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Abstract. Extending the main result in [10], we show that for any fixed p ∈ [1,∞] and any ϵ ∈ (0, 1],
the metric space

{S
1
p ∈ Lp

+(M) : 1− ϵ ≤ ∥S
1
p ∥ ≤ 1}

is a complete Jordan ∗-invariant for a von Neumann algebra M . Furthermore, in the case when
p ∈ (1,∞), if M � C and is a semifinite algebra with no type I2 summand (or is a hyperfinite algebra
with no type I2 summand), then for any von Neumann algebra N and any metric preserving bijection

Φ : {S ∈ Lp
+(M) : 1− ϵ ≤ ∥S

1
p ∥ ≤ 1} → {T ∈ Lp

+(N) : 1− ϵ ≤ ∥T
1
p ∥ ≤ 1},

there is a Jordan ∗-isomorphism Θ : N → M satisfying Φ(S
1
p ) = Θ∗(S)

1
p .

1. Introduction and Notation

It is well-known that several partial structures of a von Neumann algebra can serve as complete
Jordan ∗-invariants of a von Neumann algebra (see e.g. [7, Theorem 2], [7, Corollary 5], [8, Theorem
4.5], [18, Theorem 3] and [5, Théorème 3.3]). In particular, generalizing results in [14], [20] and [21], D.
Sherman showed in [15] that the metric space structure of the non-commutative Lp-space is a complete
Jordan ∗-invariant for the underlying von Neumann algebra, when p ∈ [1,∞] \ {2} (observe that the
non-commuative L2-space of any infinite dimensional von Neumann algebra with separable predual is
ℓ2).

Since any bijective isometry between normed spaces is automatically affine, it is natural to ask whether
it is possible to obtain a “smaller invariant” by excluding those part that could be recover from a smaller
subset of the non-commuative Lp-space. Alone this line, we show in [10] that, for each p ∈ [1,∞], the
positive contractive part of the non-commuative Lp-space, again as a metric space, is a complete Jordan
∗-invariant for the underlying von Neumann algebra (note the different here that one can include the
case of p = 2, since the cone of the L2-space encodes some information that cannot be recovered from
the normed space structure).

Continuing with this philosophy, we will show in Section 2 of this article the following result concerning
an arbitrarily thin bell Lp

+(M)β+ϵ
β−ϵ := {R ∈ Lp

+(M) : β−ϵ ≤ ∥R∥ ≤ β+ϵ} as a complete Jordan invariant.

Theorem 1.1. Let p ∈ [1,∞] and β ∈ R+ \ {0} and ϵ ∈ (0, β]. If there is a metric preserving bijection
Φ : Lp

+(M)β+ϵ
β−ϵ → Lp

+(N)β+ϵ
β−ϵ, then M and N are Jordan ∗-isomorphic.

In the case of p = 1, this is proved by showing that some elements with norm β is mapped to elements
with norm β in an “orthogonality support preserving way”, we then use a result of Dye to obtain the
conclusion. In the case of p = ∞, we show that some points in the interior of the bell is mapped to

Date: May 8, 2017.
2010 Mathematics Subject Classification. Primary: 46L10, 46L52; Secondary: 54E35.
Key words and phrases. non-commutative Lp-spaces; positive contractive elements; metric spaces; bijective isometries;

Jordan ∗-isomorphisms.
1



2 CHI-WAI LEUNG, CHI-KEUNG NG, AND NGAI-CHING WONG

the interior of the other bell, and then use a “stronger form of the Mazur-Ulam theorem” and a result
of Kadison to get the Jordan ∗-isomorphism. In the case of p ∈ (1,∞), we use the strict convexity
to verify that the map Φ is “partially homogeneous” and the canonical extension to the whole cone is
also isometric. Then we use some equality related to the non-commutative Clarkson inequality to a
“biorthogonality preserving map” between the normal state spaces, and employ a result in [9] to finish
the proof.

The proof of the case p ∈ (1,∞) can be generalized to a statement concerning extension of maps
between the bells to that of between the cones. From this, we have the following.

Let p ∈ (1,∞) \ {2}. If ϵ ∈ (0, 1] and

Φ : {S ∈ Lp(M) : 1− ϵ ≤ ∥S∥ ≤ 1} → {T ∈ Lp(N) : 1− ϵ ≤ ∥T∥ ≤ 1}

is a metric preserving bijection, then one can find a Jordan ∗-isomorphism Θ : N → M
with Φ is defined by Θ in a canonical way.

On the other hand, it was asked in [10] whether a metric preserving bijection from the positive
contractive part of the non-commuative Lp-space of one von Neumann algebra to that of another von
Neumann algebra is defined by a Jordan ∗-isomorphism in a canonical way. Although the above quoted
statement is true, there seems to have no way to obtain this strong form from this statement in the case
when p ∈ (1,∞) \ {2}. Nevertheless, we give in, Section 3, an affirmative answer to this question in the
case of p ∈ (1,∞) when the algebra satisfying a condition called EP1 (which is true when the algebra is
semifinite algebras and has no type I2 summand). In fact, we give a more general result as follows:

Theorem 1.2. Let p ∈ (1,∞) and β ∈ R+ \ {0} and ϵ ∈ (0, β]. Let M and N be von Neumann algebras
such that M has EP1 and M � C. Suppose that Φ : Lp

+(M)β+ϵ
β−ϵ → Lp

+(N)β+ϵ
β−ϵ is a metric preserving

surjection. There is a Jordan ∗-isomorphism Θ : N → M satisfying Φ(R
1
p ) = Θ∗(R)

1
p (R

1
p ∈ Lp

+(M)βα).

Let us set some notations and recall some facts in the remainder of this section. Throughout this
article, M and N are von Neumann algebras with predual M∗ and N∗, respectively. We use P(M) to
denote the set of projections in M . We fix a normal semifinite faithful weight φ on M and consider the
modular automorphism group α corresponding to φ. Since the von Neumann algebra crossed product
M̌ := MōαR is semi-finite, we choose a normal faithful semi-finite trace τ on M̌ . Denote by L0(M̌, τ)
the completion M under the vector topology defined by a neighborhood basis at 0 of the form

U(ϵ, δ) := {x ∈ M̌ : ∥xp∥ ≤ ϵ and τ(1− p) ≤ δ, for a projection p ∈ M̌}.

The ∗-algebra structure on M̌ extends to a ∗-algebra structure on L0(M̌, τ).

If M is a von Neumann algebra on a Hilbert space H, then elements in L0(M̌, τ) can be regarded as
closed operators on L2(R;H). More precisely, let T be a densely defined closed operator on L2(R;H)
affiliated with M̌ and |T | be its absolute value with spectral measure E|T |. Then T corresponds uniquely
to an element in L0(M̌, τ) if and only if τ

(
1−E|T |([0, λ])

)
< ∞ when λ is large. Conversely, every element

in L0(M̌, τ) comes a closed operator in this way. Under this identification, the ∗-operation on L0(M̌, τ)
coincides with the adjoint. The addition and the multiplication on L0(M̌, τ) are the closures of the
corresponding operations for closed operators. We denote by L0

+(M̌, τ) the set of all positive self-adjoint
operators in L0(M̌, τ).

The dual action α̂ : R → Aut(M̌) extends to an action on L0(M̌, τ). For any p ∈ [1,∞], we set

Lp(M) := {T ∈ L0(M̌, τ) : α̂s(T ) = e−s/pT, for all s ∈ R}



3

(where e−s/∞ means 1). Then L∞(M) coincides with the subalgebra M of M̌ ⊆ L0(M̌, τ). Moreover,
if T ∈ L0(M̌, τ) and T = u|T | is the polar decomposition, then T ∈ Lp(M) if and only if |T | ∈ Lp(M).
Denote by Lp

sa(M) the set of all self-adjoint operators in Lp(M) and put Lp
+(M) := Lp(M)∩L0

+(M̌, τ).

When q ∈ (0,∞), the Mazur map
S 7→ S1/q (S ∈ L0

+(M̌, τ))

restricts to a bijection from L1
+(M) onto Lq

+(M). Since we use this connection between L1
+(M) onto

Lq
+(M) a lot, elements in Lq

+(M) will always be written in the form S1/q (for a unique S ∈ L1
+(M)).

As in the literature,
we identify

(
L1(M), L1

+(M)
)

with (M∗,M
+
∗ ) as ordered vector spaces throughout this article.

Hence,
(
L1(M), L1

+(M)
)

is an ordered Banach space with norm ∥ · ∥1. When p ∈ (1,∞), the function:

∥T∥p :=
∥∥|T |p∥∥1/p

1

is a norm on Lp(M), so that
(
Lp(M), Lp

+(M)
)

becomes an ordered Banach space. It is well-known that
this ordered Banach space is independent of the choices of φ and τ .

For T ∈ L1
+(M), we denote by sT ∈ P(M) the “support of T”. Recall that a map Λ from a subset E

of L1
+(M) to L1

+(N) is said to be orthogonality preserving if for R, T ∈ E, one has
sR · sT = 0 implies sΛ(R) · sΛ(T ) = 0. (1.1)

Let us recall the following result. The first statement of part (a) is a reformulation of [12, Proposition
A.6] and the second statement follows from [12, Fact 1.3], while part (b) is very well-known.

Lemma 1.3. Let R, T ∈ L1
+(M).

(a) Suppose that p ∈ (1,∞). Then sR · sT = 0 if and only if ∥R
1
p + T

1
p ∥pp = ∥R

1
p ∥pp + ∥T

1
p ∥pp. In this

case, one also has ∥R
1
p − T

1
p ∥pp = ∥R

1
p ∥pp + ∥T

1
p ∥pp.

(b) sR · sT = 0 if and only if ∥R− T∥1 = ∥R∥1 + ∥T∥1.

From this, one sees that if a map Λ : L1
+(M) → L1

+(N) satisfies ∥Λ(R)∥ = ∥R∥ and Λ(R + T ) =
Λ(R) + Λ(T ) for any R, T ∈ L1

+(M) with sR · sT = 0, then Λ is orthogonality preserving.

Our second lemma is well-known, but since we cannot find the exact reference in the literature, we
give their justification here.

Lemma 1.4. (a) S 7→ S1/p is a homeomorphism from L1
+(M) onto Lp

+(M), for any p ∈ (1,∞).

(b) Let q ∈ (0,∞). If R, T ∈ L1(M)+ with sRsT = 0, then (R+ T )q = Rq + T q.

Proof. (a) It follows from [13, Lemma 2.1] that
∥R1/p − T 1/p∥pp ≤ ∥R− T∥1 (R, T ∈ L1(M)+).

On the other hand, it follows from [13, Corollary 2.3] that

∥R− T∥1 ≤ 3p∥R1/p − T 1/p∥p max
{
∥R1/p∥p, ∥T 1/p∥p

}p−1
(R, T ∈ L1

+(M)).

These give the required statement.

(b) Let KR := sR(L
2(R;H)) and KT := sT (L

2(R;H)). Let K0 be the orthogonal complement of KR+KT .
As R = sRRsR, the restriction, R1, of R on KR is a densely defined positive self-adjoint operator.
The same is true for the restriction, T1, of T on KT . One may then identify R, T and R + T with
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R1 ⊕ 0KT
⊕ 0K0 , 0KR

⊕ T1 ⊕ 0K0 and R1 ⊕ T1 ⊕ 0K0 , respectively. Thus, Rq + T q can be identified with
the closed operator Rq

1 ⊕ T q
1 ⊕ 0K0 , which clearly coincides with (R+ T )q. �

2. Positive bells as a complete Jordan invariant

If X is a normed space and E ⊆ X is a subset, we set
Eβ

α := {x ∈ E : α ≤ ∥x∥ ≤ β} for any α ≤ β ̸= 0 in R+.

For simplicity, we may use ∥ · ∥ instead of ∥ · ∥p to denote the norm on Lp(M), if no confusion arises.

We say that a projection r ∈ P(M) is σ-finite if there exists R ∈ L1
+(M) such that r = sR. The

set of all σ-finite projections in M will be denoted by P0(M). It is well-known that for any projection
p ∈ P(M) is the supremum in P(M) of the collection {r ∈ P0(M) : r ≤ p}.

Proposition 2.1. Let α, β ∈ R+ with α < β. If there is a metric preserving bijection Φ : L1
+(M)βα →

L1
+(N)βα, then M and N are Jordan ∗-isomorphic.

Proof. Let L1
β(M) := {R ∈ L1

+(M)ββ : sR ̸= 1}. For any R ∈ L1
+(M)βα, it is easy to see, using Lemma

1.3(b), that R ∈ L1
β(M) if and only if there exists T ∈ L1

+(M)βα such that ∥R − T∥ = 2β. In this case,
T ∈ L1

β(M) and sR · sT = 0. Hence, by considering Φ and Φ−1, one has Φ(L1
β(M)) = L1

β(N).

Let us formally define a map
∆ : P0(M) \ {1} → P0(N) \ {1}

by ∆(p) := sΦ(R), where R ∈ L1
β(M) satisfying sR = p. To show that ∆ is well-defined, let us first

consider another element R′ ∈ L1
β(M) with sR′ = p. Pick any projection q ∈ P0(N) and any operator

T ∈ L1
β(M) such that sΦ(R) · q = 0 and sΦ(T ) = q. Since

∥R− T∥ = ∥Φ(R)− Φ(T )∥ = 2β,

we know from Lemma 1.3(b) that p · sT = 0 and hence we have ∥Φ(R′)−Φ(T )∥ = ∥R′−T∥ = 2β, which
gives sΦ(R′) · q = 0. From this, we conclude that sΦ(R′) = sΦ(R), and ∆ is well-defined. Suppose that
p1, p2 ∈ P0(M) \ {1} such that p1 · p2 = 0. If R1, R2 ∈ L1

β(M) satisfying sRi = pi for i = 1, 2, then
∥Φ(R1)− Φ(R2)∥ = 2β, which gives ∆(p1) ·∆(p2) = 0.

Now, we extend ∆ to ∆̄ : P(M) → P(N) by setting ∆̄(1) = 1 and ∆̄(p) to be the supremum in P(N)
of the {∆(p′) : p′ ∈ P0(N); p′ ≤ p}. Employing the argument as in [9], one can show that ∆̄ is an
orthoisomorphism in the sense of Dye (see [6]), and the conclusion follows from a corollary of the main
result of [6] (more precisely, see [9, Proposition 2.2]). �

Proposition 2.2. Let α, β ∈ R+ with α < β. If there is a metric preserving bijection Φ : L∞
+ (M)βα →

L∞
+ (N)βα, then M and N are Jordan ∗-isomorphic.

Proof. As in the Section 1, we identify L∞
+ (M)βα and L∞

+ (N)βα with (M+)
β
α and (N+)

β
α respectively. For

any y ∈ Nsa and r > 0, we consider DN (y, r) to be the open ball with centre y and radius r. If in case
y ∈ (N+)

β
α, we set

Dα,β
N (y, r) := DN (y, r) ∩ (N+)

β
α.

For any x ∈ (N+)
β
0 , by considering the unital C∗-subalgebra of N generated by x, one can see easily

that x belongs to the closed ball B with centre β/2 ∈ N+ and radius β/2. Conversely, by considering
unital C∗-subalgebras of N generated by single elements in B, one sees that (N+)

β
0 = B. This shows

that DN (β/2, β/2) is dense in (N+)
β
0 . Let us put

O := DN (β/2, β/2) \ (N+)
α
0 , B1 := {y ∈ Nsa : ∥y − β/2∥ = β/2; ∥y∥ > α} and B2 := (N+)

α
α.
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Clearly, O is open in Nsa and (N+)
β
α = O ∪B1 ∪B2.

Consider b ∈ (N+)
β
α \ O and r > 0. If b ∈ B1 and r is small enough, then

Dα,β
N (b, r) = DN (b, r) ∩ (N+)

β
0

and we know from the density of DN (β/2, β/2) in (N+)
β
0 that Dα,β

N (b, r) ∩ O ̸= ∅. Suppose that b ∈ B2

and r < β − α. Then (1 + r/2α)b ∈ (N+)
β
α. If (1 + r/2α)b /∈ O, then (1 + r/2α)b ∈ B1 and the above

tells us that Dα,β
N

(
(1 + r/2α)b, r′

)
∩ O ̸= ∅ when r′ is small enough, and hence Dα,β

N (b, r) ∩ O ̸= ∅. The
above shows that O is dense in (N+)

β
α.

Now, we want to show that c ∈ (M+)
β
α and t > 0 such that DM (c, t) ⊆ (M+)

β
α and Φ

(
DM (c, t)

)
is

an open subset of Nsa. Indeed, suppose that a is an element in the interior of (M+)
β
α and s > 0. If

Φ(a) ∈ O, then we can take c = a and t = s. If Φ(a) /∈ O, then by the density of O in (N+)
β
α, there exist

b ∈ O ∩Dα,β
N (Φ(a), s). There is t > 0 with

DN (b, t) ⊆ Dα,β
N (Φ(a), s).

Then DM

(
Φ−1(b), t

)
⊆ (M+)

β
α and Φ

(
DM (Φ−1(b), t)

)
= DN (b, t). Consequently, [3, Theorem 14.1] tells

us that Φ|DM (c,t) extends to bijective isometry from Msa onto Nsa, and [7, Theorem 2] gives the required
conclusion. �

For the case of p ∈ (1,∞), we need two lemmas. The following lemma is probably known. In fact,
it was first proved by Baker in [2] that any metric preserving map from a normed space to a strictly
convex normed space is automatically affine. Our generalization here use a different proof than the one
in [2], which seemingly cannot be extended to obtain our lemma.

Lemma 2.3. Let X and Y be two real normed spaces with Y being strictly convex. Suppose that E is a
(not necessarily convex) subset of X and f : E → Y is a metric preserving map. Then for any x, y ∈ E,
one has

f(sx+ (1− s)y) = sf(x) + (1− s)f(y) whenever s ∈ (0, 1) satisfying sx+ (1− s)y ∈ E. (2.1)

Proof. Notice that∥∥(f(x)− f(y)
)
−
(
f(sx+ (1− s)y)− f(y)

)∥∥ = ∥x− (sx+ (1− s)y)∥ = (1− s) · ∥x− y∥
= ∥f(x)− f(y)∥ − ∥f(sx+ (1− s)y)− f(y)∥ (2.2)

Hence, the strict convexity of Y produces δ ∈ R+ such that(
f(x)− f(y)

)
−
(
f(sx+ (1− s)y)− f(y)

)
= δ

(
f(sx+ (1− s)y)− f(y)

)
.

It now follows again from (2.2) that

(1− s) · ∥x− y∥ =
∥∥(f(x)− f(y)

)
−

(
f(sx+ (1− s)y)− f(y)

)∥∥ = δs · ∥x− y∥,

and so δ = (1− s)/s. Hence, f(sx+ (1− s)y) = sf(x) + (1− s)f(y) as required. �

Note that if E is a subset of the unit sphere of a strictly convex normed space X, then any map from
E to any normed space Y will satisfy (2.1).

Our second lemma is also easy, but again, we present its full argument here.

Lemma 2.4. Let X and Y be two normed spaces, and let K ⊆ X and L ⊆ Y be proper cones. If
β ∈ R+ \ {0} and f : Kβ

0 → Lβ
0 is an affine map (not necessarily surjective) with f(0) = 0, then f

extends uniquely to an affine map f̄ from K onto L. If, in addition, f preserves metric, then so is f̄ .
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Proof. For each m ∈ N, we set Km := Kmβ
0 as well as Lm := Lmβ

0 , and we define fm : Km → Lm by

fm(z) := mf(z/m) (z ∈ Km).

As f is affine and f(0) = 0, we know that fm is affine and that fm+1|Km = fm, for any m ∈ N. This
produces an affine map f̄ : K → L such that f̄(z) = fm(z) whenever z ∈ Km for some m ∈ N. Clearly,
there exist at more one affine map extending f . Furthermore, if we assume that f is metric preserving,
then so is fm and hence f̄ preserves metric. �

Now, we have the following extension of [10, Theorem 3.1], in the case when p ∈ (1,∞). Let us first
recall the well-known fact that Lp

sa(M) is strictly convex (see e.g., Section 5 of [11]).

Proposition 2.5. Let p ∈ (1,∞) and α, β ∈ R+ with α < β. If there is a metric preserving bijection
Φ : Lp

+(M)βα → Lp
+(N)βα, then M and N are Jordan ∗-isomorphic.

Proof. If M ∼= C, then Lp
+(M)βα is a closed and bounded interval. As Φ is a metric preserving bijection,

Lp
+(N)βα is also a closed and bounded interval, which implies that N ∼= C. The corresponding conclusion

holds when N ∼= C. Therefore, we only consider the cases when M � C and N � C.

Let us first show that

Φ(Lp
+(M)ββ) = Lp

+(N)ββ and Φ(Lp
+(M)αα) = Lp

+(N)αα. (2.3)

In fact, consider an arbitrary element S
1
p ∈ Lp

+(M)ββ . If ∥Φ(S
1
p )∥ ∈ (α, β), then Φ(S

1
p ) is the mid-

point of two distinct elements in Lp
+(N)βα and by Lemma 2.3 (when applying to Φ−1), the element

S
1
p ∈ Lp

+(M)ββ is also the mid-point of two distinct elements in Lp
+(M)βα, which is impossible (as Lp

sa(M)

is strictly convex). Consequently, Φ(Lp
+(M)ββ) ⊆ Lp

+(N)αα ∪ Lp
+(N)ββ . Moreover, since Lp

+(M)ββ is path-
connected and Φ is continuous, one sees that

either Φ(Lp
+(M)ββ) ⊆ Lp

+(N)αα or Φ(Lp
+(M)ββ) ⊆ Lp

+(N)ββ .

If α = 0, then Lp
+(N)αα contains only one point, and hence Φ(Lp

+(M)ββ) * Lp
+(N)αα. Suppose that α > 0,

and consider two distinct elements S
1
p , T

1
p ∈ Lp

+(M)ββ which are so close to each other that the line
segment joining S

1
p and T

1
p lies inside Lp

+(M)βα. Then Lemma 2.3 tells us that the line segment joining
Φ(S

1
p ) and Φ(T

1
p ) lies inside Lp

+(N)βα, which forbids both Φ(S
1
p ) and Φ(T

1
p ) belonging to Lp

+(N)αα
(because of the strict convexity of Lp

sa(N)). This means that Φ(Lp
+(M)ββ) ⊆ Lp

+(N)ββ . By considering
Φ−1, we obtain the required equality Φ(Lp

+(M)ββ) = Lp
+(N)ββ .

Secondly, in order to establish Φ(Lp
+(M)αα) = Lp

+(N)αα, it suffices to show that Φ(Lp
+(M)αα) ⊆ Lp

+(N)αα
(again, thanks to the metric preserving property of Φ−1). Suppose on the contrary that there exists
T

1
p ∈ Lp

+(M)αα with ∥Φ(T
1
p )∥ ∈ (α, β) (observe that ∥Φ(T

1
p )∥ ̸= β since Φ(Lp

+(M)ββ) = Lp
+(N)ββ). Then∥∥∥Φ(T 1

p ) − βΦ(T
1
p )

∥Φ(T
1
p )∥

∥∥∥ < β − α. However, for any R
1
p ∈ Lp

+(M)ββ , one has ∥T
1
p − R

1
p ∥ ≥ β − α, and this

contradicts Φ(Lp
+(M)ββ) = Lp

+(N)ββ (as Φ preserves metric). Consequently, Relation (2.3) is verified.

Next, we define Φ̄ : Lp
+(M) → Lp

+(N) by setting Φ̄(0) = 0 as well as

Φ̄
(
R

1
p
)
:= ∥R

1
p ∥Φ

(
βR

1
p /∥R

1
p ∥

)
/β (R

1
p ∈ Lp

+(M) \ {0}). (2.4)

We want to show that Φ̄ is a metric preserving map that extends Φ.

Indeed, if α = 0, then by Lemma 2.3, we know that Φ is an affine map on the convex subset Lp
+(M)10,

and the requirement of Φ̄ follows from Lemma 2.4 (notice that Φ(0) = 0 because Lp
+(M)00 = {0}).
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Suppose that α > 0. Pick an arbitrary element S
1
p ∈ Lp

+(M)ββ . It follows from

∥Φ(S
1
p )∥ = β = (β − α) + α = ∥Φ(S

1
p )− Φ(αS

1
p /β)∥+ ∥Φ(αS

1
p /β)∥

and the strict convexity of Lp
sa(N) that Φ(S

1
p )−Φ(αS

1
p /β) = δΦ(αS

1
p /β) for some δ ∈ R+. From this,

and Relation (2.3), one has Φ(αS
1
p /β) = αΦ(S

1
p )/β. This, together with Lemma 2.3, ensures that

Φ(γS
1
p ) = γΦ(S

1
p ) (γ ∈ [α/β, 1];S

1
p ∈ Lp

+(M)ββ), (2.5)

and hence Φ̄ extends Φ.

Consider k ∈ Z. We set
Lp
+(M)k := Lp

+(M)
βk+1/αk

βk/αk−1 ,

Lp
+(N)k := Lp

+(N)
βk+1/αk

βk/αk−1 and Φk := Φ̄|Lp
+(M)k . It follows from (2.4) and (2.5) that

Φk(T
1
p ) = βkΦ(αkT

1
p /βk)/αk (T

1
p ∈ Lp

+(M)k).

Thus, the metric preserving property of Φ implies that Φk preserves metric.

Fix arbitrary distinct elements R, T ∈ L1
+(M) \ {0} with ∥R

1
p ∥ ≤ ∥T

1
p ∥. Notice that the assignment

ν : s 7→ ∥sR
1
p + (1− s)T

1
p ∥

is a continuous map from [0, 1] to R+. There exist k1 ≤ k2 ∈ Z such that

βk1/αk1−1 < ∥R
1
p ∥ ≤ βk1+1/αk1 and βk2/αk2−1 ≤ ∥T

1
p ∥ < βk2+1/αk2 .

If k1 = k2, then R
1
p , T

1
p ∈ Lp

+(M)k1
and we have ∥Φ̄(R

1
p )−Φ̄(T

1
p )∥ = ∥R

1
p −T

1
p ∥. Assume that k1 < k2.

One can find s1, . . . sn ∈ (0, 1) such that s1 < s2 < · · · < sk2−k1
and that ν(si) = βk1+i/αk1+i−1. Denote

S
1
p

0 := R
1
p , S

1
p

k2−k1+1 := T
1
p and S

1
p

i := siR
1
p + (1− si)T

1
p (i = 1, . . . , k2 − k1).

Notice that S
1
p

i , S
1
p

i+1 ∈ Lp
+(M)k1+i (i = 0, 1, . . . , k2 − k1), we know that

∥Φ̄(S
1
p

i )− Φ̄(S
1
p

i+1)∥ = ∥Φk1+i(S
1
p

i )− Φk1+i(S
1
p

i+1)∥ = ∥S
1
p

i − S
1
p

i+1∥.

Furthermore, since

∥(sR
1
p + (1− s)T

1
p )− (s′R

1
p + (1− s′)T

1
p )∥ = (s′ − s)∥R

1
p − T

1
p ∥ whenever s ≤ s′,

we see that
∥S

1
p

0 − S
1
p

1 ∥+ · · ·+ ∥S
1
p
n − S

1
p

n+1∥ = ∥R
1
p − T

1
p ∥.

Thus,

∥Φ̄(R
1
p )− Φ̄(T

1
p )∥ ≤ ∥Φ̄(S

1
p

0 )− Φ̄(S
1
p

1 )∥+ · · ·+ ∥Φ̄(S
1
p
n )− Φ̄(S

1
p

n+1)∥ = ∥R
1
p − T

1
p ∥.

Furthermore, it follows the definition of Φ̄ that ∥Φ̄(sR
1
p )∥ = ∥sR

1
p ∥. From these, we conclude that Φ̄ is

contractive. By considering Φ̄−1, we know that Φ̄ : Lp
+(M) → Lp

+(N) is a metric preserving bijection
extending Φ, as claimed.

Now, let us define a bijection Λ : L1
+(M)11 → L1

+(N)11 by

Λ(S) :=
(
Φ(S

1
p )
)p

(S ∈ L1
+(M)11). (2.6)

Pick arbitrary elements R, T ∈ L1
+(M)11 with sR · sT = 0. Lemma 1.3(a) gives

∥∥R 1
p + T

1
p

∥∥p = 2. As
Φ̄ is metric preserving, it follows from Lemma 2.3 that

∥Λ(R)
1
p + Λ(T )

1
p ∥ = ∥Φ̄(R

1
p + T

1
p )∥ = 2.
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It follows again from Lemma 1.3(a) that sΛ(R) · sΛ(T ) = 0. By considering Φ−1, we know that Λ is
“biorthogonality preserving” in the sense of [9], and the required conclusion follows from [9, Theorem
3.2(a)]. �

The proof above can be generalized to the following statement.

Remark 2.6. Let X and Y be strictly convex normed spaces, and K ⊆ X and L ⊆ Y be (not necessarily
proper) cones. If α, β ∈ R+ with α < β, then a map f : Kβ

α → Lβ
α extends to a metric preserving

surjection from K to L if and only if f is a metric preserving surjection.

In fact, as in the proof of Proposition 2.5, for each k ∈ Z, we set Kk := K
βk+1/αk

βk/αk−1 and Lk := L
βk+1/αk

βk/αk−1 .
The argument of Proposition 2.5 implies that

f(γx) = γf(x) (γ ∈ [α/β, 1];x ∈ Kβ
β ). (2.7)

This enable us to define a map f̄ : K \ {0} → L \ {0} satisfy

f̄(x) = βkf(αkx/βk)/αk (x ∈ Kk; k ∈ Z).

Furthermore, using the argument of Proposition 2.5, for every x, y ∈ K \ {0}, there exists k1 ≤ k2 ∈ Z
with x ∈ Kk1

as well as y ∈ Kk2
, and one can find s0 < · · · < sk2−k1+1 with s0 = 0 and sk2−k1+1 = 1

such that six+ (1− si)y and si+1x+ (1− si+1)y belongs to the same Kki
. From this, we know that f̄

is metric preserving, and it extends to a metric preserving bijection from K to L if we set f̄(0) = 0.

The above applies to the case when K = X and L = Y . In particular, we have the following, because
of the main result in [15].

Corollary 2.7. Let p ∈ (1,∞) \ {2} and α, β ∈ R+ with α < β. If Φ : Lp(M)βα → Lp(N)βα is a metric
preserving bijection, then there is a Jordan ∗-isomorphism Θ : N → M satisfying Φ(R

1
p ) = Θ∗(R)

1
p

(R
1
p ∈ Lp

+(M)βα).

Notice that one can also use (2.7) (for X = Lp(M) = K and Y = Lp(N) = L) as well as [3, Theorem
14.1] to get a weak conclusion as in Proposition 2.5. Note, however, that such argument cannot be
applied to Proposition 2.5 in general; for example, Lp

+([0, 1]) cannot contain any interior point.

3. Metric preserving maps between positive annulus

In this section, we show that one can obtain a stronger conclusion than that of Theorem 3.5 in the
case when M satisfies a property called EP1, as introduced by D. Sherman in [16]. In fact, the notion
of EPp (for p ∈ [1,∞)) in [16] is an extension of (EP ) as considered by K. Watanabe in [20], which was
stated in terms of M∗,+.

Definition 3.1. Let M be a von Neumann algebra.

(a) For a normed space X, a map χ : L1
+(M)11 → X is said to be orthogonally affine if for every s ∈ (0, 1),

χ(sR+ (1− s)T ) = sχ(R) + (1− s)χ(T ) whenever R, T ∈ L1
+(M)11 satisfying sR · sT = 0.

(b) M is said to have EP1 if any norm continuous orthogonally affine function κ : L1
+(M)11 → [0, 1] is

actually affine.

Remark 3.2. (a) Our definition of EP1 is the same as the one in [16]. In fact, suppose that κ : L1
+(M)11 →

[0, 1] is a norm continuous orthogonally affine function. We define ρ : L1
+(M) → R+ by

ρ(T ) := ∥T∥κ(T/∥T∥) (T ∈ L1
+(M) \ {0}).
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Since ∥sR + (1 − s)T∥ = s∥R∥ + (1 − s)∥T∥ for any R, T ∈ L1
+(M), it is not hard to check that ρ will

satisfy the four conditions in [16, Definition 4.1] for C = 1. Conversely, if a function ρ : L1
+(M) → R+

satisfies the four conditions in [16, Definition 4.1], and we define κ : L1
+(M)11 → [0, 1] by

κ(T ) := ρ(T )/C (T ∈ L1
+(M)11),

then κ is a norm continuous orthogonally affine map.

(b) It was shown in [16, Theorem 1.2] that all semifinite algebras without type I2 summand, all hyperfinite
algebras without type I2 summand as well as all type III0 factors with separable preduals have EP1.
We will recall more information from [16] in the Appendix.

Lemma 3.3. Suppoose that M has EP1. Let Φ : L1
+(M)11 → Lp

+(N)11 be a norm continuous orthogonally
affine map (not assumed to be surjective). Then Φ is an affine map.

Proof. Fix an arbitrary element f ∈ L1(N)∗+ with ∥f∥ ≤ 1. Consider the map g : Lp
+(M)11 → [0, 1] given

by g(R) := f(Φ(R)). Clearly, g is a norm-continuous orthogonally affine function. By the assumption g
is affine, and hence Φ is affine (as f is arbitrary chosen). �

As said in [16], the von Neumann algebra M2(C) does not have EP1. In fact, Lemma 3.3 does not
hold for M = M2(C), as shown in the following.

Example 3.4. Recall that there is a metric preserve affine bijection from L1
+(M2(C))11 onto the closed

unit ball B of R3. The origin of B is the normalized trace on M2(C), and elements in the open unit ball
are all with the same support 1. Furthermore, if R, T ∈ L1

+(M2(C))11 with sRsT = 0, then R and T are
in the unit sphere and R is the opposite of T , i.e. the line joining R and T passes through the origin.

Now, consider a non-metric preserving homeomorphism Γ from the unit sphere S to itself such that
whenever R is the opposite of T , then Γ(R) is the opposite of Γ(T ). Consider Φ : B → B to be the map
define by the following rule: if S = sR+(1− s)T , where s ∈ (0, 1) where R ∈ S is the opposite of T ∈ S,
then Φ(S) = sΓ(R)+(1−s)Γ(T ). It is easy to see that Φ is a continuous orthogonally affine map, but it
cannot be affine (since continuous affine bijections between normal state spaces are defined by a Jordan
∗-isomorphism of the underlying algebras and hence have to be metric preserving).

Theorem 3.5. Let p ∈ (1,∞), and let M and N be von Neumann algebras such that M has EP1

and M � C. Suppose that α, β ∈ R+ with α < β and Φ : Lp
+(M)βα → Lp

+(N)βα is a metric preserving
surjection. There is a Jordan ∗-isomorphism Θ : N → M satisfying Φ(R

1
p ) = Θ∗(R)

1
p (R

1
p ∈ Lp

+(M)βα).

Proof. As in the proof of Proposition 2.5, the map Φ extends to a metric preserving affine bijection
Φ̄ : Lp

+(M) → Lp
+(N). Since Φ̄(0) = 0, we know that Φ̄ restricts to a bijection from Lp

+(M)11 onto
Lp
+(N)11. Let Λ : L1

+(M)11 → L1
+(N)11 be the bijection as defined in (2.6).

Suppose that s ∈ (0, 1) and R, T ∈ L1
+(M)11 satisfying sR · sT = 0. It follows from Lemma 1.4(b) that

Λ(sR+ (1− s)T ) = Φ̄
(
(sR+ (1− s)T )

1
p
)p

= Φ̄
(
s

1
pR

1
p + (1− s)

1
pT

1
p
)p

=
(
(s

1
p + (1− s)

1
p )Φ̄

( s
1
pR

1
p

s
1
p + (1− s)

1
p

+
(1− s)

1
pT

1
p

s
1
p + (1− s)

1
p

))p

=
(
s

1
p Φ̄(R

1
p ) + (1− s)

1
p Φ̄(T

1
p )
)p

= sΛ(R) + (1− s)Λ(T ).

In other words, Λ is orthogonally affine.

By Lemma 1.4(a), the bijection Λ is a homeomorphism. Moreover, it follows from Lemma 3.3 that
Λ is affine. Thus, [8, Theorem 4.5] gives a Jordan ∗-isomorphism Θ : N → M such that for every
T ∈ L1

+(M)11, one has Λ(T ) = Θ∗(T ), or equivalently, Φ̄(T
1
p ) = Θ∗(T )

1
p . �
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The above settles the last question in [10] in the case when p ∈ (1,∞), with the extra assumption
that M has EP1. In particular, this applies to the case when M is a semifinite algebra with no type I2
summand and when M is a hyperfinite algebra without type I2 summand.

The strong form as in Theorem 3.5 means that Φ is “typical”, which was defined in [16] for map
from L1

+(M) to L1
+(N). Since the definition for typical map does not require surjectivity, it may worth

looking at the case when the map Φ is not assumed to be surjective. We will only consider the case when
α = 0 in the remark below. Notice that the main part of the extra argument required in the following
remark was already given in [16]. Therefore, we do not regard it as a new result, but only state it here
as an information to the readers.

Remark 3.6. Let p ∈ (1,∞), and let M and N be von Neumann algebras such that M � C and has
EP1. Suppose that Ψ : Lp

+(M)10 → Lp
+(N)10 is a metric preserving map (not assume to be surjective)

such that Ψ(0) = 0. Then Ψ is typical in the sense of [16]

In fact, by Lemmas 2.3 and 2.4, we know that Ψ extends to an affine metric preserving map Ψ̄ :
Lp
+(M) → Lp

+(N) (not necessarily surjective). Let Λ : L1
+(M)11 → L1

+(N)11 be the (not necessarily
surjective) map defined in a similar way as (2.6). Then the argument of Theorem 3.5 tells us that Λ

is orthogonally affine, and Lemma 3.3 gives the affineness of Λ. Furthermore, we define Λ̃ : L1
sa(M) →

L1
sa(N) by Λ̃(T ) = Λ̄(T+) − Λ̄(T−), where Λ̄(S) := ∥S∥Λ(S/∥S∥) when S ̸= 0. For any y ∈ Nsa, the

function y ◦ Λ is continuous and affine on L1
+(M)11 and hence there exists Λ∗(y) ∈ Msa such that

R(Λ∗(y)) = Λ(R)(y) (R ∈ L1
+(M)11)

(see e.g. [1, Theorem 11.5]), which gives Λ̃(T )(y) = T (Λ∗(y)) (T ∈ L1
sa(M)). Consequently, Λ̃ is real

linear and extends to a bounded complex linear map, again denoted by Λ̃, from L1(M) to L1(N).
Moreover, one can use Lemma 1.3(a) to show that Λ is orthogonality preserving (see (1.1)), and hence
Λ̃ is an “o.d. homomorphism” in the sense of [4]. Now, it follows from the argument in the last two
paragraphs preceding [16, Theorem 4.3] that Ψ is typical.

Appendix A. Algebras with EP1

In [16, Theorem 1.2], some algebras with EP1 were listed, and their proofs were given in the main
body of [16] (in fact, the more general case of EPp was considered there). In particular, it was shown
that approximately semifinite algebra with no type I2 summand has EP1. However, the proof for this
fact seems to scatter in [16] and is not easy to trace. For the benefit of the readers, we collect some
facts from [16] that leads to the above statement. There is no new result nor new proof given in this
appendix.

First of all, one can find in [16, Theorem 5.3] and its proof the following lemma.

Lemma A.1. Let M be a von Neumann algebras.

(a) If M is finite and has no type I2 summand, then M has EP1.

(b) If there is an increasing net {Mi}i∈I of von Neumann subalgebras (of M) having EP1 with
∪

i∈I Mi

being σ(M,M∗)-dense in M , and for each i ∈ I, there is a normal conditional expectation Ei : M → Mi

such that Ei(1) is the identity of Mi and that Ei ◦ Ej = Ei whenever i ≤ j, then M has EP1.

Suppose now that M is a semifinite algebra without type I2 summand. Let M1 and M2 be the type
I and the type II parts of M respectively. Clearly, qM2q does not have any type I2 summand, for any
q ∈ P(M2). On the other hand, M1 can be decomposed as

⊕
α∈Λ L∞(Xα,L(Hα)) with dimHα ̸= 2 for

every α ∈ Λ. Thus, there exists an increasing net {pi}i∈I in the set
{p ∈ P(M) : pMp has a faithful tracial state and does not have any type I2 summand}
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that σ(M,M∗)-converges to 1. This, together with Lemma A.1, gives [16, Theorem 5.3(b)], which we
recall in the following.

Proposition A.2. If M is a semifinite von Neumann algebra with no type I2 summand, then M has
EP1.

Our next lemma follows readily from the definition of EP1, because all elements in L1
+(M)11 have

disjoint supports from elements in L1
+(N)11.

Lemma A.3. If M and N are two von Neumann algebras with EP1, then M ⊕N has EP1.

Let us now recall the definition of approximately semifinite algebras.

Definition A.4. A von Neumann algebra M is said to be approximately semifinite if there is a net
{Ei}i∈I of normal conditional expectations from M onto an increasing net {Mi}i∈I of semifinite von
Neumann subalgebras, with Ei ◦ Ej = Ei and Ei(1) being the identity of Mi for any i ≤ j in I, such
that

∪
i∈I Mi is σ(M,M∗)-dense in M . In this case, {(Mi, Ei)}i∈I is called a semifinite paving for M .

The following fact is also clear. Indeed, if {(Mi, Ei)}i∈I is a semifinite paving for M , and P : M → N
is the canonical projection, then {(P (Mi), P ◦ Ei|N )}i∈I is a semifinite paving for N .

Lemma A.5. Suppose that M is approximately semifinite. If M = L⊕N , then N is also approximately
semifinite.

Proposition A.6. If M is an approximately semifinite von Neumann algebra with no type I2 summand,
then M has EP1.

In fact, we consider L and N to be the finite part and the properly infinite part of M , respectively. It
follows from Lemma A.1(a) that L has EP1. Moreover, by Lemma A.5, the algebra N is approximately
semifinite. If {(Ni, Ei)}i∈I is a semifinite paving for N , then {(Ni ⊗M3(C), Ei ⊗ id)}i∈I is a semifinite
paving for N ⊗M3(C) ∼= N (because N is properly infinite). Since the semifinite algebra Ni ⊗M3(C)
can never have a type I2 summand, we know from Proposition A.2 and Lemma A.1(b) that N has EP1.
Now, it follows from Lemma A.3 that M has EP1.
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