BISEPARATING LINEAR MAPS BETWEEN CONTINUOUS VECTOR-VALUED FUNCTION SPACES

HWA-LONG GAU, JYH-SHYANG JEANG, AND NGAI-CHING WONG

Abstract. Let X, Y be compact Hausdorff spaces and E, F be Banach spaces. A linear map $T : C(X, E) \to C(Y, F)$ is separating if Tf, Tg have disjoint cozeroes whenever f, g have disjoint cozeroes. We prove that a biseparating linear bijection T (i.e., T and T^{-1} are separating) is a weighted composition operator $Tf = h \cdot f \circ \varphi$, where φ is a homeomorphism from Y onto X; and T is bounded if and only if $h(y)$ is a bounded operator from E onto F for all y in Y.

1. Introduction

Let X and Y be compact Hausdorff spaces, E and F be Banach spaces, and $C(X, E)$ and $C(Y, F)$ be the Banach spaces of continuous E-valued and F-valued functions defined on X and Y, respectively. In $C(X, E)$, we write $fg = 0$ for $\|f(x)\|\|g(x)\| = 0, \forall x \in X$. A linear operator $T : C(X, E) \to C(Y, F)$ is said to be separating, or (cozero) disjointness preserving, if $TfTg = 0$ whenever $fg = 0$. An invertible T is biseparating if both T and T^{-1} are separating.

The notion of disjointness preserving operators seems to be used firstly in the 40’s (see e.g. [22, 23]). Since then many authors have developed this concept in different directions. Y. Abramovich, for example, made many contributions in the context of Banach and vector lattices (see e.g. [5, 3]). In the case of continuous scalar-valued functions, separating linear maps were studied by Beckenstein and Narici in [9, 10, 11] and further investigated in [7] and [16]. Separating linear bijections between spaces of continuous functions are automatically continuous. Indeed, a bijective linear operator T from $C(X)$ onto $C(Y)$ is separating if and only if T is an (automatically bounded) weighted composition operator (see e.g., [16, 13, 17]). This can be considered as a special case of the generalized Nakano’s theorem obtained in [5, 6], which asserts that π-isomorphic Banach lattices are order isomorphic and the π-isomorphism is continuous. In the context of vector-valued functions, however, a separating or even a biseparating linear operator is not necessarily continuous (see Example 2.4).

In [20], Jerison got the first vector-valued version of the Banach-Stone Theorem: If E is a strictly convex Banach space then every surjective isometry T from $C(X, E)$ onto $C(Y, E)$ can be written as a weighted composition operator $Tf = h \cdot f \circ \varphi$, that is,

$$Tf(y) = h(y)(f(\varphi(y))), \quad \forall y \in Y, \forall f \in C(X, E).$$
Here, φ is a homeomorphism from Y onto X and h is a continuous map from Y into the space $(B(E, E), \text{SOT})$ of bounded linear operators from E into E equipped with the strong operator topology (SOT). Moreover, $h(y)$ is an isometry from E onto E for all y in Y. The conclusion might not hold, however, if E is not strictly convex (see e.g. [19]).

After Jerison [20], many authors work on different variants of the vector-valued Banach-Stone Theorem (cf. [20, 21, 15, 12, 14, 18, 19]). In particular, as an extension of the representation theorem of Abramovich [1], Hernandez, Beckenstein and Narici proved in [14] that if T is an isometric biseparating linear map from $C(X, E)$ onto $C(Y, F)$ then T is a weighted composition operator $Tf(y) = h(y)(f(\varphi(y)))$. In case T is bounded but not necessarily invertible, T can still be written as a weighted composition operator (see, e.g., [15, 12]). It is then possible to prove that every bounded invertible biseparating map provides a homeomorphism φ from Y onto X. However, these methods might not apply to unbounded biseparating linear maps.

In Section 2, we develop a new argument to prove that every biseparating linear bijection T from $C(X, E)$ onto $C(Y, F)$ induces a homeomorphism φ from Y onto X. As expected, T is a weighted composition operator

$$Tf(y) = h(y)(f(\varphi(y))), \quad \forall f \in C(X, E), \forall y \in Y.$$

Here, $h(y)$ is an invertible linear map from E onto F for each y in Y. However, T is not necessarily bounded (see Example 2.4). In fact, T is bounded if and only if $\|h(y)\| < \infty$ for all y in Y. In this case, $h : Y \to (B(E, F), \text{SOT})$ is continuous and $\|T\| = \sup_{y \in Y} \|h(y)\| < \infty$.

In the last section, we discuss when the inverse T^{-1} of a disjointness preserving linear bijection $T : C(X, E) \to C(Y, F)$ is disjointness preserving. It is well-known that T^{-1} is disjointness preserving when $E = F$ is the scaler field (see e.g. [8]). However, it is not the case even for finite dimensional E and F (see Example 5; see also [2, 3, 4]). We will present a new condition, so-called (support) containment preserving property of T, which is originally due to Abramovich and Kitover [4]. We prove that T^{-1} preserves disjointness if T preserves containment. In particular, T preserves both disjointness and containment if and only if T and T^{-1} are both weighted composition operators. This can be considered as the vector-valued version of the results in [4].

2. Biseparating linear maps are weighted composition operators

In the following, we always assume X and Y are compact Hausdorff spaces, E and F are Banach spaces, and $B(E, F)$ is the space of bounded linear operators from E into F equipped with the strong operator topology. For each x in X, let

$$I_x = \{f \in C(X, E) : f \text{ vanishes in a neighborhood of } x\}.$$

Note that the linear manifold I_x is not closed. But it is dense in the closed linear subspace $M_x = \{f \in C(X, E) : f(x) = 0\}$. Moreover, it is somehow ‘prime’ in the
sense that $f \in I_x$ whenever $fg = 0$ and $g(x) \neq 0$. In fact, $\|g(y)\| > 0$ for all y in a neighborhood V of x and thus forces f vanishes in V.

We start by observing that a biseparating linear bijection T preserves I_x’s.

Lemma 2.1. Let $T : C(X, E) \rightarrow C(Y, F)$ be a biseparating linear bijection. Then for each x in X there is a unique y in Y such that

$$TI_x = I_y.$$

Moreover, this defines a bijection φ from Y onto X by $\varphi(y) = x$.

Proof. For each x in X, denote by $\ker T(I_x)$ the set $\bigcap_{f \in I_x} (Tf)^{-1}(0)$. We first claim that $\ker T(I_x)$ is non-empty. Suppose on the contrary that for each y in Y, there were an f_y in I_x with $Tf_y(y) \neq 0$. Thus, an open neighborhood U_y of y exists such that Tf_y is nonvanishing in U_y. Since $Y = \cup_{y \in Y} U_y$ and Y is compact, $Y = U_{y_1} \cup U_{y_2} \cup \cdots \cup U_{y_n}$ for some y_1, y_2, \ldots, y_n in Y. Let V be an open neighborhood of x such that $f_{y_i}|V = 0$ for all $i = 1, 2, \ldots, n$. Let $g \in C(X, E)$ such that $g(x) \neq 0$ and g vanishes outside V. Then $f_y, g = 0$, and thus $Tf_y Tg = 0$ since T preserves disjointness. This forces $Tg|U_i = 0$ for all $i = 1, 2, \ldots, n$. Therefore, $Tg = 0$ and hence $g = 0$ by the injectivity of T, a contradiction! We thus prove that $\ker T(I_x) \neq \emptyset$.

Let $y \in \ker T(I_x)$. For each $f \in I_x$, we want to show that $Tf \in I_y$. If there exists a g in $C(X, E)$ such that $Tg(y) \neq 0$ and $fg = 0$, then we are done by the disjointness preserving property of T. Suppose there were no such g; that is, for any g in $C(X, E)$ vanishing outside $V = f^{-1}(0)$, we have $Tg(y) = 0$. Let $W \subseteq V$ be a compact neighborhood of x and $k \in C(X)$ such that $k|W = 1$ and k vanishes outside V. Then for any g in $C(X, E)$, $g = kg + (1 - k)g$. Since $(1 - k)|W = 0$, we have $(1 - k)g \in I_x$. This implies $T((1 - k)g)(y) = 0$ as $y \in \ker T(I_x)$. On the other hand, kg vanishes outside V. Hence $T(kg)(y) = 0$ by the above assumption. It follows that $Tg(y) = Tk(g)g + T((1 - k)g)(y) = 0$ for all g in $C(X, E)$. This conflicts with the surjectivity of T. Therefore, $TI_x \subseteq I_y$.

Similarly, $T^{-1}(I_y) \subseteq I_x'$ for some x' in X since T^{-1} is also separating. It follows that $I_x \subseteq T^{-1}(I_y) \subseteq I_x'$. Consequently, $x = x'$ and $T(I_x) = I_y$. The bijectivity of φ is also clear now.

Theorem 2.2. Two compact Hausdorff spaces X and Y are homeomorphic whenever there is a biseparating linear bijection T from $C(X, E)$ onto $C(Y, F)$.

Proof. We show that the bijection φ given in Lemma 2.1 is a homeomorphism. It suffices to verify the continuity of φ since Y is compact and X is Hausdorff. Suppose that there exists a net $\{y_\lambda\}_\lambda$ in Y converging to y but $\varphi(y_\lambda) \rightarrow x \neq \varphi(y)$, and we want to derive a contradiction.

Let U_x and $U_{\varphi(y)}$ be disjoint open neighborhoods of x and $\varphi(y)$, respectively. Now for any f in $C(X, E)$ vanishing outside $U_{\varphi(y)}$, we shall show that $Tf(y) = 0$. In fact, $\varphi(y_\lambda)$ belongs to U_x for large λ. Since $f|_{U_x} = 0$ and U_x is also a neighborhood of
Every biseparating linear bijection

By Theorem 2.2, we have a homeomorphism \(\varphi \) such that \(\varphi = \phi \) that \(\text{ker} \, T \) is a compact neighborhood of \(\varphi(y) \). Then \(g = kg + (1 - k)g \) for every \(g \) in \(C(X, E) \). Since \(kg \) vanishes outside \(U_{\varphi(y)} \), we have \(T(kg)(y) = 0 \). On the other hand, we have \((1 - k)g \in I_{\varphi(y)} \) since \((1 - k)|_V = 0 \). By Lemma 2.1, \(T((1 - k)g) \in I_y \) and thus \(T((1 - k)g)(y) = 0 \). It follows that \(Tg(y) = T(kg)(y) + T((1 - k)g)(y) = 0 \). This is a contradiction since \(T \) is onto. Hence \(\varphi \) is a homeomorphism.

Theorem 2.3. Every biseparating linear bijection \(T : C(X, E) \rightarrow C(Y, F) \) is a weighted composition operator

\[
Tf(y) = h(y)(f(\varphi(y))), \quad \forall f \in C(X, E), \forall y \in Y.
\]

Here \(\varphi \) is a homeomorphism from \(Y \) onto \(X \) and \(h(y) \) is an invertible linear map from \(E \) onto \(F \) for each \(y \) in \(Y \). Moreover, \(T \) is bounded if and only if \(h(y) \) is bounded for all \(y \) in \(Y \). In this case, \(h \) is a continuous map from \(Y \) into \((B(E, F), \text{SOT}) \), and \(\|T\| = \sup_{y \in Y} \|h(y)\| \).

Proof. By Theorem 2.2, we have a homeomorphism \(\varphi \) from \(Y \) onto \(X \) such that \(T(I_x) = I_y \) where \(\varphi(y) = x \).

Claim. \(TM_x \subseteq M_y \).

If the claim is verified then \(TM_x = M_y \) by the same argument for \(T^{-1} \). It follows that \(\ker \delta_x = \ker \delta_y \circ T \). Consequently, there is an invertible linear operator \(h(y) \) from \(E \) onto \(F \) such that \(\delta_y \circ T = h(y) \circ \delta_x \). Equivalently, \(Tf(y) = h(y)(f(\varphi(y))) \) for all \(f \) in \(C(X, E) \) and \(y \) in \(Y \).

Suppose \(T \) is bounded. For any \(e \) in \(E \), let \(f \in C(X, E) \) such that \(f(x) = e, \forall x \in X \). Since \(\|h(y)e\| = \|h(y)(f(\varphi(y)))\| = \|Tf(y)\| \leq \|Tf\| \leq \|T\|\|f\| = \|T\|\|e\| \), we conclude that \(\|h(y)\| \leq \|T\| \) for all \(y \) in \(Y \). On the other hand, if \(\|h(y)\| < \infty \) for all \(y \) in \(Y \) then \(h \) is continuous on \(Y \). In fact, let \(\{y_\lambda\}_\lambda \) be a net convergent to \(y \) in \(Y \). Then \(\|h(y_\lambda)e - h(y)e\| = \|h(y_\lambda)(f(\varphi(y_\lambda)) - h(y)(f(\varphi(y)))\| = \|Tf(y_\lambda) - Tf(y)\| \rightarrow 0 \) as \(T \in C(Y, F) \). Consequently, \(\sup_{y \in Y} \|h(y)\| < \infty \) since the map \(y \mapsto \|h(y)\| \) is continuous on the compact space \(Y \). Finally, for any \(g \) in \(C(X, E) \) and \(y \) in \(Y \), we have \(\|Tg(y)\| = \|h(y)(g(\varphi(y)))\| \leq \|h(y)\||\|g\||. \) Hence \(\|T\| \leq \sup_{y \in Y} \|h(y)\| \).

To verify the claim, suppose on the contrary \(f \in M_x \) but \(Tf(y) \neq 0 \). If \(x \) belongs to the interior of \(f^{-1}(0) \), then \(f \in I_x \) and thus \(Tf(y) = 0 \). Therefore, we may assume there is a net \(\{x_\lambda\}_\lambda \) in \(X \) converging to \(x \) and \(f(x_\lambda) \) is never zero. Let \(y_\lambda \) be in \(Y \) such that \(\varphi(y_\lambda) = x_\lambda \). Clearly, \(y_\lambda \) converges to \(y \) and we may assume there is a constant \(\epsilon \) such that \(\|Tf(y_\lambda)\| \geq \epsilon > 0 \) for all \(\lambda \). For \(n = 1, 2, \ldots, \) set

\[
V_n = \{z \in X : \frac{1}{2n + 1} \leq \|f(z)\| \leq \frac{1}{2n}\}
\]

and

\[
W_n = \{z \in X : \frac{1}{2n} \leq \|f(z)\| \leq \frac{1}{2n - 1}\}.
\]
Then at least one of the unions $V = \bigcup_{n=1}^{\infty} V_n$ and $W = \bigcup_{n=1}^{\infty} W_n$ contains a subnet of $\{x_\lambda\}_\lambda$. Without loss of generality, we assume that all x_λ belong to V. Let V'_n be an open set containing V_n such that $V'_n \cap V'_m = \emptyset$ if $n \neq m$. Let g_n in $C(X, E)$ be of norm at most $1/2n$ such that g_n agrees with f on V_n and vanishes outside V'_n for each n. Then $g_ng_m = 0$ for all $m \neq n$. Let $g = \sum_{n=1}^{\infty} 2ng_n \in C(X, E)$. Note that g agrees with $2nf$ on each V_n. Moreover, each x_λ belongs to a unique V_n and $n \to \infty$ as $\lambda \to \infty$. Therefore, $g - 2nf \in I_{x_\lambda}$. This implies $T(g - 2nf) \in I_{y_\lambda}$ and thus $\|Tg(y_\lambda)\| = 2n\|Tf(y_\lambda)\| \geq 2nc \to \infty$ as $\lambda \to \infty$. But the limit should be $\|Tg(y)\|$, a contradiction. This completes the proof.

In the following example, we see that the invertible linear operator $h(y)$ in (1) can be unbounded.

Example 2.4. Let $X = \{0\}$ and ψ be an unbounded linear functional of c_0 such that $\psi((1, 0, 0, \cdots)) = 1$. Define an unbounded linear bijection H from c_0 onto c_0 by

$$H(\lambda) = (\lambda_1 + \psi(\lambda), \lambda_2, \lambda_3, \cdots), \quad \forall \lambda = (\lambda_1, \lambda_2, \lambda_3, \cdots) \in c_0.$$

Set $h(0) = H$ and define the biseparating linear bijection $T : C(X, c_0) \to C(X, c_0)$ by

$$Tf(0) = h(0)((f(0))), \quad \forall f \in C(X, c_0).$$

Then T is an unbounded weighted composition operator. Note that $\varphi : X \to X$ with $\varphi(0) = 0$ is a homeomorphism.

3. Containment and disjointness preserving operators

In above results, we have to assume T is biseparating, namely both T and T^{-1} are separating. It is known that the inverse of a separating linear bijection between Banach lattices (in particular, $C(X)$’s) always preserves disjointness (see e.g., [2, Theorem 1]). Recently, Abramovich and Kitover [2, 3] showed that T^{-1} need not be separating in the general vector lattice setting.

Example 3.1 ([14]). Let $X = \{0\}$ and $E = \mathbb{R}^2$ with sup norm, and let $Y = \{1, 2\}$ and $F = \mathbb{R}$ with its usual norm. Define $T : C(X, E) \to C(Y, F)$ by $T(\frac{g}{g}) = g$ with $g(1) = a$ and $g(2) = b$. Then the surjective linear isometry T is separating, but its inverse T^{-1} is not.

Recall that for an f in $C(X, E)$, the cozero of f is $\text{coz}(f) = \{x \in X : f(x) \neq 0\}$ and the support $\text{supp}(f)$ of f is the closure of $\text{coz}(f)$ in X. The following definition modifies the one given by Abramovich [4].

Definition 3.2. A linear map $T : C(X, E) \to C(Y, F)$ is said to be (support) containment preserving if

$$\text{supp}(f) \subseteq \text{supp}(g) \text{ implies } \text{supp}(Tf) \subseteq \text{supp}(Tg).$$

For any injective map $T : C(X, E) \to C(Y, F)$ we denote by T^{-1} the inverse operator defined on $\text{ran}T$, the range space of T.
Lemma 3.3. Let $T : C(X, E) \rightarrow C(Y, F)$ be a linear injection. If T is containment preserving, then T^{-1} is disjointness preserving.

Proof. Suppose, on the contrary, that there exist f and g in $C(X, E)$ such that $TfTg = 0$ but $\|f(x)\|\|g(x)\| \neq 0$ for some x in X. Then we can find an open neighborhood V of x such that $V \subseteq \text{coz}(f) \cap \text{coz}(g)$. Let $h \in C(X, E)$ such that $h(x) \neq 0$ and $h|_V = 0$. It is clear that $\text{supp}(h) \subseteq \text{supp}(f) \cap \text{supp}(g)$. Since T preserves containment, we have $\text{supp}(Th) \subseteq \text{supp}(Tf) \cap \text{supp}(Tg)$. Consequently, $\text{coz}(Th) \subseteq \text{supp}(Tg)$. On the other hand, $TfTg = 0$ implies $\text{coz}(Tf) \cap \text{coz}(Tg) = \emptyset$. It follows that $\text{coz}(Th) \subseteq \text{supp}(Tf) \subseteq Y \setminus \text{coz}(Tg)$. Since $\text{coz}(Th)$ is open, it forces that $\text{coz}(Th) \cap \text{supp}(Tg) = \emptyset$. Therefore, $Th = 0$ and hence $h = 0$ by the injectivity of T, a contradiction! We thus prove that T^{-1} is disjointness preserving.

Combining Theorem 2.3 and Lemma 3.3, we will have the following

Corollary 3.4. Let $T : C(X, E) \rightarrow C(Y, F)$ be a linear bijection. Then the following statements are equivalent:

(a) T preserves disjointness and containment;
(b) T and T^{-1} preserve disjointness;
(c) T and T^{-1} preserve containment;
(d) T and T^{-1} are weighted composition operators.

Proof. We need only to prove (b) \Rightarrow (a). Suppose $\text{supp}(f) \subseteq \text{supp}(g)$, we want to show that $\text{supp}(Tf) \subseteq \text{supp}(Tg)$. Suppose on the contrary that there exists a y in Y such that $y \in \text{supp}(Tf) \setminus \text{supp}(Tg)$. Thus, there exists an open neighborhood V of y such that $V \cap \text{supp}(Tg) = \emptyset$. Choose a $y' \in V \cap \text{coz}(Tf)$ and let $h \in C(Y, F)$ such that $h(y') \neq 0$ and $h|_V = 0$. Since T is surjective, say $Tk = h$ for some k in $C(X, E)$. Then $TkTg = 0$, and thus $kg = 0$ since T^{-1} preserves disjointness. This forces $kf = 0$, because $\text{supp}(f) \subseteq \text{supp}(g)$. Therefore, $hTf = TkTf = 0$. But $\|h(y')\|\|Tf(y')\| \neq 0$, a contradiction!

In Example 3.1, the surjective isometry T preserves disjointness but not containment while its inverse T^{-1} preserves containment but not disjointness. Moreover, T is a weighted composition operator but T^{-1} is not.

References

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C. E-mail address, gauhl, jeangjs, wong@math.nsysu.edu.tw.

2000 Mathematics Subject Classification: 47B33, 47B38.