THIN BELLS IN L^{p}-SPACES AS JORDAN INVARIANTS FOR VON NEUMANN ALGEBRAS

CHI-WAI LEUNG, CHI-KEUNG NG, AND NGAI-CHING WONG

Abstract. Extending the main result in [10], we show that for any fixed $p \in[1, \infty]$ and any $\epsilon \in(0,1]$, the metric space

$$
\left\{S^{\frac{1}{p}} \in L_{+}^{p}(M): 1-\epsilon \leq\left\|S^{\frac{1}{p}}\right\| \leq 1\right\}
$$

is a complete Jordan ${ }^{*}$-invariant for a von Neumann algebra M. Furthermore, in the case when $p \in(1, \infty)$, if $M \not \not \mathbb{C}$ and is a semifinite algebra with no type I_{2} summand (or is a hyperfinite algebra with no type I_{2} summand), then for any von Neumann algebra N and any metric preserving bijection

$$
\Phi:\left\{S \in L_{+}^{p}(M): 1-\epsilon \leq\left\|S^{\frac{1}{p}}\right\| \leq 1\right\} \rightarrow\left\{T \in L_{+}^{p}(N): 1-\epsilon \leq\left\|T^{\frac{1}{p}}\right\| \leq 1\right\}
$$

there is a Jordan ${ }^{*}$-isomorphism $\Theta: N \rightarrow M$ satisfying $\Phi\left(S^{\frac{1}{p}}\right)=\Theta_{*}(S)^{\frac{1}{p}}$.

1. Introduction and Notation

It is well-known that several partial structures of a von Neumann algebra can serve as complete Jordan *-invariants of a von Neumann algebra (see e.g. [7, Theorem 2], [7, Corollary 5], [8, Theorem $4.5]$, [18, Theorem 3] and [5, Théorème 3.3]). In particular, generalizing results in [14], [20] and [21], D. Sherman showed in [15] that the metric space structure of the non-commutative L^{p}-space is a complete Jordan *-invariant for the underlying von Neumann algebra, when $p \in[1, \infty] \backslash\{2\}$ (observe that the non-commuative L^{2}-space of any infinite dimensional von Neumann algebra with separable predual is ℓ^{2}).

Since any bijective isometry between normed spaces is automatically affine, it is natural to ask whether it is possible to obtain a "smaller invariant" by excluding those part that could be recover from a smaller subset of the non-commuative L^{p}-space. Alone this line, we show in [10] that, for each $p \in[1, \infty]$, the positive contractive part of the non-commuative L^{p}-space, again as a metric space, is a complete Jordan *-invariant for the underlying von Neumann algebra (note the different here that one can include the case of $p=2$, since the cone of the L^{2}-space encodes some information that cannot be recovered from the normed space structure).

Continuing with this philosophy, we will show in Section 2 of this article the following result concerning an arbitrarily thin bell $L_{+}^{p}(M)_{\beta-\epsilon}^{\beta+\epsilon}:=\left\{R \in L_{+}^{p}(M): \beta-\epsilon \leq\|R\| \leq \beta+\epsilon\right\}$ as a complete Jordan invariant.

Theorem 1.1. Let $p \in[1, \infty]$ and $\beta \in \mathbb{R}_{+} \backslash\{0\}$ and $\epsilon \in(0, \beta]$. If there is a metric preserving bijection $\Phi: L_{+}^{p}(M)_{\beta-\epsilon}^{\beta+\epsilon} \rightarrow L_{+}^{p}(N)_{\beta-\epsilon}^{\beta+\epsilon}$, then M and N are Jordan ${ }^{*}$-isomorphic.

In the case of $p=1$, this is proved by showing that some elements with norm β is mapped to elements with norm β in an "orthogonality support preserving way", we then use a result of Dye to obtain the conclusion. In the case of $p=\infty$, we show that some points in the interior of the bell is mapped to

[^0]the interior of the other bell, and then use a "stronger form of the Mazur-Ulam theorem" and a result of Kadison to get the Jordan ${ }^{*}$-isomorphism. In the case of $p \in(1, \infty)$, we use the strict convexity to verify that the map Φ is "partially homogeneous" and the canonical extension to the whole cone is also isometric. Then we use some equality related to the non-commutative Clarkson inequality to a "biorthogonality preserving map" between the normal state spaces, and employ a result in [9] to finish the proof.

The proof of the case $p \in(1, \infty)$ can be generalized to a statement concerning extension of maps between the bells to that of between the cones. From this, we have the following.

Let $p \in(1, \infty) \backslash\{2\}$. If $\epsilon \in(0,1]$ and

$$
\Phi:\left\{S \in L^{p}(M): 1-\epsilon \leq\|S\| \leq 1\right\} \rightarrow\left\{T \in L^{p}(N): 1-\epsilon \leq\|T\| \leq 1\right\}
$$

is a metric preserving bijection, then one can find a Jordan ${ }^{*}$-isomorphism $\Theta: N \rightarrow M$ with Φ is defined by Θ in a canonical way.

On the other hand, it was asked in [10] whether a metric preserving bijection from the positive contractive part of the non-commuative L^{p}-space of one von Neumann algebra to that of another von Neumann algebra is defined by a Jordan ${ }^{*}$-isomorphism in a canonical way. Although the above quoted statement is true, there seems to have no way to obtain this strong form from this statement in the case when $p \in(1, \infty) \backslash\{2\}$. Nevertheless, we give in, Section 3, an affirmative answer to this question in the case of $p \in(1, \infty)$ when the algebra satisfying a condition called $E P_{1}$ (which is true when the algebra is semifinite algebras and has no type I_{2} summand). In fact, we give a more general result as follows:

Theorem 1.2. Let $p \in(1, \infty)$ and $\beta \in \mathbb{R}_{+} \backslash\{0\}$ and $\epsilon \in(0, \beta]$. Let M and N be von Neumann algebras such that M has $E P_{1}$ and $M \nsubseteq \mathbb{C}$. Suppose that $\Phi: L_{+}^{p}(M)_{\beta-\epsilon}^{\beta+\epsilon} \rightarrow L_{+}^{p}(N)_{\beta-\epsilon}^{\beta+\epsilon}$ is a metric preserving surjection. There is a Jordan ${ }^{*}$-isomorphism $\Theta: N \rightarrow M$ satisfying $\Phi\left(R^{\frac{1}{p}}\right)=\Theta_{*}(R)^{\frac{1}{p}}\left(R^{\frac{1}{p}} \in L_{+}^{p}(M)_{\alpha}^{\beta}\right)$.

Let us set some notations and recall some facts in the remainder of this section. Throughout this article, M and N are von Neumann algebras with predual M_{*} and N_{*}, respectively. We use $\mathcal{P}(M)$ to denote the set of projections in M. We fix a normal semifinite faithful weight φ on M and consider the modular automorphism group α corresponding to φ. Since the von Neumann algebra crossed product $\check{M}:=M \bar{\rtimes}_{\alpha} \mathbb{R}$ is semi-finite, we choose a normal faithful semi-finite trace τ on \check{M}. Denote by $L^{0}(\check{M}, \tau)$ the completion M under the vector topology defined by a neighborhood basis at 0 of the form

$$
U(\epsilon, \delta):=\{x \in \check{M}:\|x p\| \leq \epsilon \text { and } \tau(1-p) \leq \delta, \text { for a projection } p \in \check{M}\} .
$$

The *-algebra structure on \check{M} extends to a *-algebra structure on $L^{0}(\check{M}, \tau)$.
If M is a von Neumann algebra on a Hilbert space \mathfrak{H}, then elements in $L^{0}(\check{M}, \tau)$ can be regarded as closed operators on $L^{2}(\mathbb{R} ; \mathfrak{H})$. More precisely, let T be a densely defined closed operator on $L^{2}(\mathbb{R} ; \mathfrak{H})$ affiliated with \bar{M} and $|T|$ be its absolute value with spectral measure $E_{|T|}$. Then T corresponds uniquely to an element in $L^{0}(\check{M}, \tau)$ if and only if $\tau\left(1-E_{|T|}([0, \lambda])\right)<\infty$ when λ is large. Conversely, every element in $L^{0}(\check{M}, \tau)$ comes a closed operator in this way. Under this identification, the *-operation on $L^{0}(\check{M}, \tau)$ coincides with the adjoint. The addition and the multiplication on $L^{0}(\check{M}, \tau)$ are the closures of the corresponding operations for closed operators. We denote by $L_{+}^{0}(\check{M}, \tau)$ the set of all positive self-adjoint operators in $L^{0}(\check{M}, \tau)$.

The dual action $\hat{\alpha}: \mathbb{R} \rightarrow \operatorname{Aut}(\check{M})$ extends to an action on $L^{0}(\check{M}, \tau)$. For any $p \in[1, \infty]$, we set

$$
L^{p}(M):=\left\{T \in L^{0}(\check{M}, \tau): \hat{\alpha}_{s}(T)=e^{-s / p} T, \text { for all } s \in \mathbb{R}\right\}
$$

(where $e^{-s / \infty}$ means 1). Then $L^{\infty}(M)$ coincides with the subalgebra M of $\check{M} \subseteq L^{0}(\check{M}, \tau)$. Moreover, if $T \in L^{0}(\check{M}, \tau)$ and $T=u|T|$ is the polar decomposition, then $T \in L^{p}(M)$ if and only if $|T| \in L^{p}(M)$. Denote by $L_{\mathrm{sa}}^{p}(M)$ the set of all self-adjoint operators in $L^{p}(M)$ and put $L_{+}^{p}(M):=L^{p}(M) \cap L_{+}^{0}(\check{M}, \tau)$.

When $q \in(0, \infty)$, the Mazur map

$$
S \mapsto S^{1 / q} \quad\left(S \in L_{+}^{0}(\check{M}, \tau)\right)
$$

restricts to a bijection from $L_{+}^{1}(M)$ onto $L_{+}^{q}(M)$. Since we use this connection between $L_{+}^{1}(M)$ onto $L_{+}^{q}(M)$ a lot, elements in $L_{+}^{q}(M)$ will always be written in the form $S^{1 / q}$ (for a unique $S \in L_{+}^{1}(M)$).

As in the literature,
we identify $\left(L^{1}(M), L_{+}^{1}(M)\right)$ with $\left(M_{*}, M_{*}^{+}\right)$as ordered vector spaces throughout this article.
Hence, $\left(L^{1}(M), L_{+}^{1}(M)\right)$ is an ordered Banach space with norm $\|\cdot\|_{1}$. When $p \in(1, \infty)$, the function:

$$
\|T\|_{p}:=\left\||T|^{p}\right\|_{1}^{1 / p}
$$

is a norm on $L^{p}(M)$, so that $\left(L^{p}(M), L_{+}^{p}(M)\right)$ becomes an ordered Banach space. It is well-known that this ordered Banach space is independent of the choices of φ and τ.

For $T \in L_{+}^{1}(M)$, we denote by $\mathbf{s}_{T} \in \mathcal{P}(M)$ the "support of T ". Recall that a map Λ from a subset E of $L_{+}^{1}(M)$ to $L_{+}^{1}(N)$ is said to be orthogonality preserving if for $R, T \in E$, one has

$$
\begin{equation*}
\mathbf{s}_{R} \cdot \mathbf{s}_{T}=0 \quad \text { implies } \quad \mathbf{s}_{\Lambda(R)} \cdot \mathbf{s}_{\Lambda(T)}=0 \tag{1.1}
\end{equation*}
$$

Let us recall the following result. The first statement of part (a) is a reformulation of [12, Proposition A.6] and the second statement follows from [12, Fact 1.3], while part (b) is very well-known.

Lemma 1.3. Let $R, T \in L_{+}^{1}(M)$.
(a) Suppose that $p \in(1, \infty)$. Then $\mathbf{s}_{R} \cdot \mathbf{s}_{T}=0$ if and only if $\left\|R^{\frac{1}{p}}+T^{\frac{1}{p}}\right\|_{p}^{p}=\left\|R^{\frac{1}{p}}\right\|_{p}^{p}+\left\|T^{\frac{1}{p}}\right\|_{p}^{p}$. In this case, one also has $\left\|R^{\frac{1}{p}}-T^{\frac{1}{p}}\right\|_{p}^{p}=\left\|R^{\frac{1}{p}}\right\|_{p}^{p}+\left\|T^{\frac{1}{p}}\right\|_{p}^{p}$.
(b) $\mathbf{s}_{R} \cdot \mathbf{s}_{T}=0$ if and only if $\|R-T\|_{1}=\|R\|_{1}+\|T\|_{1}$.

From this, one sees that if a map $\Lambda: L_{+}^{1}(M) \rightarrow L_{+}^{1}(N)$ satisfies $\|\Lambda(R)\|=\|R\|$ and $\Lambda(R+T)=$ $\Lambda(R)+\Lambda(T)$ for any $R, T \in L_{+}^{1}(M)$ with $\mathbf{s}_{R} \cdot \mathbf{s}_{T}=0$, then Λ is orthogonality preserving.

Our second lemma is well-known, but since we cannot find the exact reference in the literature, we give their justification here.
Lemma 1.4. (a) $S \mapsto S^{1 / p}$ is a homeomorphism from $L_{+}^{1}(M)$ onto $L_{+}^{p}(M)$, for any $p \in(1, \infty)$.
(b) Let $q \in(0, \infty)$. If $R, T \in L^{1}(M)_{+}$with $\mathbf{s}_{R} \mathbf{s}_{T}=0$, then $(R+T)^{q}=R^{q}+T^{q}$.

Proof. (a) It follows from [13, Lemma 2.1] that

$$
\left\|R^{1 / p}-T^{1 / p}\right\|_{p}^{p} \leq\|R-T\|_{1} \quad\left(R, T \in L^{1}(M)_{+}\right)
$$

On the other hand, it follows from [13, Corollary 2.3] that

$$
\|R-T\|_{1} \leq 3 p\left\|R^{1 / p}-T^{1 / p}\right\|_{p} \max \left\{\left\|R^{1 / p}\right\|_{p},\left\|T^{1 / p}\right\|_{p}\right\}^{p-1} \quad\left(R, T \in L_{+}^{1}(M)\right)
$$

These give the required statement.
(b) Let $\mathfrak{K}_{R}:=\mathbf{s}_{R}\left(L^{2}(\mathbb{R} ; \mathfrak{H})\right)$ and $\mathfrak{K}_{T}:=\mathbf{s}_{T}\left(L^{2}(\mathbb{R} ; \mathfrak{H})\right)$. Let \mathfrak{K}_{0} be the orthogonal complement of $\mathfrak{K}_{R}+\mathfrak{K}_{T}$. As $R=\mathbf{s}_{R} R \mathbf{s}_{R}$, the restriction, R_{1}, of R on \mathfrak{K}_{R} is a densely defined positive self-adjoint operator. The same is true for the restriction, T_{1}, of T on \mathfrak{K}_{T}. One may then identify R, T and $R+T$ with
$R_{1} \oplus 0_{\mathfrak{K}_{T}} \oplus 0_{\mathfrak{K}_{0}}, 0_{\mathfrak{K}_{R}} \oplus T_{1} \oplus 0_{\mathfrak{K}_{0}}$ and $R_{1} \oplus T_{1} \oplus 0_{\mathfrak{K}_{0}}$, respectively. Thus, $R^{q}+T^{q}$ can be identified with the closed operator $R_{1}^{q} \oplus T_{1}^{q} \oplus 0_{\mathfrak{K}_{0}}$, which clearly coincides with $(R+T)^{q}$.

2. Positive bells as a complete Jordan invariant

If X is a normed space and $E \subseteq X$ is a subset, we set

$$
E_{\alpha}^{\beta}:=\{x \in E: \alpha \leq\|x\| \leq \beta\} \quad \text { for any } \alpha \leq \beta \neq 0 \text { in } \mathbb{R}_{+}
$$

For simplicity, we may use $\|\cdot\|$ instead of $\|\cdot\|_{p}$ to denote the norm on $L^{p}(M)$, if no confusion arises.
We say that a projection $r \in \mathcal{P}(M)$ is σ-finite if there exists $R \in L_{+}^{1}(M)$ such that $r=\mathbf{s}_{R}$. The set of all σ-finite projections in M will be denoted by $\mathcal{P}_{0}(M)$. It is well-known that for any projection $p \in \mathcal{P}(M)$ is the supremum in $\mathcal{P}(M)$ of the collection $\left\{r \in \mathcal{P}_{0}(M): r \leq p\right\}$.
Proposition 2.1. Let $\alpha, \beta \in \mathbb{R}_{+}$with $\alpha<\beta$. If there is a metric preserving bijection $\Phi: L_{+}^{1}(M)_{\alpha}^{\beta} \rightarrow$ $L_{+}^{1}(N)_{\alpha}^{\beta}$, then M and N are Jordan ${ }^{*}$-isomorphic.

Proof. Let $L_{\beta}^{1}(M):=\left\{R \in L_{+}^{1}(M)_{\beta}^{\beta}: \mathbf{s}_{R} \neq 1\right\}$. For any $R \in L_{+}^{1}(M)_{\alpha}^{\beta}$, it is easy to see, using Lemma 1.3(b), that $R \in L_{\beta}^{1}(M)$ if and only if there exists $T \in L_{+}^{1}(M)_{\alpha}^{\beta}$ such that $\|R-T\|=2 \beta$. In this case, $T \in L_{\beta}^{1}(M)$ and $\mathbf{s}_{R} \cdot \mathbf{s}_{T}=0$. Hence, by considering Φ and Φ^{-1}, one has $\Phi\left(L_{\beta}^{1}(M)\right)=L_{\beta}^{1}(N)$.

Let us formally define a map

$$
\Delta: \mathcal{P}_{0}(M) \backslash\{1\} \rightarrow \mathcal{P}_{0}(N) \backslash\{1\}
$$

by $\Delta(p):=\mathbf{s}_{\Phi(R)}$, where $R \in L_{\beta}^{1}(M)$ satisfying $\mathbf{s}_{R}=p$. To show that Δ is well-defined, let us first consider another element $R^{\prime} \in L_{\beta}^{1}(M)$ with $\mathbf{s}_{R^{\prime}}=p$. Pick any projection $q \in \mathcal{P}_{0}(N)$ and any operator $T \in L_{\beta}^{1}(M)$ such that $\mathbf{s}_{\Phi(R)} \cdot q=0$ and $\mathbf{s}_{\Phi(T)}=q$. Since

$$
\|R-T\|=\|\Phi(R)-\Phi(T)\|=2 \beta
$$

we know from Lemma $1.3(\mathrm{~b})$ that $p \cdot \mathbf{s}_{T}=0$ and hence we have $\left\|\Phi\left(R^{\prime}\right)-\Phi(T)\right\|=\left\|R^{\prime}-T\right\|=2 \beta$, which gives $\mathbf{s}_{\Phi\left(R^{\prime}\right)} \cdot q=0$. From this, we conclude that $\mathbf{s}_{\Phi\left(R^{\prime}\right)}=\mathbf{s}_{\Phi(R)}$, and Δ is well-defined. Suppose that $p_{1}, p_{2} \in \mathcal{P}_{0}(M) \backslash\{1\}$ such that $p_{1} \cdot p_{2}=0$. If $R_{1}, R_{2} \in L_{\beta}^{1}(M)$ satisfying $\mathbf{s}_{R_{i}}=p_{i}$ for $i=1,2$, then $\left\|\Phi\left(R_{1}\right)-\Phi\left(R_{2}\right)\right\|=2 \beta$, which gives $\Delta\left(p_{1}\right) \cdot \Delta\left(p_{2}\right)=0$.

Now, we extend Δ to $\bar{\Delta}: \mathcal{P}(M) \rightarrow \mathcal{P}(N)$ by setting $\bar{\Delta}(1)=1$ and $\bar{\Delta}(p)$ to be the supremum in $\mathcal{P}(N)$ of the $\left\{\Delta\left(p^{\prime}\right): p^{\prime} \in \mathcal{P}_{0}(N) ; p^{\prime} \leq p\right\}$. Employing the argument as in [9], one can show that $\bar{\Delta}$ is an orthoisomorphism in the sense of Dye (see [6]), and the conclusion follows from a corollary of the main result of [6] (more precisely, see [9, Proposition 2.2]).
Proposition 2.2. Let $\alpha, \beta \in \mathbb{R}_{+}$with $\alpha<\beta$. If there is a metric preserving bijection $\Phi: L_{+}^{\infty}(M)_{\alpha}^{\beta} \rightarrow$ $L_{+}^{\infty}(N)_{\alpha}^{\beta}$, then M and N are Jordan *-isomorphic.

Proof. As in the Section 1, we identify $L_{+}^{\infty}(M)_{\alpha}^{\beta}$ and $L_{+}^{\infty}(N)_{\alpha}^{\beta}$ with $\left(M_{+}\right)_{\alpha}^{\beta}$ and $\left(N_{+}\right)_{\alpha}^{\beta}$ respectively. For any $y \in N_{\text {sa }}$ and $r>0$, we consider $D_{N}(y, r)$ to be the open ball with centre y and radius r. If in case $y \in\left(N_{+}\right)_{\alpha}^{\beta}$, we set

$$
D_{N}^{\alpha, \beta}(y, r):=D_{N}(y, r) \cap\left(N_{+}\right)_{\alpha}^{\beta}
$$

For any $x \in\left(N_{+}\right)_{0}^{\beta}$, by considering the unital C^{*}-subalgebra of N generated by x, one can see easily that x belongs to the closed ball B with centre $\beta / 2 \in N_{+}$and radius $\beta / 2$. Conversely, by considering unital C^{*}-subalgebras of N generated by single elements in B, one sees that $\left(N_{+}\right)_{0}^{\beta}=B$. This shows that $D_{N}(\beta / 2, \beta / 2)$ is dense in $\left(N_{+}\right)_{0}^{\beta}$. Let us put

$$
\mathcal{O}:=D_{N}(\beta / 2, \beta / 2) \backslash\left(N_{+}\right)_{0}^{\alpha}, \quad \mathcal{B}_{1}:=\left\{y \in N_{\mathrm{sa}}:\|y-\beta / 2\|=\beta / 2 ;\|y\|>\alpha\right\} \quad \text { and } \quad \mathcal{B}_{2}:=\left(N_{+}\right)_{\alpha}^{\alpha}
$$

Clearly, \mathcal{O} is open in N_{sa} and $\left(N_{+}\right)_{\alpha}^{\beta}=\mathcal{O} \cup \mathcal{B}_{1} \cup \mathcal{B}_{2}$.
Consider $b \in\left(N_{+}\right)_{\alpha}^{\beta} \backslash \mathcal{O}$ and $r>0$. If $b \in \mathcal{B}_{1}$ and r is small enough, then

$$
D_{N}^{\alpha, \beta}(b, r)=D_{N}(b, r) \cap\left(N_{+}\right)_{0}^{\beta}
$$

and we know from the density of $D_{N}(\beta / 2, \beta / 2)$ in $\left(N_{+}\right)_{0}^{\beta}$ that $D_{N}^{\alpha, \beta}(b, r) \cap \mathcal{O} \neq \emptyset$. Suppose that $b \in \mathcal{B}_{2}$ and $r<\beta-\alpha$. Then $(1+r / 2 \alpha) b \in\left(N_{+}\right)_{\alpha}^{\beta}$. If $(1+r / 2 \alpha) b \notin \mathcal{O}$, then $(1+r / 2 \alpha) b \in \mathcal{B}_{1}$ and the above tells us that $D_{N}^{\alpha, \beta}\left((1+r / 2 \alpha) b, r^{\prime}\right) \cap \mathcal{O} \neq \emptyset$ when r^{\prime} is small enough, and hence $D_{N}^{\alpha, \beta}(b, r) \cap \mathcal{O} \neq \emptyset$. The above shows that \mathcal{O} is dense in $\left(N_{+}\right)_{\alpha}^{\beta}$.

Now, we want to show that $c \in\left(M_{+}\right)_{\alpha}^{\beta}$ and $t>0$ such that $D_{M}(c, t) \subseteq\left(M_{+}\right)_{\alpha}^{\beta}$ and $\Phi\left(D_{M}(c, t)\right)$ is an open subset of N_{sa}. Indeed, suppose that a is an element in the interior of $\left(M_{+}\right)_{\alpha}^{\beta}$ and $s>0$. If $\Phi(a) \in \mathcal{O}$, then we can take $c=a$ and $t=s$. If $\Phi(a) \notin \mathcal{O}$, then by the density of \mathcal{O} in $\left(N_{+}\right)_{\alpha}^{\beta}$, there exist $b \in \mathcal{O} \cap D_{N}^{\alpha, \beta}(\Phi(a), s)$. There is $t>0$ with

$$
D_{N}(b, t) \subseteq D_{N}^{\alpha, \beta}(\Phi(a), s)
$$

Then $D_{M}\left(\Phi^{-1}(b), t\right) \subseteq\left(M_{+}\right)_{\alpha}^{\beta}$ and $\Phi\left(D_{M}\left(\Phi^{-1}(b), t\right)\right)=D_{N}(b, t)$. Consequently, [3, Theorem 14.1] tells us that $\left.\Phi\right|_{D_{M}(c, t)}$ extends to bijective isometry from M_{sa} onto N_{sa}, and [7, Theorem 2] gives the required conclusion.

For the case of $p \in(1, \infty)$, we need two lemmas. The following lemma is probably known. In fact, it was first proved by Baker in [2] that any metric preserving map from a normed space to a strictly convex normed space is automatically affine. Our generalization here use a different proof than the one in [2], which seemingly cannot be extended to obtain our lemma.

Lemma 2.3. Let X and Y be two real normed spaces with Y being strictly convex. Suppose that E is a (not necessarily convex) subset of X and $f: E \rightarrow Y$ is a metric preserving map. Then for any $x, y \in E$, one has

$$
\begin{equation*}
f(s x+(1-s) y)=s f(x)+(1-s) f(y) \quad \text { whenever } s \in(0,1) \text { satisfying } s x+(1-s) y \in E \tag{2.1}
\end{equation*}
$$

Proof. Notice that

$$
\begin{align*}
\|(f(x)-f(y))-(f(s x+(1-s) y)-f(y))\| & =\|x-(s x+(1-s) y)\|=(1-s) \cdot\|x-y\| \\
& =\|f(x)-f(y)\|-\|f(s x+(1-s) y)-f(y)\| \tag{2.2}
\end{align*}
$$

Hence, the strict convexity of Y produces $\delta \in \mathbb{R}_{+}$such that

$$
(f(x)-f(y))-(f(s x+(1-s) y)-f(y))=\delta(f(s x+(1-s) y)-f(y))
$$

It now follows again from (2.2) that

$$
(1-s) \cdot\|x-y\|=\|(f(x)-f(y))-(f(s x+(1-s) y)-f(y))\|=\delta s \cdot\|x-y\|
$$

and so $\delta=(1-s) / s$. Hence, $f(s x+(1-s) y)=s f(x)+(1-s) f(y)$ as required.

Note that if E is a subset of the unit sphere of a strictly convex normed space X, then any map from E to any normed space Y will satisfy (2.1).

Our second lemma is also easy, but again, we present its full argument here.
Lemma 2.4. Let X and Y be two normed spaces, and let $K \subseteq X$ and $L \subseteq Y$ be proper cones. If $\beta \in \mathbb{R}_{+} \backslash\{0\}$ and $f: K_{0}^{\beta} \rightarrow L_{0}^{\beta}$ is an affine map (not necessarily surjective) with $f(0)=0$, then f extends uniquely to an affine map \bar{f} from K onto L. If, in addition, f preserves metric, then so is \bar{f}.

Proof. For each $m \in \mathbb{N}$, we set $K^{m}:=K_{0}^{m \beta}$ as well as $L^{m}:=L_{0}^{m \beta}$, and we define $f^{m}: K^{m} \rightarrow L^{m}$ by

$$
f^{m}(z):=m f(z / m) \quad\left(z \in K^{m}\right)
$$

As f is affine and $f(0)=0$, we know that f^{m} is affine and that $\left.f^{m+1}\right|_{K^{m}}=f^{m}$, for any $m \in \mathbb{N}$. This produces an affine map $\bar{f}: K \rightarrow L$ such that $\bar{f}(z)=f^{m}(z)$ whenever $z \in K^{m}$ for some $m \in \mathbb{N}$. Clearly, there exist at more one affine map extending f. Furthermore, if we assume that f is metric preserving, then so is f^{m} and hence \bar{f} preserves metric.

Now, we have the following extension of $[10$, Theorem 3.1], in the case when $p \in(1, \infty)$. Let us first recall the well-known fact that $L_{\mathrm{sa}}^{p}(M)$ is strictly convex (see e.g., Section 5 of [11]).

Proposition 2.5. Let $p \in(1, \infty)$ and $\alpha, \beta \in \mathbb{R}_{+}$with $\alpha<\beta$. If there is a metric preserving bijection $\Phi: L_{+}^{p}(M)_{\alpha}^{\beta} \rightarrow L_{+}^{p}(N)_{\alpha}^{\beta}$, then M and N are Jordan ${ }^{*}$-isomorphic.

Proof. If $M \cong \mathbb{C}$, then $L_{+}^{p}(M)_{\alpha}^{\beta}$ is a closed and bounded interval. As Φ is a metric preserving bijection, $L_{+}^{p}(N)_{\alpha}^{\beta}$ is also a closed and bounded interval, which implies that $N \cong \mathbb{C}$. The corresponding conclusion holds when $N \cong \mathbb{C}$. Therefore, we only consider the cases when $M \nsubseteq \mathbb{C}$ and $N \nsupseteq \mathbb{C}$.

Let us first show that

$$
\begin{equation*}
\Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right)=L_{+}^{p}(N)_{\beta}^{\beta} \quad \text { and } \quad \Phi\left(L_{+}^{p}(M)_{\alpha}^{\alpha}\right)=L_{+}^{p}(N)_{\alpha}^{\alpha} \tag{2.3}
\end{equation*}
$$

In fact, consider an arbitrary element $S^{\frac{1}{p}} \in L_{+}^{p}(M)_{\beta}^{\beta}$. If $\left\|\Phi\left(S^{\frac{1}{p}}\right)\right\| \in(\alpha, \beta)$, then $\Phi\left(S^{\frac{1}{p}}\right)$ is the midpoint of two distinct elements in $L_{+}^{p}(N)_{\alpha}^{\beta}$ and by Lemma 2.3 (when applying to Φ^{-1}), the element $S^{\frac{1}{p}} \in L_{+}^{p}(M)_{\beta}^{\beta}$ is also the mid-point of two distinct elements in $L_{+}^{p}(M)_{\alpha}^{\beta}$, which is impossible (as $L_{\mathrm{sa}}^{p}(M)$ is strictly convex). Consequently, $\Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right) \subseteq L_{+}^{p}(N)_{\alpha}^{\alpha} \cup L_{+}^{p}(N)_{\beta}^{\beta}$. Moreover, since $L_{+}^{p}(M)_{\beta}^{\beta}$ is pathconnected and Φ is continuous, one sees that

$$
\text { either } \quad \Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right) \subseteq L_{+}^{p}(N)_{\alpha}^{\alpha} \quad \text { or } \quad \Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right) \subseteq L_{+}^{p}(N)_{\beta}^{\beta} .
$$

If $\alpha=0$, then $L_{+}^{p}(N)_{\alpha}^{\alpha}$ contains only one point, and hence $\Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right) \nsubseteq L_{+}^{p}(N)_{\alpha}^{\alpha}$. Suppose that $\alpha>0$, and consider two distinct elements $S^{\frac{1}{p}}, T^{\frac{1}{p}} \in L_{+}^{p}(M)_{\beta}^{\beta}$ which are so close to each other that the line segment joining $S^{\frac{1}{p}}$ and $T^{\frac{1}{p}}$ lies inside $L_{+}^{p}(M)_{\alpha}^{\beta}$. Then Lemma 2.3 tells us that the line segment joining $\Phi\left(S^{\frac{1}{p}}\right)$ and $\Phi\left(T^{\frac{1}{p}}\right)$ lies inside $L_{+}^{p}(N)_{\alpha}^{\beta}$, which forbids both $\Phi\left(S^{\frac{1}{p}}\right)$ and $\Phi\left(T^{\frac{1}{p}}\right)$ belonging to $L_{+}^{p}(N)_{\alpha}^{\alpha}$ (because of the strict convexity of $L_{\mathrm{sa}}^{p}(N)$). This means that $\Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right) \subseteq L_{+}^{p}(N)_{\beta}^{\beta}$. By considering Φ^{-1}, we obtain the required equality $\Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right)=L_{+}^{p}(N)_{\beta}^{\beta}$.

Secondly, in order to establish $\Phi\left(L_{+}^{p}(M)_{\alpha}^{\alpha}\right)=L_{+}^{p}(N)_{\alpha}^{\alpha}$, it suffices to show that $\Phi\left(L_{+}^{p}(M)_{\alpha}^{\alpha}\right) \subseteq L_{+}^{p}(N)_{\alpha}^{\alpha}$ (again, thanks to the metric preserving property of Φ^{-1}). Suppose on the contrary that there exists $T^{\frac{1}{p}} \in L_{+}^{p}(M)_{\alpha}^{\alpha}$ with $\left\|\Phi\left(T^{\frac{1}{p}}\right)\right\| \in(\alpha, \beta)$ (observe that $\left\|\Phi\left(T^{\frac{1}{p}}\right)\right\| \neq \beta$ since $\left.\Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right)=L_{+}^{p}(N)_{\beta}^{\beta}\right)$. Then $\left\|\Phi\left(T^{\frac{1}{p}}\right)-\frac{\beta \Phi\left(T^{\frac{1}{p}}\right)}{\left\|\Phi\left(T^{\frac{1}{p}}\right)\right\|}\right\|<\beta-\alpha$. However, for any $R^{\frac{1}{p}} \in L_{+}^{p}(M)_{\beta}^{\beta}$, one has $\left\|T^{\frac{1}{p}}-R^{\frac{1}{p}}\right\| \geq \beta-\alpha$, and this contradicts $\Phi\left(L_{+}^{p}(M)_{\beta}^{\beta}\right)=L_{+}^{p}(N)_{\beta}^{\beta}$ (as Φ preserves metric). Consequently, Relation (2.3) is verified.

Next, we define $\bar{\Phi}: L_{+}^{p}(M) \rightarrow L_{+}^{p}(N)$ by setting $\bar{\Phi}(0)=0$ as well as

$$
\begin{equation*}
\bar{\Phi}\left(R^{\frac{1}{p}}\right):=\left\|R^{\frac{1}{p}}\right\| \Phi\left(\beta R^{\frac{1}{p}} /\left\|R^{\frac{1}{p}}\right\|\right) / \beta \quad\left(R^{\frac{1}{p}} \in L_{+}^{p}(M) \backslash\{0\}\right) . \tag{2.4}
\end{equation*}
$$

We want to show that $\bar{\Phi}$ is a metric preserving map that extends Φ.
Indeed, if $\alpha=0$, then by Lemma 2.3, we know that Φ is an affine map on the convex subset $L_{+}^{p}(M)_{0}^{1}$, and the requirement of $\bar{\Phi}$ follows from Lemma 2.4 (notice that $\Phi(0)=0$ because $L_{+}^{p}(M)_{0}^{0}=\{0\}$).

Suppose that $\alpha>0$. Pick an arbitrary element $S^{\frac{1}{p}} \in L_{+}^{p}(M)_{\beta}^{\beta}$. It follows from

$$
\left\|\Phi\left(S^{\frac{1}{p}}\right)\right\|=\beta=(\beta-\alpha)+\alpha=\left\|\Phi\left(S^{\frac{1}{p}}\right)-\Phi\left(\alpha S^{\frac{1}{p}} / \beta\right)\right\|+\left\|\Phi\left(\alpha S^{\frac{1}{p}} / \beta\right)\right\|
$$

and the strict convexity of $L_{\mathrm{sa}}^{p}(N)$ that $\Phi\left(S^{\frac{1}{p}}\right)-\Phi\left(\alpha S^{\frac{1}{p}} / \beta\right)=\delta \Phi\left(\alpha S^{\frac{1}{p}} / \beta\right)$ for some $\delta \in \mathbb{R}_{+}$. From this, and Relation (2.3), one has $\Phi\left(\alpha S^{\frac{1}{p}} / \beta\right)=\alpha \Phi\left(S^{\frac{1}{p}}\right) / \beta$. This, together with Lemma 2.3, ensures that

$$
\begin{equation*}
\Phi\left(\gamma S^{\frac{1}{p}}\right)=\gamma \Phi\left(S^{\frac{1}{p}}\right) \quad\left(\gamma \in[\alpha / \beta, 1] ; S^{\frac{1}{p}} \in L_{+}^{p}(M)_{\beta}^{\beta}\right) \tag{2.5}
\end{equation*}
$$

and hence $\bar{\Phi}$ extends Φ.
Consider $k \in \mathbb{Z}$. We set

$$
L_{+}^{p}(M)_{k}:=L_{+}^{p}(M)_{\beta^{k} / \alpha^{k-1}}^{\beta^{k+1} / \alpha^{k}},
$$

$L_{+}^{p}(N)_{k}:=L_{+}^{p}(N)_{\beta^{k} / \alpha^{k-1}}^{\beta^{k+1} / \alpha^{k}}$ and $\Phi_{k}:=\left.\bar{\Phi}\right|_{L_{+}^{p}(M)_{k}}$. It follows from (2.4) and (2.5) that

$$
\Phi_{k}\left(T^{\frac{1}{p}}\right)=\beta^{k} \Phi\left(\alpha^{k} T^{\frac{1}{p}} / \beta^{k}\right) / \alpha^{k} \quad\left(T^{\frac{1}{p}} \in L_{+}^{p}(M)_{k}\right)
$$

Thus, the metric preserving property of Φ implies that Φ_{k} preserves metric.
Fix arbitrary distinct elements $R, T \in L_{+}^{1}(M) \backslash\{0\}$ with $\left\|R^{\frac{1}{p}}\right\| \leq\left\|T^{\frac{1}{p}}\right\|$. Notice that the assignment

$$
\nu: s \mapsto\left\|s R^{\frac{1}{p}}+(1-s) T^{\frac{1}{p}}\right\|
$$

is a continuous map from $[0,1]$ to \mathbb{R}_{+}. There exist $k_{1} \leq k_{2} \in \mathbb{Z}$ such that

$$
\beta^{k_{1}} / \alpha^{k_{1}-1}<\left\|R^{\frac{1}{p}}\right\| \leq \beta^{k_{1}+1} / \alpha^{k_{1}} \quad \text { and } \quad \beta^{k_{2}} / \alpha^{k_{2}-1} \leq\left\|T^{\frac{1}{p}}\right\|<\beta^{k_{2}+1} / \alpha^{k_{2}}
$$

If $k_{1}=k_{2}$, then $R^{\frac{1}{p}}, T^{\frac{1}{p}} \in L_{+}^{p}(M)_{k_{1}}$ and we have $\left\|\bar{\Phi}\left(R^{\frac{1}{p}}\right)-\bar{\Phi}\left(T^{\frac{1}{p}}\right)\right\|=\left\|R^{\frac{1}{p}}-T^{\frac{1}{p}}\right\|$. Assume that $k_{1}<k_{2}$. One can find $s_{1}, \ldots s_{n} \in(0,1)$ such that $s_{1}<s_{2}<\cdots<s_{k_{2}-k_{1}}$ and that $\nu\left(s_{i}\right)=\beta^{k_{1}+i} / \alpha^{k_{1}+i-1}$. Denote

$$
S_{0}^{\frac{1}{p}}:=R^{\frac{1}{p}}, \quad S_{k_{2}-k_{1}+1}^{\frac{1}{p}}:=T^{\frac{1}{p}} \quad \text { and } \quad S_{i}^{\frac{1}{p}}:=s_{i} R^{\frac{1}{p}}+\left(1-s_{i}\right) T^{\frac{1}{p}} \quad\left(i=1, \ldots, k_{2}-k_{1}\right)
$$

Notice that $S_{i}^{\frac{1}{p}}, S_{i+1}^{\frac{1}{p}} \in L_{+}^{p}(M)_{k_{1}+i}\left(i=0,1, \ldots, k_{2}-k_{1}\right)$, we know that

$$
\left\|\bar{\Phi}\left(S_{i}^{\frac{1}{p}}\right)-\bar{\Phi}\left(S_{i+1}^{\frac{1}{p}}\right)\right\|=\left\|\Phi_{k_{1}+i}\left(S_{i}^{\frac{1}{p}}\right)-\Phi_{k_{1}+i}\left(S_{i+1}^{\frac{1}{p}}\right)\right\|=\left\|S_{i}^{\frac{1}{p}}-S_{i+1}^{\frac{1}{p}}\right\|
$$

Furthermore, since

$$
\left\|\left(s R^{\frac{1}{p}}+(1-s) T^{\frac{1}{p}}\right)-\left(s^{\prime} R^{\frac{1}{p}}+\left(1-s^{\prime}\right) T^{\frac{1}{p}}\right)\right\|=\left(s^{\prime}-s\right)\left\|R^{\frac{1}{p}}-T^{\frac{1}{p}}\right\| \quad \text { whenever } \quad s \leq s^{\prime},
$$

we see that

$$
\left\|S_{0}^{\frac{1}{p}}-S_{1}^{\frac{1}{p}}\right\|+\cdots+\left\|S_{n}^{\frac{1}{p}}-S_{n+1}^{\frac{1}{p}}\right\|=\left\|R^{\frac{1}{p}}-T^{\frac{1}{p}}\right\|
$$

Thus,

$$
\left\|\bar{\Phi}\left(R^{\frac{1}{p}}\right)-\bar{\Phi}\left(T^{\frac{1}{p}}\right)\right\| \leq\left\|\bar{\Phi}\left(S_{0}^{\frac{1}{p}}\right)-\bar{\Phi}\left(S_{1}^{\frac{1}{p}}\right)\right\|+\cdots+\left\|\bar{\Phi}\left(S_{n}^{\frac{1}{p}}\right)-\bar{\Phi}\left(S_{n+1}^{\frac{1}{p}}\right)\right\|=\left\|R^{\frac{1}{p}}-T^{\frac{1}{p}}\right\|
$$

Furthermore, it follows the definition of $\bar{\Phi}$ that $\left\|\bar{\Phi}\left(s R^{\frac{1}{p}}\right)\right\|=\left\|s R^{\frac{1}{p}}\right\|$. From these, we conclude that $\bar{\Phi}$ is contractive. By considering $\bar{\Phi}^{-1}$, we know that $\bar{\Phi}: L_{+}^{p}(M) \rightarrow L_{+}^{p}(N)$ is a metric preserving bijection extending Φ, as claimed.

Now, let us define a bijection $\Lambda: L_{+}^{1}(M)_{1}^{1} \rightarrow L_{+}^{1}(N)_{1}^{1}$ by

$$
\begin{equation*}
\Lambda(S):=\left(\Phi\left(S^{\frac{1}{p}}\right)\right)^{p} \quad\left(S \in L_{+}^{1}(M)_{1}^{1}\right) \tag{2.6}
\end{equation*}
$$

Pick arbitrary elements $R, T \in L_{+}^{1}(M)_{1}^{1}$ with $\mathbf{s}_{R} \cdot \mathbf{s}_{T}=0$. Lemma 1.3(a) gives $\left\|R^{\frac{1}{p}}+T^{\frac{1}{p}}\right\|^{p}=2$. As $\bar{\Phi}$ is metric preserving, it follows from Lemma 2.3 that

$$
\left\|\Lambda(R)^{\frac{1}{p}}+\Lambda(T)^{\frac{1}{p}}\right\|=\left\|\bar{\Phi}\left(R^{\frac{1}{p}}+T^{\frac{1}{p}}\right)\right\|=2
$$

It follows again from Lemma $1.3\left(\right.$ a) that $\mathbf{s}_{\Lambda(R)} \cdot \mathbf{s}_{\Lambda(T)}=0$. By considering Φ^{-1}, we know that Λ is "biorthogonality preserving" in the sense of [9], and the required conclusion follows from [9, Theorem 3.2(a)].

The proof above can be generalized to the following statement.
Remark 2.6. Let X and Y be strictly convex normed spaces, and $K \subseteq X$ and $L \subseteq Y$ be (not necessarily proper) cones. If $\alpha, \beta \in \mathbb{R}_{+}$with $\alpha<\beta$, then a map $f: K_{\alpha}^{\beta} \rightarrow \bar{L}_{\alpha}^{\beta}$ extends to a metric preserving surjection from K to L if and only if f is a metric preserving surjection.

In fact, as in the proof of Proposition 2.5, for each $k \in \mathbb{Z}$, we set $K_{k}:=K_{\beta^{k} / \alpha^{k-1}}^{\beta^{k+1} / \alpha^{k}}$ and $L_{k}:=L_{\beta^{k} / \alpha^{k-1}}^{\beta^{k+1} / \alpha^{k}}$. The argument of Proposition 2.5 implies that

$$
\begin{equation*}
f(\gamma x)=\gamma f(x) \quad\left(\gamma \in[\alpha / \beta, 1] ; x \in K_{\beta}^{\beta}\right) . \tag{2.7}
\end{equation*}
$$

This enable us to define a map $\bar{f}: K \backslash\{0\} \rightarrow L \backslash\{0\}$ satisfy

$$
\bar{f}(x)=\beta^{k} f\left(\alpha^{k} x / \beta^{k}\right) / \alpha^{k} \quad\left(x \in K_{k} ; k \in \mathbb{Z}\right)
$$

Furthermore, using the argument of Proposition 2.5, for every $x, y \in K \backslash\{0\}$, there exists $k_{1} \leq k_{2} \in \mathbb{Z}$ with $x \in K_{k_{1}}$ as well as $y \in K_{k_{2}}$, and one can find $s_{0}<\cdots<s_{k_{2}-k_{1}+1}$ with $s_{0}=0$ and $s_{k_{2}-k_{1}+1}=1$ such that $s_{i} x+\left(1-s_{i}\right) y$ and $s_{i+1} x+\left(1-s_{i+1}\right) y$ belongs to the same $K_{k_{i}}$. From this, we know that \bar{f} is metric preserving, and it extends to a metric preserving bijection from K to L if we set $\bar{f}(0)=0$.

The above applies to the case when $K=X$ and $L=Y$. In particular, we have the following, because of the main result in [15].

Corollary 2.7. Let $p \in(1, \infty) \backslash\{2\}$ and $\alpha, \beta \in \mathbb{R}_{+}$with $\alpha<\beta$. If $\Phi: L^{p}(M)_{\alpha}^{\beta} \rightarrow L^{p}(N)_{\alpha}^{\beta}$ is a metric preserving bijection, then there is a Jordan ${ }^{*}$-isomorphism $\Theta: N \rightarrow M$ satisfying $\Phi\left(R^{\frac{1}{p}}\right)=\Theta_{*}(R)^{\frac{1}{p}}$ $\left(R^{\frac{1}{p}} \in L_{+}^{p}(M)_{\alpha}^{\beta}\right)$.

Notice that one can also use (2.7) (for $X=L^{p}(M)=K$ and $Y=L^{p}(N)=L$) as well as [3, Theorem 14.1] to get a weak conclusion as in Proposition 2.5. Note, however, that such argument cannot be applied to Proposition 2.5 in general; for example, $L_{+}^{p}([0,1])$ cannot contain any interior point.

3. Metric preserving maps between positive annulus

In this section, we show that one can obtain a stronger conclusion than that of Theorem 3.5 in the case when M satisfies a property called $E P_{1}$, as introduced by D. Sherman in [16]. In fact, the notion of $E P_{p}$ (for $p \in[1, \infty)$) in [16] is an extension of $(E P)$ as considered by K. Watanabe in [20], which was stated in terms of $M_{*,+}$.

Definition 3.1. Let M be a von Neumann algebra.
(a) For a normed space X, a map $\chi: L_{+}^{1}(M)_{1}^{1} \rightarrow X$ is said to be orthogonally affine if for every $s \in(0,1)$,

$$
\chi(s R+(1-s) T)=s \chi(R)+(1-s) \chi(T) \quad \text { whenever } R, T \in L_{+}^{1}(M)_{1}^{1} \text { satisfying } \mathbf{s}_{R} \cdot \mathbf{s}_{T}=0
$$

(b) M is said to have $E P_{1}$ if any norm continuous orthogonally affine function $\kappa: L_{+}^{1}(M)_{1}^{1} \rightarrow[0,1]$ is actually affine.

Remark 3.2. (a) Our definition of $E P_{1}$ is the same as the one in [16]. In fact, suppose that $\kappa: L_{+}^{1}(M)_{1}^{1} \rightarrow$ $[0,1]$ is a norm continuous orthogonally affine function. We define $\rho: L_{+}^{1}(M) \rightarrow \mathbb{R}_{+}$by

$$
\rho(T):=\|T\| \kappa(T /\|T\|) \quad\left(T \in L_{+}^{1}(M) \backslash\{0\}\right)
$$

Since $\|s R+(1-s) T\|=s\|R\|+(1-s)\|T\|$ for any $R, T \in L_{+}^{1}(M)$, it is not hard to check that ρ will satisfy the four conditions in [16, Definition 4.1] for $C=1$. Conversely, if a function $\rho: L_{+}^{1}(M) \rightarrow \mathbb{R}_{+}$ satisfies the four conditions in [16, Definition 4.1], and we define $\kappa: L_{+}^{1}(M)_{1}^{1} \rightarrow[0,1]$ by

$$
\kappa(T):=\rho(T) / C \quad\left(T \in L_{+}^{1}(M)_{1}^{1}\right)
$$

then κ is a norm continuous orthogonally affine map.
(b) It was shown in [16, Theorem 1.2] that all semifinite algebras without type I_{2} summand, all hyperfinite algebras without type I_{2} summand as well as all type $I I I_{0}$ factors with separable preduals have $E P_{1}$. We will recall more information from [16] in the Appendix.
Lemma 3.3. Suppoose that M has $E P_{1}$. Let $\Phi: L_{+}^{1}(M)_{1}^{1} \rightarrow L_{+}^{p}(N)_{1}^{1}$ be a norm continuous orthogonally affine map (not assumed to be surjective). Then Φ is an affine map.

Proof. Fix an arbitrary element $f \in L^{1}(N)_{+}^{*}$ with $\|f\| \leq 1$. Consider the map $g: L_{+}^{p}(M)_{1}^{1} \rightarrow[0,1]$ given by $g(R):=f(\Phi(R))$. Clearly, g is a norm-continuous orthogonally affine function. By the assumption g is affine, and hence Φ is affine (as f is arbitrary chosen).

As said in [16], the von Neumann algebra $M_{2}(\mathbb{C})$ does not have $E P_{1}$. In fact, Lemma 3.3 does not hold for $M=M_{2}(\mathbb{C})$, as shown in the following.
Example 3.4. Recall that there is a metric preserve affine bijection from $L_{+}^{1}\left(M_{2}(\mathbb{C})\right)_{1}^{1}$ onto the closed unit ball \mathcal{B} of \mathbb{R}^{3}. The origin of \mathcal{B} is the normalized trace on $M_{2}(\mathbb{C})$, and elements in the open unit ball are all with the same support 1 . Furthermore, if $R, T \in L_{+}^{1}\left(M_{2}(\mathbb{C})\right)_{1}^{1}$ with $\mathbf{s}_{R} \mathbf{s}_{T}=0$, then R and T are in the unit sphere and R is the opposite of T, i.e. the line joining R and T passes through the origin.

Now, consider a non-metric preserving homeomorphism Γ from the unit sphere \mathcal{S} to itself such that whenever R is the opposite of T, then $\Gamma(R)$ is the opposite of $\Gamma(T)$. Consider $\Phi: \mathcal{B} \rightarrow \mathcal{B}$ to be the map define by the following rule: if $S=s R+(1-s) T$, where $s \in(0,1)$ where $R \in \mathcal{S}$ is the opposite of $T \in \mathcal{S}$, then $\Phi(S)=s \Gamma(R)+(1-s) \Gamma(T)$. It is easy to see that Φ is a continuous orthogonally affine map, but it cannot be affine (since continuous affine bijections between normal state spaces are defined by a Jordan *-isomorphism of the underlying algebras and hence have to be metric preserving).
Theorem 3.5. Let $p \in(1, \infty)$, and let M and N be von Neumann algebras such that M has $E P_{1}$ and $M \nsubseteq \mathbb{C}$. Suppose that $\alpha, \beta \in \mathbb{R}_{+}$with $\alpha<\beta$ and $\Phi: L_{+}^{p}(M)_{\alpha}^{\beta} \rightarrow L_{+}^{p}(N)_{\alpha}^{\beta}$ is a metric preserving surjection. There is a Jordan ${ }^{*}$-isomorphism $\Theta: N \rightarrow M$ satisfying $\Phi\left(R^{\frac{1}{p}}\right)=\Theta_{*}(R)^{\frac{1}{p}}\left(R^{\frac{1}{p}} \in L_{+}^{p}(M)_{\alpha}^{\beta}\right)$.

Proof. As in the proof of Proposition 2.5, the map Φ extends to a metric preserving affine bijection $\bar{\Phi}: L_{+}^{p}(M) \rightarrow L_{+}^{p}(N)$. Since $\bar{\Phi}(0)=0$, we know that $\bar{\Phi}$ restricts to a bijection from $L_{+}^{p}(M)_{1}^{1}$ onto $L_{+}^{p}(N)_{1}^{1}$. Let $\Lambda: L_{+}^{1}(M)_{1}^{1} \rightarrow L_{+}^{1}(N)_{1}^{1}$ be the bijection as defined in (2.6).

Suppose that $s \in(0,1)$ and $R, T \in L_{+}^{1}(M)_{1}^{1}$ satisfying $\mathbf{s}_{R} \cdot \mathbf{s}_{T}=0$. It follows from Lemma 1.4(b) that

$$
\begin{aligned}
\Lambda(s R+(1-s) T) & =\bar{\Phi}\left((s R+(1-s) T)^{\frac{1}{p}}\right)^{p}=\bar{\Phi}\left(s^{\frac{1}{p}} R^{\frac{1}{p}}+(1-s)^{\frac{1}{p}} T^{\frac{1}{p}}\right)^{p} \\
& =\left(\left(s^{\frac{1}{p}}+(1-s)^{\frac{1}{p}}\right) \bar{\Phi}\left(\frac{s^{\frac{1}{p}} R^{\frac{1}{p}}}{s^{\frac{1}{p}}+(1-s)^{\frac{1}{p}}}+\frac{(1-s)^{\frac{1}{p}} T^{\frac{1}{p}}}{s^{\frac{1}{p}}+(1-s)^{\frac{1}{p}}}\right)\right)^{p} \\
& =\left(s^{\frac{1}{p}} \bar{\Phi}\left(R^{\frac{1}{p}}\right)+(1-s)^{\frac{1}{p}} \bar{\Phi}\left(T^{\frac{1}{p}}\right)\right)^{p} \\
& =s \Lambda(R)+(1-s) \Lambda(T) .
\end{aligned}
$$

In other words, Λ is orthogonally affine.
By Lemma 1.4(a), the bijection Λ is a homeomorphism. Moreover, it follows from Lemma 3.3 that Λ is affine. Thus, [8, Theorem 4.5] gives a Jordan ${ }^{*}$-isomorphism $\Theta: N \rightarrow M$ such that for every $T \in L_{+}^{1}(M)_{1}^{1}$, one has $\Lambda(T)=\Theta_{*}(T)$, or equivalently, $\bar{\Phi}\left(T^{\frac{1}{p}}\right)=\Theta_{*}(T)^{\frac{1}{p}}$.

The above settles the last question in [10] in the case when $p \in(1, \infty)$, with the extra assumption that M has $E P_{1}$. In particular, this applies to the case when M is a semifinite algebra with no type I_{2} summand and when M is a hyperfinite algebra without type I_{2} summand.

The strong form as in Theorem 3.5 means that Φ is "typical", which was defined in [16] for map from $L_{+}^{1}(M)$ to $L_{+}^{1}(N)$. Since the definition for typical map does not require surjectivity, it may worth looking at the case when the map Φ is not assumed to be surjective. We will only consider the case when $\alpha=0$ in the remark below. Notice that the main part of the extra argument required in the following remark was already given in [16]. Therefore, we do not regard it as a new result, but only state it here as an information to the readers.

Remark 3.6. Let $p \in(1, \infty)$, and let M and N be von Neumann algebras such that $M \nsubseteq \mathbb{C}$ and has $E P_{1}$. Suppose that $\Psi: L_{+}^{p}(M)_{0}^{1} \rightarrow L_{+}^{p}(N)_{0}^{1}$ is a metric preserving map (not assume to be surjective) such that $\Psi(0)=0$. Then Ψ is typical in the sense of [16]

In fact, by Lemmas 2.3 and 2.4, we know that Ψ extends to an affine metric preserving map $\bar{\Psi}$: $L_{+}^{p}(M) \rightarrow L_{+}^{p}(N)$ (not necessarily surjective). Let $\Lambda: L_{+}^{1}(M)_{1}^{1} \rightarrow L_{+}^{1}(N)_{1}^{1}$ be the (not necessarily surjective) map defined in a similar way as (2.6). Then the argument of Theorem 3.5 tells us that Λ is orthogonally affine, and Lemma 3.3 gives the affineness of Λ. Furthermore, we define $\tilde{\Lambda}: L_{\mathrm{sa}}^{1}(M) \rightarrow$ $L_{\mathrm{sa}}^{1}(N)$ by $\tilde{\Lambda}(T)=\bar{\Lambda}\left(T_{+}\right)-\bar{\Lambda}\left(T_{-}\right)$, where $\bar{\Lambda}(S):=\|S\| \Lambda(S /\|S\|)$ when $S \neq 0$. For any $y \in N_{\mathrm{sa}}$, the function $y \circ \Lambda$ is continuous and affine on $L_{+}^{1}(M)_{1}^{1}$ and hence there exists $\Lambda^{*}(y) \in M_{\mathrm{sa}}$ such that

$$
R\left(\Lambda^{*}(y)\right)=\Lambda(R)(y) \quad\left(R \in L_{+}^{1}(M)_{1}^{1}\right)
$$

(see e.g. [1, Theorem 11.5]), which gives $\tilde{\Lambda}(T)(y)=T\left(\Lambda^{*}(y)\right)\left(T \in L_{\mathrm{sa}}^{1}(M)\right)$. Consequently, $\tilde{\Lambda}$ is real linear and extends to a bounded complex linear map, again denoted by $\tilde{\Lambda}$, from $L^{1}(M)$ to $L^{1}(N)$. Moreover, one can use Lemma 1.3(a) to show that Λ is orthogonality preserving (see (1.1)), and hence $\tilde{\Lambda}$ is an "o.d. homomorphism" in the sense of [4]. Now, it follows from the argument in the last two paragraphs preceding [16, Theorem 4.3] that Ψ is typical.

Appendix A. Algebras with $E P_{1}$

In [16, Theorem 1.2], some algebras with $E P_{1}$ were listed, and their proofs were given in the main body of [16] (in fact, the more general case of $E P_{p}$ was considered there). In particular, it was shown that approximately semifinite algebra with no type I_{2} summand has $E P_{1}$. However, the proof for this fact seems to scatter in [16] and is not easy to trace. For the benefit of the readers, we collect some facts from [16] that leads to the above statement. There is no new result nor new proof given in this appendix.

First of all, one can find in [16, Theorem 5.3] and its proof the following lemma.
Lemma A.1. Let M be a von Neumann algebras.
(a) If M is finite and has no type I_{2} summand, then M has $E P_{1}$.
(b) If there is an increasing net $\left\{M_{i}\right\}_{i \in \mathfrak{I}}$ of von Neumann subalgebras (of M) having $E P_{1}$ with $\bigcup_{i \in \mathfrak{I}} M_{i}$ being $\sigma\left(M, M_{*}\right)$-dense in M, and for each $i \in \mathfrak{I}$, there is a normal conditional expectation $E_{i}: M \rightarrow M_{i}$ such that $E_{i}(1)$ is the identity of M_{i} and that $E_{i} \circ E_{j}=E_{i}$ whenever $i \leq j$, then M has $E P_{1}$.

Suppose now that M is a semifinite algebra without type I_{2} summand. Let M_{1} and M_{2} be the type I and the type $I I$ parts of M respectively. Clearly, $q M_{2} q$ does not have any type I_{2} summand, for any $q \in \mathcal{P}\left(M_{2}\right)$. On the other hand, M_{1} can be decomposed as $\bigoplus_{\alpha \in \Lambda} L^{\infty}\left(X_{\alpha}, \mathcal{L}\left(\mathfrak{H}_{\alpha}\right)\right)$ with $\operatorname{dim} \mathfrak{H}_{\alpha} \neq 2$ for every $\alpha \in \Lambda$. Thus, there exists an increasing net $\left\{p_{i}\right\}_{i \in \mathfrak{I}}$ in the set
$\left\{p \in \mathcal{P}(M): p M p\right.$ has a faithful tracial state and does not have any type I_{2} summand $\}$
that $\sigma\left(M, M_{*}\right)$-converges to 1 . This, together with Lemma A.1, gives [16, Theorem 5.3(b)], which we recall in the following.

Proposition A.2. If M is a semifinite von Neumann algebra with no type I_{2} summand, then M has $E P_{1}$.

Our next lemma follows readily from the definition of $E P_{1}$, because all elements in $L_{+}^{1}(M)_{1}^{1}$ have disjoint supports from elements in $L_{+}^{1}(N)_{1}^{1}$.

Lemma A.3. If M and N are two von Neumann algebras with $E P_{1}$, then $M \oplus N$ has $E P_{1}$.
Let us now recall the definition of approximately semifinite algebras.
Definition A.4. A von Neumann algebra M is said to be approximately semifinite if there is a net $\left\{E_{i}\right\}_{i \in \mathfrak{I}}$ of normal conditional expectations from M onto an increasing net $\left\{M_{i}\right\}_{i \in \mathfrak{I}}$ of semifinite von Neumann subalgebras, with $E_{i} \circ E_{j}=E_{i}$ and $E_{i}(1)$ being the identity of M_{i} for any $i \leq j$ in \mathfrak{I}, such that $\bigcup_{i \in \mathfrak{I}} M_{i}$ is $\sigma\left(M, M_{*}\right)$-dense in M. In this case, $\left\{\left(M_{i}, E_{i}\right)\right\}_{i \in \mathfrak{J}}$ is called a semifinite paving for M.

The following fact is also clear. Indeed, if $\left\{\left(M_{i}, E_{i}\right)\right\}_{i \in \mathfrak{I}}$ is a semifinite paving for M, and $P: M \rightarrow N$ is the canonical projection, then $\left\{\left(P\left(M_{i}\right),\left.P \circ E_{i}\right|_{N}\right)\right\}_{i \in \mathfrak{I}}$ is a semifinite paving for N.
Lemma A.5. Suppose that M is approximately semifinite. If $M=L \oplus N$, then N is also approximately semifinite.

Proposition A.6. If M is an approximately semifinite von Neumann algebra with no type I_{2} summand, then M has $E P_{1}$.

In fact, we consider L and N to be the finite part and the properly infinite part of M, respectively. It follows from Lemma A.1(a) that L has $E P_{1}$. Moreover, by Lemma A.5, the algebra N is approximately semifinite. If $\left\{\left(N_{i}, E_{i}\right)\right\}_{i \in \mathfrak{I}}$ is a semifinite paving for N, then $\left\{\left(N_{i} \otimes M_{3}(\mathbb{C}), E_{i} \otimes \mathrm{id}\right)\right\}_{i \in \mathfrak{I}}$ is a semifinite paving for $N \otimes M_{3}(\mathbb{C}) \cong N$ (because N is properly infinite). Since the semifinite algebra $N_{i} \otimes M_{3}(\mathbb{C})$ can never have a type I_{2} summand, we know from Proposition A. 2 and Lemma A.1(b) that N has $E P_{1}$. Now, it follows from Lemma A. 3 that M has $E P_{1}$.

Acknowledgement

The authors are supported by National Natural Science Foundation of China (11471168) and Taiwan MOST grant (104-2115-M-110-009-MY2). The authors would also like to thanks K. Watanabe for some discussion relating to the propery $(E P)$ and for informing them [16] and [20].

References

[1] E.M. Alfsen and F.W. Shultz, Non-commutative spectral theory for affine function spaces on convex sets, Memoirs Amer. Math. Soc. 172, Providence (1976).
[2] J.A. Baker, Isometries in normed spaces, Amer. Math. Monthly, 78 (1971), 655-658.
[3] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Amer. Math. Soc. Collo. Publ. 48, Amer. Math. Soc. (2000).
[4] L.J. Bunce and J.D.M. Wright, On orthomorphism between von Neumann preduals and a problem of Araki, Pac. J. Math. 158 (1993), 265-272.
[5] A. Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier 24 (1974), 121-155.
[6] H.A. Dye, On the geometry of projections in certain operator algebras, Ann. Math. 61 (1955), 73-89.
[7] R. V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. Math. 564 (1952), 494-503.
[8] R. V. Kadison, Transformations of states in operator theory and dynamics, Topology 3 (1965) suppl. 2, 177-198.
[9] C.-W. Leung, C.-K. Ng and N.-C. Wong, Transition probabilities of normal states determine the Jordan structure of a quantum system, J. Math. Phys. 57 (2016), 015212, 13 pages; doi: 10.1063/1.4936404.
10] C.-W. Leung, C.-K. Ng, N.-C. Wong, The positive contractive part of a Noncommutative L^{p}-space is a complete Jordan invariant, Lin. Alg. Appl., to appear.
[11] G. Pisier and Q. Xu, Non-commutative Lp-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam (2003), 1459-1517
[12] Y. Raynaud and Q. Xu, On subspaces of noncommutative L_{p}-spaces, J. Funct. Anal. 203 (2003), 149-196.
[13] É. Ricard, Hölder estimates for the noncommutative Mazur maps, Arch. Math. 104, (2015), 37-45.
[14] B. Russo, Isometrics of L^{p}-spaces associated with finite von Neumann algebras, Bull. Amer. Math. Soc. 74 (1968), 228-232.
[15] D. Sherman, Noncommutative L^{p}-structure encodes exactly Jordan structure, J. Funct. Anal. 211 (2005), 150-166.
[16] D. Sherman, On the Structure of Isometries between Noncommutative L^{p} Spaces, Publ. RIMS Kyoto Univ., 42 (2006), 45-82.
[17] M. Takesaki, Theory of operator algebras II, Encyclopaedia of mathematical sciences $\mathbf{1 2 5}$ (2003), Springer-Verlag.
[18] P.-K. Tam, Isometries of L_{p}-spaces associated with semifinite von Neumann algebras, Trans. Amer. Math. Soc. 254 (1979), 339-354.
[19] M. Terp, L^{p}-spaces associated with von Neumann algebras, Notes Math. Institute, Copenhagen Univ. (1981).
[20] K. Watanabe, Problems on isometries of non-commutative Lp-spaces, Contemp. Math. 232, Amer. Math. Soc. (1999), 349-356.
[21] F.J. Yeadon, Isometries of noncommutative L^{p}-spaces. Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 1, 41-50.
[22] F.J. Yeadon, Finitely additive measures on projections in finite W^{*}-algebras, Bull. Lond. Math. Soc. 16 (1984), 145-150.
(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Hong Kong.
E-mail address: cwleung@math.cuhk.edu.hk
(Chi-Keung Ng) Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China.
E-mail address: ckng@nankai.edu.cn
(Ngai-Ching Wong) Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.

[^0]: Date: May 8, 2017.
 2010 Mathematics Subject Classification. Primary: 46L10, 46L52; Secondary: 54E35.
 Key words and phrases. non-commutative L^{p}-spaces; positive contractive elements; metric spaces; bijective isometries; Jordan *-isomorphisms.

