ON C*-ALGEBRAS CUT DOWN BY CLOSED PROJECTIONS: CHARACTERIZING ELEMENTS VIA THE EXTREME BOUNDARY

LAWRENCE G. BROWN AND NGAI-CHING WONG

Abstract. Let A be a C*-algebra. Let z be the maximal atomic projection and p a closed projection in A^{**}. It is known that x in A^{**} has a continuous atomic part, i.e. $zx = za$ for some a in A, whenever x is uniformly continuous on the set of pure states of A. Under some additional conditions, we shall show that if x is uniformly continuous on the set of pure states of A supported by p, or its weak* closure, then pxp has a continuous atomic part, i.e. $zpxp = zpap$ for some a in A.

1. Introduction

Let A be a C*-algebra with Banach dual A^* and double dual A^{**}. Let $Q(A) = \{ \varphi \in A^*: \varphi \geq 0 \text{ and } \|\varphi\| \leq 1 \}$ be the quasi-state space of A. When $A = C_0(X)$ for some locally compact Hausdorff space X, the weak* compact convex set $Q(C_0(X))$ consists of all positive regular Borel measures μ on X with $\|\mu\| = \mu(X) \leq 1$. In this case, the extreme boundary of $Q(C_0(X)) \approx X \cup \{\infty\}$. The point ∞ at infinity is isolated if and only if X is compact. For a non-abelian C*-algebra A, the extreme boundary of $Q(A)$ is the pure state space $P(A) \cup \{0\}$, in which $P(A)$ consists of pure states of A and the zero functional 0 is isolated if and only if A is unital. In the Kadison function representation (see e.g. [16]), the self-adjoint part A_{sa}^{**} of the W*-algebra A^{**} is isometrically and order isomorphic to the ordered Banach space of all bounded affine real-valued functionals on $Q(A)$ vanishing at 0. Moreover, x is in A_{sa} if and only if in addition x is weak* continuous on $Q(A)$.

Let z be the maximal atomic projection in A^{**}. Note that $A^{**} = (1 - z)A^{**} \oplus zA^{**}$; in which zA^{**} is the direct sum of type I factors and $(1 - z)A^{**}$ has no type I factor direct summand of A^{**}. In particular, z is a central projection in A^{**} supporting all pure states of A. In other words, $\varphi(x) = \varphi(zx)$ for all x in A^{**} and all pure states φ of A. For an abelian C*-algebra $C_0(X)$, the enveloping W*-algebra $C_0(X)^{**} = \bigoplus_{\infty} \{ L^\infty(\mu) : \mu \in C \} \oplus_\infty \ell^\infty(X)$, where C is a maximal family of mutually singular continuous measures on X. In this way, every x in $C_0(X)^{**}$ can be written as a direct sum $x = x_d + x_a$ of the diffuse part x_d and the atomic part x_a, and $zx = x_a \in \ell^\infty(X)$. Note that a measure μ on X is atomic if $\langle x, \mu \rangle = \int x_a d\mu = \langle zx, \mu \rangle$, or equivalently, μ is supported by z. Alternatively, atomic measures are exactly countable linear sums of point masses. In general,
atomic positive functionals of a non-abelian C*-algebra A are countable linear sums of pure states of A ([13, 14]).

We call zA^{**} the atomic part of A^{**}. An element x of A^{**} is said to have a continuous atomic part if $zx = za$ for some a in A (cf. [18]). In this case, x and a agree on $P(A) \cup \{0\}$ since $\varphi(x) = \varphi(zx) = \varphi(za) = \varphi(a)$ for all pure states φ of A. In particular, $\varphi \mapsto \varphi(x)$ is uniformly continuous on $P(A) \cup \{0\}$. Shultz [18] showed that x in A^{**} has a continuous atomic part whenever x, x^*x and xx^* are uniformly continuous on $P(A) \cup \{0\}$. Later, Brown [7] proved:

Theorem 1 ([7]). Let x be an element of A^{**}. Then x has a continuous atomic part (i.e. $zx \in zA$) if and only if x is uniformly continuous on $P(A) \cup \{0\}$.

The Stone-Weierstrass problem for C*-algebras conjectures that if B is a C*-subalgebra of a C*-algebra A separating points in $P(A) \cup \{0\}$ then $A = B$ (see e.g. [11]). The facial structure of the compact convex set $Q(A)$ sheds some light on solving the Stone-Weierstrass problem. The classical papers of Tomita [19, 20], Effros [12], Prosser [17], and Akemann, Andersen and Pedersen [5], among others, have been exploring the interrelationship among weak* closed faces of $Q(A)$, closed projections in A^{**} and norm closed left ideals of A, in the hope that this will help to solve the Stone-Weierstrass problem.

Recall that a projection p in A^{**} is closed if the face

$$F(p) = \{ \varphi \in Q(A) : \varphi(1 - p) = 0 \}$$

of $Q(A)$ supported by p is weak* closed (and thus weak* compact). In the abelian case $A = C_0(X)$, closed projections arise exactly from characteristic functions of closed subsets of X. Closed projections p in A^{**} are also in one-to-one correspondence with norm closed left ideals L of A via

$$L = A^{**}(1 - p) \cap A.$$

Note also that the Banach double dual L^{**} of L, identified with the weak* closure of L in A^{**}, is a weak* closed left ideal of the W*-algebra A^{**}. More precisely, we have $L^{**} = A^{**}(1 - p)$. Moreover, we have isometrical isomorphisms $a + L \mapsto ap$ and $x + L^{**} \mapsto xp$ under which

$$A/L \cong Ap \quad \text{and} \quad (A/L)^{**} \cong A^{**}/L^{**} \cong A^{**}p$$

as Banach spaces, respectively [12, 17, 1]. Similarly, we have Banach space isomorphisms between $A/(L + L')$ and pAp, and $A^{**}/(L^{**} + L^{**'})$ and $pA^{**}p$, respectively, where B' denotes the set $\{ b^* : b \in B \}$. The significance of these objects arises from the following local versions of the Kadison function representation for pAp and Ap.

Theorem 2 ([6, 3.5], [21]).

1. $pA_{sa}p$ (resp. $pA^{**}_{sa}p$) is isometrically order isomorphic to the Banach space of all continuous (resp. bounded) affine functions on $F(p)$ which vanish at zero.

2. Let xp be an element of $A^{**}p$. Then $xp \in Ap$ if and only if the affine functions $\varphi \mapsto \varphi(x^*x)$ and $\varphi \mapsto \varphi(a^*x)$ are continuous on $F(p)$, $\forall a \in A$. Consequently, $xp \in Ap \Leftrightarrow px^*xp \in pAp$ and $pa^*xp \in pAp$, $\forall a \in A$.

Denote the extreme boundary of $F(p)$ by $X_0 = (P(A) \cup \{0\}) \cap F(p)$, which consists of all pure states of A supported by p together with the zero functional. Motivated by Theorem 1, we shall attack the following

Problem 3. Suppose that pxp in $pA^{**}p$ is uniformly continuous on X_0, or continuous on its weak* closure, when we consider pxp as an affine functional on $F(p)$ (Theorem 2). Can we infer that pxp has a continuous atomic part as a member of $pA^{**}p$, i.e., $zpxp = zpap$ for some a in A?

A quite satisfactory and affirmative answer for a similar question for elements xp of the left quotient $A^{**}p$ was obtained in [10]. Utilizing the technique and repeating parts of the argument provided in [10], we will achieve positive results here as well. We will impose conditions on the closed projection p (or equivalently, geometric conditions on $F(p)$) to ensure an affirmative answer to Problem 3. We note that the counter examples in [10] indicate that our results are sharp and Problem 3 does not always have an appropriate solution in general. For the convenience of the readers, we borrow an example from [10] and present it at the end of this note.

2. The results

Let A be a C*-algebra and p a closed projection in A^{**}. Recall that A_{sa}^{m} consists of all limits in A_{sa}^{**} of monotone increasing nets in A_{sa} and $(A_{sa})_{m} = -A_{sa}^{m}$. While A_{sa} consists of continuous affine real-valued functions of $Q(A)$ vanishing at 0 (the Kadison function representation), the norm closure $(A_{sa})^{-}$ of A_{sa} consists of lower semicontinuous elements and the norm closure $(A_{sa})_{m}$ of $(A_{sa})_{m}$ consists of upper semicontinuous elements in A^{**}. An element x of A_{sa}^{**} is said to be universally measurable if for each φ in $Q(A)$ and $\varepsilon > 0$ there exist a lower semicontinuous element l and an upper semicontinuous element u in A^{**} such that $u \leq x \leq l$ and $\varphi(l - u) < \varepsilon$ [15].

We note that $pA_{sa}p$ consists of continuous affine real-valued functions on $F(p)$. It was shown in [9] that every lower (resp. upper) semicontinuous bounded affine real-valued function on $F(p)$ vanishing at 0 is the restriction of a lower (resp. upper) semicontinuous element in A_{sa}^{**} to $F(p)$; namely it is of the form pxp for some x in $(A_{sa})^{-}$ or $(A_{sa})_{m}$. Analogously, pxp in $pA_{sa}^{**}p$ is said to be universally measurable on $F(p)$ if for each φ in $F(p)$ and $\varepsilon > 0$, there exist an l in $(A_{sa})^{-}$ and a u in $(A_{sa})_{m}$ such that $pup \leq pxp \leq plp$ and $\varphi(l - u) < \varepsilon$. And pxp in $pA^{**}p$ is said to be universally measurable on $F(p)$ if both the real and imaginary parts of pxp are.

A Borel measure on $F(p)$ is a boundary measure if it is supported by the closure of the extreme boundary X_0 of $F(p)$. A boundary measure m of $F(p)$ with $\|m\| = m(F(p)) = 1$ represents a unique point ϕ in $F(p)$, where $\phi(a) = \int \psi(a)dm(\psi), \forall a \in A$. An element pxp of $pA_{sa}^{**}p$ is said to satisfy the barycenter formula if $\phi(x) = \int \psi(x)dm(\psi)$ whenever m is a boundary measure of $F(p)$ representing ϕ. Semicontinuous affine elements in $pA_{sa}^{**}p$ satisfy the barycenter formula, and so do universally measurable elements.

Lemma 4. Let x be an element of A_{sa}^{**} and let \overline{X} be the weak* closure of $X = F(p) \cap P(A)$ in $F(p)$. If pxp satisfies the barycenter formula and is continuous on \overline{X} then $pxp \in pAp$.
Proof. We give a sketch of the proof here, and refer the readers to [10] in which a similar result is given in full detail. In view of Theorem 2, we need only verify that \(\varphi \mapsto \varphi(x) \) is weak* continuous on \(F(p) \). Suppose \(\varphi_\lambda \) and \(\varphi \) are in \(F(p) \) and \(\varphi_\lambda \to \varphi \) weak*. Since the norm of an element of \(pA_{sa}p \) is determined by the pure states supported by \(p \), we can embed \(pA_{sa}p \) as a closed subspace of the Banach space \(C_\mathbb{R}(X) \) of continuous real-valued functions defined on \(X \). Let \(m_\lambda \) be any positive extension of \(\varphi_\lambda \) from \(pA_{sa}p \) to \(C_\mathbb{R}(X) \) with \(\|m_\lambda\| = \|\varphi_\lambda\| \leq 1 \). Hence, \((m_\lambda)_\lambda \) is a bounded net in \(M(X) \), the Banach dual space of \(C_\mathbb{R}(X) \), consisting of regular finite Borel measures on the compact Hausdorff space \(X \). Then, by passing to a subnet if necessary, we have \(m_\lambda \to m \) in the weak* topology of \(M(X) \). Clearly, \(m \geq 0 \) and \(m|_{pA_{sa}p} = \varphi \). Since \(pxp \) satisfies the barycenter formula and is continuous on \(X \), we have

\[
\varphi_\lambda(x) = \int_X \psi(x) \, dm_\lambda(\psi) = \int_X \psi(pxp) \, dm_\lambda(\psi) \to \int_X \psi(pxp) \, dm(\psi) = \int_X \psi(x) \, dm = \varphi(x).
\]

\[\square\]

2.1. The case where \(p \) has MSQC. Let \(A \) be a C*-algebra. Recall that a projection \(p \) in \(A^{**} \) is closed if the face \(F(p) = \{ \varphi \in Q(A) : \varphi(1 - p) = 0 \} \) is weak* closed. Analogously, \(p \) is said to be compact [2] (see also [6]) if \(F(p) \cap S(A) \) is weak* closed, where \(S(A) = \{ \varphi \in Q(A) : \|\varphi\| = 1 \} \) is the state space of \(A \). Let \(p \) be a closed projection in \(A^{**} \). Then \(h \) in \(pA_{sa}^{**}p \) is said to be q–continuous [3] on \(p \) if the spectral projection \(E_F(h) \) (computed in \(pA^{**}p \)) is closed for every closed subset \(F \) of \(\mathbb{R} \). Moreover, \(h \) is said to be strongly q–continuous [6] on \(p \) if, in addition, \(E_F(h) \) is compact whenever \(F \) is closed and \(0 \notin F \). It is known from [6, 3.43] that \(h \) is strongly q–continuous on \(p \) if and only if \(h = pa = ap \) for some \(a \) in \(A_{sa} \). In general, \(h \) in \(pA^{**}p \) is said to be strongly q–continuous on \(p \) if both \(\text{Re} \) and \(\text{Im} \) are.

Denote by \(SQC(p) \) the C*-algebra of all strongly q–continuous elements on \(p \). We say that \(p \) has MSQC (“many strongly q–continuous elements”) if \(SQC(p) \) is \(\sigma \)-weakly dense in \(pA^{**}p \). Brown [8] showed that \(p \) has MSQC if and only if \(pAp = SQC(p) \) if and only if \(pAp \) is an algebra. In particular, every central projection \(p \) (especially, \(p = 1 \)) has MSQC. We provide a partial answer to Problem 3 by the following:

Theorem 5. Let \(p \) have MSQC and \(x \) be in \(A^{**} \). Let \(X_0 = (F(p) \cap P(A)) \cup \{0\} \) be the extreme boundary of \(F(p) \). Then \(zpxp \in zpAp \) if and only if \(pzp \) is uniformly continuous on \(X_0 \).

Proof. The necessities are obvious and we check the sufficiency. Note that \(pAp \) is now a C*-algebra with the pure state space \(P(pAp) = F(p) \cap P(A) \). The maximal atomic projection of \(pAp \) is \(zp \). By Theorem 1, \(zpxp \) belongs to \(zpAp \) whenever it is uniformly continuous on \(X_0 \). \[\square\]

Corollary 6. Let \(p \) have MSQC and \(x \) be in \(A^{**} \). If \(pzp \) is continuous on \(X = F(p) \cap P(A) \) then \(zpxp \in zpAp \).

Proof. We simply note that either 0 belongs to \(X \) or 0 is isolated from \(X = F(p) \cap P(A) \) in \(X_0 = (F(p) \cap P(A)) \cup \{0\} \). Consequently, continuity on the compact set \(X \) ensures uniform continuity on \(X_0 \). \[\square\]
2.2. The case where \(p \) is semiatomic. Let \(A \) be a C*-algebra and \(p \) a closed projection in \(A^{**} \). Recall that \(A \) is said to be scattered [13, 14] if \(Q(A) \subseteq zQ(A) \) and \(p \) is said to be atomic [8] if \(F(p) \subseteq zF(p) \). If \(A \) is scattered then every closed projection in \(A^{**} \) is atomic. Moreover, \(A \) is said to be semiscattered [4] if \(\overline{F(A)} \subseteq zQ(A) \). Analogously, we say that a closed projection \(p \) is semiatomic if the weak* closure of \(F(p) \cap P(A) \) contains only atomic positive linear functionals of \(A \), i.e., \(\overline{F(p) \cap P(A)} \subseteq zF(p) \). It is easy to see that if \(A \) is semiscattered then every closed projection in \(A^{**} \) is semiatomic.

The following is a generalization of [7, Theorem 6] in which \(p = 1 \).

Lemma 7 ([10]). Let \(x \) in \(zpA^{**}p \) be uniformly continuous on \(X_0 = (F(p) \cap P(A)) \cup \{0\} \). Then \(x \) is in the C*-algebra \(B \) generated by \(zpAp \). In particular, \(x = zy \) for some universally measurable element \(y \) of \(pA^{**}p \).

We provide another partial answer to Problem 3 by the following

Theorem 8. Let \(p \) be semiatomic and \(x \) be in \(A^{**} \). Let \(X = \overline{F(p) \cap P(A)} \). Then \(zpxp \in zpAp \) if and only if \(pxp \) is continuous on \(X \).

Proof. We prove the sufficiency only. Let \(x \) in \(A^{**} \) satisfy the stated condition. Since \(zpxp \) is uniformly continuous on \(X_0 = (P(A) \cap F(p)) \cup \{0\} \), by Lemma 7, there is a universally measurable element \(y \) of \(pA^{**}p \) such that \(zpxp = zy \). Since \(p \) is assumed to be semiatomic, each \(\varphi \) in \(X = \overline{F(A) \cap F(p)} \) is atomic and thus \(\varphi(x) = \varphi(zpxp) = \varphi(zy) = \varphi(y) \). In particular, the universally measurable element \(y \) is continuous on \(X \). It follows from Lemma 4 that \(y \in pAp \). As a consequence, \(zpxp \in zpAp \). \(\square \)

Example 9 (The full version appeared in [10]). This example tells us that \(p \) having MSQC is necessary in Theorem 5 and continuity on \(\overline{X} \) is necessary in Theorem 8.

Let \(A \) be the scattered C*-algebra of sequences of \(2 \times 2 \) matrices \(x = (x_n)_{n=1}^{\infty} \) such that

\[
\begin{pmatrix}
 a_n & b_n \\
 c_n & d_n
\end{pmatrix} \longrightarrow x_\infty = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}
\]

entrywise, and equipped with the \(\ell^\infty \)-norm. Note that the maximal atomic projection \(z = 1 \) in this case. Let

\[
p_n = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad n = 1, 2, \ldots, \quad \text{and} \quad p_\infty = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Then \(p = (p_n)_{n=1}^{\infty} \) is a closed projection in \(A^{**} \). We claim that \(p \) does not have MSQC. In fact, suppose \(x = (x_n)_{n=1}^{\infty} \) in \(A \) is given by

\[
x_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}, \quad n = 1, 2, \ldots, \quad \text{and} \quad x_\infty = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}
\]

such that \(x_n \to x_\infty \). Then \((pxp)_n = \lambda_n p_n, \quad n = 1, 2, \ldots, \) and \((pxp)_\infty = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \) where \(\lambda_n = \frac{a_n + b_n + c_n + d_n}{2} \to \frac{a + d}{2} \). Consequently, \((pxp)^2_n = \lambda_n^2 p_n, \quad n = 1, 2, \ldots, \) and \((pxp)^2_\infty = \begin{pmatrix} a^2 & 0 \\ 0 & d^2 \end{pmatrix} \). If
We must have $\lambda^2_n \to \frac{a^2 + d^2}{2}$. This occurs exactly when $a = d$. In particular, pAp is not an algebra and thus p does not have MSQC.

On the other hand, the set $X = P(A) \cap F(p)$ of all pure states in $F(p)$ consists exactly of φ_n, ψ_1 and ψ_2 which are given by

$$\varphi_n(x) = \text{tr}(x_n p_n), \quad n = 1, 2, \ldots,$$

and

$$\psi_1(x) = a, \quad \psi_2(x) = d,$$

where $x = (x_n)_{n=1}^\infty \in A$ and $x_\infty = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$. Since $\varphi_n \to \frac{1}{2}(\psi_1 + \psi_2) \neq 0$, $X_0 = X \cup \{0\}$ is discrete. Consider $y = (y_n)_{n=1}^\infty$ in A^{**} given by

$$y_n = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad n = 1, 2, \ldots, \quad \text{and} \quad y_\infty = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Now, the universally measurable element pyp is uniformly continuous on X_0 but $pyp \notin pAp$. \hfill \Box

References

E-mail address: lgb@math.purdue.edu

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, U. S. A.

E-mail address: wong@math.nsysu.edu.tw