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Abstract. Let G be a locally compact group. Let A be any one of the (complex) Banach algebras:
L1(G), M(G), WAP(G) and LUC(G), consisting of integrable functions, regular Borel complex measu-
res, weakly almost periodic functions, and bounded left uniformly continuous functions, respectively,
on G. We show that the metric semigroup A1

+ := {f ∈ A : f ≥ 0 and ∥f∥ = 1} (the convex structure
is not considered) is a complete invariant for G.

1. Introduction

In this paper, we find several new and simple complete invariants for locally compact groups.

Let G and H be locally compact groups. Wendel showed in [24] (respectively, Johnson showed
in [10]) that G and H are isomorphic if and only if there exists an isometric algebra isomorphism
Φ : L1(G) → L1(H) (respectively, Φ : M(G) → M(H)). Optimistically, as Φ(sf) = sΦ(f), information
in the one dimensional subspace {sf : s ∈ C} is somehow encoded in the element {f}. This leads to a
quest of a “smaller invariant”. As a candidate, however, the unit sphere of L1(G) is not closed under the
convolution product and hence cannot be served as an invariant for G.

On the other hand, Kawada showed in [11] that G and H are isomorphic whenever there is an algebra
isomorphism Ψ : L1(G) → L1(H) satisfying: Ψ(f) ≥ 0 if and only if f ≥ 0. Observe that L1(G)1+, the
positive part of the unit sphere of L1(G), is closed under the convolution product. This suggests us to
consider L1(G)1+ as a candidate of a complete invariant of G.

In this article, we will show that the metric and the semigroup structures of L1(G)1+, or those of
M(G)1+, (note that the convexity is not needed) determines G. This result supplements the above
mentioned results of Wendel [24], Johnson [10] and Kawada [11].

Furthermore, Ghahramani, Lau and Losert ([8]), as well as Lau and McKennon ([13]), showed that
either one of the dual Banach algebras LUC(G)∗ and WAP(G)∗ determines G, too. We will also show
that the positive parts of the unit spheres of LUC(G)∗ and WAP(G)∗ are complete invariants for G.

For a subset S ⊆ E of an ordered Banach space E, we set
S1
+ :=

{
f ∈ S : ∥f∥ = 1; f ≥ 0

}
.

Our main results (namely, Theorems 5 and 6) can be subsumed and simplified in the following statement.
Theorem 1. Two locally compact groups G and H are isomorphic as topological groups if and only if
any one of the following holds

(1) L1(G)1+
∼= L1(H)1+ as metric semigroups;

(2) M(G)1+
∼= M(H)1+ as metric semigroups.

(3) (WAP(G)∗)1+
∼= (WAP(H)∗)1+ as metric semigroups;
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(4) (LUC(G)∗)1+
∼= (LUC(H)∗)1+ as metric semigroups.

We will obtain the above assertions by verifying that those metric preserving semigroup isomorphisms
actually extend to isometric algebra isomorphisms between the whole Banach algebras, and then the
corresponding established results in [10, 11, 24] apply. This task is nontrivial. Although it has been
shown in [19] that metric preserving bijection from the unit sphere of L1(G;R) (the space of real valued
integrable functions) onto that of L1(H;R) extends to a real linear isometry from L1(G;R) onto L1(H;R),
neither this statement nor the argument in [19] can be used in our cases. In fact, on top of elementary
arguments, our proofs also depend on a theorem of Dye from [6] and its applications given in [16], which
are results concerning W ∗-algebras.

2. The proof of the main theorem

Theorem 1 is a consequence of the following result, which should be of independent interest (in
particular, it tells us that the metric structure on the normal state space of a W ∗-algebra encodes its
convex structure, when the algebra is abelian).

Proposition 2. Let M and N be W ∗-algebras with one of them being abelian. If Φ : (M∗)
1
+ → (N∗)

1
+

is a bijection satisfying ∥Φ(f)−Φ(g)∥ = ∥f − g∥ (f, g ∈ M), then there is a ∗-isomorphism Θ : M → N
satisfying Θ−1

∗ |(M∗)1+
= Φ.

Let us first do some preparation for the proof of Proposition 2. In the following, for any subset ∆
of a set X, we denote by χ∆ : X → {0, 1} the characteristic function of ∆. Moreover, for any function
g : X → C, we set supp g to be the support of g; namely,

supp g := {x ∈ X : g(x) ̸= 0}.

Lemma 3. Suppose that (X,Ω, µ) is a measure space and n ∈ N.

(a) Let E ∈ Ω and c > 0 such that 0 < cµ(E) ≤ 1. Suppose that f ∈ L1(µ)+ with supp f ⊆ E such that∫
X
f dµ = cµ(E). Then

f = cχE

if and only if for any ∆ ∈ Ω with ∆ ⊆ E and µ(∆) > 0, there exists g∆ ∈ L1(µ)1+ satisfying suppg∆ ⊆ ∆
and

∥f − g∆∥L1(µ) = 1 + cµ(E)− 2cµ(∆).

(b) Let E1, ..., En ∈ Ω and c1, ..., cn > 0 satisfying
∑n

k=1 ckµ(Ek) = 1 as well as Ei ∩ Ej = ∅ and
µ(Ei) > 0 for any 1 ≤ i ̸= j ≤ n. Consider f ∈ L1(µ)1+ with

∫
El

f dµ = clµ(El) (l = 1, ..., n). Then

f =

n∑
k=1

ckχEk

if and only if for any l ∈ {1, ..., n} and ∆ ∈ Ω with ∆ ⊆ El and µ(∆) > 0, there exists h∆,l ∈ L1(µ)1+
satisfying supp h∆,l ⊆ ∆ and

∥f − h∆,l∥L1(µ) = 2− 2clµ(∆).

Proof: (a) ⇒). This implication is clear if we take g∆ := 1
µ(∆)χ∆.

⇐). For any r > 0, we set
∆r := {x ∈ E : f(x) ≤ r}

Assume on the contrary that f ̸= cχE . Then one can find d ∈ (0, c) with µ(∆d) > 0 (otherwise, f(x) ≥ c
for µ-almost every x ∈ E, which, together with

∫
X
f dµ = cµ(E), will imply f = cχE). Hence, we
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can find e ∈ (0, d] satisfying
∫
∆d

f dµ = eµ(∆d). Suppose g∆d
∈ L1(µ)1+ is as in the statement. Since

supp g∆d
⊆ ∆d, we know that∥∥f − g∆d

∥∥
L1(µ)

=
∥∥f · χE\∆d

∥∥
L1(µ)

+
∥∥g∆d

− f · χ∆d

∥∥
L1(µ)

≥
∫
E\∆d

f dµ+
(
1− eµ(∆d)

)
= 1 + cµ(E)− 2eµ(∆d).

This, together with the hypothesis, tells us that 2cµ(∆d) ≤ 2eµ(∆d), and this contradicts with e < c.

(b) ⇒). This implication is clear if we set h∆,l :=
1

µ(∆)χ∆.

⇐). Fix any l ∈ {1, ..., n} and set fl := χEl
· f . Let ∆ ∈ Ω with ∆ ⊆ El and µ(∆) > 0. Consider

h∆,l ∈ L1(µ)1+ to be the element as in the statement. The equality
∥f − h∆,l∥L1(µ) = ∥f − fl∥L1(µ) + ∥fl − h∆,l∥L1(µ) =

(
1− clµ(El)

)
+ ∥fl − h∆,l∥L1(µ)

implies ∥fl−h∆,l∥L1(µ) = 1+ clµ(El)−2clµ(∆). Thus, we conclude from part (a) that fl = clχEl
. Since∑n

k=1 ckµ(Ek) = 1 and
∫
X
f dµ = 1, we know that f =

∑n
k=1 fk. �

Lemma 4. Let (X,Ω, µ) be a semi-finite measure space. If Λ : L1(µ)1+ → L1(µ)1+ is a bijection satisfying
∥Λ(f)− Λ(g)∥ = ∥f − g∥ and µ

(
supp g \ supp Λ(g)

)
= 0 (f, g ∈ L1(µ)1+), (2.1)

then Λ is the identity map.

Proof: Since the set of positive simple functions with norm one is dense in L1(µ)1+, we only need
to show that Λ

(∑n
k=1 ckχEk

)
=

∑n
k=1 ckχEk

for any positive scalars c1, . . . , cn, and disjoint subsets
E1, ..., En ∈ Ω with µ(Ei) > 0 (i = 1, ...n) satisfying

∑n
k=1 ckµ(Ek) = 1. Let us set f :=

∑n
k=1 ckχEk

and fix an arbitrary integer l ∈ {1, ..., n}. Let us also denote
Λ(f)l := Λ(f) · χEl

and g := χEl
/µ(El).

Then ∥f − g∥L1(µ) = 2− 2clµ(El). By (2.1), we have µ
(
El \ suppΛ(g)

)
= 0, which implies

∥Λ(g)− Λ(f)∥ = ∥Λ(g)− Λ(f)l∥+ ∥Λ(f)− Λ(f)l∥ ≥ 2− 2∥Λ(f)l∥.
Therefore, the first equality of (2.1) implies clµ(El) ≤ ∥Λ(f)l∥. Furthermore, since∑n

k=1
ckµ(Ek) = 1 = ∥Λ(f)∥ =

∑n

k=1
∥Λ(f)k∥,

we conclude that
∫
El

Λ(f) dµ = ∥Λ(f)l∥ = clµ(El) (l = 1, ..., n).

Now, suppose that l is a fixed integer in {1, . . . , n} and ∆ ∈ Ω satisfying ∆ ⊆ El as well as µ(∆) > 0.
If we set h := Λ

(
1

µ(∆)χ∆

)
· χ∆, then the two equalities in Relation (2.1) imply that h = Λ

(
1

µ(∆)χ∆

)
as

elements in L1(H) and that
∥Λ(f)− h∥ =

∥∥Λ(f)− Λ
(
χ∆/µ(∆)

)∥∥ = ∥f − χ∆/µ(∆)∥ = 2− 2clµ(∆).

Therefore, Lemma 3(b) gives the required conclusion Λ(f) = f . �

For a W ∗-algebra M , we denote by P(M) the set of projections. A map Ψ : P(M) → P(N) is called
an orthoisomorphism if for any p, q ∈ P(M), one has Ψ(p) ·Ψ(q) = 0 if and only if p · q = 0.

Proof of Proposition 2: Note that for normal states f and g of a W ∗-algebra with support projections
sf and sg respectively, one has

∥f − g∥ = 2 if and only if sf · sg = 0.

Thus, it follows from [16, Lemma 3.1(a)] that the metric preserving bijection Φ produces an orthoiso-
morphism Φ̌ : P(M) → P(N) such that

Φ̌(sf ) = sΦ(f) (f ∈ (M∗)
1
+).
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By the corollary in [6, p.18], we know that Φ̌ extends to a Jordan ∗-isomorphism Θ : M → N , which
is automatically weak-∗-continuous (see, e.g., [18, Corollary 4.1.23]). Therefore, both M and N are
abelian, and the map Θ is a ∗-isomorphism.

Hence, M = L∞(X,Ω, µ) for a semi-finite measure space (X,Ω, µ) (see, e.g, [18, Proposition 1.18.1]),
and its predual M∗ equals L1(X,Ω, µ). Consider Ψ := Θ−1

∗ |L1(X,Ω,µ)1+
. If we set Λ := Ψ−1 ◦ Φ, then Λ

is a bijection from L1(X,Ω, µ)1+ onto itself satisfying the two relations in (2.1). Consequently, Lemma 4
tells us that Φ = Ψ as required. �

Now, we will give the proof of the parts of Theorem 1 concerning the invariants L1(G)1+ and M(G)1+.
In fact, we have more precise statements for them as follows. In these statements, ∗ is the convolution
product.

Theorem 5. Let G and H be locally compact groups with Haar measures µG and µH that define the
norms on L1(G) and L1(H), respectively.

(a) If Φ : L1(G)1+ → L1(H)1+ is a bijection satisfying Φ(f ∗g) = Φ(f)∗Φ(g) and ∥Φ(f)−Φ(g)∥ = ∥f−g∥
(f, g ∈ L1(G)1+), then there exist a homeomorphic group isomorphism ϕ : H → G and a constant c > 0
such that Φ(f)(t) = cf(ϕ(t)) for every f ∈ L1(G)1+ and µH-almost every t ∈ H.

(b) If Φ : M(G)1+ → M(H)1+ is a bijection satisfying Φ(α ∗ β) = Φ(α) ∗ Φ(β) and ∥Φ(α) − Φ(β)∥ =
∥α − β∥ (α, β ∈ M(G)1+), then there exists a homeomorphic group isomorphism ϕ : H → G such that
Φ(α)(E) = α(ϕ(E)), for any α ∈ M(G) and compact subset E ⊆ G.

Proof. (a) Note that L1(G)1+ and L1(H)1+ are the normal state spaces of the abelian W ∗-algebras
M = L∞(G) and N = L∞(H), respectively. From Proposition 2 we know that Φ can be extended
to a surjective (complex) linear isometry from L1(G) onto L1(H). Now, the multiplicative assumption
on Φ tells us that the extension is a Banach algebra isomorphism. By [24, Theorem 1], one obtains a
homeomorphic group isomorphism ϕ : H → G, a continuous character θ : H → T and a constant c > 0
satisfying

Φ(f)(t) = cθ(t)f
(
ϕ(t)

)
for every f ∈ L1(G)1+ and µH -almost every t ∈ H. As Φ(χE) ∈ L1(G)+ for arbitrary measurable subset
E ⊆ G with µG(E) = 1, we know that θ(t) ≥ 0 (or equivalently, θ(t) = 1) for µH -almost every t ∈ H.
Thus, the continuity of θ tells us that θ(t) = 1 for all t ∈ H.

(b) Note that M(G)1+ and M(H)1+ are the normal state spaces of the abelian W ∗-algebras C0(G)∗∗

and C0(H)∗∗, respectively. Following the same line of argument as in part (a), but with [24, Theorem
1] being replaced by the paragraph following the Corollary in [10], we can find a homeomorphic group
isomorphism ϕ : H → G and a continuous character θ : H → T with

Φ(α)(E) =

∫
ϕ(E)

θ(t)dα(t)

for each α ∈ M(G) and each compact subset E ⊆ G. Since
∫
ϕ(E)

θ(t)dα(t) ≥ 0 for every compact subset
E ⊆ G and any α ∈ M(G)+, we know that θ(t) ≥ 0 for µH -almost all t ∈ H. Consequently, θ(t) = 1 for
all t ∈ H. �

In order to present the other invariants in Theorem 1, we need to recall the notion of “left introverted
subspace” from [5] (see [13] and [17] for more information). A closed subspace F of the C∗-algebra
Cb(G) of bounded continuous functions on a locally compact group G is said to be left introverted if for
any s ∈ G, a ∈ F and f ∈ F ∗, one has

• λs(a) ∈ F ;
• the function f ⊙ a : t 7→ f(λt(a)) belongs to F ;
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here, λs(a)(t) := a(s−1t) (t ∈ G). In this case, F ∗ is a Banach algebra under the product ⊙ defined by
(f ⊙ g)(a) := f(g ⊙ a) (f, g ∈ F ∗; a ∈ F ); see [5] for details.

Suppose that A is a left introverted C∗-subalgebra of Cb(G). It is not hard to check that (A∗)1+ is
closed under ⊙. Hence, (A∗)1+ is a metric semigroup with the product ⊙.

Examples of left introverted C∗-subalgebras of Cb(G) are the space AP(G) of almost periodic con-
tinuous functions, the space WAP(G) of weakly almost periodic continuous functions, and the space
LUC(G) of bounded left uniformly continuous functions. It follows from [20, Theorem 7] that LUC(G)
is the largest left introverted closed subspace of Cb(G). Moreover, WAP(G) (respectively, AP(G)) is the
largest left introverted closed subspaces of Cb(G) with the multiplication, ⊙, on the dual space being
separately (respectively, jointly) weak-∗-continuous on the unit sphere (see Theorems 5.6 and 5.8 of [12]).

Theorem 6. Suppose that A and B are left introverted C∗-subalgebras of Cb(G) and Cb(H) containing
C0(G) and C0(H), respectively. If there is a bijection Φ : (A∗)1+ → (B∗)1+ satisfying

Φ(f ⊙ g) = Φ(f)⊙ Φ(g) and ∥Φ(f)− Φ(g)∥ = ∥f − g∥ (f, g ∈ (A∗)1+),

then G and H are isomorphic as topological groups.

Proof. Note that the double dual spaces A∗∗ and B∗∗ are both abelian W ∗-algebras. The argument is
similar to that in the proof of Theorem 5(a), except that we need to use [13, Theorem 1] instead of [24,
Theorem 1]. �

It is easy to see that the left introverted C∗-algebras WAP(G) and LUC(G) contain C0(G), and the
remaining parts of Theorem 1 follow.

Unlike WAP(G) and LUC(G), the intersection of the C∗-subalgebra AP(G) with C0(G) is {0} unless
G is compact. Thus, the argument for Theorem 6 does not work for AP(G). In fact, we have the
following result. Let us recall some notation. As in [9], the almost periodic compactification (also known
as the Bohr compactification), Gap, of a locally compact group G is the spectrum of the abelian C∗-
algebra AP(G), i.e., the weak-∗-compact set of non-zero multiplicative linear functionals on AP(G). It
is well-known that Gap is a compact topological group under the weak-∗-topology on AP(G)∗.

Corollary 7. Let G and H be locally compact groups. Then (AP(G)∗)1+
∼= (AP(H)∗)1+ as metric

semigroups if and only if Gap ∼= Hap as topological groups.

Proof. It is well-known that AP(G) ∼= C0(G
ap) as ordered Banach algebras (see, e.g., [3, §4]). By

Theorem 5(b) (notice that C0(G
ap)∗ = M(Gap)), if (AP(G)∗)1+

∼= (AP(H)∗)1+, then Gap ∼= Hap. The
converse is obvious. �

Note that the canonical group homomorphism sending G into Gap is not injective, unless AP(G)
separates points of G; e.g., when G is either abelian or compact. In the most extreme situation, Gap

is just a singleton set and such a group G is called minimally almost periodic in [21, 22]. For any
minimally almost periodic group G, the metric semigroup (AP(G)∗)1+ is the trivial one (i.e., contains
only one element).

3. Further questions and investigations

The Fourier algebra A(G) and the Fourier-Stieltjes algebra B(G) can be regarded as dual objects of
L1(G) and M(G), respectively. In fact, in the framework of locally compact quantum groups, A(G)

(respectively, B(G)) equals L1(Ĝ) (respectively, M(Ĝ)), where Ĝ is the “dual quantum group of G”
(which is not a locally compact group unless G is abelian). In [23], Walter showed that A(G) and B(G)
are both complete invariants of G up to opposition. Some related results can be found in [1, 2, 7, 15, 17].
On the other hand, Walter’s result was extended to the quantum case by Daw and Le Pham (see [4]).
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It is natural to ask if A(G)1+ and B(G)1+ are also complete invariants of G up to opposition. Let us
state this as a conjecture as follows.

Conjecture 8. Let G and H be locally compact groups, and Hop be the opposite group of H. If there is a
metric preserving semigroup isomorphism from A(G)1+ (respectively, B(G)1+) onto A(H)1+ (respectively,
B(H)1+), then either G = H or G = Hop.

Recently, we have found a proof for the corresponding result of the above conjecture in the case of
“type I” locally compact quantum groups (see [14]). This can be used to obtain a positive answer for the
above conjecture when G is either abelian or compact (or even when G is a compact quantum group).
We are currently working on the general case.
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