a,b)y.

Given a graph G and a proper subgraph H of G. A homomorphism from
G to H which fixes every vertex of H is called a retraction. If there is a
retraction from G to H, then we say G retracts to H. A graph G is a core if
G’ does not retract to any of its proper subgraphs (or equivalently, G admits
no homomorphism to any of its proper subgraphs.) A core of a graph G is
a subgraph H of G which is a core and G retracts to H. It is well-known
that each finite graph has a unique core (up to an isomorphism). If H is the
core of G then G and H have the same circular chromatic number and the
same circular clique number. Thus for the calculation of circular chromatic
number and circular clique number, we may restrict to core graphs. It is easy
to see that in a core graph, for two vertices z,y of G, none of N(x) and N(y)
is a subset of the other.

2 Basic properties of circular clique number

By definition, w.(G) is equal to the supremum of those rational numbers k/d
for which K} /4 admits a homomorphism to G. A natural question is whether
or not w.(G) is a rational number and if so, say w.(G) = k/d, does Kjq
admits a homomorphism to G 7 This section answers this question in the
affirmative. We shall prove that for any finite graph G, w.(G) is a rational
number, and is equal to the maximum of those rational numbers k/d such
that G contains K} /4 as an induced subgraph.

Lemma 2.1 Suppose k > 2d and (k,d) = 1. If H is obtained from K4 by
adding an edge, then w(H) > p/q > k/d for some 0 <p <k and 0 < q < d.



Proof. Because K/, is vertex transitive, we may assume that H = K}, /4+0a
for some 1 < a < d — 1. We shall show that w.(Kj/q + 0a) > k/d.

We select a sequence of vertices g, x1, -+, x,-1 of Ky/q as follows: Let
xo = 0,21 = a,x2 = a+d modk, - - -. In general, if we have chosen z; (i > 1),
then let z;,1 = x; + d modk, provided that z; +d modk & [k —d + a + 1,0].
In case z; + d modk € [k — d+ a+ 1,0], we let p —1 = i, and we have
completed the selection. For convenience, we let z, = z¢y = 0, and assume
that z,_y +d =0 (mod k) for an integer d’. Then d < d' < 2d —a — 1.

First we observe that the selection process stops in a finite number of
steps. Otherwise, the sequence contains repeated vertex. Assume i < j and
x; = x; is the first pair of equal vertices. Then j — i < k because there are
vertices of Kj/q not in the sequence (for example those vertex in [a + 1, d]).
Moreover i # 0 (because if so, then z; = z; = 0 and by definition the sequence
will stop at the step of considering =;). Therefore z; = z; = x;+(j—1i)d modk,
i.e., (j —i)d = tk for some integer t. This is impossible, as (k,d) = 1 and
Jg—t<k.

Since

rg=x, = x, 1+d modk
Tp_s + d+ d modk
T, 3+ 2d + d modk

= xo+a+d + (p—2)d modk,
we conclude that a + d' + (p — 2)d = ¢k for some integer q.

We may imagine that the vertices xg, x1,- -, 2p_1 are chosen in this order
by a person walking along the circle C*. After picking z;,_; and returns to
0, the person has walked around C* exactly ¢ times. Observe that after
choosing vertex x;, one traverses distance d (along the clockwise direction of
the circle) to pick the next vertex z;,;, except for the first step from zy to
x1, and the last step from z,_; to x, = xy. It follows that for each wz;, the
interval [z;, r;41) contains exactly ¢ of the x;’s, including the interval [z, 1)
and the interval [z,_1, o), because [a+1, d] contains no z;’s and [z,_1 +d, x¢)
contains no z;’s.

For each ¢ the ¢ z;’s contained in [x;,x;11) form an independent set.
Moreover, it is easy to see that x; is not adjacent to x; if and only if either
T; € [, Ti41) O Tj € (w1, x;]. Therefore, the set xg, z1,- -, x,_; induces a
Kp/q. Hence w(Ky/q+ 0a) > p/q.

Since a +d' + (p — 2)d = gk, and d < d' < 2d — a — 1, we conclude that
pd>pd—1>a+d + (p—2)d = gk. Therefore p/q > k/d. Tt follows from
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the construction we know that p < k. This completes the proof of Lemma
2.1. i

It can be proved that for the graph G' = Kj/q + 0a, w.(G") = p/q for the
p, q defined in the proof above. However, we shall not need that.

Lemma 2.2 Suppose f is a homomorphism of Kyq to G. If f is not an
embedding then there is a fraction ’5’ > g, p < k and K,,, admits a homo-
morphism to G.

Proof. Assume that f is not an embedding, and without loss of generality
assume that for some k¥ —d < i < k we have f(i) = f(0). Let a = i +
d — k. Then a is a neighbour of 7z, but 1 < a < d — 1. Since f is a
homomorphism, we know that f(0)f(a) = f(7)f(a) is an edge of G. Therefore
f is a homomorphism from K} 4+ 0a to G. By Lemma 2.1, w.(K}/q+ 0a) >
p/q > k/d for some p < k and ¢ < d. So K/, admits a homomorphism to
K}jq + Oa, and hence admits a homomorphism to G. i

Theorem 2.1 If G is a finite graph then w.(G) = 5 for some integers d <
k < |V(G)|. Moreover, if w.(G) =% and (k,d) =1, then Kyq is an induced
subgraph of G.

Proof. By Lemma 2.2, to determine the circular chromatic number w.(G)
of G, it suffices to consider those K}/, which admits an embedding to G.
Therefore w,(G) = % for some integers d < k < |[V(G)|, and Kj/q is a
subgraph of G. If K} /4 is not an induced subgraph of G, then there is an
integer 1 < a < d—1 such that Kj/q+0a is a subgraph of G, but by Lemma

2.1 wC(Kk/d + Oa) > k‘/d [ |
Theorem 2.2 For any graph G we have

w(@) < w.(G) < w(G) + 1.
Proof. It follows from the definition that w(G) < w.(G). On the other hand,
let n = |k/d], then K, admits a homomorphism to Kj/q. So if w.(G) = k/d,

then w(G) > n > k/d — 1. Therefore for any graph G we have w(G) =
[we(G)]- u



3 Necessary conditions for a graph to be cir-
cular perfect

In the study of circular chromatic number and circular clique number of a
graph, the graphs K}, /4 play the same role as that of complete graphs in the
study of chromatic number and clique number. We call the graph sKj /4 the
circular complete graphs. The concept of circular perfect graphs would be
meaningless if some of the circular complete graphs are not circular perfect.
However, unlike the concept of perfect graph, where the complete graphs are
obviously perfect, it is not obvious that circular complete graphs Kj 4 are
circular perfect. We shall first prove that the graphs Ky /4 are indeed circular
perfect.

Theorem 3.1 Suppose k > 2d are positive integers with ged(k,d) = 1. The
graph Ky is circular perfect.

Proof. The vertex set of Kj/qis V' ={0,1,---,k—1}. Let H be a subgraph
of Kj/q induced by a subset S of V. Without loss of generality, we may
assume that H contains no isolated vertices. We define a directed graph
D with vertex set S as follows: For each + € S, let ¢; be the least positive
integer such that ¢; > d and 7 + t; mod k € S. Then put a directed edge
joining 7 to ¢ + t;. The resulting directed graph is D. It follows from the
construction that each vertex of D has out-degree 1, so D contains a directed
cycle. Moreover, since H contains no isolated vertex, so if 7 € S, then there
is a j € S such that d < |j —i| < k — d. Therefore each directed edge of D
is an edge of H after the orientation be omitted. (In particular, D has no
loops. Indeed it is not difficult to see that a loop in D would correspond to
an isolated vertex in H). Let D' = (i, 41,99, - -, ip_1) be a directed cycle of
D. Let S" = {ig, i1,92, -+, ip—1} and let H' be the subgraph of H induced by
S’

Now

il = i() —|—ti0 mod k,
ig = il —|—ti1 mod k = 7:0 +ti0 +ti1 mod k,

io — i0+ti0+ti1 +"'+tip71 k
It follows that

t:ti0+ti1+ti2+"'+tip,1 mod k = 0.



Assume t = kq for some integer ¢. Intuitively, we view the vertices of S’ as
been selected by a person traversing the circle C*, in the order i, iy, -, i, ;.
When the person returns to i after picking 4,_;, he has traversed the circle
C* ¢ times.

It follows from the choice of t; that if i; € [ij,i54,) then 4,1, €
[ij141,142). Therefore, for each j € {0,1,---,p — 1}, the interval [t;,, t; )
contains ¢ vertices of S’. Again by the choice of ¢;, these ¢ vertices form an
independent set of H'. Moreover, each pair of nonadjacent vertices is con-
tained in such an independent set. Therefore H' is isomorphic to K, /.. So
we(H) > we(H') = p/q.

We claim that H admits a homomorphism to H'. This would imply
Xc(H) < p/q, and hence x.(H) = w.(H) = p/q. As H is an arbitrary
induced subgraph of Kj/4, we then conclude that Ky is circular perfect.
So it remains to prove H admits a homomorphism to H’. Define a mapping
f:S — 5" by letting f(z) = i;, where i; € S" is the unique vertex such that
[i;,2] NS" = {i;}. Now we shall show that f is a homomorphism. Assume
xy is an edge of H. Then y = z 4+ s mod k for some d < s < k — d.
Assume f(z) = i; and f(y) = iy. It follows from the choice of ¢; that
y & [ij,ij41). Therefore iy & [ij,1;41) (for otherwise (i;/,y] would contain
ij41). Similarly, i; & [ij,1;.41). Therefore i, is adjacent to i;;. So f is indeed
a homomorphism. [ |

Theorem 3.2 If GG is circular perfect then for any induced subgraph H of G
we have x(H) — w(H) < 1.

Proof. If GG is circular perfect and H is an induced subgraph of G then
Xe(H) = w.(H). Since x(H) < xc(H) + 1 and w(H) > w.(H) — 1, so
X(H) —w(H) < 2. But x(H) — w(H) is an integer, so x(H) —w(H) < 1. &

Theorem 3.3 If G is circular perfect then for every vertex x of G, N|x]
induces a perfect graph.

Proof. Assume to the contrary that N|[z| is not perfect for some vertex x.
Then N(z) is not perfect. Let H be a subgraph of N(z) for which w(H) <
X(H)—1. Let H = HU {z}. It is proved in [10] that if a graph contains a
universal vertex then its circular chromatic number is equal to its chromatic
number. Therefore x.(H') = x(H') = x(H) + 1, as H' contains a universal
vertex. However, w(H') = w(H)+1 < x(H') — 1. As w.(H') < w(H') + 1, it
follows that w.(H') < x.(H'), contrary to our assumption that G is circular
perfect. i



This necessary condition is not sufficient. If GG is the Petersen graph then
for each vertex x, Nz| is a star. So the above condition is satisfied. Yet
w.(G) =5/2 and x.(G) = 3.

4 A sufficient condition for a graph to be cir-
cular perfect

The main result of this paper is the following sufficient condition for a graph
to be circular perfect.

Theorem 4.1 Suppose G is a graph such that for every vertex x of G, N|x]
is a perfect graph and G — N|[zx] is a bipartite graph with no induced Py. Then
G s circular perfect.

In this paper, by P, we mean a path with 4 edges. It is easy to see that
if G satisfies the condition of Theorem 4.1, then any induced subgraph of GG
satisfies that condition. Therefore to prove Theorem 4.1, it suffices to prove
the following:

Theorem 4.2 Suppose G is a graph and for every vertex x of G, Nlx| is a
perfect graph and V' — N[x] is a bipartite graph which contains no induced
Py. Then x.(G) = w.(G).

The condition in Theorem 4.2 is not a necessary condition for a graph to
be circular perfect. It is easy to construct circular perfect graphs G which
contain vertices = such that G — N[z] is not bipartite. However, the following
example shows that these conditions are very tight in some sense. Let G' be
the graph as depicted in Figure 4 below. It is easy to verify that y.(G) = 8/3
and w.(G) =5/2. So G is not circular perfect. But G “almost satisfies” the
condition of Theorems 4.2. For each vertex x of G, Nlz| is a star, and
G — NJz] is either a P; or a Pj.

5 Proof of Theorem 4.2

To prove Theorem 4.2 we assume to the contrary that G is a connected
core graph satisfies the condition of Theorem 4.2 but x.(G) > w.(G). We
shall derive a contradiction. The proof is quite long and complicated. We



Figure 1: A non-circular perfect graph G

shall divide the argument into five subsections. Each subsection derives some
properties of GG, and all these properties together show that the graph G does
not exist.

In the remaining of this section, G is a fixed core graph which is a coun-
terexample to Theorem 4.2. The vertex set of G is V' and the edge set of G
is E. In this section and the next section, N|[x] (respectively, N(z)) means
Ng[z] (respectively, Ng(x)). For each vertex x € V, we shall denote by H,
the subgraph V' — N[z]. For a subset X of V, let N(X) = Uyex N(x).

For two vertices u,v € V — N[x], we frequently need to compare the
neighbourhood of u,v in G — N[z]. We shall use the following notation:

e u <, v means N(u)N(V — N[z]) C N(v)Nn (V — N[z]);
e u <, v means N(u) N (V — N[z]) C N(v)n(V — Nlz]);
e u =, v means N(u) N (V — Nz]) = N(v) N (V — N[z]).

5.1 Connectness of H,

In this subsection, we prove that H, is a connected bipartite graph. First we
note that H, contains no isolated vertex, because if y is an isolated vertex of
H,, then N(y) C N(x), contrary to the assumption that G is a core.

Lemma 5.1 For each x € V, if H, is not connected then each component
of H, is a single edge.

Proof. Assume to the contrary that H, has a component () which has at
least three vertices. Then () contains a vertex a which is adjacent to two

vertices b, c. Let uv be an edge of another component of H,.
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If there is a vertex w € N(z) which is adjacent to b but not to ¢, then w
is either not adjacent to u or not adjacent to v (or not adjacent to both), for
otherwise w, u, v induce a triangle in H.. Without loss of generality, assume
that w is not adjacent u. Then ¢, a,b, w,x induce a P, in H,, contrary to
our assumption.

Thus we may assume that every vertex w € N(x) adjacent to b is also
adjacent to ¢, and similarly, every vertex w € N(z) adjacent to c¢ is also
adjacent to b. Since (G is a core, there is a vertex w in ) which is adjacent
to b but not to ¢, and a vertex w' in @ adjacent to ¢ but not to b. Then
w,b,a,c,w induce a Py in H,, contrary to our assumption. [ |

Lemma 5.2 For each x € V', the graph H, is connected.

Proof. Assume to the contrary that for some vertex z € V, H, is not
connected. By Lemma 5.1, each component of H, is a single edge. Let ab
and uv be two components of H,.

It is easy to see that N(a) NN (b) = N(u) N N(v), for otherwise, say there
is a vertex w € N(u) N N(v) — N(a), then u,v,w induce a triangle in H,.
Let Z = N(a) N N(b) = N(u) N N(v).

At least one of a, b is adjacent to some vertex w in N(x)—Z, for otherwise,
we have a retraction mapping that fixes every other vertices, send a to u and
b to v, contrary to the assumption that GG is a core. Similarly, at least one of
u, v is adjacent to some vertex w’ in N(z) — Z. Assume w ~ a and w' ~ u
(it is possible that w = w').

If each of w is not adjacent to any of u, v, then b, a,w, z,w’ induce a P,
in H,. Thus we may assume that w € N(z) — Z is adjacent to a and u.

If there is a vertex w” € N(z) — Z which is adjacent to b but not to v,
then w"”, b, a, w,x induce a non-bipartite graph of H,. Thus we may assume
that every vertex in N(x) adjacent to b is adjacent to v, and by symmetry,
assume that every vertex in N(z) adjacent to v is adjacent to b. Similarly,
any vertex z of N(x) adjacent to a is adjacent to u. But then we have a
retraction of G which fixes every other vertex, and send a to u, b to v. | |

Since H, is a connected bipartite graph, there is a unique partition of the
vertices of H, into two parts. We shall denote these two parts by A, and
B, and write H, as H, = (A, U By, E,), where E, is the edge set of H,.

Lemma 5.3 For each x € V, the graph H, contains no induced 2Ky (2K,
denotes the disjoint union of two copies of K).

11



Proof. Assume to the contrary that H, contains two edges ab and uv that
induce a 2K,. Assume that a,u € A, and b,v € B,. Let P be a shortest
path connecting a and u in H,. If P has length 2, say P = (a,w,u), then
b,a,w,u,v induce a P, in H,. Otherwise P contains an induced P, in H,. il

Corollary 5.1 For any two vertices u,u’ of A, u,u’ are <,-comparable,
i.e., one of the sets Ny, (u) and Ny, (u') contains the other. Similarly, for
any two vertices v,v' of By, v,v" are <, -comparable.

Proof. Assume to the contrary that there are vertices u,u’ € A, such that
none of Ny, (u) and Ny, (u') contains the other. Let v € Ny (u) — Ny, (u)
and v' € Ny, (u') — Ng,(u). Then uv and u'v' induce a 2K, in H,, contrary
to Lemma 5.3. [ |

We call v € H, a <,-minimum vertex of H, if u<,u' for all «' in the
same part as u, and we call u € H, a <,-mazimum vertex of H, if u'<,u for
all v’ in the same part as u. By Corollary 5.1, each of A, and B, contains
at least one <,-maximum vertex and one <,-minimum vertex of H,. (Note
that a <,-maximum vertex could be a <,-minimum vertex.)

For further discussion, we partition the vertex set V of G into three
subsets 17,15, T3 which are defined as follows:
e Ty ={z €V :H,is a complete bipartite graph };

e T, = {x € V : H, contains two vertices u € A,,v € B, u o v and
there is a vertex w € N(x) such that w is adjacent to exactly one of

u, v};

® T3:V—(T1UT2)

5.2 The set 15 is empty
The goal of this subsection is to prove that T, = (). Thus we assume T, # O,
and we shall derive a contradiction. In this subsection, let © € T5 be a fixed

vertex. Let u € A,,v € B,,w € N(x) be vertices such that u ¢ v, w ~ u
and w 7 v.

Lemma 5.4 Ifa € A, and b € B, and a # b then N(x) C N(a) U N(b).

Proof. Let v’ € A, and v' € B, be the <,-maximum vertices of H, in A,
and B,, respectively. By Corollary 5.1, B, C N(u') and A, C N(v').

12



Assume to the contrary of this lemma that there are a € A,,b € B, and
w' € N(z) such that a % b, w' % a and w' 4 b. (Note that a could be u
and b could be v). First we observe that u' ~ w’, for otherwise w'z and u'b
induce a 2K, in H,, contrary to Lemma 5.3. Similarly v' ~ w'. If v ~ w
then u,w, v induce a triangle in H,, contrary to our assumption. Thus we
assume v' o w, and hence w # w'.

If u ~w' then u ~ b (for otherwise u,w’, v" induce a triangle in H,) and
v ~ w' (for otherwise u,w’ v" induce a triangle in H,). Then a o v for

otherwise av, ub induce a 2K, in H,. But then u', v, w’ induce a triangle in
H,.

Thus we assume that u % w'. Then v % w' for otherwise v/, v, w' induce
a triangle in H,. Now ¢',u,w,x,w’ induce a nonbipartite subgraph of H,,
contrary to our assumption. This completes the proof of Lemma 5.4. i

Corollary 5.2 Ifa € A;, b € B, and a # b then there is a verter w € N(x)
such that w ~ a and w # b. Similarly, there is a verter w € N(x) such that
w~band w ¥ a.

Proof. Since N(z) € N(a) (for otherwise G is not a core), there is a vertex
w € N(z) — N(a). By Lemma 5.4, w ~ b. |

Lemma 5.5 Suppose a,a’ € A, and a<ga'. Then N(x) N N(a') C N(z)N
N(a).

Proof. If N(z) N N(a') = N(z) N N(a) then N(a) C N(d'), contrary to
the assumption that G is a core. If there is a vertex w € N(x) such that
w € N(a') — N(a), then let b € B, such that a o b and a’ ~ b. By
Lemma 5.4, w € N(b). Hence b,w,a’ induce a triangle in H,. Therefore
N(z)NN(a') C N(z)N N(a). i

Lemma 5.6 Ifa,d € A, and a=,d', then Ny, (a) = B,.

Proof. Assume to the contrary that a,a’ € A,, a=,a’ and there is a vertex
b € B, such that a % b and a’ # b. Let a” be a <,-maximum vertex in A,
(so Ny, (a") = By).

Now there is a vertex w € N(z) such that w ~ a and w ¢ @', for otherwise
N(a) C N(a'), contrary to the assumption that G is a core. Similarly there is
a vertex w' € N(x) such that w’ ~ a' and v’ % a. By Lemma 5.5, w o a" and
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w' o a”. Then a,w,x,w’, a' induce either a P, (if w o w') or a nonbipartite
graph (if w ~ w') in H,», contrary to our assumption. i

It follows from Lemma 5.6 that for every x € T3, there is a unique <,-
minimum vertex in A, and a unique <,-minimum vertex in B,.

Lemma 5.7 Suppose a € A, is a <,-minimum vertexr of H,. Let R =
N(z) — N(a). Then the following are true:

1. CEETZ.

2. One part of H, is equal to (A, — {a}) U R and the other part of H, is
equal to (B, — N(a)) U {z}. We shall let A, = (A; — {a}) UR and
B, = (B, — N(a)) U {x}.

3. All the vertices in R are <,-mazximum vertices of A,. Moreover, for
u,u’ € Ay — {a}, u< v’ if and only if u< '

4. x is a <g-minimum vertex of B,. Moreover, for u,u’ € B, — N(a),
u< u' if and only if u<,u'.

Proof. Assume a € A, is a < ,-minimum vertex. Let b € B, be a <,-
minimum vertex, and let o’ € A, and 0’ € B, be the <,-maximum vertices
of H, in A, and B,, respectively. Since x € Ty, H, is not complete and
hence a o0 b. Since a',b" are the <,-maximum vertices, so a’ ~ b, a ~ b'. By
Corollary 5.2, there is a vertex w € N(z) such that w ~ b and w % a.

Now z,w,b,a’ € H,, and x,b is in one part of H, and w, a’ is in the other
part of H,. Assume that o/, w € A, and z,b € B,. Since x ¢ d', H, is not a
complete bipartite graph.

(1): There is a vertex w' € N(z) such that w' ~ a and w' # o, for
otherwise we have N(a) C N(a'), contrary to the assumption that G is a
core. Since x € B,, a’' € A,, w' € N(a), x & a', z ~ w' and a' # W', by
definition, a € T5.

(2): It is easy to see that
V = Nla] = (By = N(a)) U {z} URU (A, — {a}).

Asx € B, is adjacent to every vertex of R, b € B, is adjacent to o’ and w € R,
a' is adjacent every vertex of B,— N (a), we conclude that A, = (4,—{a})UR
and B, = (B, — N(a)) U {z}.

(3): It follows from Lemma 5.4 that for every v € B,, R C N(v). So
for every w” € R, B, C N(w"), hence each vertex of R is a <,-maximum

14



vertex of A,. If u € A, — {a}, then Ny, (u) = Ny, (u) — N(a). Therefore if
u,u’ € A, — {a}, then u<,u' if and only if u<,u'.

(4): Since every vertex of B, — N(a) is adjacent to o', and x is not
adjacent to o'. By Corollary 5.1, x<,u for any v € B, — N(a), i.e., x
is a <,-minimum vertex of B,. If u € B, — N(a) then by Lemma 5.4,
Ny, (u) = (Ng,(u) —{a}) UR. Therefore for u,u’ € B, — N(a), u<,u’ if and
only if u<,u'. i

Lemma 5.8 The set Ts is empty.

Proof. Assume to the contrary that 75 # (). We define a graph @ as follows:
V(Q) = T and wv is an edge of @ if and only if u is a <,-minimum vertex of
H, (or equivalently v is a <,-minimum vertex of H,). Since for each u € Ty,
H, contains two <,-minimum vertices (one in A, and one in B,), @ is a
2-regular graph. Let

C = (xo,T1,%0, ", Tk_1)

be a cycle which is a connected component of (). Arbitrarily assign a direction
of traversal to the cycle C, say zo¢ — x1 — x5 — ---. For any z;, the two
neighbours x; | and z;,; are the two <,-minimum vertices of x;. It follows
from Lemma 5.7 that we can properly label the two parts of H, so that
ziy1 € Az, and x;_y € By, for all i (where summation and subtraction in
the index are modulo k). It follows from (3) and (4) of Lemma 5.7 that for
each 7, there is a d; > 2 such that

Ag, =Ty 1, Tiga, -+ Tigd, 1)

Indeed, z;; is the <,-minimum vertex of A,,. Now z;,5 is the <,-minimum
vertex of A, ., and by Lemma 5.7 (3), ;o is the <;-minimum vertex of
Ay, —{zip1}, provided A, — {z;41} # O. In general, if

Axi - {xi+17 Tiy2, ", xi-l-t} 7& ®7

then by Lemma 5.7 (3), ;4441 is the <,-minimum vertex of A,, , which is

the <, -minimum vertex of

T4t

Aa:i - {$i+1, Tjy2, ,$i+t}-

Similarly, there is a d; such that B, = {z;_1,z;—2," -, xi,dfiﬂ}.

By (2) of Lemma 5.7, A,, | = (As, — {zis1}) U R, where R = N(z;) —
N(ziy1). Since R # O (for otherwise N(z;11) € N(z;), contrary to the
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assumption that G is a core), we conclude that [A,, | > |A,,| for all i (again
summation in the index is modulo k). So

|Amo|§|Aw1|§|Aw2|§§|A |§|A

Tr—1 5170|'

Therefore |A,,| = |A,| for all 0 < 4,5 <k —1. So d; = d; for all 0 <4, j <
k—1. Let d = d;.

Similarly by (2) of Lemma 5.7, B,,,, = (B;, — N(zi41)) U {@;}. As
N(x;41)NBy, # O, we conclude that |B,,, | < |A,| for all i (again summation
in the index is modulo k). So

|B£E0|2|B$1|Z|BCE2|22|B |Z|BCIJ0|

Tr—1

Therefore |B,,| = |B,,| for all 0 <4,j <k —1. So d; = dj for all 0 < i,j <
k — 1. Because ¥ d; = ¥ d!, which is equal to the number of nonedges
of the subgraph of G induced by xg, x1,- - -, xx_1, we conclude that d;, = d for
all 7.

Now for any x; € C, any vertex x of G not adjacent to x either belong
to A, or belong to By,. So x = z; € C for some j, and d < |i — j| < k —d.
Therefore, the subgraph of G generated by zg,x,: -+, xr_; is isomorphic to
Kyja. Moreover, if y € V(G) — C then y is adjacent to every vertex of C.

Now if V(G) = C, then G = K}, 4, contrary to our assumption. Assume
V(G)—C #0Oand y € V(G)—C. Then C C N[y|. If Kjq is a core then
K4 is not a perfect graph (as d > 2), contrary to our assumption that N[y]
induces a perfect graph. If K} /4 is not a core then let f be a retraction on the

subgraph induced by xg, z1, -+, Tr_1, then f can be extended to a retraction
of G by fixing every other vertices of G, contrary to the assumption that GG
is a core. i

5.3 Structures of H, for x € T5 and of a hypergraph

By Lemma 5.8, V = Ty UT;. If x € T}, then H, is a complete bipartite
graph. In this section, we shall show that if x € T3, the structure of H, is
also very simple. Then we build a hypergraph and discuss properties of this
hypergraph.

Lemma 5.9 If x € T3, then there exist an unique u € A, and v € B, such
that u oL v.

Proof. Assume to the contrary that there are two vertices u,u’ € A, such
that each of them is not adjacent to some vertices of B,. Let v € B, be
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a <g,~minimum vertex of B,. Then by Corollary 5.1, u « v and u’ ¢ v.
Assume that u <, u', i.e., Ny, (u) C Np,(u'). By the definition of T3, we
have

N(u)NN(z) = N(@w)NN(z)=N(u)NN(z).

Then N(u) C N(u'), contrary to the assumption that G is a core. |

So for x € T3, the graph H, is equal to a complete bipartite graph minus
one edge.

Lemma 5.10 Suppose a € T3, b € A,,c € B, are the unique vertices such
that b o4 ¢. Then b,c € Ty, a € A, and ¢ € By, are the unique vertices such
that a # ¢; a € A, and b € B, are the unique vertices such that a + b.
Moreover, A, —{b} # O, B, —{c} # O, and if y € A, — {b} ory € B, —{c}
then y € 1.

Proof. Since a € T3, by the definition of T3,
N(a) N N(b) = N(a) N N(c).
Hence N(a) — N(b) = N(a) — N(c). Let

X. = A,—-{b}, Xp=B,—{c},
Xo = N(a)_N(b):N(a)_N(C)a
Y = V- (X,UX,.UX,U{a,b,c}).

Then the four sets X,, X, X,,Y are pairwise disjoint, and N(a) = X, UY,
N(b) = X,UY and N(c) = X, UY.

The set X, is an independent set, for otherwise if zy is an edge in X,,
then x,y, a induce a triangle in Hy (as well as in H,.).

By Lemma 5.9, X. U X, induces a complete bipartite graph, with X, X,
as the two parts. If there is a vertex w € X, and a vertex u € X, such
that w is not adjacent to u then ub, xrw is a 2K, in H., contrary to Lemma
5.3. Therefore X, U X, also induces a complete bipartite graph. Similarly
X, U X, induces a complete bipartite graph. Hence X, U X, U X, induces a
complete tripartite graph with X, X;, X, as the three parts. The adjacency
of the sets X,, X,, X.,Y and a, b, ¢ is as illustrated in Fig. 2 below.

For A, — {b} # O, for otherwise c¢ is an isolated vertex of H,. If y €
A, — {b} = X, Hy is a complete bipartite graph, with one part consists of
{a, b}, the other part is equal to (V —Ny])NY". Similarly if y € B, —{c} then
H, is also a complete bipartite graph. This completes the proof of Lemma
5.10. | |
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Figure 2: The adjacency of the sets X,, X,, X, Y and a, b, ¢, where a thick
line indicates complete adjacency of the two sets, and a dotted line indicates
partial adjacency.

We call the triple a,b,c as in Lemma 5.10 a T3-triple. It follows from
Lemma 5.10 that the vertices of T are partitioned into T3-triples.

Now we construct a hypergraph H as follows: The vertex set of H is
V. The edge set of H is € = {E,1,E,2 : * € V}, where for each z € V,
Ey1 = A, U{z} and E,» = B, U {z}. The hypergraph # has no multiple
edges, i.e., if £, ; = E,; then E, ;, E,; is counted as one hyperedge.

Observe that each hyperedge of H is an independent set of G. If y +4 x,
then either y € E,, or y € E, 5, i.e., each pair of nonadjacent vertices is
contained in a hyperedge.

A cycle of H of length m is a sequence
Lo, EO; Ty, El; T2, E27 oy Tm—1, Emfl

of distinct vertices and hyperedges such that x;, ;.1 € F; fort =0,1,---,m—
2, and xo, T 1 € Ep1. A cycle of length m is also called an m-cycle.

Assume a, b, ¢ is a T3-triple. Let X,, X}, X, be the sets as defined in the
proof of Lemma 5.10. Then
Ea71 = Xb U {Cl, C} = Ecyg,
Ea,? = Xc U {a, b} - Eb,h
Eb,2 = Xa U {ba C} = Ec,la
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These three hyperedges form a 3-cycle
a, Ea,l; c, Ec,la b7 Eb,l-

We call this 3-cycle a special triangle of H corresponds to the Ts-triple a, b, c.

Lemma 5.11 For each vertex x € V', there are exactly two hyperedges con-
taining x.

Proof. For z € V, E,,,FE,» are two hyperedges containing z. Assume
to the contrary that E’ is another hyperedge containing x. Without loss
of generality, assume that £’ = E, , for some vertex y. Since y ¢ x, so
y € B, 1 UE;,. Without loss of generality, we may assume that y € E, ;.
Furthermore, without loss of generality, we assume that E,; — E, o # O.
Let w € B, — Eys. Since w,y € E,;, we know that w 7 y. Therefore
w e Ey;. Let w' € E, 5 such that w ~ w' (the vertex w’ exists because H,
is connected). Then w' # x, for otherwise w’, x would be in different parts
of H, and hence w,x are in the same part of H,. Also v’ ¢ E,; (because
w € E,,). So Hy is not a complete graph, and hence = € T5. Moreover, the
Ts-triple containing z is z,y, w’. But as shown in the paragraph preceding
this lemma, in this case, we should have I, ; = E, . | |

Lemma 5.12 Two distinct hyperedges of H have at most one common ver-
tex.

Proof. Assume to the contrary that there are two hyperedges containing
both x,y. By Lemma 5.11, there are exactly two hyperedges containing =z,
and exactly two hyperedges containing y. Thus {E, 1, Ey2} = {Ey1, Ey2}-
It follows that N(z) = N(y), contrary to the assumption that G is a core.

Lemma 5.12 show that H has no cycles of length 2. We have observed
above that each Tj3-triple corresponds to a special triangle in H. Now we
shall show that there are no other triangles in .

Lemma 5.13 Fach 3-cycle of ‘H is a special triangle corresponds to a T5-
triple.

Proof. Let a, F1,b, Fs,c, E5 be a 3-cycle of H. Then E;, F5 are the two
hyperedges containing a, E, F» are the two hyperedges containing b, Fs, E3
are the two hyperedges containing c¢. Let X, = Ey — {a, b}, X, = Es — {a, ¢}
and X, = E3 — {a,c}. We have X, # O, for otherwise N(b) C N(c).
Similarly X,, X, # . Now by definition, a, b, ¢ is a T3-triple, and the 3-cycle
a, E1,b, Ey, c, F5 is the corresponding special triangle. | |
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5.4 More on the structure of H

This subsection investigates further the structure of the hypergraph H. We
shall prove that H contains no odd cycles other than the special triangles,
and that any vertex z € T3 is not contained in any cycle other than the
special triangles.

Lemma 5.14 The hypergraph H contains no odd cycles other than the spe-
cial triangles correspond to Ty triples.

Proof. Assume the lemma is mnot true. Let C =
(1, B1, 29, Egy - - -, Xogy1, Eog11) be a shortest odd cycle of #, which is
not a special triangle. By Lemma 5.13, £ > 2. For each vertex x;, the
hyperedges F; | and E; are the only two hyperedges of H containing z;.
Therefore the subgraph @) of G induced by the vertices xy,x9, -, Togi1
is the complement of the odd cycle Cy,.y. If G contains a vertex =z
which is not contained in the union U?J]f{lEi, then x is adjacent to all z;
(1=1,2,---,2k+1); i.e., @ C N[z]. This is in contrary to our assumption
that N[z] induces a perfect graph.

Thus we assume that V' = U?’f{lEj. If each edge E; contains exactly two
vertices, then G is the complement of the odd cycle Copyq, ie., G = G2FFL,
So (G is circular perfect, contrary to our assumption. Thus there is an edge
E; which contains more than two vertices.

Claim: There is a vertex y € E; and y # x;,x;11 and y is not contained in
any E; for j # 1.

Suppose E; contains more than two vertices. Let y € E; such that y #
T, Tiy1. 1f y is not contained in any other F; then we are done. Thus
we assume that y € E; for some j # i. Since E; N Ejyy = {r;41} and
E, 1NE; ={z;} soj#i—1,i+ 1. Without loss of generality, we assume
that j >4 + 1.

Now
C, = (ya Eiaxi-i-la Ei-i-la o 71‘]7E])

and
"
" = (ya Ejaxj-i-l) Ej-l-la t '7E2]€+171‘17E171‘27 Tty El)

are two cycles of 7. The sum of the lengths of C' and C” is equal to the
length of C' plus 2. Therefore, one of C’',C" is an odd cycle. Without loss
of generality, we assume that C’ is of odd length. Since the length of C" is
at least 4, we know that the length of C' is smaller than the length of C.
By the choice of C, we conclude that C' is a special triangle corresponds to
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the Ts-triple y, x;,1, x;12. Therefore E;,; also contains a third vertex z. By
Lemma 5.10, z € T;. Now use the same argument as above, we can conclude
that z is not contained in any other E; (as z cannot be contained in a special
triangle). This proves the Claim.

Assume now that y € F; and y # x;,2;41 and y € E; for j # 1. Let
E’ be the other hyperedge containing y, and let z € E’ be another vertex
of E'. (Note that each vertex of G is contained in two hyperedges and each
hyperedge contains at least two vertices). Since V = U?ZJ{IEJ', we assume
that z € E; for some j.

Without loss of generality, we assume that 7 > ¢+ 1. Now
Cl = (ya Eia Tit1, Ei-l—la cr, Ty, Eja 2, E,)

and
" !
" = (yaE y 2y Ejaxj-l-l?Ej-i-la ) E2k+1,fL'1,E1,IL'2, T 7EZ)

are two cycles of 7. The sum of the lengths of C' and C” is equal to the
length of C plus 4. Therefore, one of C’, C” is an odd cycle. Without loss of
generality, we assume that C’ is of odd length.

If C" is a special triangle, then E' contains a third vertex w. In this case,
we shall use the vertex w to play the role of z. (Note that in this case w € T}
by Lemma 5.10 and hence the corresponding C’ cannot be a special triangle).
Therefore we may assume that C’ is not a special triangle.

The sum of the lengths of C' and C" is equal to the length of C' plus 4.
Since the length of C” is at least 4, by the minimality of the length of C'
we conclude that C” is of length 4 and C’ is of the same length as C. So
j=i+2.

We shall show that E’ contains only two vertices. Assume to the con-
trary that E’ contains a third vertex w, and assume that w € FE;. Similar
to the argument in the proof of the Claim above, we can show that w, E;
together with two other vertices and two hyperedges of C' form a special
triangle. Without loss of generality, we may assume that ¢ = ¢ + 1 and
v, B, xi1, Ei 1, w, E' is a special triangle. Then we have a 5-cycle

i, By, vi, Eipr, w, B 2, Bi_o, w51, By, w4
By the minimality of C' we conclude that C' and C' are all 5-cycles.

For simplicity, we let ¢« = 3. Then the hyperedges of the cycle C' together
with hyperedge E’ and the named vertices are as depicted in Fig. 3 below.

If E5 or E5 contains a third vertex, then the same discussion as above
would derive a contradiction, because by Lemma 5.10, xq, xo, x3, x5 € 17, so
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Figure 3: The hyperedges of C and E’

these vertices cannot be contained in a special triangle. Thus each of F,
and Ej contains two vertices. So the vertices of G are covered by Ey, E3, Fy.
This implies that G is 3-colorable (as each of the hyperedge is an independent
set of G). On the other hand, z,x3,z5 induce a triangle in G, contrary to
the assumption that G is a core. This contradiction shows that E’ indeed
contains only two vertices y and z.

By interchanging the roles of ' and E; 1, C" and C, the same argument
shows that FE; ; contains only two vertices x; ; and x;. Now it is straight-
forward to verify that the mapping f which sends y to x;, sends x; | to z,
and fixes every other vertex is a retraction of (G, contrary to the assumption
that G is a core. This completes the proof of Lemma 5.14. i

Corollary 5.3 If a € T3 then a is contained in no cycle other than the
special triangle.

Proof. Assume to the contrary that a is contained in a cycle
C = (a, Er, 71, By, 29, -+, 211, By

which is not a special triangle. Then £ > 4 and by Lemma 5.14, k is even.
The two edges E; and Ej, together with another hyperedge E’ form a special
triangle.

We divide the remaining discussion into two cases.
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Case 1: One of xq, x4_; is in the same T3 triple as a.

Without loss of generality, we assume that z; is in the same T3 triple as
a. Let z be the other vertex of the T3-triple containing a and x;. Then the
special triangle corresponds to a, x, z is

a, ElaxlaE% ZaEk:-

The cycle C and the special triangle are as depicted in Fig. 4 below.

Figure 4: A depiction of the cycle C' and the special triangle for Case 1

Then
Ty, By 2, By, w9, B3, - -+, By

is an odd cycle of H, which is not a special triangle, contrary to Lemma 5.14.
Case 2: None of x1,x;_1 is in the same T3 triple as a.

Assume the T3 triple containing a is a, b, c. By Lemma 5.10, each of the
hyperedges F; and E} contains two vertices of the triple. Without loss of
generality, we assume that E; contains a, b, and E} contains a,c. Let E’ be
the other hyperedge of the special triangle. Then E’ contains b, c. The cycle
C and the special triangle are as depicted in Fig. 5 below.

Therefore
!
b, By, w1, By, -+, w1, Egyc, B

is a cycle of H whose length is equal to the length of C' plus 1, contrary to
Lemma 5.14. [ |
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Figure 5: A depiction of the cycle C' and the special triangle for Case 2

5.5 The final contradiction

In this section, by applying Hall’s theorem, Lemma 5.14 and Corollary 5.3,
we derive a final contradiction, and complete the proof of Theorem 4.2.

Let H' be the hypergraph obtained from H by deleting all those hyper-
edges of special triangles, and then deleting the isolated vertices, i.e., those
vertices in T3. Let Qq, Q2, @3, -+, Q,, be the connected components of H'.

Lemma 5.15 There is a connected component QQ; of H' such that there is
at most one hyperedge E' € H — H' which intersects the vertices of Q;.

Proof. Let R',R?%---,RF be the special triangles of #. By Corol-
lary 5.3, none of the vertices in 75 is contained in any cycle other
than the special triangles. We build a graph 7' with vertex set
{Q1,Q2,Q3, -, Qum, R, R?,--- R}, and join Q;R’ by an edge if there is
a hyperedge of # (which is one of the deleted hyperedge) containing vertices
from both Q; and R/, then T is a forest. Since each R’ is adjacent to at least
three of );’s (cf. the proof of Lemma 5.10), all the leaves of T are the Q;’s.

Let ; be a leave vertex of 7. Then there is at most one R’/ which is
adjacent to ;. Therefore, only the hyperedges of the special triangle R’
may intersect the vertices of ;. Among the three hyperedges of R/, only
one intersects the vertices of ();, for otherwise there is a cycle other than the
special triangle containing the vertices of 73. This completes the proof of
Lemma 5.15. i
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Without loss of generality, assume that there is at most one hyperedge
E" in H — H' intersects the vertices of ;.

Let F' be the graph defined as follows: The vertices of F' are the hy-
peredges of @, U {E'} (if E' does not exists, then the vertices of F' are the
hyperedges of Q1); E; ~p Ej; if and only if E; N E; # O (as subsets of V).

Since each vertex of (G is contained in exactly two hyperedges of H and
hence is contained in at most two hyperedges of H', each cycle of F' corre-
sponds to a cycle of ‘H of the same length. By Lemma 5.14, F' contains no
odd cycles, because the hypergraph induced by the hyperedges @; U {E'}
contains no special triangles. Hence F' is bipartite. Assume V(F)= AU B,
where A, B are the two parts of F', and E' € A if E’ exists.

For each subset B’ C B, let Np(B') = {E; € A : E; adjacent to Ej in F
for some E; € B'}. We say B’ C B is critical if |Np(B') — {E'}| < |B’| and
|Np(B") — {E'}| > |B"| for any proper subset B” of B'.

Lemma 5.16 The set B contains a critical subset.

Proof. Assume to the contrary that B contains no critical subsets. By Hall’s
theorem, F' has a matching M that saturates B, and do not saturate E' € A.
Assume the edges of the matching M are

E; E;

Jio

2o °

"y EimEjm7

where E; , Ej,, -+, E; are the hyperedges in B. Let {x,} = E;, N Ej, for
t = 1,2,---,m. Since M is a matching of F, the vertices xi, 22, -+, 2,
induce a copy of K, in G. Also observe that z; is not contained in E’, and
hence in the graph G, z; is adjacent to all vertices not in Q.

Let f be the mapping which retracts Fj, to z; for t = 1,2,---,m, and
fixes every other vertex of G. We now show that f is a retraction of G.
Assume that zy is an edge of G. If x,y € ), then z,y is not contained
in the same hyperedge (as each hyperedge is an independent set of G). So
f(z) =z, and f(y) = zy for some t # t'. Therefore f(z)f(y) is an edge of G.
If z,y & Q1, then f(z) =z, f(y) =y and f(x)f(y) is an edge of G. Assume
now that x € Q; and y ¢ Q1. Then f(y) =y and f(x) = x; for some t. As
observed above, x; is adjacent to every vertex not in ()1, so yx; is an edge of
G. This proves that f is a retraction, contrary to the assumption that G is
a core. i

Let B be a critical subset B'. Then |[Np(B')—{E'}| = |B'| — 1 and hence
|INp(B')| < |B'|. So there exists a subset B” of B’ such that |Ng(B")| =
|INp(B')| = |B"|. By applying Hall’s theorem, we conclude that there is
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a matching of F' that saturates both B” and Ng(B"). Let M be such a
matching, and assume

EilEjU EizEjzv T EimEjm

are the edges of M, where E; , Ej,,---, E; are the hyperedges in B” and
E;,E;,,---,E;, are the hyperedges in Np/(B"). Let {z;} = E;, N Ej, for

t=1,2,---,m. Then zy,x9,---,x,, induce a K,, in G.

Let Z = U2 Ej,. Let f be the mapping which sends E;, N Z to x;, and
fixes every other vertex of G. We now show that f is a homomorphism. The
restriction of f to Z is obviously a homomorphism, as adjacent vertices in
Z are sent to distinct x;’s, and xy, x9, - - -, T, induce a complete graph. The
restriction of f to V — Z is the identity mapping, so it is a homomorphism.
Now let z € Z and y € V — Z. We need to prove that if x ~g y then

fx) ~a f(y)-

Note that by Lemma 5.11, each vertex of GG is contained in exactly two
hyperedges. So each vertex of Ej, is contained in some hyperedge E* of H
which intersects Ej,. Since Np(B") = {E;,, Ei,, -, E;,, }, E* = E;, for some
[. Therefore, Z7 = UL E;, C U E;,.

Assume = € E;, N Z. Then f(x) = x;. Since y is adjacent to x in G, so

y ¢ E;,. The two hyperedges containing x, are E;, and Ej,. Sincey € E;,, I},
SO Ty ~g Y-
This completes the proof of Theorem 4.2. i
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