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Abstract. We show that a compact operator A is a multiple of a positive semi-definite operator

if and only if

σ(AB) ⊆W (A)W (B), for all (rank one) operators B.

An example of a normal operator is given to show that the equivalence conditions may fail in

general. We then obtain conditions to identify other classes of operators A so that equivalence

conditions hold.

1. Introduction

Let B(H) be the algebra of bounded linear operators on a complex Hilbert space H. We identify

B(H) with Mn, the algebra of n× n complex matrices, if H has finite dimension n. The spectrum

σ(A), and the numerical range W (A) of an operator A ∈ B(H) are defined by

σ(A) = {λ : A− λI is not invertible}, and W (A) = {〈Ax, x〉 : x ∈ H, ‖x‖ = 1},

respectively. Here, 〈·, ·〉 and ‖ · ‖ denote the inner product and its corresponding norm of H.

The Hausdorff–Toeplitz theorem asserts that W (A) is always a bounded convex subset of the

complex plane. When H is finite dimensional, it is compact. In general, the closure of the numerical

range satisfies

σ(A) ⊆W (A).

When A is normal, we have

convσ(A) = W (A).

Here, convS denotes the convex hull of a set S in a vector space. The spectrum and the numerical

range are useful tools for studying operators and matrices. Motivated by the theoretical develop-

ment and applications, researchers have obtained many interesting results; see, for example, [8], [9,

Chapter 22] or [11, Chapter 1].

In perturbation theory, one might want to estimate σ(A+B) for “small” B, but it is known that

σ(A+B) 6⊆ σ(A)+σ(B). For example, let A =

(
0 M

0 0

)
and B =

(
0 0

ε 0

)
with positive M, ε > 0.
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Then σ(A) = σ(B) = {0}, whereas σ(A+B) = {±
√
Mε}. Nevertheless, we always have

σ(A+B) ⊆W (A+B) ⊆W (A) +W (B).

Thus, W (A) +W (B) provides a containment region for σ(A+B).

In (multiplicative) perturbation theory, one considers Ã = AB such that B is closed to the iden-

tity operator I. However, neither of the inclusion σ(AB) ⊆ σ(A)σ(B) nor W (AB) ⊆ W (A)W (B)

holds. The following example in [10] tells us that the above inclusions may not hold even for 2× 2

hermitian matrices A,B. Let

A =

(
1 0

0 −1

)
and B =

(
0 1

1 0

)
.

Then

σ(AB) = {±
√
−1} 6⊆W (A)W (B) = [−1, 1].

Nevertheless, it was shown in [13] that if A,B ∈ B(H) and 0 6∈W (A), then

σ(A−1B) ⊆W (B)/W (A).

It follows from this result that if A ∈Mn is a multiple of a positive semi-definite matrix,

σ(AB) ⊆W (A)W (B) for all B ∈Mn.

In [5, Theorem 3], it was shown that if A ∈ B(H) is a (multiple of a) positive semi-definite operator,

then

convσ(AB) ⊆W (A)W (B) for all B ∈ B(H).

It is natural to consider the converse problem; namely,

Question 1.1. Is A ∈ B(H) a multiple of a positive semi-definite matrix if

σ(AB) ⊆W (A)W (B) for all B ∈ B(H) ?

In [1], the author considered this question for matrices A ∈ Mn, and an affirmative answer to

this question was claimed in the paper. In [6, 7], the authors there pointed out some gaps in the

argument in [1], and repaired them.

In this paper, we consider Question 1.1 for infinite dimensional operators. In particular, we refine

the finite dimensional result to the following.

Theorem 1.2. Suppose A ∈ B(H) is a compact operator. The following conditions are equivalent.

(A1) A is a multiple of a positive semi-definite operator.

(A2) σ(AB) ⊆W (A)W (B) for all B ∈ B(H).

(A3) σ(AB) ⊆W (A)W (B) for all rank one B ∈ B(H).

Of course, it would be nice to further extend the result to general operators. However, the

following example shows that it is impossible even on a separable Hilbert space. (A verification of

the example will be given in the next section).
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Example 1.3. Consider a Hilbert space H with a countable orthonormal basis {f1, f2, . . . }. Suppose

{µ1, µ2, . . . } is a dense set of the unit circle {eit : t ∈ [0, 2π)} and T is the diagonal operator on H

satisfying Tfn = µnfn. Then A := I+T , which is not a multiple of positive semi-definite operator,

satisfies

σ(AB) ⊆W (A)W (B), for all B ∈ B(H).

A key step in the proof of the finite dimensional result is to show that if A ∈ Mn satisfies

condition (A2) in Theorem 1.2, then A is normal. We can modify Example 1.3 to show that this

implication is not true for general operators in the following. (The verification will also be done in

the next section.)

Example 1.4. Suppose Â = A⊕

(
1 d

0 1

)
∈ B(H ⊕C2), where A is defined as in Example 1.3 and

d ∈ (0, 1]. Then Â is not normal and condition (A2) in Theorem 1.2 holds.

Apart from Examples 1.3 and 1.4, we obtain the following theorem, which allows us to identify

other classes of operators A such that the conditions (A1), (A2), (A3) are equivalent.

Theorem 1.5. Let H be a Hilbert space of finite or infinite dimension. Consider the following

conditions for an operator A ∈ B(H).

(A1) A is a multiple of a positive (semi-definite) operator.

(A2) σ(AB) ⊆W (A)W (B) for all B ∈ B(H).

(A3) σ(AB) ⊆W (A)W (B) for all rank one B ∈ B(H).

Then the following implications hold:

(A1)⇒ (A2)⇒ (A3).

The implication

(A3)⇒ (A1)

holds when there is a boundary point µ of W (A) attaining the numerical radius |µ| = w(A) and

lying on two different support lines of W (A).

By Theorem 1.5, we have the following.

Corollary 1.6. In each of the following cases, conditions (A1), (A2), (A3) in Theorem 1.5 are

equivalent for an operator A ∈ B(H).

(1) W (A) is a convex polygon, which may degenerate to a line segment or a point. This covers

the cases when A is a scalar multiple of a hermitian operator, or when A is a normal

operator with finite spectrum.

(2) A ∈ B(H) is normal and there is an isolated point λ in σ(A) attaining the spectral radius

|λ| = r(A).
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2. Proofs and auxiliary results

We focus on the proof of Theorem 1.5, and deduce Theorem 1.2 and Corollary 1.6 as conse-

quences. We then verify Examples 1.3 and 1.4.

The implication (A1)⇒ (A2) in Theorem 1.5 is a result in [5]. Furthermore, it was shown that

if (A1) holds, then W (A)W (B) is always convex. We give a short proof of the result.

Proposition 2.1. Suppose A ∈ B(H) is a multiple of a positive semi-definite operator. Then for

any B ∈ B(H), the set W (A)W (B) is convex, and

σ(AB) ⊆W (A)W (B).

Proof. Without loss of generality, we can assume that A is positive semi-definite. Note that

W (A) = [a1, a2], a2 ≥ a1 ≥ 0, and W (B) is a compact convex set. Thus,

W (A)W (B) =
⋃

µ∈W (A)

µW (B) =
⋃

a1≤t≤a2

tW (B)

is convex.

Now, suppose λ ∈ σ(AB). If λ = 0, then AB is singular, so that A is singular or B is singular.

Hence, 0 ∈ σ(A) ∈W (A) or 0 ∈ σ(B) ∈W (B) so that 0 ∈W (A)W (B).

If λ 6= 0, then λ ∈ σ(AB) \ {0} = σ(A1/2BA1/2) \ {0}.
Assume first that λ is an approximate eigenvalue of A1/2BA1/2. Then there is a sequence of unit

vectors {xn} such that

‖A1/2BA1/2xn − λxn‖ → 0.

We may assume that A1/2xn 6= 0 for all n ∈ N. Thus tn〈Byn, yn〉 → λ in W (A)W (B) with

yn = A1/2xn/‖A1/2xn‖ and tn = 〈Axn, xn〉 ∈W (A).

Assume next that λ is not in the approximate point spectrum, and thus A1/2BA1/2−λ does not

have a dense range. Consequently, we can find a norm one element y in H orthogonal to its range.

In particular,

〈(A1/2BA1/2 − λ)y, y〉 = 0.

This gives

λ = 〈A1/2BA1/2y, y〉 = t〈Bx, x〉,
and A1/2y 6= 0. Here, t = ‖A1/2y‖2 = 〈Ay, y〉 ∈ W (A), and x = A1/2y/‖A1/2y‖ is of norm one.

Hence, λ ∈W (A)W (B).

The implication (A2) ⇒ (A3) is clear. We now focus on the condition under which the impli-

cation (A3) ⇒ (A1) holds.

Proposition 2.2. Suppose A ∈ B(H) satisfies (A3). Then there is µ ∈ W (A) such that |µ| =

w(A). Moreover, if such a µ lies on two different support lines of W (A), then (A1) holds.

We need some preliminaries to prove Proposition 2.2. Let A ∈ B(H) satisfying (A3). Note that

conditions (A1), (A2) and (A3) will not be affected by replacing A with γUA‡U∗ for any nonzero

γ, unitary U ∈ B(H), A‡ ∈ {A,At, A∗}. We will use this fact in our proof.

Lemma 2.3. Suppose A ∈ B(H) satisfies (A3).
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(1) The operator A is radialoid. That is, r(A) = w(A) = ‖A‖.
(2) Suppose η ∈W (A) satisfies |η| = w(A). Then |η − µ| ≤ w(A) for all µ ∈W (A).

Proof. We may replace A by A/‖A‖ and assume that ‖A‖ = 1. To prove (1), suppose Axn = λnyn

for some unit vectors xn, yn ∈ H with positive scalars λn ↑ 1. Let Bn ∈ B(H) be the rank one

operator z 7→ 〈z, yn〉xn. Then ABnyn = λnyn, and thus λn ∈ σ(ABn) ⊆ W (A)W (Bn). Since

w(Bn) ≤ 1, we have λn ≤ w(A). That is, 1 ≤ w(A). Thus w(A) = 1, and hence r(A) = 1 (see [8,

Theorem 1.3-2]).

Next, consider (2). It is well known that if w(A) = ‖A‖ and η ∈W (A) satisfies |η| = w(A), then

A is unitarily similar to ηI ⊕A1. We may replace A by A/|η| and suppose η ∈W (A) with |η| = 1.

Then for any unit vector x such that 〈Ax, x〉 = η, we write Ax = ηx + νy for some unit vector y

orthogonal to x. Then

|η|2 = ‖A‖2 ≥ ‖Ax‖2 = |η|2 + |ν|2.

Thus, ν = 0 and Ax = ηx. The first assertion follows.

For the second assertion, we may replace A by A/η and assume that A =

(
1 0

0 A1

)
. Let

λ ∈W (A1). We can assume that the leading (upper left) 2×2 submatrix of A is

(
1 0

0 λ

)
. Let U =

1√
2

(
1 1

1 −1

)
be the 2×2 unitary matrix. Then the leading 2×2 submatrix of Â = (U⊕I)A(U⊕I)∗

equals A0 = 1
2

(
1 + λ 1− λ
1− λ 1 + λ

)
. Let B = (U ⊕I)∗

((
0 0

2 0

)
⊕O

)
(U ⊕I). Then tr(AB) = 1−λ is

the nonzero eigenvalue of the rank one matrix AB. Since σ(AB) ⊆W (A)W (B) ⊆ {z ∈ C : |z| ≤ 1},
we have |1− λ| ≤ 1.

The last assertion follows from the fact that W (A) = conv ({1} ∪W (A1)).

In [1], the authors showed that if a matrix A satisfies (A2), then there is µ ∈ W (A) satisfying

|µ| = ‖A‖, and tried to prove that (A1) holds. Lemma 2.3(1) shows that for any A ∈ B(H)

satisfying (A3), there is µ ∈W (A) such that |µ| = ‖A‖ and µ is an eigenvalue of A.

We will use Lemma 2.3 to prove Proposition 2.2. In the finite dimensional case, W (A) = W (A)

is compact, and there are unit vectors attaining the norm of A. However, it might not be the case

if the underlying Hilbert space H is infinite dimensional. Nevertheless, we can use the Berberian

construction (see [2]) to overcome this technicality.

In connection to our problem, we will impose additional requirement in the Berberian construc-

tion, namely, we will need a generalized Banach limit which is multiplicative. We include some

details of the construction for completeness. We identify the space `∞ of bounded scalar sequences

with the C∗-algebra C(βN) of continuous functions on the Stone-Cech compactification βN of N.

Here, a bounded sequence λ = (λn) in `∞ corresponds to a function λ̂ in C(βN) with λ̂(n) = λn for

all n = 1, 2, . . .. Take any point ξ from βN\N. The point evaluation λ 7→ λ̂(ξ) of `∞ gives a nonzero

multiplicative generalized Banach limit, denoted by glim , that satisfies the following conditions.

For any bounded sequences (an) and (bn) in `∞ and scalar γ, we have
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(a) glim (an + bn) = glim (an) + glim (bn).

(b) glim (γan) = γ glim (an).

(c) glim (an) = lim an whenever lim an exists.

(d) glim (an) ≥ 0 whenever an ≥ 0 for all n.

(e) glim (anbn) = glim (an) glim (bn).

Equivalently, we can define glim (an) = limU an through a free ultrafilter U on N, when we consider

βN consisting of ultrafilters on N and those outside N are free (i.e.
⋂
U = ∅). Note that all

multiplicative generalized Banach limits on `∞ arise from the above construction. Note also that

we do not assume the translation invariant property on glim . Indeed, the only translation invariant

multiplicative generalized Banach limit is zero.

Denote by V the set of all bounded sequences {xn} with xn ∈ H. Then V is a vector space

relative to the definitions {xn} + {yn} = {xn + yn} and γ{xn} = {γxn}. Let N be the set of all

sequences {xn} such that glim (〈xn, xn〉) = 0. Then N is a linear subspace of V. Denote by x the

coset {xn} + N . The quotient vector space V/N becomes an inner product space with the inner

product 〈x,y〉 = glim (〈xn, yn〉). Let K be the completion of V/N . If x ∈ H, then {x} denotes

the constant sequence defined by x. Since 〈x,y〉 = 〈x, y〉 for x = {x} +N and y = {y} +N , the

mapping x 7→ x is an isometric linear map of H onto a closed subspace of K and K is an extension

of H. For an operator A ∈ B(H), define

A0({xn}+N ) = {Axn}+N .

We can extend A0 on K, which will be denoted by A0 also. The mapping φ : B(H)→ B(K) given

by φ(T ) = T̃ is a unital isometric ∗-representation with σ(T ) = σ(T̃ ). Moreover, the approximate

eigenvalues of T (and also T̃ ) will become eigenvalues of T̃ . See [2].

It is clear that rank one operators in B(H) become rank one operators in B(K). However, rank

one operators in B(K) does not necessarily come from rank one operators in B(H). A counter

example can be given by the rank one operator e⊗ e defined by k 7→ 〈k, e〉e for a nonzero vector e

in K orthogonal to H. Nevertheless, in connection to our study, we have the following.

Lemma 2.4. Let Ã ∈ B(K) be the extension of A ∈ B(H) in the Berberian construction. Suppose

σ(AB) ⊆W (A)W (B) for all rank one B ∈ B(H). Then

σ(ÃB′) ⊆W (Ã)W (B′) for all rank one B′ ∈ B(K).

Proof. To prove our assertion, we make some observations.

(i) W (Ã) = W (A) for all A ∈ B(H) by [3].

(ii) W (B) = W (B) for any rank one B ∈ B(H).

(iii) If x,y,u ∈ K correspond to the sequences {xn}, {yn} and {un} of unit vectors in H, then

〈(x⊗ y)u,u〉 = 〈u,y〉〈x,u〉 = glim (〈un, yn〉) glim (〈xn, un〉) = glim [(〈un, yn〉)(〈xn, un〉)].

Let B′ = x ⊗ y with x,y in K arising from the sequences {xn}, {yn} of unit vectors in H. We

will show that

σ(ÃB′) ⊆ {〈Ãx,y〉, 0} ⊆W (Ã)W (B′).
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Obviously, 0 ∈W (Ã)W (B′). Observe that

〈Ãx,y〉 = glim (〈Axn, yn〉),

where

〈Axn, yn〉 ∈ σ(A(xn ⊗ yn)) ⊆W (A)W (xn ⊗ yn) = W (Ã)W (xn ⊗ yn)

by (i) and (ii) above. It follows that

〈Axn, yn〉 = 〈Ãvn, vn〉〈(xn ⊗ yn)un, un〉 = 〈Ãvn, vn〉〈un, yn〉〈xn, un〉

for some unit vector vn ∈ K and unit vector un ∈ H. By (iii) above,

glim [(〈un, yn〉)(〈xn, un〉)] = 〈(x⊗ y)u,u〉 ∈W (x⊗ y) = W (B′).

By the compactness of W (Ã) and W (B′), we have

glim 〈Axn, yn〉 = glim (〈Ãvn, vn〉) glim [(〈un, yn〉)(〈xn, un〉)] ∈W (Ã)W (B′).

Proof of Proposition 2.2. We may replace A by A/‖A‖ and assume that ‖A‖ = 1. Furthermore, we

may apply the Berberian construction and assume that conditions (a) – (e) hold. For simplicity,

we assume H = K and A = Ã.

By Lemma 2.3, we have r(A) = w(A) = ‖A‖ = 1 and we may assume that A = µI⊕A1 for some

contraction A1 such that µ is not an eigenvalue of A1. Without loss of generality, we may assume

that µ = 1, A = I ⊕ A1. We need to show that A1 is positive semi-definite. Assume that it is not

the case so that W (A1) 6⊆ [0, 1].

By our assumption, there is a support line of W (A) passing through 1 and 1 + r1e
iα1 for some

π/2 < α1 < 3π/2 and r1 ∈ [0, 1]. Replacing A with A∗ if necessary, we can also assume that

π/2 < α1 < π and

W (A) ⊆ {z = 1 + reiα : r ∈ [0, 1], α1 ≤ α ≤ 3π/2, |z| ≤ 1}.

Let B = B0 ⊕O with

B0 = 2ei(π/2−α1)

(
cos θ 0

sin θ 0

)
,

where θ ∈ (0, π/2) such that 2r1 sinα1 ≥ tan θ. Observe that

(sinα1 cos θ + r1 sin θ)2 = (sinα1 cos θ)2 + 2r1 sinα1 cos θ sin θ + r21 sin2 θ

> (sinα1 cos θ)2 + sin2 θ,

i.e.,

(2.1) sinα1 cos θ + r1 sin θ >

√
(sinα1 cos θ)2 + sin2 θ.
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With a suitable unitary transform, we may assume that A has a leading 2 × 2 submatrix A0 =(
1 0

0 1 + r1e
iα1

)
. Let U = U0 ⊕ I with U0 = 1√

2

(
i −i
1 1

)
. Then

λ = tr(UAU∗B) = tr(U0A0U
∗
0B0)

= 2ei(π/2−α1) cos θ + r1e
iα1tr(U0E22U

∗
0B0)

= 2ei(π/2−α1) cos θ + r1e
iα1tr(E22U

∗
0B0U0)

= 2 sinα1 cos θ + r1 sin θ + i(2 cosα1 cos θ + r1 cos θ),

which is the nonzero eigenvalue of the rank one matrix UAU∗B.

To derive a contradiction, we will show that

(2.2) λ /∈W (A)W (B) =
⋃

z∈W (A)

W (zB).

Recall that for any compact operator, and thus any finite matrix, T , the right support line of W (T )

is the set of complex numbers with real part equal to the maximum eigenvalue of (T + T ∗)/2. For

each z = 1 + reiα ∈ W (A) with r ∈ [0, 1] and α1 ≤ α < 3π/2, the maximum eigenvalue of the

matrix

1

2
(zB0 + zB∗0) =

(
(sinα1 + r sin(α1 − α))2 cos θ −i · eiα1 · z sin θ

i · e−iα1 · z sin θ 0

)
equals

(2.3) γ +

√
γ2 + |z|2 sin2 θ with γ = (sinα1 + r sin(α1 − α)) cos θ.

Because π/2 < α1 ≤ α < 3π/2, we have α1−α ∈ (−π, 0) and sin(α1−α) ≤ 0. Suppose γ ≥ 0, i.e.,

sinα1 ≥ |r sin(α1 − α)|. Then by (2.1) we have

γ +

√
γ2 + |z|2 sin2 θ ≤ sinα1 cos θ +

√
(sinα1 cos θ)2 + sin2 θ < 2 sinα1 cos θ + r1 sin θ.

If γ < 0, i.e., sinα1 < |r sin(α1 − α)|, then by (2.1) we have

γ +

√
γ2 + |z|2 sin2 θ < |z| sin θ < 2 sinα1 cos θ + r1 sin θ.

Thus, the real part of every point in W (zB) is strictly less than 2 sinα1 cos θ + r1 sin θ, and not

equal to λ. Since this is true for any z ∈W (A), we get the desired contradiction.

Proof of Theorem 1.2. We want to show that the implication (A3) ⇒ (A1) is valid when A is

compact. Let A ∈ B(H) be compact satisfying (A3). Since A is compact, every nonzero element

in σ(A) is an eigenvalue of A. Hence we have σ(A) \ {0} ⊆ W (A). In view of Lemma 2.3, we can

assume that ‖A‖ = r(A) = w(A) = 1 which is an eigenvalue of A, and write A = I ⊕A1 such that

‖A1‖ ≤ 1 and 1 /∈ σ(A1). Note that the largest eigenvalue λ of the compact operator (A1 + A∗1)/2

is less than 1. Indeed, if there is a unit vector x such that (A1 +A∗1)x/2 = x, then the inequality

1 =

〈
A1 +A∗1

2
x, x

〉
=

1

2
〈A1x, x〉+

1

2
〈A∗1x, x〉 ≤ 1
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implies that 1 = 〈A1x, x〉 and hence A1x = x, contradicting that 1 /∈ σ(A1). Since

W (A1) ⊆ {ν ∈ C : |ν| ≤ 1, |1− ν| ≤ 1, and (ν + ν̄)/2 ≤ λ},

and W (A) = conv ({1}∪W (A1)), we see that there are two different support lines of W (A) passing

through 1. It then holds (A1) by Proposition 2.2.

Proof of Corollary 1.6. The assertions in (1) are clear. For (2), let A ∈ B(H) be normal satisfying

(A3) and let, without loss of generality, 1 = ‖A‖ be an isolated point in the spectrum σ(A) of A.

Write A = I1⊕A1 (an orthogonal sum), where I1 is the eigen-projection of A for 1, and 1 /∈ σ(A1).

Moreover, we can separate 1 from σ(A1) by a straight line in the complex plane. Consequently, 1

and W (A1) = convσ(A1) are contained in two disjoint open half spaces. Since W (A) is the convex

hull of the set {1} ∪W (A1), we see that 1 lies on two different support lines of W (A). Proposition

2.2 applies and finishes the proof.

Verification of Example 1.3. By the Berberian construction, we may assume that A = I + T such

that T is normal and every point eit on the unit circle is an eigenvalue. Suppose that λ ∈ σ(AB).

The case λ = 0 is done, since 0 ∈ W (A)W (B) as 0 ∈ W (A). Suppose λ 6= 0. Because σ(AB) and

σ(BA) have the same nonzero elements, we see that λ ∈ σ(BA).

Assume first that λ is an approximate eigenvalue of BA. By the Berberian construction, we

may assume that there is a unit vector x such that BAx = λx. Let Ax = a11x + a21y such that

a11 = 〈Ax, x〉 and y is a unit vector orthogonal to x. Because A− I is unitary, we have

|a11 − 1|2 + |a21|2 = 1.(2.4)

Using an orthonormal basis with x, y as the first two vectors, and abusing notations for matrices

of uncountable sizes, we see that the operator matrices of A and B have the forma11 ∗ ∗
a21 ∗ ∗
0 ∗ ∗

 and

(
B1 ∗
∗ ∗

)
with B1 =

(
b11 b12

b21 b22

)
.

Then W (B1) ⊆W (B),

λ = b11a11 + b12a21 and b21a11 + b22a21 = 0.

It follows from (2.4) that a11 − 1 lies in the closed unit complex disk. Hence we can write

a11 − 1 = −α+ (1− α)eir

for some r ∈ [0, 2π) \ {π} and some α ∈ [0, 1].

Let A0 =

(
0 0

0 1 + eir

)
be the compression of A on the two dimensional subspace spanned by

{fπ, fr}. Let u =
√
αfπ +

√
1− αfr. Then

〈(A0 − I2)u, u〉 = a11 − 1.

Because A0 − I2 is unitary, ‖(A0 − I2)u‖ = 1. In view of (2.4), we see that A0 − I2 is unitarily

similar to a matrix of the form

(
a11 − 1 ∗
a21 ∗

)
. Hence, A0 is unitarily similar to A1 =

(
a11 ∗
a21 ∗

)
and
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W (A1) = W (A0) ⊆ W (A). Note that B1A1 is in upper triangular form with λ lying in the (1, 1)

position. Thus, λ ∈ σ(B1A1). Note that A0, as well as A1, is a multiple of positive semi-definite

matrix. By the implication (A1) ⇒ (A2) in Theorem 1.5, we have

λ ∈ σ(B1A1) ⊆W (B1)W (A1) ⊆W (B)W (A).

At this point, we have shown that W (B)W (A) contains all approximate eigenvalues of BA. Let

α ∈ σ(BA) and α is not an approximate eigenvalue of BA. Then α is in the interior of σ(BA)

and thus there is an approximate eigenvalue λ of BA, which is a boundary point of σ(BA), such

that α = βλ with 0 < β < 1. Since λ ∈ W (B)W (A) =
⋃
|z−1|≤1 zW (B), we have α = βzb for

some b ∈ W (B) and z satisfying |z − 1| ≤ 1. Since |βz − 1| ≤ β|z − 1| + (1 − β) ≤ 1, we have

α ∈W (B)W (A) as well.

Verification of Example 1.4. For anyB inB(H), we show that σ(ÂB) ⊆ σ(BÂ)∪{0} ⊆W (Â)W (B).

Since 0 ∈W (Â), we have 0 ∈W (Â)W (B). So, we focus on those nonzero λ ∈ σ(BÂ).

Similar to the Verification of Example 1.3, we only need to consider the case when λ is a nonzero

approximate eigenvalue of BÂ. Using a similar argument as in the Verification of Example 1.3, we

may assume that the operator matrices of Â and B have the forma11 ∗ ∗
a21 ∗ ∗
0 ∗ ∗

 and

(
B1 ∗
∗ ∗

)
with B1 =

(
b11 b12

b21 b22

)
.

Then W (B1) ⊆W (B), and

λ = b11a11 + b12a21 and b21a11 + b22a21 = 0.

Because Â− I is a contraction, we see that

|a11 − 1|2 + |a21|2 ≤ 1.

We can then construct a unitary matrix A0 ∈M3 with first column equal to (a11−1, a21, a31)
t, where

a31 = (1−|a11− 1|2−|a21|2)1/2. Since A− I is a unitary operator with spectrum {eit : t ∈ [0, 2π)},
we may regard A0 as a compression of A − I, and hence I + A0 is a compression of A and can

be viewed as the leading principal submatrix of UAU∗, whose first column has only three nonzero

entries, namely, a11, a21, a31. So, the first column of (B1 ⊕ [0])(I + A0) equals (λ, 0, 0)t, and thus

the first column of (B1⊕O)(UAU∗) has only one nonzero entry λ lying in the (1, 1) position. Since

A satisfies (A2), we have

λ ∈ σ((B1 ⊕O)(UAU∗)) = σ((U∗(B1 ⊕O)U)A)

⊆ σ(A(U∗(B1 ⊕O)U)) ∪ {0} ⊆W (A)W (U∗(B1 ⊕O)U) = W (A)W (B1 ⊕O).

Note that W (B1 ⊕ O) = conv {W (B1) ∪W (O)} = {rb : b ∈ W (B1), r ∈ [0, 1]}. By the convexity

of W (A) and the fact that 0 ∈ W (A), if a ∈ W (A) and r ∈ [0, 1], then ra ∈ W (A). Therefore,

λ ∈ W (A)W (B1 ⊕ O) implies that λ = a(rb) with a ∈ W (A), b ∈ W (B1) ⊆ W (B), r ∈ [0, 1]. It

follows that λ = (ra)b ∈W (A)W (B) = W (Â)W (B).

10



acknowledgment

Li is an honorary professor of the University of Hong Kong and Shanghai University. His research

was supported by US NSF and HK RCG. This project was done while he was visiting the National

Sun Yat-sen University, the Hong Kong Polytechnic University in January and February of 2014.

He would like to thank the colleagues of these universities for their warm hospitality.

The Research was supported by the Ministry of Science and Technology of the Republic of China

under the projects MOST 102-2115-M-009-006 (for Wang) and 102-2115-M-110-002-MY2 (for Tsai

and Wong).

We thank Che-Man Cheng for sending us [7].

References

[1] R. Alizadeh, Numerical range and product of matrices, Linear Algebra Appl. 437 (2012), 1422–1425.

[2] S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111–114.

[3] S. K. Berberian and G. H. Orland, On the closure of the numerical range of an operator, Proc. Amer. Math.

Soc. 18 (1967), 499–503.

[4] R. Bouldin, The numerical range of a product, J. Math. Anal. Appl. 32 (1970), 459–467.

[5] R. Bouldin, The numerical range of a product, II, J. Math. Anal. Appl. 33 (1971), 212–219.

[6] C. M. Cheng and Y. Gao, A note on numerical range and product of matrices, Linear Algebra Appl. 438 (2013),

3139–3143.

[7] C. M. Cheng, Corrigendum to “A note on numerical range and product of matrices” [Linear Algebra Appl. 438

(7) (2013) 3139–3143], Linear Algebra Appl. 459 (2014), 622–624.

[8] K. Gustafson and D. K. M. Rao, Numerical Range. The Field of Values of Linear Operators and Matrices,

Springer, New York, 1997.

[9] P. R. Halmos, A Hilbert Space Problem Book, second ed., Springer, New York, 1982.
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