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Abstract. Let Φ : S(M1)→ S(M2) be a bijection (not assumed affine nor continuous)
between the sets of normal states of two quantum systems, modelled on the self-adjoint
parts of von Neumann algebras M1 and M2, respectively. This paper concerns with the
situation when Φ preserves (or partially preserves) one of the following three notions
of “transition probability” on the normal state spaces: the transition probability PU

introduced by Uhlmann, the transition probability PR introduced by Raggio, and an
“asymmetric transition probability” P0 (as introduced in this article).

It is shown that the two systems are isomorphic, i.e. M1 and M2 are Jordan ∗-
isomorphic, if Φ preserves all pairs with zero Uhlmann (respectively, Raggio or asym-
metric) transition probability, in the sense that for any normal states µ and ν, we have

P
(
Φ(µ),Φ(ν)

)
= 0 if and only if P (µ, ν) = 0,

where P stands for PU (respectively, PR or P0). Furthermore, as an extension of
Wigner’s theorem, it is shown that there is a Jordan ∗-isomorphism Θ : M2 → M1

satisfying
Φ = Θ∗|S(M1)

if and only if Φ preserves the “asymmetric transition probability”. This is also equivalent
to Φ preserving the Raggio transition probability. Consequently, if Φ preserves the
Raggio transition probability, it will preserve the Uhlmann transition probability as
well. As another application, the sets of normal states equipped with either the usual
metric, the Bures metric or “the metric induced by the self-dual cone” are complete
Jordan ∗-invariants for the underlying von Neumann algebras.

1. Introduction

Let H1 and H2 be two (complex) Hilbert spaces and T : H1 → H2 be a bijective map
(not assumed linear nor continuous). Wigner’s theorem states that if T preserves the
transition probability, in the sense that

|〈T (ξ), T (η)〉|2 = |〈ξ, η〉|2 (ξ, η ∈ H1),

then there exist a unitary or an anti-unitary S : H1 → H2 and a unimodular complex-
valued function f on H2 such that T (ξ) = f(ξ)S(ξ) (ξ ∈ H1). Uhlhorn’s theorem, as a
generalization of Wigner’s theorem, states that if dimH1 ≥ 3 and T preserves pairs with
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zero transition probability, in the sense that

〈T (ξ), T (η)〉 = 0 if and only if 〈ξ, η〉 = 0 (ξ, η ∈ H1),

then there exist a unitary or an anti-unitary S and a function g : H2 → C\{0} such that
T (ξ) = g(ξ)S(ξ) (ξ ∈ H1).

Let A be a (complex) C∗-algebra and µ, ν ∈ A∗ be pure states of A. The transition
probability between µ and ν is defined to be the quantity

P (µ, ν) := µ(sν),

where sν is the support projection of ν in A∗∗. It is well-known that P (µ, ν) = P (ν, µ),
i.e., µ(sν) = ν(sµ), for pure states µ and ν (see e.g. [4]). Suppose that π : A → L(H) is
a ∗-representation of A and ξ ∈ H. As usual, we denote the vector state of ξ by

(1.1) ωξ(x) := 〈π(x)ξ, ξ〉 (x ∈ A).

In the case when A = L(H) and π : L(H) → L(H) is the default representation, the
functionals ωξ and ωη are pure normal states of L(H) (where ξ, η ∈ H) and we have

P (ωξ, ωη) = |〈ξ, η〉|2.

In this setting, Wigner’s (respectively, Uhlhorn’s) theorem can be interpreted as struc-
tural results concerning bijections between the pure normal state spaces of L(H1) and
L(H2) that preserve (respectively, partially preserve) the transition probability. Several
proofs of Wigner’s theorem were given in the literature (see e.g. [11] or [24, Theorem 1]).
Moreover, Wigner’s theorem and Uhlhorn’s theorem have been extended to the setting
of indefinite inner product spaces by Molnár (see [18, Theorem 1] and [19, Corollary 1]).
Through our study, we will also give another proof for Wigner’s theorem (see Corollary
3.3) that only requires the relation between projections and closed faces (as given in [4,
Theorem 3.35]).

On the other hand, Shultz provided a throughout study of transition probability pre-
serving bijections between pure state spaces of general C∗-algebras. Under some extra
conditions, such maps are induced by the dual maps of ∗-isomorphisms or Jordan ∗-
isomorphisms of the underlying C∗-algebras (see e.g., [3, 4, 24] for details). Related
considerations of maps between pure state spaces of C∗-algebras preserving transition
probability or other properties can also be found in, e.g., [5, 16, 26].

However, the pure state setting of transition probability is inappropriate to be adapted
to the case of general von Neumann algebras. Unlike L(H), a general von Neumann
algebra may not have any pure normal state at all. Therefore, people are looking for
suitable notions of transition probability on the space S(M) of all normal states on a
von Neumann algebra M (see e.g. [2, 6, 22, 25, 29]). Here, by a normal state on M ,
we mean a norm one positive normal linear functional on M , and it is different from the
notion of “physical states” as introduced in [9].

Let R(M) denote the collection of all (unitary equivalence classes of) faithful unital ∗-
representations of a von Neumann algebra M . For any µ, ν ∈ S(M) and (H, π) ∈ R(M),
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we set H(µ) := {ξ ∈ H : ωξ = µ} (could be empty). The quantity

PU(µ, ν) := sup{|〈ξ, η〉|2 : ξ ∈ H(µ), η ∈ H(ν), (H, π) ∈ R(M)}

is well-defined and is called the Uhlmann transition probability of µ and ν ([28]). The
Uhlmann transition probability is related to the so-called Bures distance dB through the
formula

(1.2) dB(µ, ν) :=

√
2− 2

√
PU(µ, ν).

This metric dB is in general different from the usual distance d1 on S(M) as given by

d1(µ, ν) := ‖µ− ν‖.

In [21], Raggio defined another transition probability. Suppose that (M,H,P, J) is
the standard form for M as introduced by Haagerup in [12] (see Section 2 below for a
brief exploration). By [12, Lemma 2.10], for any µ ∈ S(M), there is a unique ξµ ∈ P
satisfying

(1.3) µ = ωξµ .

If µ, ν ∈ S(M), the positive real number

PR(µ, ν) := 〈ξµ, ξν〉

is called the Raggio transition probability of µ and ν. As in the Uhlmann case, the Raggio
transition probability induces a metric d2 on S(M) through the relation

(1.4) d2(µ, ν) :=

√
2− 2

√
PR(µ, ν) (µ, ν ∈ S(M)).

This metric coincides with the one induced from H, namely,

(1.5) d2(µ, ν) = ‖ξµ − ξν‖ (µ, ν ∈ S(M)).

In [21, Corollary 1], the following relation between the Raggio and the Uhlmann transition
probabilities was presented:

(1.6) PU(µ, ν) ≤ PR(µ, ν) ≤ PU(µ, ν)1/2 (µ, ν ∈ S(M)).

In addition, there is a more näıve extension of the “transition probability”:

(1.7) P0(µ, ν) := µ(sν) (µ, ν ∈ S(M)).

Strictly speaking, P0 is not a transition probability, because unlike the two extensions
above, P0 is asymmetric, and P0(µ, ν) = 1 is equivalent to sµ ≤ sν instead of µ = ν
(c.f. [22, p.325]). Nevertheless, abusing the language, we still call P0 the “asymmetric
transition probability”. It seems to be conceptual clear and technically easier to work
with it.

Notice that two normal states µ, ν ∈ S(M) are orthogonal, i.e., having orthogonal
support projections, exactly when they have zero transition probability in any (and
equivalently, all) of the above three settings (see (3.10) in Section 3).
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The main concern of this article is on those bijections from the normal state space of
one von Neumann algebra to that of another preserving either one of the three transition
probabilities above (but not assumed to be affine nor continuous). We obtain two ana-
logues of Wigner’s theorem for bijections between normal state spaces of general quantum
systems (which are modelled on self-adjoint elements of von Neumann algebras). Fur-
thermore, several weak analogues of Uhlhorn’s theorem for normal state spaces of general
quantum systems were also obtained.

More precisely, we verified that the normal state space equipped with either the
Uhlmann transition probability, the Raggio transition probability or the “asymmetric
transition probability”, completely identifies the underlying quantum system (see Theo-
rems 3.2 and 3.4). It is shown that a bijection between normal state spaces preserving
either the “asymmetric transition probability” (as defined in (1.7)) or the Raggio transi-
tion probability was shown to be induced by a Jordan ∗-isomorphism (see Theorems 3.2(b)
and 3.8). Consequently, bijections between normal state spaces preserving the Raggio
transition probability will preserve the Uhlmann transition probability (see Corollary
3.9). The result concerning the “asymmetric transition probability” can be regarded as
an extension of the original Wigner’s theorem because of Corollary 3.3.

This study highlighted the importance of the Raggio and the Uhlmann transition
probability in quantum mechanics and it also established a strong relation between these
two notions of transition probability. On the other hand, the notion of “asymmetric
transition probability” that defined in (1.7) seems to be conceptually clearer and easier
to implement in physics, although it is not strictly speaking a transition probability.
Furthermore, Theorem 3.2(b) implies that the datum of measurements of observables
associated with support projections of states at all other states is sufficient to determine
the quantum system completely.

In developing our main results, we also obtained that several metric spaces associated
with the sets of normal states of von Neumann algebras (without any algebraic structure)
are complete Jordan ∗-invariants for the underlying algebras (see Corollary 3.11).

2. Notations and Preliminaries

Throughout this article, M , M1 and M2 are (complex) von Neumann algebras. We
denote by S(M) and P(M) the normal state space of M and the set of all projections
in M , respectively.

Suppose that H is a (complex) Hilbert space with M being a (unital) von Neumann
subalgebra of L(H). Let J be a conjugate linear isometric involution on H and P ⊆ H
be a cone which is self-dual, in the sense that

P = {η ∈ H : 〈η, ξ〉 ≥ 0, for any ξ ∈ P}.

Then (M,H,P, J) is called the standard form of the von Neumann algebra M (see [12])
if the following conditions are satisfied:
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(1) JMJ = M ′;
(2) JcJ = c∗ for any c ∈ Z(M);
(3) Jξ = ξ for any ξ ∈ P;
(4) aat(P) ⊆ P for any a ∈M ;

here, M ′ is the commutant of M in L(H), Z(M) := M ∩M ′ and at := JaJ . We put

SH := {ξ ∈ H : ‖ξ‖ = 1} and SP := P ∩ SH.

It is easy to check that

(2.1) (M ′,H,P, J)

is the standard form of M ′, and for any p ∈ P(M) ∩ Z(M),

(2.2) (pM, pH, pP, J |pH)

is the standard form of pM .

Remark 2.1. Suppose that {xi}i∈I is a net in M that WOT-converges to x ∈ M , when
considered as operators in L(H). Then, as ωξ(xi) → ωξ(x) (ξ ∈ P) and {ωξ : ξ ∈
P} = M+

∗ , we know that {xi}i∈I weak∗-converges to x. Thus, the WOT on M ⊆ L(H)
coincides with the weak∗-topology. Moreover, if {ei}i∈I is an increasing net in P(M)

with ei ↑ e0 ∈ P(M), then eiyei
w∗−→ e0ye0 (y ∈ M), because ωξ(eiyei) = 〈yeiξ, eiξ〉 →

ωξ(e0ye0) (ξ ∈ P).

The following proposition can be regarded as a result of Dye, because all the ingredients
for its proof are already in [10] (and a similar discussion can be found in [23]), although
it is not explicitly stated in any literature, as far as we know.

Proposition 2.2. (Dye) Let M1 and M2 be two von Neumann algebras. Suppose that
there is an orthoisomorphism Γ : P(M1) → P(M2), i.e. Γ is bijective, and for any
p, q ∈ P(M1),

p q = 0 if and only if Γ(p)Γ(q) = 0.

M1 and M2 are Jordan ∗-isomorphic.

Proof: By [10, Lemma 1], the bijection Γ is an order isomorphism that sends central
projections to central projections. Let ek be the central projection in Mk such that ekMk

is the type I2 part of Mk (k = 1, 2).

We first show that Γ(e1) = e2 and (1 − e1)M1 is Jordan ∗-isomorphic to (1 − e2)M2.
In fact, as Γ is an order isomorphism with Γ(1 − e1) ∈ Z(M2), it restricts to an orthoi-
somorphism from P((1− e1)M1) onto P(Γ(1− e1)M2). The absence of non-zero type I2

summand in (1− e1)M1 and the Corollary in [10, p. 83] ensure that Γ|P((1−e1)M1) extends
to a Jordan ∗-isomorphism from (1−e1)M1 onto Γ(1−e1)M2. Hence, Γ(1−e1)M2 does not
have a non-zero type I2 summand neither. This means Γ(1− e1)e2 = 0, or equivalently,

Γ(1− e1) ≤ 1− e2.

Similarly, Γ−1(1−e2) ≤ 1−e1. By [10, Lemma 1], one has 1−Γ(e1) = Γ(1−e1) = 1−e2.
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It remains to show that e1M1 is Jordan ∗-isomorphic to e2M2. Indeed, because Γ(e1) =
e2, the map Γ restricts to an orthoisomorphism from P(e1M1) onto P(e2M2). Since

Γ
(
Z(e1M1) ∩ P(e1M1)

)
= Z(e2M2) ∩ P(e2M2),

Γ induces an orthoisomorphism from P(Z(e1M1)) onto P(Z(e2M2)), and the Corollary in
[10, p. 83] implies that Z(e1M1) is ∗-isomorphic to Z(e2M2). The conclusion now follows
from the fact that ekMk = Z(ekMk)⊗M2(C) (k = 1, 2). �

Our next proposition is very likely to be known as well. However, since we do not find
it explicitly stated anywhere, we present its proof here.

Proposition 2.3. Let Θ : M2 → M1 be a Jordan ∗-isomorphism. Then Θ∗(S(M1)) =
S(M2) and Θ∗|S(M1) preserves both the Raggio and the Uhlmann transition probabilities.

Proof: By [14, Theorem 10], for k ∈ {1, 2}, there exists a central projection ek ∈
P(Mk) ∩ Z(Mk) such that Θ restricts to a ∗-isomorphism Θi : e2M2 → e1M1 and to a
(complex linear) ∗-anti-isomorphism Θa : f2M2 → f1M1, where fk := 1 − ek (k = 1, 2).
Since all ∗-isomorphisms and ∗-anti-isomorphisms between von Neumann algebras are
both isometric and weak∗-continuous, one has Θ∗(S(M1)) = S(M2). Notice also that

S(Mk) =
{(
tµk, (1− t)νk

)
: t ∈ [0, 1];µk ∈ S(ekMk); νk ∈ S(fkMk)

}
.

Clearly, R(Mk) = R(ekMk)×R(fkMk) in the canonical way, and Θi induces a bijection
from R(e1M1) onto R(e2M2). We claim that Θa also induces a bijection from R(f1M1)
onto R(f2M2). Indeed, suppose that (ψ,K) is a ∗-representation of f1M1. Denote by K
the conjugate Hilbert space of K and define

ψ(x)ξ := ψ(x∗)ξ
(
x ∈ f1M1; ξ ∈ K

)
.

Then (ψ,K) is a (complex linear) ∗-anti-representation of f1M1. Thus, (ψ ◦ Θa,K) is a
∗-representation of f2M2, and it is not difficult to see that the map from R(f1M1) to
R(f2M2) as given by

(ψ,K) 7→ (ψ ◦Θa,K)

is bijective as claimed.

Now, if µ ∈ S(e1M1), ν ∈ S(f1M1), (φ,H) ∈ R(e1M1), (ψ,K) ∈ R(f1M1), ξ ∈ H and
η ∈ K satisfying µ = ωξ and ν = ωη, then

tµ+ (1− t)ν = ω(
√
tξ,
√

1−tη) (t ∈ [0, 1]),

where (
√
tξ,
√

1− tη) ∈ H⊕ K. In addition, we have

〈ψ(y)η1, η1〉 = 〈ψ(y)η1, η1〉 and |〈η1, η2〉| = |〈η1, η2〉| (y ∈ f1M1; η1, η2 ∈ K).

From these, it is not hard to check that Θ∗|S(M1) preserves PU .

On the other hand, in order to show the map Θ∗|S(M1) preserving PR, it suffices to
verify that the map Γ from SP1 to SP2 defined by

Γ : ξµ 7→ ξΘ∗(µ) (µ ∈ S(M1))
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(see (1.3)) preserves the inner products.

Let k ∈ {1, 2} and (Mk,Hk,Pk, Jk) be the standard form of Mk. As in (2.2) and (2.1),
we know that (

ekMk, ekHk, ekPk, Jk|ekHk
)

and
(
fkM

′
k, fkHk, fkPk, Jk|fkHk

)
are the standard forms of ekMk and fkM

′
k, respectively. Firstly, as Θi is a ∗-isomorphism,

the restriction of Γ to e1SP1 preserves the inner products (thanks to the uniqueness of
the standard form). Secondly, we note that

µ 7→ µ′ := ωξµ |f1M ′1 (µ ∈ S(f1M1))

is a bijection from S(f1M1) onto S(f1M
′
1) (here we regard ωξµ ∈ S(L(H1))) such that

ξµ′ = ξµ (µ ∈ S(f1M1)).

Moreover, since x 7→ J1Θa(x
∗)J1 is a ∗-isomorphism from f2M2 onto f1M

′
1, we know that

the restriction of Γ to f1SP1 also preserves the inner products. Finally, the required
conclusion concerning Γ follows from the fact that

ξtµ+(1−t)ν =
√
tξµ +

√
1− tξν (t ∈ [0, 1];µ, ν ∈ S(M1)).

�

3. The main results

Set Pσ(M) := {sµ : µ ∈ S(M)}. For any p ∈ P(M), it follows from Zorn’s Lemma
that there is an orthogonal family {pi}i∈I in Pσ(M) satisfying

(3.1) p =
∑
i∈I

pi

(the convergence is taken in the weak∗-topology). We write

F0(p) := {ν ∈ S(M) : ν(p) = 0}.
Obviously, F0(p) coincides with the closed face (1 − p)S(M)(1 − p) ∩ S(M) of S(M).
Moreover, since

ν(sµ) = 0 if and only if sνsµ = 0,(3.2)

we have

(3.3) F0(sµ) = {ν ∈ S(M) : sνsµ = 0} (µ ∈ S(M)).

If p =
∑

i∈I pi is as in (3.1), then

(3.4) F0(p) =
⋂
i∈I

F0(pi).

The reader may consult [27] for more explorations between projections and their associ-
ated faces.
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We say that a map Φ : S(M1) → S(M2) is biorthogonality preserving if for any
µ, ν ∈ S(M1), one has

sµsν = 0 if and only if sΦ(µ)sΦ(ν) = 0.

Lemma 3.1. Let M1 and M2 be two von Neumann algebras. Suppose that Φ : S(M1)→
S(M2) is a biorthogonality preserving bijection.

(a) There exists an orthoisomorphism Φ̌ : P(M1)→ P(M2) such that

(3.5) Φ(F0(p)) = F0(Φ̌(p)) (p ∈ P(M1)) and Φ̌(sµ) = sΦ(µ) (µ ∈ S(M1)).

(b) If there is a Jordan ∗-isomorphism Θ : M2 →M1 satisfying Φ = Θ∗|S(M1), then

Φ(ν)(sΦ(µ)) = ν(sµ) (µ, ν ∈ S(M1)).

In this case, we have Φ̌ = Θ−1|P(M1).

Proof. (a) We denote by F(Mk) the set of all closed faces of S(Mk) (k = 1, 2). The
bijectivity of Φ and (3.3) tell us that Φ is biorthogonality preserving if and only if

(3.6) Φ(F0(sµ)) = F0(sΦ(µ)) (µ ∈ S(M1)).

Let p ∈ P(M1), and p :=
∑

i∈I sµi be a decomposition as in (3.1) for a family {µi}i∈I in
S(M1) with its elements having disjoint support projections. By the hypothesis, elements
in {Φ(µi)}i∈I have disjoint support projections, and hence

∑
i∈I sΦ(µi) converges in the

weak∗-topology to a projection Φ̌(p) ∈ P(M2). Since Φ is injective, (3.4) and (3.6) imply

Φ(F0(p)) =
⋂
i∈I

Φ(F0(sµi)) =
⋂
i∈I

F0(sΦ(µi)) = F0

(∑
i∈I

sΦ(µi)

)
= F0(Φ̌(p)).

Moreover, the map F0 : p 7→ F0(p) is a bijection from P(Mk) onto F(Mk) for k = 1, 2 ([4,
Theorem 3.35]). These show that Φ̌(p) is independent of the choice of {µi}i∈I, and that
Φ induces a map ΦF : F(M1)→ F(M2).

In the same way, Φ−1 induces a map from F(M2) to F(M1) which is clearly the inverse
of ΦF. Therefore, ΦF is a bijection, and the bijectivity of the map Φ̌ : P(M1) → P(M2)
follows from the bijectivity of F0.

Suppose now that p, q ∈ P(M1) satisfying pq = 0. Then for any p′, q′ ∈ Pσ(M1) with
p′ ≤ p and q′ ≤ q, one has p′q′ = 0. Hence, from the hypothesis concerning Φ and the
definition of Φ̌, we conclude that Φ̌(p)Φ̌(q) = 0. Again, by considering Φ−1, we know
that Φ̌ is an orthoisomorphism.

(b) By the second equality in (3.5),

µ(Θ(Φ̌(sµ))) = µ(Θ(sΦ(µ))) = Θ∗(µ)(sΘ∗(µ))) = 1.

Thus, sµ ≤ Θ(Φ̌(sµ)) = Θ(sΘ∗(µ)). Conversely, as µ(sµ) = 1, one has Θ∗(µ)(Θ−1(sµ)) = 1,
which means that sΘ∗(µ) ≤ Θ−1(sµ). These give

(3.7) sµ = Θ(Φ̌(sµ)) = Θ(sΘ∗(µ)),
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and hence Φ(ν)(sΦ(µ)) = ν(sµ). On the other hand, due to the construction of Φ̌ in the
argument for part (a), Equality (3.7) also produces the second conclusion. �

Theorem 3.2. Let M1 and M2 be von Neumann algebras, and let Φ : S(M1)→ S(M2)
be a bijection.

(a) If Φ is biorthogonality preserving, then M1 and M2 are Jordan ∗-isomorphic.

(b) There is a Jordan ∗-isomorphism Θ : M2 → M1 satisfying Φ = Θ∗|S(M1) if and only
if Φ preserves the “asymmetric transition probability” P0, namely,

P0

(
Φ(µ),Φ(ν)

)
= P0(µ, ν) (µ, ν ∈ S(M1)).

Proof: (a) This follows directly from Lemma 3.1(a) and Proposition 2.2.

(b) Suppose that such a Jordan ∗-isomorphism Θ exists. Then the displayed equality in
Lemma 3.1(b) tells us that P0

(
Φ(ν),Φ(µ)

)
= P0(ν, µ) (µ, ν ∈ S(M1)).

For the converse implication, we first note that because µ(sν) = Φ(µ)(sΦ(ν)) (µ, ν ∈
S(M)), the map Φ is biorthogonality preserving (see (3.2)). Consider Φ̌ : P(M1) →
P(M2) to be the map as in Lemma 3.1. Let M0

1 be the real linear span of P(M1) in M1.
We want to extend Φ̌ to M0

1 by setting

Φ̌(x) :=
n∑
k=1

rkΦ̌(pk),

when x =
∑n

k=1 rkpk for some n ∈ N, r1, ..., rn ∈ R and p1, ..., pn ∈ P(M1). To verify this
extension being well-defined, let us consider pk =

∑
i∈Ik sµk,i to be a decomposition as

in (3.1) (k = 1, ..., n). By the construction of Φ̌ in the proof of Lemma 3.1(a), for any
µ ∈ S(M1),

Φ(µ)

(
n∑
k=1

rkΦ̌(pk)

)
=

n∑
k=1

rk
∑
i∈Ik

Φ(µ)
(
sΦ(µk,i)

)
=

n∑
k=1

rk
∑
i∈Ik

µ
(
sµk,i

)
= µ(x).

Thus, the surjectivity of Φ implies that Φ̌(x) is independent of the choices of r1, ..., rn
nor p1, ..., pn. Obviously, Φ̌ is a linear map on M0

1 satisfying

(3.8) ν
(
Φ̌(x)

)
= Φ−1(ν)(x) (x ∈M0

1 ; ν ∈ S(M2)).

This implies ‖Φ̌(x)‖ = ‖x‖ (x ∈M0
1 ), and Φ̌ extends to an isometry from M sa

1 onto M sa
2 .

Now, one may employ either [7, Theorem 2.2] or [20, Theorem A.4] to conclude that
Φ̌ is a Jordan isomorphism. However, we would like to present the argument for this
particular case here for completeness. Indeed, as Φ̌ preserves orthogonality, we have

Φ̌(x2) =
n∑
k=1

r2
kΦ̌(pk) = Φ̌

(
n∑
k=1

rkpk

)2

.

The continuity of Φ̌ ensures that Φ̌(x2) = Φ̌(x)2 (x ∈M sa
1 ), as is required.
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Finally, if we set Θ : M sa
2 → M sa

1 to be the inverse of Φ̌, then Relation (3.8) implies
that Φ = Θ∗|S(M2). �

Notice that in the proof of part (b) above, the only non-trivial fact that is not proved in
this article is the bijection between projections and closed faces as given in [4, Theorem
3.35] (which is needed for Lemma 3.1). In the following, we will use this part (b) to
give an alternative and “almost self-contained” proof (except that [4, Theorem 3.35] is
required) of Wigner’s theorem. Because of this, one may regard Theorem 3.2(b) as an
extension of Wigner’s theorem. Note also that the first part of the proof of this corollary
is similar to that of [24, Theorem 1], but instead of showing the extension to be affine and
using [15, Corollary 5], we show that the extension preserves P0 and use our Theorem
3.2(b) to obtain the conclusion.

Corollary 3.3. (Wigner) Let H1 and H2 be two Hilbert spaces and let

Sp(L(Hk)) := {ωξ : ξ ∈ SHk} (k = 1, 2).

If Φ : Sp(L(H1)) → Sp(L(H2)) is a bijection that preserves the transition probability,
there is a Jordan ∗-isomorphism Θ : L(H2)→ L(H1) with Φ = Θ∗|Sp(L(H1)).

Proof: For k ∈ {1, 2} and ξ ∈ SHk , we know that sωξ is the projection from Hk onto
C · ξ. Through diagonalisation of positive trace-class operators, for each µ ∈ S(L(H1)),
we can find a countable (could be finite) orthonormal family {ξi}i∈I in SH1 and a family
{ti}i∈I in (0, 1] with

∑
i∈I ti = 1 such that µ =

∑
i∈I tiωξi (converges in norm). In this

case, we propose to set

Φ̄(µ) :=
∑
i∈I

tiΦ(ωξi)

(again, it is the norm limit). For any finite orthonormal sequence {ζk}Nk=1 in SH1 , one
has, by the hypothesis,

(3.9)
∑
i∈I

tiΦ(ωξi)

(
N∑
k=1

sΦ(ωζk )

)
=

N∑
k=1

∑
i∈I

tiωξi(sωζk ) = µ

(
N∑
k=1

sωζk

)
.

Since Φ is surjective, the above tells us that the value of
∑

i∈I tiΦ(ωξi) on any finite rank
projection in P(L(H2)) is independent of the decomposition µ =

∑
i∈I tiωξi . Thus, Φ̄(µ)

is well-defined.

On the other hand, Relation (3.9) also tells us that Φ̄ : S(L(H1)) → S(L(H2)) is an
injection. The surjectivity of Φ̄ follows from the surjectivity of Φ. Furthermore, (3.9)
implies that Φ̄(µ)(sΦ(ωη)) = µ(sωη) (η ∈ SH1).

Let ν ∈ S(L(H1)) and ν =
∑

j∈J rjωηj be the decomposition of ν similar to that of

µ in the above. As {sωηj }j∈J (and hence {sΦ(ωηj )}j∈J) is a countable (possibly finite)

orthogonal family and rj > 0 for all j ∈ J, we have

sν =
∑
j∈J

sωηj as well as sΦ̄(ν) =
∑
j∈J

sΦ(ωηj )
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(the convergences are in the weak∗-topology). Hence,

Φ̄(µ)(sΦ̄(ν)) = Φ̄(µ)

(∑
j∈J

sΦ(ωηj )

)
=
∑
j∈J

µ(sωηj ) = µ(sν).

Finally, Theorem 3.2(b) gives a Jordan ∗-isomorphism Θ : L(H1) → L(H2) satisfying
Φ = Θ∗ |S(L(H1)). �

On the other hand, Theorem 3.2(a) can be regarded as an extension of a weak form of
Uhlhorn’s theorem for normal state spaces of von Neumann algebras. In particular, we
have the following.

Theorem 3.4. Let M1 and M2 be von Neumann algebras. Then M1 and M2 are Jordan
∗-isomorphic if and only if there is a bijection Φ : S(M1) → S(M2) satisfying any one
of the following conditions:

(1) Φ preserves the usual metric d1;
(2) Φ preserves pairs with zero Raggio transition probabilities, i.e. for any µ, ν ∈ S(M1),

PR
(
Φ(µ),Φ(ν)

)
= 0 if and only if PR(µ, ν) = 0;

(3) Φ preserves pairs with zero Uhlmann transition probabilities;
(4) Φ preserves pairs with zero “asymmetric transition probabilities”.

Proof: Notice that “the only if part” follows from Theorem 3.2(b), Proposition 2.3 as
well as the fact that Jordan ∗-isomorphisms are isometric. Conversely, we claim that
in each of the four cases in the statement, Φ is biorthogonality preserving, and thus
Theorem 3.2(a) applies.

Indeed, the assertion for the case of Φ preserving the usual metric d1 follows from the
well-known fact that sµsν = 0 if and only if ‖µ− ν‖ = 2.

Suppose that Φ preserves pairs with zero Raggio transition probabilities. By (1.4) and
(1.5), we know that PR(µ, ν) = 0 if and only if ‖ξµ − ξν‖2 = 2. On the other hand, it
follows from [12, Lemma 2.10(2)] that ‖ξµ− ξν‖2 = 2 if and only if ‖µ− ν‖ = 2, because

‖ξµ − ξν‖‖ξµ + ξν‖ =
√

4− 4〈ξµ, ξν〉2. Thus, the assertion for the second case follows
from that of the first case.

The assertions for the third case follows from Relation (1.6) and the second case, while
that of the fourth case follows from Relation (3.2). �

As seen in the above, for any µ, ν ∈ S(M1), one has

(3.10) sµsν = 0 ⇐⇒ PU(µ, ν) = 0 ⇐⇒ PR(µ, ν) = 0 ⇐⇒ P0(µ, ν) = 0,

which are also equivalent to ‖µ− ν‖ = 2. In particular, we obtained an alternative proof
of [1, Lemma 1.8].
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One may wonder if it is possible to get a stronger conclusion for Theorem 3.2(a) (and
hence a stronger conclusion for Theorem 3.4) similar to that of Theorem 3.2(b). However,
the following example shows that it is impossible even in the case when M1 = M2 = L(`2).

Example 3.5. Let M = L(H) where H is a Hilbert space with dimH ≥ 2. Consider ∼
to be the equivalence relation in S(M) defined by

µ ∼ ν if and only if sµ = sν .

Denote by C the set of equivalence classes of S(M) under ∼. Suppose that ζ1 and ζ2

are two orthogonal elements in SH, and eζk ∈ P(M) is the orthogonal projection onto
C · ζk (k = 1, 2). For any t ∈ (0, 1), if we set µt := tωζ1 + (1− t)ωζ2 , then sµt = eζ1 + eζ2 .
Hence, {µt : t ∈ (0, 1)} ⊆ C0 for an element C0 ∈ C. Choose any bijection Φ0 : C0 → C0

satisfying

Φ0(µt) = (1− t)ωζ1 + tωζ2 (t ∈ (0, 1)),

and define a bijection Φ : S(M)→ S(M) by setting Φ|C0 = Φ0 as well as

Φ(µ) = µ (µ ∈ S(M) \ C0).

From the definition of Φ, we know that sΦ(µ) = sµ (µ ∈ S(M)), and Φ is biorthogonality
preserving. However, since

‖ωζ1 − µt‖ = 2− 2t and ‖Φ(ωζ1)− Φ(µt)‖ = 2t (t ∈ (0, 1)),

Φ is not induced by any continuous map from M∗ to itself.

Nevertheless, in the case when the bijection Φ actually preserves the Raggio transition
probability, we will see in Theorem 3.8 below that the conclusion as in Theorem 3.2(b)
holds. In order to obtain this result, we need some more preparations.

Recall that a normed space X is said to be strictly convex if for any x, y ∈ X, the
condition ‖x+ y‖ = ‖x‖+ ‖y‖ implies that x and y are linearly dependent. Clearly, any
Hilbert space is strictly convex. Let us recall the following well-known fact in Banach
spaces theory.

Lemma 3.6. Suppose that X1 and X2 are real Banach spaces such that X2 is strictly
convex. If K is a convex subset of X1 and f : K → X2 is a metric preserving map, then
f is automatically an affine map.

For the benefit of the reader, we sketch a proof here. In fact, in order to show

f
(
tx+ (1− t)y

)
= tf(x) + (1− t)f(y)

for any x 6= y in K and t ∈ (0, 1), we may assume (by “shifting” K and f if necessary)
that y = 0 and that f(0) = 0. In this case, we have ‖f(x)‖ = ‖f(x)− f(0)‖ = ‖x‖ and

(3.11) ‖f(x)− f(tx)‖ = ‖x− tx‖ = (1− t)‖f(x)‖ = ‖f(x)‖− t‖x‖ = ‖f(x)‖−‖f(tx)‖.

The strict convexity gives f(x) − f(tx) ∈ R · f(tx). This, together with the last two
equalities in (3.11), establishes the required relation: f(tx) = tf(x).
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Proposition 3.7. Let (Mk,Hk, Jk,Pk) be a von Neumann algebra in its standard form
(k = 1, 2). There are canonical bijective correspondences (through restrictions) amongst
the following:

• the set IH of complex linear isometries from H1 onto H2 sending P1 onto P2;
• the set IP of metric preserving surjections from P1 onto P2;
• the set IS of metric preserving surjections from SP1 onto SP2.

Proof: For every ρ ∈ IH, one clearly has ρ|SP1
∈ IS. The assignment ρ 7→ ρ|SP1

defines
an injection R : IH → IS, because SP1 generates H1. Secondly, if χ ∈ IS, then

〈χ(ξ), χ(η)〉 = 〈ξ, η〉 ∈ R+ (ξ, η ∈ SP1),

and it is easy to verify that the extension χ̃ : tξ 7→ tχ(ξ) (ξ ∈ SP1 , t ∈ R+) belongs
to IP. This gives an injection E : IS → IP. Furthermore, as elements in IH are affine,
the composition E ◦ R : IH → IP coincides with the restriction map ρ 7→ ρ|P1 . Thus, it
remains to show that the restriction map from IH to IP is surjective.

Let us now consider ϕ ∈ IP. Since the only extreme point in Pk is the zero element,
we know from Lemma 3.6 that ϕ(0) = 0. The metric preserving assumption now implies

(3.12) ‖ϕ(ξ)‖ = ‖ξ‖ and 〈ϕ(ξ), ϕ(η)〉 = 〈ξ, η〉 ∈ R+ (ξ, η ∈ P1).

For k = 1, 2, we denote by Hsa
k the real Hilbert space generated by Pk. As Pk is a

self-dual cone, if η ∈ Hsa
k , there exist unique elements ξ+, ξ− ∈ Pk with ξ = ξ+ − ξ− and

‖ξ‖2 = ‖ξ+‖2 + ‖ξ−‖2 (see e.g. [13, Lemme I.1.2]).

Define ϕ̃ : Hsa
1 → Hsa

2 by

ϕ̃(ξ) := ϕ(ξ+)− ϕ(ξ−) (ξ ∈ Hsa
1 ).

For every ξ, η ∈ Hsa
1 , one knows from (3.12) and Lemma 3.6 that

‖ϕ̃(ξ)− ϕ̃(η)‖2 = ‖ϕ(ξ+) + ϕ(η−)− ϕ(ξ−)− ϕ(η+)‖2 = ‖ξ+ − ξ− − η+ + η−‖2,

which means that ϕ̃ preserves metric. Hence,

‖ϕ̃(ξ)‖2 = ‖ξ‖2 = ‖ξ+‖2 + ‖ξ−‖2 = ‖ϕ(ξ+)‖2 + ‖ϕ(ξ−)‖2,

and the uniqueness of ϕ̃(ξ)± produces

(3.13) ϕ̃(ξ)± = ϕ(ξ±) (ξ ∈ Hsa
1 ).

If ψ := ϕ−1 : P2 → P1 and ψ̃ is defined in the same way as ϕ̃, then, by a similar
property as (3.13) for ψ̃, we obtain that, for each ζ ∈ Hsa

1 ,

ϕ̃(ψ̃(ζ)) = ϕ(ψ̃(ζ)+)− ϕ(ψ̃(ζ)−) = ϕ(ψ(ζ+))− ϕ(ψ(ζ−)) = ζ.

Consequently, ϕ̃ is surjective. It now follows from the Mazur-Ulam theorem that ϕ̃ is a
linear isometry from Hsa

1 onto Hsa
2 . Finally, the complexification, ϕ̄, of ϕ̃ is an element in

IH (note that linear isometries preserve inner products) satisfying ϕ̄|P1 = ϕ. �
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Recall that a projection p ∈ P(M) \ {0} is said to be σ-finite if any family of non-zero
orthogonal subprojections of p is countable. It is easy to check that the set Pσ(M) (as
in the beginning of this section) consists exactly of σ-finite projections and the sum of
countably many orthogonal σ-finite projections is again σ-finite. We also recall that a
von Neumann algebra is said to be σ-finite if its identity is a σ-finite projection.

Theorem 3.8. Let M1 and M2 be two von Neumann algebras, and let Φ : S(M1) →
S(M2) be a bijection. Then Φ preserves the Raggio transition probability if and only
if one can find a (necessarily unique) Jordan ∗-isomorphism Θ : M2 → M1 satisfying
Φ = Θ∗|S(M1).

Proof: One direction of the equivalence follows from Proposition 2.3. For the opposite
direction, we assume in the following that Φ preserves the Raggio transition probability.

Notice that because of Relation (3.10), the map Φ is biorthogonality preserving, and
Lemma 3.1 gives an orthoisomorphism Φ̌ : P(M1) → P(M2). Moreover, by Relations
(1.4) as well as (1.5), the map ϕ : SP1 → SP2 given by

ϕ(ξµ) := ξΦ(µ) (µ ∈ S(M1)

is a metric preserving surjection, and Proposition 3.7 tells us that it extends to a complex
linear isometry ϕ̄ : H1 → H2 satisfying ϕ̄(P1) = P2.

By considering finite sums of elements in Pσ(M1), one obtains, through (3.1), an
increasing net {ei}i∈I of σ-finite projections such that ei ↑ 1. Let us put fi := Φ̌(ei)
(i ∈ I). Then all fi are σ-finite and fi ↑ 1 (because Φ̌ is an orthoisomorphism).

By Corollary 2.5 and Lemma 2.6 of [12], the standard form for eiM1ei is(
eiM1ei, eie

t
iH1, eie

t
iP1, eie

t
iJ1eie

t
i

)
(observe that etixe

t
iη = xetiη = xη, whenever x ∈ eiM1ei, η ∈ eietiH1). In a similar way,(

fiM2fi, fif
t
i H2, fif

t
iP2, fif

t
i J2fif

t
i

)
is the standard form of fiM2fi.

We identify

S(eiM1ei) ∼= eiS(M1)ei ∩S(M1) = F0(1− ei)
and S(fiM2fi) ∼= F0(1−fi) in the canonical ways. From this, the map Φ induces, through
Lemma 3.1(a), a bijection Φi : S(eiM1ei) → S(fiM2fi). For each µ ∈ S(eiM1ei), let
ξiµ ∈ SeietiP1

be the element with µ(x) = 〈xξiµ, ξiµ〉 (x ∈ eiM1ei). Then

µ(y) = µ(eiyei) = 〈yξiµ, ξiµ〉 (y ∈M1),

and the uniqueness of the element ξµ in P1 satisfying (1.3) implies that ξiµ = ξµ. Hence,

if ϕi : SeietiP1
→ SfiftiP2

is the bijection defined by ϕi(ξ
i
µ) := ξiΦi(µ) (µ ∈ S(eiM1ei)), we

have ϕi = ϕ|S
eie

t
i
P1

.

As in the beginning of the proof, ψi := ϕ̄|eietiH1
is a bijective isometry from eie

t
iH1

to fif
t
i H2 with ψi(eie

t
iP1) = fif

t
iP2. Since both eiM1ei and fiM2fi are σ-finite, [8,
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Théorème 3.3] gives a Jordan ∗-isomorphism Λi : eiM1ei → fiM2fi such that for every
x ∈ eiM1ei and ξ ∈ SeietiP1

, one has

(3.14) Φ(ωξ)(Λi(x)) = ωϕ(ξ)(Λi(x)) = 〈Λi(x)ϕi(ξ), ϕi(ξ)〉 = 〈xξ, ξ〉.
In particular, Φi = (Λ−1

i )∗|S(eiM1ei).

Again, as in the beginning of the proof, Φi is biorthogonality preserving and induces an
orthoisomorphism Φ̌i : P(eiM1ei) → P(fiM2fi) satisfying Relation (3.5). It then follows
from

Φ
(
F0(p) ∩S(eiM1ei)

)
= F0

(
Φ̌(p)

)
∩S(fiM2fi) (p ∈ P(eiM1ei))

that Φ̌i = Φ̌|P(eiM1ei). Thus, the second conclusion of Lemma 3.1(b) implies Λi|P(eiM1ei) =

Φ̌|P(eiM1ei). From this, we know that whenever i ≤ j, one has Λj|P(eiM1ei) = Λi|P(eiM1ei),
which ensures that

Λj|eiM1ei = Λi.

Set M e
1 :=

⋃
i∈I eiM1ei and M f

2 :=
⋃
i∈I fiM2fi. The above allows us to define a Jordan

∗-isomorphism Λ0 : M e
1 →M f

2 satisfying Λ0|eiM1ei = Λi, and (3.14) gives

(3.15) ωϕ(ξ)(Λ0(x)) = ωξ(x) (x ∈M e
1 , ξ ∈ P1)

because ϕ is an isometry and
⋃
i∈I eie

t
iP1 is norm-dense in P1. We thus know from

{ωϕ(ξ) : ξ ∈ P1} = (M2)+
∗ that Λ0 is weak∗-continuous.

On the other hand, since eiyei
w∗−→ y for any y ∈ M1 (see e.g. Remark 2.1), M e

1

is weak∗-dense in M1. Hence, Λ0 extends to a weak∗-continuous complex linear map
Λ : M1 →M2 such that Λ(M+

1 ) ⊆M+
2 , Λ(1) = 1 and, because of (3.15),

(3.16) Φ(µ)(Λ(x)) = µ(x) (x ∈M1, µ ∈ S(M1)).

Similarly, Φ−1 induces a positive linear map Υ : M2 →M1 satisfying the corresponding
property as (3.16). Clearly, Υ is the inverse of Λ, and Λ is an order isomorphism. By
[15, Corollary 5], Λ is a Jordan ∗-isomorphism, and Θ := Λ−1 is the required map. �

The proof above can be shorten quite a bit if [8, Théorème 3.3] holds for the non-σ-
finite case. However, this seems to be open. Note that even in the later work of [13,
Theorem VII.1.1], which generalised [8, Théorème 3.3] to the case of JBW ∗-algebras, the
σ-finite assumption was still imposed.

The following corollary is a direct consequence of Theorems 3.4 and 3.8 as well as
Proposition 2.3.

Corollary 3.9. If Φ : S(M1) → S(M2) is a bijection preserving either the Raggio
transition probability or the “asymmetric transition probability”, then it preserves the
Uhlmann transition probability as well.

It is natural to ask if the converse of the above holds. This lead to the following
question.
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Question 3.10. If Φ : S(M1)→ S(M2) is a bijection preserving the Uhlmann transition
probability, can one find a Jordan ∗-isomorphism Θ : M2 →M1 satisfying Φ = Θ∗|S(M1)?

Let us end this section with another application of our main results. Here, d‖·‖ denotes
the metric on P defined by the norm on H.

Corollary 3.11. Let M be a von Neumann algebra. Each one of the following met-
ric spaces: (P, d‖·‖), (S(M), dB), (S(M), d1) and (S(M), d2) is a complete Jordan ∗-
invariant for M .

Proof: The fact that (S(M), d1) is a complete Jordan ∗-invariant forM is already proved
in Theorem 3.4. Moreover, it follows from Theorem 3.4 and Relation (1.4) (respectively,
(1.2)) that (S(M), d2) (respectively, (S(M), dB)) is a complete Jordan ∗-invariant. Con-
sequently, (P, d‖·‖) is also a complete Jordan ∗-invariant because of Proposition 3.7. �

Furthermore, the metric space {ξ ∈ P : ‖ξ‖ ≤ 1} (under the metric induced by the
norm on H) is also a complete Jordan ∗-invariant for M . One can find the details of
this, as well as its generalization to all non-commutative Lp-spaces (p ∈ [1,+∞]), in our
further work on this subject (namely, [17]).
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[5] L.G. Brown, Complements to Various Stone-Weierstrass Theorems for C∗-algebras and a Theorem

of Shultz, Commun. Math. Phys. 143 (1992), 405-413.
[6] D. Buchholz and E. Størmer, Superposition, transition probabilities and primitive observables in

infinite quantum systems, Commun. Math. Phys. 339 (2015), 309-325.
[7] M.A. Chebotar, W.F. Ke, P.H. Lee and N.C. Wong, Mappings preserving zero products, Stud. Math.

155 (2003), 77-94.
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