
NONSURJECTIVE ZERO PRODUCT PRESERVERS

BETWEEN MATRICES OVER AN ARBITRARY FIELD

CHI-KWONG LI, MING-CHENG TSAI, YA-SHU WANG AND NGAI-CHING WONG

Abstract. In this paper, we give concrete descriptions of additive or linear disjointness pre-

servers between matrix algebras over an arbitrary field F of different sizes. In particular, we

show that a linear map Φ : Mn(F)→Mr(F) preserving zero products carries the form

Φ(A) = S

(
R⊗A 0

0 Φ0(A)

)
S−1,

for some invertible matrices R in Mk(F), S in Mr(F) and a zero product preserving linear map

Φ0 : Mn(F)→Mr−nk(F) with range consisting of nilpotent matrices. Here, either R or Φ0 can

be vacuous. The structure of Φ0 could be quite arbitrary. We classify Φ0 with some additional

assumption. When Φ(In) has a zero nilpotent part, especially when Φ(In) is diagonalizable,

we have Φ0(X)Φ0(Y ) = 0 for all X,Y in Mn(F), and we give more information about Φ0 in

this case. Similar results for double zero product preservers and orthogonality preservers are

obtained.

1. Introduction

There are considerable interests in studying preserver problems for matrices or operators;

see, for example, [6, 13, 15–18, 21, 23, 24], and the references therein. Many preserver problems

are connected to the study in those maps Φ of matrices or operators preserving zero products,

i.e.,

Φ(A)Φ(B) = 0 whenever AB = 0.

See, for example, [1, 3–5, 7, 12, 14]. It is usually expected that Φ gives rise to an algebra or

a Jordan homomorphism. Most studies focus on surjective linear maps because general maps

may not have nice structure. Even for (necessarily nonsurjective) linear preservers between two

matrix algebras of different sizes, the results can be very complicated and intractable.

Denote by Mn = Mn(F) the algebra of n× n matrices over a field F. The classical results of

Jacobson, Rickart, Kaplansky, Herstien, etc. (see, e.g., [9,10]), together with the Skolem-Noether

theorem, ensure that every surjective zero product preserving linear map Φ : Mn → Mr is a

scalar multiple of an inner algebra isomorphism, A 7→ αS−1AS, for a nonzero scalar α and an

invertible S in Mn (and thus n = r). See, e.g., [6, Theorems 2.6 and 3.1].
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The situation is quite different when Φ is not surjective. For example, the map A 7→(
0 f(A)
0 0

)
defined by any linear (or even non-linear) map f preserves zero products, but it

does not contain much useful information about the domain and range.

In this paper, we give concrete descriptions of the structures of additive or linear zero product

preservers Φ between matrix algebras of different sizes. It turns out that such a map is always

a sum of ring homomorphism and degenerate map with range space consisting of nilpotent

matrices. The first map admits a concrete description, and the second map could be quite

arbitrary. Nevertheless, we obtain additional information of the second map under some mild

assumption so that our structure theorem can be applied to the study of related problems

effectively.

Our paper is organized as follows. In Section 2, we fix the notations and collect some known

facts we will use in this paper.

We provide in Section 3 concrete structures of additive/linear zero product preservers between

matrix algebras over an arbitrary field F. In particular, we show that a linear map Φ : Mn(F)→
Mr(F) preserving zero products carries the form

A 7→ S−1
(
R⊗A 0

0 Φ0(A)

)
S,

for some invertible matrices R in Mk(F), S in Mr(F), and a zero product preserving linear map

Φ0 : Mn(F)→Mr−nk(F) with range consisting of nilpotent matrices. When the nilpotent part

of Φ(In) is trivial, especially when Φ(In) is diagonalizable, Φ0(X)Φ0(Y ) = 0 for all X,Y in

Mn(F). A full description of such maps Φ0 is given. In particular, if Φ is surjective, we must

have n = r, Φ0 = 0, and R = αIn for a nonzero scalar α. This reduces to the stated result in

the beginning of the introduction.

In Section 4, we describe the structures of linear maps between matrices preserving idem-

potents, double zero products, range orthogonality, or double orthogonality. Similar results on

additive zero product preservers on the Jordan algebras of self-adjoint or symmetric matrices

are also obtained.

To end this paper, we outline in Section 5 some open problems for future studies.

2. Notations and preliminaries

Denote by F the underlying field, and denote by Mn = Mn(F) the algebra of n× n matrices

over the field F. We note that some results below might hold in a more general setting of

finite or infinite dimensional Banach algebras or C∗-algebras. However, the description of the

preservers will be more concrete in the matrix case, while the operator algebra technique might

not work for the general case F 6= R or C.

Let Eij be the matrix (of an appropriate size depending on context) with the (i, j)th entry

being 1 and all others being 0. Let δij be the Kronecker delta symbol, i.e., δjk = 1 when j = k,

and 0 else. We write In and 0n, or simply I or 0, for the identity and zero matrices in Mn,

respectively. Sometimes, 0 can refer to a zero rectangular matrix.
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If τ is an endomorphism of the underlying field F, we write Aτ for the matrix [τ(aij)] when

A = [aij ]. We write At = [aji] for the transpose of A. When F = R or C, we also write

A∗ = At = [aji] for the adjoint, i.e. the conjugate transpose, of A. If F = R, we have At = A∗.

We call a square matrix A symmetric if At = A, self-adjoint if A∗ = A, orthogonal if

A−1 = At, unitary if A−1 = A∗, an idempotent if A2 = A, and a projection if A = A2 = A∗.

We say that two idempotents (resp. projections) A,B are disjoint (resp. orthogonal) to each

other if AB = BA = 0. We call a complex matrix A normal if A∗A = AA∗, and call A
∗+A
2 and

A−A∗
2i the real and the imaginary parts of A, respectively. Here, i =

√
−1.

We call an additive map Φ : Mn → Mr between matrices (maybe of different sizes) over a

field F,

• a ring homomorphism (resp. ring anti-homomorphism) if Φ(AB) = Φ(A)Φ(B) (resp.

Φ(B)Φ(A)) for all A,B in Mn;

• an algebra homomorphism (resp. algebra anti-homomorphism) if it is a linear ring ho-

momorphism (resp. ring anti-homomorphism);

• a Jordan homomorphism if Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A), or equivalently,

Φ(A2) = Φ(A)2, when F has characteristics not equal 2, for all A,B in Mn;

• a zero product preserver if Φ(A)Φ(B) = 0 whenever AB = 0;

• a double zero product preserver if Φ(A)Φ(B) = Φ(B)Φ(A) = 0 whenever AB = BA = 0;

In case F = C or R, we say that Φ is

• an algebra or a ring or a Jordan *(anti)-homomorphism if Φ is an algebra, a ring or a

Jordan (anti-)homomorphism satisfying that Φ(A∗) = Φ(A)∗ for all A in Mn;

• a range orthogonality preserver if Φ(A)∗Φ(B) = 0 whenever A∗B = 0;

• a double orthogonality preserver if Φ(A)∗Φ(B) = Φ(B)Φ(A)∗ = 0 whenever A∗B =

BA∗ = 0.

The following lemmas collects some known results.

Lemma 2.1. Let F be any field.

(a) Every A ∈Mn(F) is similar to a direct sum R⊕N of an invertible matrix R and a nilpotent

matrix N such that N is a direct sum of upper triangular Jordan blocks for the eigenvalue

zero of A. Here, either R or N can be vacuous.

(b) Every A ∈Mn(F) is a linear sum of three idempotents.

(c) Every non-invertible A ∈Mn(F) is a product of idempotents.

(d) If n ≥ 2, then the ring Mn(F) is generated by its idempotents.

(e) Every symmetric A ∈Mn(R) is a real linear sum of mutually disjoint symmetric rank one

idempotents.

(f) Every self-adjoint (resp. normal) A ∈Mn(C) is a real (resp. complex) linear sum of mutually

orthogonal rank one projections.

Proof. (b) is [20, Theorem 1], while (c) is [8, Theorem]. Assertion (d) is a consequence of (c)

and the fact that every matrix can be written as a sum of rank one matrices. Moreover, (e)

and (f) are just standard textbook results. See, e.g., [11].
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(a) is not new either. We sketch a proof here for easy reference. Let the characteristic

polynomial of A be xn−sf(x) where f(x) is a polynomial of degree s with no factor x. Since xn−s

and f(x) are relative prime, there are polynomials p(x), q(x) in F[x] such that 1 = p(x)xn−s +

q(x)f(x). Hence, In = p(A)An−s + q(A)f(A). It follows that the kernel spaces kerAn−s

and ker f(A) have zero intersection. This together with the observation, f(A)(p(A)An−sx) =

An−s(q(A)f(A)x) = 0 for all x ∈ Fn, concludes that Fn = ker f(A)⊕kerAn−s. It is not difficult

to see that the matrix N representing the restriction of A acting on kerAn−s is a nilpotent

matrix, while the matrix R representing the restriction of A acting on ker f(A) is invertible.

Moreover, after a similarity transformation, N can be arranged to be a direct sum of upper

triangular Jordan blocks for the eigenvalue zero of A. Now, A is similar to the direct sum of R

and N . There are, of course, cases in which either R or N is vacuous.

One can derive the following results from Lemma 2.1(f), or find a proof from, e.g., [2]. We

will work on the general case when the underlying field F is arbitrary in Theorem 4.5.

Lemma 2.2. Let θ : Mn(C)→Mr(C) be a complex linear map.

(a) θ is a Jordan homomorphism if and only if θ sends idempotents to idempotents.

(b) θ is a Jordan *-homomorphism if and only if θ sends projections to projections.

3. Additive and Linear Maps Preserving Zero Products

Let F be any field and Mn = Mn(F) the algebra of n×n matrices over the field F. We study

those additive/linear maps Φ : Mn →Mr preserving zero products, i.e.,

Φ(A)Φ(B) = 0r whenever A,B ∈Mn satisfy AB = 0.

By Lemma 2.1(a), there is an invertible matrix S in Mr such that

S−1Φ(In)S = R⊕N,

where R in Ms is invertible, and N in Mr−s is nilpotent such that N is a direct sum of upper

triangular zero Jordan blocks (for the eigenvalue zero of Φ(In)). Furthermore, the size ν of the

largest zero Jordan block of N is the nil index of the nilpotent matrix N , which is the smallest

nonnegative integer ν such that Nν = 0. If S−11 Φ(In)S1 = R1 ⊕ N1 is another direct sum of

an invertible matrix R1 and a nilpotent matrix N1, we see that N1 is similar to N and has nil

index ν.

Using the above decomposition of Φ(In), we can state the main theorem of this section.

Theorem 3.1. Let the underlying field F be arbitrary. Let Φ : Mn → Mr be an additive map

preserving zero products. Assume that S−1Φ(In)S = R ⊕N , where S in Mr and R in Ms are

invertible, and N in Mr−s is nilpotent of nil index ν. Then, k = s/n is a nonnegative integer

and Φ has the form

A 7→ S

(
RΦ1(A) 0

0 Φ0(A)

)
S−1 = S

(
Φ1(A)R 0

0 Φ0(A)

)
S−1 (3.1)
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where Φ1 : Mn →Ms is a unital ring homomorphism, and Φ0 : Mn →Mr−nk is a zero product

preserving additive map into nilpotent matrices such that the product of any ν + 1 of them is

zero. If N = 0, then

Φ0(X)Φ0(Y ) = 0r−nk for all X,Y ∈Mn.

Here, either R (and thus Φ1) or Φ0 can be vacuous. Similar conventions also apply to other

results in this paper. The proof of Theorem 3.1 will be given in Subsection 3.1. We will make

some remarks below to put the theorem in perspective.

First, the theorem states that the map Φ can be decomposed as the sum of the map A 7→
S(RΦ1(A) ⊕ 0r−s)S

−1 and A 7→ S(0s ⊕ Φ0(A))S−1, where the former one is closely related to

a ring homomorphism and the latter one is a zero product preserving map with ranges lying

in the set of nilpotent matrices. In particular, one can use the canonical form Φ(In) to do the

additive decomposition of the map Φ.

Second, it is interesting that Φ1 is actually a unital ring homomorphism. When Φ1 is linear

we will show in Subsection 3.2 that Φ1 has the form

A 7→ S1(Ik ⊗A)S−11

for some invertible S1 in Ms. Moreover, because RΦ1(A) = Φ1(A)R for all A, we see that

R = S1(R1 ⊗ In)S−11 for some invertible R1 in Mk.

Third, in the statement of Theorem 3.1 not much is said about the map Φ0. In Subsection

3.3, we will show that the structure of Φ0 can be quite wild in general. Anyway, we will provide

more information about the map in Subsection 3.3. Moreover, as we will see in subsequent

discussion, in many useful applications of Theorem 3.1 one has Φ0 = 0.

Before we start the proof, we mention that when n = r, the special cases of Theorem 3.1,

as well as Theorem 3.5, can be found in [21, Section 1]. In a more general context, Brešar and

Šemrl study zero product preserving additive maps Φ : Mn(D)→Mn(D) between matrices over

a division ring D. They show in [3, Theorem 5.2] that either Φ(A)Φ(B) = 0 for all A,B, or

that there is a ring endomorphism Φ1 of Mn(D) and a matrix C in Mn(D) such that Φ has the

form

A 7→ CΦ1(A) = Φ1(A)C.

However, the case n < r is much more complicated as we shall see in the following.

3.1. Proof of Theorem 3.1. We need the following (probably known) lemma to prove The-

orem 3.1.

Lemma 3.2. Let the underlying field F be arbitrary. Suppose Φ : Mn →Mr is an additive map

preserving zero products. Then

Φ(C)Φ(AB) = Φ(CA)Φ(B) for all A,B,C ∈Mn.

Consequently,

Φ(In)Φ(AB) = Φ(A)Φ(B) for all A,B ∈Mn, (3.2)

and

Φ(In)Φ(A) = Φ(A)Φ(In) for all A ∈Mn. (3.3)
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(a) If Φ(In) is invertible then A 7→ Φ(In)−1Φ(A) is a ring homomorphism from Mn into Mr.

(b) If Φ(In)ν = 0 then the product of any ν + 1 elements from the range of Φ is zero, i.e.,

Φ(A1)Φ(A2) · · ·Φ(Aν+1) = 0 for all A1, A2, . . . , Aν+1 ∈Mn.

In particular, if Φ(In) = 0 then the range of Φ has trivial multiplications, i.e.,

Φ(A)Φ(B) = 0 for all A,B ∈Mn.

Proof. We borrow from the proof of [6, Lemma 2.1]. The case n = 1 is obvious. Assume below

that n ≥ 2. Let E = E2 in Mn. For any B,C in Mn, consider

(C − CE)EB = CE(B − EB) = 0.

By the zero product preserving property, we have

(Φ(C)− Φ(CE))Φ(EB) = Φ(CE)(Φ(B)− Φ(EB)) = 0.

It follows

Φ(C)Φ(EB) = Φ(CE)Φ(EB) = Φ(CE)Φ(B).

Since Mn is generated by its idempotents as a ring by Lemma 2.1(d),

Φ(C)Φ(AB) = Φ(CA)Φ(B), A,B,C ∈Mn.

Putting C = I, and putting B = C = I, respectively, we establish (3.2) and (3.3). It thus

follows (a).

We now verify (b). By (3.2) and the assumption Φ(In)ν = 0, we have

Φ(A1)Φ(A2)Φ(A3) · · ·Φ(Aν+1) = Φ(In)Φ(A1A2)Φ(A3) · · ·Φ(Aν+1) = · · ·

= Φ(In)νΦ(A1A2A3 · · ·Aν+1) = 0 for all A1, A2, . . . , Aν+1 ∈Mn.

Proof of Theorem 3.1. Replacing Φ by S−1Φ(·)S, we can assume that Φ(In) = R⊕N . Let

Φ(X) =

(
Y11 Y12
Y21 Y22

)
,

where Y11 ∈Ms. By (3.3) in Lemma 3.2, Φ(I)Φ(X) = Φ(X)Φ(I). So,

RY11 = Y11R, RY12 = Y12N, NY21 = Y21R and NY22 = Y22N.

Without loss of generality, we can assume that N =
∑

j djEj,j+1 with dj ∈ {0, 1} is a direct

sum of upper triangular Jordan blocks of zero. If Y12 = [v1 | · · · | vr−s], where v1, . . . , vr−s are

column vectors, then

[Rv1 | · · · |Rvr−s] = [0 | d1v1 | · · · | dr−s−1vr−s−1].

Thus, v1 = R−10 = 0 and vj = dj−1R
−1vj−1 = 0 for j = 2, . . . , r−s. Hence, Y12 = 0. Similarly,

we can show that Y21 = 0. So, Φ(X) has the form Y11⊕Y22. Thus, bringing back the similarity

transformation, we can set up the additive maps Φ1 : Mn →Ms and Φ0 : Mn →Mr−s satisfying

(R−1 ⊕ Ir−s)S−1Φ(X)S = Φ1(X)⊕ Φ0(X). (3.4)
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Clearly, Φ1(I) = R−1R = Is. Moreover, RΦ1(A) = Φ1(A)R for all A in Mn. Suppose

A,B ∈ Mn such that AB = 0n. Let S−1Φ(A)S = A1 ⊕ A2 and S−1Φ(B)S = B1 ⊕ B2.

Since Φ(A)Φ(B) = 0r, we have A1B1 = 0s. Consequently,

Φ1(A)Φ1(B) = R−1A1R
−1B1 = R−1A1B1R

−1 = 0s.

By Lemma 3.2, Φ1 is a ring homomorphism, and Φ0 satisfies the said conclusion.

3.2. Algebra homomorphisms of matrices.

In the following, we give a concrete description of algebra homomorphisms between matrix

algebras.

Theorem 3.3. Suppose Φ : Mn →Mr is an algebra homomorphism between matrices over an

arbitrary field F.

(a) There exist a nonnegative integer k with t = r − nk ≥ 0, and an invertible matrix S in Mr

such that Φ has the form

A 7→ S

(
Ik ⊗A 0

0 0t

)
S−1. (3.5)

(b) Assume F = R or C. If Φ(A)∗ = Φ(A) for every rank one projection A, then S can be

chosen such that S−1 = S∗.

(c) Assume F = C. If Φ(A) is symmetric for every rank one real symmetric idempotent A,

then S can be chosen to be complex orthogonal, i.e., S−1 = St.

Proof. If Φ is the zero map then the assertion is trivial. Assume that Φ is nonzero. Since

AI = IA = A for all A in Mn, we see that Φ(I) is an idempotent matrix such that

Φ(A) = Φ(A)Φ(I) = Φ(I)Φ(A) for all A ∈Mn.

Let Φ(I) have rank m > 0, and t = r −m ≥ 0. There is an invertible S0 in Mr such that

S−10 Φ(A)S0 = Φ1(A)⊕ 0t for all A ∈Mn,

for a unital ring homomorphism Φ1 : Mn → Mm. Replacing Φ by Φ1, we may assume that

Φ(In) = Ir.

Since EijEkl = δjkEil, we have

Φ(Eij)Φ(Ekl) = δjkΦ(Eil), i, j, k, l = 1, 2, . . . , n. (3.6)

Moreover,

Ir = Φ(In) =
n∑
i=1

Φ(Eii).

Replacing Φ with the map X 7→ S−11 Φ(X)S1 for some invertible S1 in Mr, we can assume that

the idempotents

Φ(Eii) = 0k1 ⊕ · · · ⊕ Iki ⊕ 0ki+1
⊕ · · · ⊕ 0kn , i = 1, . . . , n.

Here, k1 + · · ·+ kn = r.
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Let s = r − k1 − k2. It follows from (3.6) that

Φ(E12) =

(
B11 B12

B21 B22

)
⊕ 0s and Φ(E21) =

(
C11 C12

C21 C22

)
⊕ 0s,

where Bij , Cij are ki × kj matrices for i, j = 1, 2. Since E11E12 = E12 and E12E11 = 0, we

have B11, B22 and B21 are all zero matrices. Similarly, C11, C22 and C12 are also zero matrices.

Hence,

Φ(E12) =

(
0 B12

0 0

)
⊕ 0s and Φ(E21) =

(
0 0
C21 0

)
⊕ 0s, (3.7)

On the other hand, (E12 + E21)
2 = E11 + E22 implies(

0 B12

C21 0

)2

=

(
B12C21 0

0 C21B12

)
=

(
Ik1 0
0 Ik2

)
.

This ensures k1 = k2 and B12 = C−121 . Let k = k1.

Dealing in a similar way for other pairs i, j of indices, we see that

Φ(Ejj) = Ejj ⊗ Ik, Φ(Eij) = Eij ⊗Bij for i < j, Φ(Eij) = Eij ⊗B−1ji for j < i.

In particular, r/n = k.

Replacing Φ by the map X 7→ SΦ(X)S−1 with S = Ik⊕B12⊕B13⊕· · ·⊕B1n, we can further

assume that

B12 = · · · = B1n = Ik and B21 = · · · = Bn1 = Ik.

Actually, we have

Φ(Eij) = Eij ⊗ Ik for all i, j = 1, . . . , n.

To see this, observe Eij = (Ei1 + E1j + Eij)
2 for 1 < i < j. We thus have

Φ(Eij) = (Φ(Ei1) + Φ(E1j) + Φ(Eij))
2.

This gives

Eij ⊗Bij = (Ei1 ⊗ Ik + E1j ⊗ Ik + Eij ⊗Bij)2 = Eij ⊗ Ik.

Reordering the basic vectors, i.e., applying a permutation similarity, we can assume instead

Φ(Eij) = Ik ⊗ Eij for all i, j = 1, . . . , n. (3.8)

By linearity of Φ, we establish (3.5).

The assumption in (b) asserts that Φ sends rank one projections to self-adjoint matrices.

By (3.6), all Φ(Eii) are projections and orthogonal to each other. Moreover, all Φ(Eij + Eji)

are self-adjoint, since Eij + Eji = P+ − P− is the difference of two rank one projections P± =

(Eii ± Eij ± Eji + Ejj)/2. Hence, we can choose a unitary matrix S1 from Mr such that

S∗1Φ(Eii)S1 = 0k1 ⊕ · · · ⊕ Iki ⊕ 0ki+1
⊕ · · · ⊕ 0kn , i = 1, . . . , n.

In view of (3.7), the matrix

S∗1Φ(E12 + E21)S1 =

(
0 B12

C21 0

)
⊕ 0s
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is self-adjoint. Since B∗12 = C21 = B−112 , the afterward change of basis transformation A 7→
(B∗12 ⊕ Ir−k)S

∗
1Φ(A)S1(B12 ⊕ Ir−k) is also unitary. Consequently, we can choose S to be a

unitary matrix in Mr.

The assumption in (c) implies that Φ sends rank one real symmetric idempotents to sym-

metric matrices (but might not be of all real entries). In particular, all Φ(Eii) are symmetric

idempotents. Moreover, as the images of the differences of two disjoint rank one real symmetric

idempotents, all Φ(Eij + Eji) are symmetric. Consequently, Φ sends symmetric matrices to

symmetric matrices.

Recall that a complex symmetric matrix B is complex orthogonally diagonalizable, i.e., there

exists a complex matrix U such that U tBU is diagonal and U t = U−1, exactly when B is

diagonalizable (see, e.g., [11, Theorem 4.4.27]). We have seen that all complex symmetric

idempotents Φ(E11), . . . ,Φ(Enn) have rank k = r/n, and all of them are diagonalizable. It

follows that each Φ(Eii) has k complex eigenvectors si1, . . . , sik for the eigenvalue 1 such that

sij1
tsij2 = δj1j2 for j1, j2 = 1, . . . , k. Let vi, vj be eigenvectors of Φ(Eii),Φ(Ejj) in Cr associated

with the common eigenvalue 1, respectively. Observe that for i 6= j, we have

vtivj = vtiΦ(Eii)
tΦ(Ejj)vj = vtiΦ(Eii)Φ(Ejj)vj = vtiΦ(EiiEjj)vj = 0.

Therefore, we can find a basis {s11, . . . , s1k, . . . , sn1, . . . , snk} of Cr consisting of complex eigen-

vectors of Φ(Eii)’s associated with the common eigenvalue 1 such that si1j1
tsi2j2 = δi1i2δj1j2 for

i1, i2 = 1, . . . , n and j1, j2 = 1, . . . , k. Using these basic vectors as column vectors, we have an

orthogonal matrix S1 in Mr (might contain complex entries) such that

St
1Φ(Eii)S1 = 0k1 ⊕ · · · ⊕ Iki ⊕ 0ki+1

⊕ · · · ⊕ 0kn , i = 1, . . . , n.

In view of (3.7), as the real symmetric matrix

St
1Φ(E12 + E21)S1 =

(
0 B12

C21 0

)
⊕ 0s,

we have Bt
12 = C21 = B−112 . Thus the afterward change of basis transformation

A 7→ (Bt
12 ⊕ Ir−k)St

1Φ(A)S1(B12 ⊕ Ir−k)

is also complex orthogonal. Consequently, we can choose S to be a complex orthogonal matrix

in Mr.

Corollary 3.4. Let F be any field. Let Φ : Mn(F) → Mr(F) be a linear map preserving zero

products. If Φ(In) is an idempotent, then there is a nonsingular matrix S in Mr(F) such that

Φ(In)Φ(A) = Φ(A)Φ(In) = S

(
Ik ⊗A 0

0 0r−kn

)
S−1.

In other words, Ψ1 := Φ(In)Φ is an algebra homomorphism. Moreover, Ψ0 := (Ir −Φ(In))Φ is

a linear map such that its image has trivial multiplications. Clearly,

Φ = Ψ1 + Ψ0.

In particular, if Φ(In) = Ir then Φ is a unital algebra homomorphism, and has the form A 7→
S(Ik ⊗A)S−1.
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Theorem 3.5. Let the underlying field F be arbitrary. Let Φ : Mn → Mr be a linear map

preserving zero products. Then Φ has the form

A 7→ S

(
R1 ⊗A 0

0 Φ0(A)

)
S−1, (3.9)

for some invertible S ∈ Mr, R1 ∈ Mk, and a zero product preserving linear map Φ0 sending

Mn(F) into nilpotent matrices.

(a) If Φ sends rank one idempotents to idempotents then Φ0 is the zero map, and Φ has the

form

A 7→ S

(
R1 ⊗A 0

0 0r−nk

)
S−1. (3.10)

(b) Suppose F = C and Φ(A)∗ = Φ(A) for every rank one orthogonal projection A. Then Φ has

the form (3.10) where R1 = R∗1 and S can be chosen to be unitary, i.e., S−1 = S∗.

(c) Suppose F = R, and Φ(A) = Φ(A)t for every symmetric rank one idempotent A. Then

Φ has the form (3.9) where R1 ∈ Mk, and S ∈ Mr can be chosen to be real orthogonal,

Φ0(A) = 0 for symmetric matrices A, and Φ0(X)Φ0(Y ) = 0 in general.

(d) Suppose F = C and Φ(In) is diagonalizable and Φ(A)t = Φ(A) for every rank one real

symmetric idempotent A in Mn. Then Φ has the form (3.9), where R1 = Rt
1 and S can be

chosen to be complex orthogonal, i.e., S−1 = St.

Proof. We use the notations in Theorems 3.1 and 3.3. In particular, S−1Φ(A)S = RΦ1(A) ⊕
Φ0(A), in which the unital algebra homomorphism Φ1 has the form S1(Ik ⊗ A)S−11 for some

invertible S1 ∈ Mnk. Since RΦ1(A) = Φ1(A)R for all A ∈ Mn, we have R = S1(R1 ⊗ In)S−11

for some invertible R1 ∈Mk. It follows (3.9) after resetting S(S1 ⊕ Ir−nk) to be S.

(a) Assume Φ sends rank one idempotents to idempotents. Then Φ0(A) = Φ0(A)r = 0 for

every rank one idempotent A in Mn. Since every idempotent is a sum of rank one idempotents,

Φ0 sends idempotents to zero. Since every matrix is a linear sum of three idempotents by

Lemma 2.1(b), we see that Φ0 is the zero map.

(b) Because Φ(A)∗ = Φ(A) for every rank one orthogonal projection, we see that Φ(H)∗ =

Φ(H) whenever H = H∗ by Lemma 2.1(f). In particular, Φ(I) = Φ(I)∗. We can choose an

invertible S with S∗ = S−1 such that S∗Φ(I)S = R⊕ 0r−nk. In this way, R = R∗. By Theorem

3.3, we can find S1 satisfying S∗1 = S−11 such that the unital algebra homomorphism Φ1 has the

form X 7→ S1(Ik ⊗X)S−11 . As S∗1RS1 = R1⊗ In, we see that R1 is self-adjoint. It follows (3.9)

after resetting S(S1 ⊕ Ir−nk) to be S.

Since Φ0(H)r = 0, we see that the self-adjoint matrix Φ0(H) = 0 for all H = H∗ in Mn.

Because every A in Mn(C) has the form A = H + iG with H∗ = H = (A + A∗)/2 and

G = (A−A∗)/(2i). Thus, Φ0(A) = Φ0(H) + iΦ0(G) = 0. So, Φ0 is the zero map.

(c) The first part of the proof is similar to that of (b), and we can conclude that Φ0(A) = 0

for every symmetric matrix A in Mn(R). In particular, Φ0(In) = 0. Thus the range of Φ0 has

trivial multiplication by (3.2).

(d) In the complex matrix case, suppose Φ(X) = Φ(X)t for every rank one real symmetric

idempotent X. As in the proof of Theorem 3.3(c), we see that Φ sends symmetric matrices
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to symmetric matrices. In particular, the diagonalizable matrix Φ(In) is symmetric, and thus

complex orthogonally diagonalizable. We can thus find a complex matrix S such that St = S−1

and StΦ(In)S = R ⊕ 0r−nk, where the invertible matrix R is symmetric. Now, we can apply

Theorem 3.1 and Theorem 3.3(c) to conclude that there is a complex matrix S1 in Mnk such

that St
1 = S−11 satisfying (3.1). As St

1RS1 = R1 ⊗ In, we see that R1 is symmetric. Again, it

follows (3.9) after resetting S(S1 ⊕ Ir−nk) to be S.

Example 3.6. Consider the linear map Φ : M2(R)→M2(R) defined by(
a b
c d

)
7→
(

0 b− c
0 0

)
.

It is clear that Φ = Φ0 preserves zero products and sends symmetric matrices to symmetric

matrices (indeed, the zero matrix). The range of Φ0 has trivial multiplications, while Φ0 is not

the zero map.

3.3. Zero product preserving maps into nilpotents. By Theorem 3.1, every zero product

preserving additive map Φ : Mn(F)→Mr(F) has the form

A 7→ S(RΦ1(A)⊕ Φ0(A))S−1 = S(Φ1(A)R⊕ Φ0(A))S−1, (3.11)

where R,S are invertible matrices, Φ1 : Mn(F) → Mnk(F) is a unital ring homomorphism

and Φ0 : Mn(F) → Mr−nk(F) is a zero product preserving additive maps sending matrices to

nilpotent matrices. By the discussion in Subsection 3.2, we have a good understanding of Φ1.

In this section, we focus on Φ0.

If Φ0(In) = 0, Theorem 3.1 tells us that Φ0(Mn) has trivial multiplications. The following

provides us a sufficient and necessary condition for Φ0(Mn) having trivial multiplications.

Proposition 3.7. Let Φ : Mn(F) → Mr(F) be an additive zero product preserver. When the

underlying field F is an infinite field of characteristic 2, we assume in addition that Φ is F-

linear. The range of Φ has trivial multiplications exactly when Φ sends every scalar multiple of

a rank one idempotent to a square zero element. In the case F = C, it is also equivalent to the

condition that Φ sends every scalar multiple of a rank one projection to a square zero element.

Proof. We verify the sufficiency only. Since every idempotent matrix is a sum of disjoint rank

one idempotents, the assumption implies that Φ(αE)2 = 0 for all idempotents E in Mn and α

in F. By Lemma 2.1(b), for every X,Y in Mn we can write their product as a linear sum of

three idempotents, XY = β1E1 +β2E2 +β3E3, say. In the case when 2 is invertible in F, we see

that each scalar β =

(
β + 1

2

)2

−
(
β − 1

2

)2

. In the case when F is a finite field of characteristic

2, the map β 7→ β2 is an injective, and thus bijective, map from F onto F. Thus in both cases

we can assume that βk = α2
k − γ2k for some αk, γk in F for k = 1, 2, 3.
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If Φ is assumed additive and F is not an infinite field of characteristic 2, then with (3.2) we

have

Φ(X)Φ(Y ) = Φ(In)Φ((α2
1 − γ21)E1 + (α2

2 − γ22)E2 + (α2
3 − γ23)E3)

=

3∑
k=1

Φ(In)Φ((αkEk)
2)−

3∑
k=1

Φ(In)Φ((γkEk)
2)

=

3∑
k=1

Φ(αkEk)
2 −

3∑
k=1

Φ(γkEk)
2 = 0.

For the exceptional case that F is an infinite field of characteristic 2, with the linearity of Φ it

follows from (3.2) that

Φ(X)Φ(Y ) = Φ(In)Φ(β1E1 + β2E2 + β3E3) =

3∑
k=1

βkΦ(In)Φ(Ek) =

3∑
k=1

βkΦ(Ek)
2 = 0.

Finally, for the complex case, we note that every complex matrix is a linear sum of projections

by Lemma 2.1(f). Since complex scalars have square roots, the above arguments bring us the

desired conclusion.

The following theorem shows that even when Φ0 is linear and Φ0(Mn(F)) has trivial multi-

plications, the structure of Φ0 can be quite liberal. Indeed, Φ0 can be any linear map from Mn

into a certain subspace V of Mn satisfying XY = 0 for any X,Y in V.

Theorem 3.8. Suppose the underlying field F has more than (l+ 2)/2 elements. A linear map

Φ : Mn → Ml satisfies Φ(X)Φ(Y ) = 0 for any X,Y in Mn if and only if there is an invertible

matrix S0 in Ml such that for all A in Mn the matrix S−10 Φ(A)S0 has the form0p Z12 Z13

0p 0p 0
0 Z32 0q

 with Z13 =

(
Ẑ13 0u,q−v

0p−u,v 0p−u,q−v

)
and Z32 =

(
0v,u 0v,p−u

0q−v,u Ẑ32

)
,

for some nonnegative integers p, q, u, v.

Proof. The sufficiency is clear. We consider the necessity. SupposeX ∈Mn such that Y = Φ(X)

has the highest rank among the matrices in the range of Φ. Because Y 2 = 0, we may apply a

similarity transform and assume that

Y =

0p Ip 0
0p 0p 0
0 0 0q


with 2p+ q = l. Then for any Z = Φ(A), we have ZY = Y Z = 0l. We see that

Z =

0p Z12 Z13

0p 0p 0
0 Z32 Z33

 .
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Clearly, Z33 = 0q; for else, since F has more than (l + 2)/2 ≥ p+ 1 elements, there would be a

nonzero scalar γ such that

γY + Z =

0p γIp + Z12 Z13

0p 0p 0
0 Z32 Z33


has rank larger than p, which contradicts to the choice of Y . Consequently, we can assume

every Z in Φ(Mn) carries the form

Z =

0p Z12 Z13

0p 0p 0
0 Z32 0q

 .

Consider the column spaces and row spaces of the matrix appearing as the (1, 3) block Z13

of all Z from Φ(Mn). There are invertible P in Mp and Q in Mq such that the first u columns

of P span the sum of the column spaces of all these blocks, and the first v rows of Q span the

sum of the row spaces of all these blocks. Thus, the (1, 3) blocks of all such Z from Φ(Mn)

always have the form

Z13 = P

(
Ẑ13 0u,q−v

0p−u,v 0p−u,q−v

)
Q.

Let T = P ⊕ Ip ⊕ Q−1. Replace Φ with the map A 7→ T−1Φ(A)T , we may assume that the

(1, 3) block of Φ(A) always has the form

Z13 =

(
Ẑ13 0u,q−v

0p−u,v 0p−u,q−v

)
.

For any B in Mn and

W = Φ(B) =

0p W12 W13

0p 0p 0
0 W32 0q

 ,

we have ZW = 0l for all Z from Φ(Mn). Thus,

0p = Z13W32 =

(
Ẑ13 0u,q−v

0p−u,v 0p−u,q−v

)
W32.

We see that the first v rows of W32 must be the zero row. Choose some Z(j) from Φ(Mn) such

that the first column of the (1, 3) block Z
(j)
13 of Z(j) is the column vector ej with the jth entry

1 and other entries 0 for j = 1, 2, . . . , u. Note that for all scalars α, β, the matrix

αY + βZ(j) +W =

0p αIp + βZ
(j)
12 +W12 βZ

(j)
13 +W13

0p 0p 0

0 βZ
(j)
32 +W32 0q


has column rank at most p. Moreover, the (1, 3) block of the above matrix assumes the form(

βẐ
(j)
13 + Ŵ13 0u,q−v
0p−u,v 0p−u,q−v

)
.
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Performing row operations on the first p rows of the matrix αY + βZ(j) + W , we will obtain

another matrix such that the first column of its (1, 3) block is ej for all but one scalar β. Fix

a choice of β such that this happens. Note that this new matrix also has rank at most p.

Because F contains more than p + 1 elements, we can always find a scalar α such that the

αIp+βZ
(j)
12 +W12 has rank p. This forces the jth column of βZ

(j)
32 +W32 is zero. Since we have

more than one choices of β, the jth columns of both Z
(j)
32 and W32 are zero, for j = 1, 2, . . . , u.

Consequently,

W32 =

(
0v,u 0v,p−u

0q−v,u Ŵ32

)
.

Hence, we conclude that Φ(A) has the asserted block form.

The following examples show that for a zero product preserving linear map Φ : Mn →Mr, if

Φ(In) is only a nilpotent matrix, the range of Φ might have nontrivial multiplications.

Example 3.9. Let the underlying field F be arbitrary. The linear map Φ : Mn →Mkn defined

by

A 7→


0n A 0n . . . 0n
0n 0n A . . . 0n
...

...
...

. . .
...

0n 0n 0n . . . A
0n 0n 0n . . . 0n


preserves zero products. The matrix Φ(In) is nilpotent such that Φ(In)k−1 6= 0 and Φ(In)k = 0.

In particular, the range of Φ does not have trivial multiplications if k > 2.

In [3, Theorem 5.2], it is shown that every zero product preserving additive map Φ : Mn(D)→
Mn(D) of matrices over a division ring D either has a range with trivial multiplications, or

Φ(·) = CΨ(·) = Ψ(·)C for a ring endomorphism Ψ and a matrix C. However, for those maps

between matrices of different sizes we can have some wired examples.

Example 3.10 (Based on [19, p. 310] and [6, Example 2.5]). Let the underlying field F be

arbitrary. Consider Φ : Mn →Mr with r ≥ n+ 2 and n 6= 1 defined by

(
aij
)
7→


0 a11 · · · a1n 0 0 · · · 0
0 0 · · · 0 a1n 0 · · · 0
...

...
. . .

...
...

...
. . . 0

0 0 · · · 0 ann 0 · · · 0
0 0 · · · 0 0 0 · · · 0

 .

The linear map Φ preserves zero products. Note that Φ(In)2 = 0. Since Φ(E)2 6= 0 with

E = E11 + E1n, the image of Φ carries a nontrivial multiplication.

We claim that Φ cannot be written as the form CΨ for any C in Mr(F) and any homo-

morphism Ψ : Mn(F) → Mr(F). Assume on the contrary that Φ = CΨ. Then we get a



NONSURJECTIVE ZERO PRODUCT PRESERVERS 15

contradiction.

Φ(E)2 = Φ(E)CΨ(E) = Φ(E)CΨ(E11E) = Φ(E)CΨ(E11)Ψ(E)

= Φ(E)Φ(E11)Ψ(E) = 0Ψ(E) = 0.

When r ≤ n+ 1 and n 6= 1, we do have a good counterpart of [3, Theorem 5.2].

Proposition 3.11. Suppose that r ≤ n+ 1 and n 6= 1. Let Φ : Mn(F)→Mr(F) be an additive

zero product preserver.

(a) If Φ(In) is not a nilpotent, then r = n or r = n+ 1, and Φ has the form

A 7→ αS(Aτ ⊕ 0r−n)S−1 (3.12)

for some nonzero scalar α, an invertible matrix S in Mr(F), and a unital ring endomorphism

τ of F.

(b) If Φ(In) is a nilpotent, then the range of Φ always has trivial multiplications. In this case

when the underlying field F is an infinite field of characteristic 2, we assume in addition

that Φ is F-linear.

Proof. (a) We assume that Φ(In) is not a nilpotent. Then the ‘algebraic part’ R given in

Theorem 3.1 is an invertible matrix with rank at least n. It is then necessary that r = n or

r = n+ 1. In view of (3.11), Φ has the form

A 7→ S(RΦ1(A)⊕ 0r−n)S−1 = S(Φ1(A)R⊕ 0r−n)S−1

for an invertible matrix S in Mr(F), an invertible matrix R in Mn(F), and a unital ring homo-

morphism Φ1 : Mn(F)→Mn(F). Arguing as in the proof of Theorem 3.3 we will establish (3.8)

for the unital ring homomorphism Φ1. We have indeed

Φ1(Eij) = Eij for all i, j = 1, . . . , n.

For any a in F, the matrix Φ1(aIn) commutes with all Φ1(Eij) = Eij . Thus, Φ1(aIn) = τ(a)In

for some scalar τ(a) in F. It is easy to see that a 7→ τ(a) is a unital ring homomorphism of F.

Observe that

Φ1(A) =
n∑

i,j=1

Φ1(aijEij) =
n∑

i,j=1

Φ1(aijIn)Φ1(Eij) =
n∑

i,j=1

τ(aij)Eij = Aτ ,

where Aτ = (τ(aij)) if A = (aij). Since R commutes with all Aτ , in particular with all Eij

since τ(1) = 1, the invertible matrix R = αIn for some nonzero scalar α. Consequently, Φ has

the form (3.12).

(b) Let Φ(In) be a nilpotent. Suppose on contrary that Φ(Mn) does not have trivial mul-

tiplications. By Proposition 3.7, Φ(αE)2 6= 0 for a rank one idempotent E in Mn and α 6= 0

in F. Let {e1, . . . , en} be a basis of Fn consisting of eigenvectors of E such that Ee1 = e1 and

Eej = 0 for j = 2, . . . , n. In this setting, we can write E = E11, where Eij is the matrix unit

of Mn with respect to the basis {e1, . . . , en}.
Observe that

(αE11 + αE1j)(αE11 − αEj1) = 0
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implies

Φ(αE1j)Φ(αEj1) = Φ(αE11)
2 6= 0, j = 1, . . . , n, (3.13)

and

Φ(αEij)Φ(αEkl) = 0, whenever j 6= k, and i, j, k, l = 1, . . . , n. (3.14)

Since Φ(In) is a nilpotent, Φ(αE11) is a nilpotent as well by Lemma 3.2(b). After a similarity

transformation, we can assume that Φ(αE11) = J1⊕ · · · ⊕ Jm is a direct sum of its zero Jordan

blocks. Since Φ(αE11)
2 6= 0, we can further assume that J1 is of size at least 3; namely,

J1 =


0 1 · · · 0

. . .

0 0 · · · 1
0 0 · · · 0

 .

Since E1jE11 = E11Ej1 = 0, we see that the first and the second columns of Φ(αE1j) are zero

columns, and the second and the third rows of Φ(αEj1) are zero rows for j = 2, . . . , n.

Denote by Rj the first row of Φ(αE1j), and by Cj the third column of Φ(αEj1) for j =

2, 3, . . . , n. Let

R =


R2

R3
...
Rn


(n−1)×r

and C =
(
C2 C3 · · · Cn

)
r×(n−1) .

The conditions (3.13) and (3.14) tell us that RiCj = 1 whenever i = j, and 0 whenever i 6= j.

In other words, RC = In−1. Note that the first and second columns of R are both the zero

columns. On the other hand, since the third row of C is the zero row, we can replace the third

column of R by the zero column to get a new (n−1)×r matrix R′ such that R′C = RC = In−1.

Therefore, R′ has rank n−1. Since the first three columns of R′ are zero, we have r−3 ≥ n−1.

This contradiction establishes the assertion.

If r > n + 1 or n = 1, even a ring homomorphism from Mn(F) into Mr(F) can carry a far

more complicated form. The following example tells us that Proposition 3.11 does not hold

when r = 2n = 2.

Example 3.12. Let F be a purely transcendental extension over another field K, for example

R/Q. According to [25, Corollary 1’ in p. 124], there is a nonzero additive derivation x 7→ x′ of

F. Consider the unital ring homomorphism Φ : M1(F)→M2(F) defined by

(a) 7→
(
a a′

0 a

)
.

This does not carry the form as stated in (3.11).
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4. Zero product preserving maps for other types of products

In this section, we will use the results and techniques in the last section to study zero product

preservers and homomorphisms for other types of products.

4.1. Jordan homomorphisms and *-homomorphisms. The following lemmas can be known,

and we include them with short proofs here for completeness.

Lemma 4.1. Let F be a field of characteristic not 2. Let Φ : Mn(F) → Mr(F) be an additive

map. If Φ is a Jordan homomorphism then Φ preserves double zero products; when F is the real

or complex, Φ also preserves zero products of self-adjoint or symmetric elements, i.e.,

Φ(A)Φ(B) = 0 whenever AB = 0 and both A,B are self-adjoint or symmetric.

Proof. Note that a Jordan homomorphism between matrices preserves commutativity ( [9]). If

AB = BA = 0 then Φ(AB + BA) = 0 and thus Φ(A)Φ(B) = ±Φ(B)Φ(A) = 0. On the

other hand, if both A,B are self-adjoint and AB = 0 then BA = (AB)∗ = 0, and we have

Φ(A)Φ(B) = 0 from above arguments. The case for symmetric matrices is similar.

Lemma 4.2. Let F be any field. Let θ : Mn(F)→Mr(F) be an additive Jordan homomorphism.

(a) If θ is not the zero map, then it is injective.

(b) There are two disjoint idempotents P,Q in Mr(F) such that

i. Pθ(A) = θ(A)P and Qθ(A) = θ(A)Q for all A ∈Mn(F),

ii. the maps θ1, θ2 : Mn(F) → Mr(F) defined by θ1(A) = θ(A)P and θ2(A) = θ(A)Q are

ring homomorphism and ring anti-homomorphism, respectively, such that θ = θ1 + θ2.

(c) Suppose the underlying field is the complex C. If θ is a linear Jordan *-homomorphism

then we can choose θ1, θ2 above to be an algebra *-homomorphism and an algebra *-anti-

homomorphism, respectively.

Proof. We note that Jordan ideals of a matrix ring are two-sided ideals [9, Theorem 11]. Thus

the kernel θ−1(0) of θ is a two-sided ideal of the simple ring Mn(F). If θ is not zero, then we

see that its kernel is zero, and thus θ is injective. Moreover, it follows from [9, Theorem 7] that

any additive Jordan homomorphism θ : Mn(F) → B from the matrix ring Mn(F) into another

ring B is a sum of a ring homomorphism and a ring anti-homomorphism as stated.

On the other hand, any linear Jordan *-homomorphism θ : A → B between C*-algebras

such that θ(A) generates B is a sum of *-algebra homomorphism A 7→ θ(A)P and a *-algebra

anti-homomorphism A 7→ θ(A)Q for an orthogonal pair of central projections P,Q in B∗∗ with

P +Q = 1 [22, Theorem 3.3]. Thus the last assertion follows.

Lemma 4.3. Let F be any field. Let θ : Mn(F)→Mr(F) be an additive Jordan homomorphism.

If θ preserves zero products, then θ is a ring homomorphism.

Proof. By Lemma 4.2, we write θ = θ1+θ2 where θ1(·) = θ(·)P = Pθ(·) is a ring homomorphism

and θ2(·) = θ(·)Q = Qθ(·) is a ring anti-homomorphism with idempotents P,Q such that
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PQ = QP = 0. The goal is to assert that θ2 = 0. If it is not, choose any A,B from Mn such

that AB = 0 but BA 6= 0. Since both θ and θ1 preserve zero products, we see

0 = θ(A)θ(B) = θ1(A)θ1(B) + θ2(A)θ2(B) = θ2(A)θ2(B) = θ2(BA).

Hence θ2 is not injective. By Lemma 4.2(a), θ2 = 0.

Theorem 4.4. Let F be a field. Suppose Φ : Mn(F)→Mr(F) is a linear Jordan homomorphism.

(a) There exist nonnegative integers k1, k2 such that t = r−nk1−nk2 ≥ 0, and an invertible

matrix S in Mr(F) such that Φ has the form

A 7→ S

 Ik1 ⊗A
Ik2 ⊗At

0t

S−1. (4.1)

(b) Assume F = R or C. If Φ(A)∗ = Φ(A) for every rank one projection A, then S can be

chosen such that S−1 = S∗.

(c) Assume F = C. If Φ(A) is symmetric for every rank one real symmetric idempotent A,

then S can be chosen to be complex orthogonal.

Proof. It suffices to verify the case when n ≥ 2. It follows from Lemma 4.2 that there are

idempotents P,Q in Mr such that P + Q = Ir, PQ = QP = 0 and Φ = Φ1 + Φ2 is a direct

sum of the algebra homomorphism Φ1 = PΦ and the algebra anti-homomorphism Φ2 = QΦ.

Considering the algebra homomorphism Φ2(·)t, we arrive at the conclusions with Theorem 3.3.

4.2. Idempotents and disjointness linear preservers. A special case of the following result

when n = r has been obtained in [5, Theorem 8], while a more general case for matrices over

a unital commutative ring can be found in [2, Theorem 2.1]. We provide here an elementary

proof with a more detailed description of the map involved.

Theorem 4.5. Assume that the underlying field F has characteristic not two. Let Φ : Mn →Mr

be a linear map preserving idempotents. Then Φ is a Jordan homomorphism, and there exist

an invertible S in Mr, and nonnegative integers k1, k2 such that t = r − nk1 − nk2 ≥ 0, and

Φ(A) = S

 Ik1 ⊗A
Ik2 ⊗At

0t

S−1.

Proof. We first note that Φ(In) is an idempotent. Observe that for idempotents P,Q, they

are orthogonal to each other exactly when P + Q is again an idempotent. Therefore, Φ sends

disjoint idempotents P,Q in Mn to disjoint idempotents Φ(P ),Φ(Q) in Mr. In particular, for

every idempotent P in Mn we have

Φ(In)Φ(P ) = (Φ(P ) + Φ(In − P ))Φ(P ) = Φ(P ) = Φ(P )Φ(In).

By Lemma 2.1(b), we see that

Φ(A) = Φ(In)Φ(A) = Φ(A)Φ(In), for all A ∈Mn.
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Therefore, if we change Φ(·) to S−10 Φ(·)S0 for some suitable invertible S0 in Mr, we can assume

Φ(In) = Is ⊕ 0r−s and Φ(A) = A′ ⊕ 0r−s for some A′ in Ms, where s is the rank of Φ(In).

In the following, we assume further that s = r, and in particular, Φ(In) = Ir. Since Φ sends

disjoint idempotents in Mn to such in Mr, it follows from Lemma 2.1(e) that

Φ(A2) = Φ(A)2, for all real symmetric matrix A ∈Mn. (4.2)

In particular,

Φ(Eii)Φ(Ejj) = δijΦ(Eii), i, j = 1, 2, . . . , n. (4.3)

Moreover,

Ir = Φ(In) =

n∑
i=1

Φ(Eii).

Replacing Φ by the map X 7→ S−11 Φ(X)S1 for some invertible S1 in Mr, we can assume that

the idempotents

Φ(Eii) = 0k1 ⊕ · · · ⊕ Iki ⊕ 0ki+1
⊕ · · · ⊕ 0kn , i = 1, . . . , n.

Here, k1 + · · ·+ kn = r.

Since E11 +E12, E22 +E12, E11 +E21 and E22 +E21 are all idempotents and have pairwise

zero products with Eii for i = 3, . . . , n, we see that Φ(E11)+Φ(E12), Φ(E22)+Φ(E12), Φ(E11)+

Φ(E21) and Φ(E22) + Φ(E21) are all idempotents and have zero products with Φ(Eii) for i =

3, . . . , n. This forces

Φ(E12) =

(
B11 B12

B21 B22

)
⊕ 0s and Φ(E21) =

(
C11 C12

C21 C22

)
⊕ 0s,

where s = r − k1 − k2, Bij , Cij are ki × kj matrices for i, j = 1, 2. Moreover,(
Ik1 +B11 B12

B21 B22

)
=

(
Ik1 +B11 B12

B21 B22

)2

=

(
Ik1 + 2B11 +B2

11 +B12B21 B12 +B11B12 +B12B22

B21 +B21B11 +B22B21 B21B12 +B2
22

)
,

and (
B11 B12

B21 Ik2 +B22

)
=

(
B11 B12

B21 Ik2 +B22

)2

=

(
B2

11 +B12B21 B11B12 +B12 +B12B22

B21B11 +B21 +B22B21 B21B12 + Ik2 + 2B22 +B2
22

)
.

It follows

B11 = 0k1 , B22 = 0k2 , B21B12 = 0k2 , and B12B21 = 0k1 .

Similarly, we have

C11 = 0k1 , C22 = 0k2 , C21C12 = 0k2 , and C12C21 = 0k1 .
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Thus we can write

Φ(Eij) =

(
0 Xij

Yij 0

)
⊕ 0s, with XijYij = 0k1 , YijXij = 0k2 for all i 6= j, i, j = 1, 2.

(4.4)

Because E12 + E21 is real symmetric and (E12 + E21)
2 = E11 + E22, by (4.2), we have(

0 X12 +X21

Y12 + Y21 0

)2

=

(
Ik1 0
0 Ik2

)
.

Consequently,

XijYji +XjiYij = Iki , (4.5)

YijXji + YjiXij = Ikj , i < j, i, j = 1, 2.

By comparing traces, we see that k1 = k2.

The above discussions hold for all pairs i, j of distinct indices. We thus conclude that

k1 = k2 = · · · = kn = k

for a common value k such that nk = r. Consequently, Φ(Eii) = Eii ⊗ Ik for i = 1, . . . , n.

Moreover, (4.4) and (4.5) hold for all distinct indices i, j from 1, 2, . . . , n. It follows for A = (aij)

in Mn that

Φ(A) =
∑
i

aiiEii⊗ Ik +
∑
i<j

aijEij ⊗Xij +
∑
i<j

aijEji⊗Yij +
∑
i>j

aijEji⊗Xij +
∑
i>j

aijEij ⊗Yij .

By (4.5), we then see that

Φ(A2) = Φ(A)2.

Therefore, Φ is a Jordan homomorphism from Mn into Mr. The desired assertion follows from

Theorem 4.4.

Theorem 4.6. Assume that the underlying field F has characteristic not two. Let Φ : Mn →Mr

be a linear map such that Φ preserves double zero products, i.e.,

Φ(A)Φ(B) = Φ(B)Φ(A) = 0 whenever A,B ∈Mn satisfies AB = BA = 0.

Then there exist nonnegative integers k1, k2 such that t = r − nk1 − nk2 ≥ 0, and invertible

matrices S in Mr, R1 in Mk1 and R2 in Mk2 such that Φ has the form

A 7→ S

R1 ⊗A 0 0
0 R2 ⊗At 0
0 0 Φ0(A)

S−1.

If Φ(In) has nil index ν, then the double zero product preserving linear map Φ0 : Mn → Mt

satisfying that Φ0(P )ν+1 = 0 for every idempotent P in Mn.

In the complex (resp. real) case, Φ0 : Mn → Mt is a linear map preserving Jordan zero

products (resp. Jordan zero products of symmetric matrices). If ν = 0, especially when Φ(In)

is diagonalizable, then

Φ0(X)Φ0(Y ) + Φ0(Y )Φ0(X) = 0t for all (resp. symmetric) X,Y ∈Mn.
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Proof. Observe that for any idempotent P in Mn, we have

P (In − P ) = (In − P )P = 0.

Thus

Φ(P )(Φ(In)− Φ(P )) = (Φ(In)− Φ(P ))Φ(P ) = 0.

This gives

Φ(P )Φ(In) = Φ(P )2 = Φ(In)Φ(P ). (4.6)

Since every A in Mn is a linear sum of three idempotents (Lemma 2.1(b)),

Φ(In)Φ(A) = Φ(A)Φ(In) for all A ∈Mn.

As argued in the proof of Theorem 3.1, we write Φ = Φ1 ⊕ Φ0, and define Ψ(·) = Φ1(·)R−1.
By (4.6) we see that Ψ is a linear map from Mn into Ms preserving idempotents. By Theorem

4.5, Ψ is a unital Jordan homomorphism, and thus Φ is given in the stated form. Moreover, it

follows again from (4.6) that Φ0(P )ν+1 = Φ0(In)νΦ0(P ) = 0 for all idempotents P in Mn.

Assume now that the underlying field is C (resp. R). It follows from Lemma 2.1(f) (resp.

(e)) and (4.6) that

Φ(In)Φ(A2) = Φ(A)2 for all self-adjoint (resp. symmetric) A in Mn. (4.7)

Note that A+B is self-adjoint (resp. symmetric) whenever both A,B are. We have

Φ(In)Φ((A+B)2) = Φ(A+B)2,

and thus

Φ(In)Φ(AB +BA) = Φ(A)Φ(B) + Φ(B)Φ(A), (4.8)

for all self-adjoint (resp. symmetric) A,B in Mn. Because (A+ iB)2 = A2 + i(AB +BA) +B2

for any self-adjoint matrices A,B, both (4.7) and (4.8) are true for all matrices A,B in Mn in

the complex case. With (4.8), we see that Φ, and thus also Φ0, sends pairs of (resp. symmetric)

matrices with zero Jordan products to pairs with zero Jordan products. Finally, if ν = 0,

namely, Φ0(In) = 0, then Φ0(A)Φ0(B) + Φ0(B)Φ0(A) = 0 for any (resp. symmetric) matrices

A,B in Mn by (4.8).

The general case of the following result is known to C∗-algebraists (see, e.g., [17, Theorem

3.6]). We include an easy proof for the special case of complex matrices for completeness.

Theorem 4.7. A complex linear map Φ : Mn →Mr preserves range orthogonality, i.e.,

Φ(A)∗Φ(B) = 0 whenever A,B ∈Mn satisfies A∗B = 0,

if and only if there are matrices S, T in Mr such that S∗S = Ir and

Φ(A) = S

(
Ik ⊗A 0

0 0r−nk

)
T, for all A ∈Mn.
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Proof. We first claim that

Φ(In)∗Φ(A∗B) = Φ(A)∗Φ(B) for all A,B ∈Mn. (4.9)

Indeed, for any orthogonal projections P,Q in Mn, since P ∗(QB) = Q∗(PB) = 0, we have

Φ(P )∗Φ(QB) = Φ(Q)∗Φ(PB) = 0 for all B ∈Mn.

It follows

Φ(P +Q)∗Φ(QB) = Φ(Q)∗Φ(QB) = Φ(Q)∗Φ((P +Q)B) for all B ∈Mn.

In particular,

Φ(In)∗Φ(QB) = Φ(Q)∗Φ(B) for all B ∈Mn.

Since every complex matrix A can be written as a linear sum of projections, we establish (4.9).

In particular, if Φ(In) = 0 then Φ is a zero map, and the assertions hold trivially. So assume

the rank s of Φ(In) is positive below.

Let H be the column space of Φ(In), i.e., the linear span of all column vectors in Φ(In) in

Cr. It follows from (4.9) that

Φ(In)∗Φ(A∗A) = Φ(A)∗Φ(A) = Φ(A∗A)∗Φ(In) for all A ∈Mn.

In particular, Φ(A)x = 0 whenever Φ(In)x = 0 for all x in Cr. Therefore, we can define an

π(A) in Mr by setting

π(A)Φ(In)x = Φ(A)x for all x ∈ Cr,
and π(A)y = 0 for any y in the orthogonal complement of H in Cr.

Observe the Cr inner products

〈π(A∗B)Φ(In)x,Φ(In)y〉 = 〈Φ(A∗B)x,Φ(In)y〉 = 〈Φ(In)∗Φ(A∗B)x, y〉

= 〈Φ(A)∗Φ(B)x, y〉 = 〈Φ(B)x,Φ(A)y〉 (by (4.9))

= 〈π(B)Φ(In)x, π(A)Φ(In)y〉 = 〈π(A)∗π(B)Φ(In)x,Φ(In)y〉,

for all x, y in Cr and A,B in Mn. Hence,

π(A∗B) = π(A)∗π(B) for all A,B ∈Mn.

Therefore, π : Mn → Mr is an algebra ∗-homomorphism. It then follows from Theorem 3.3

that there exist an integer k and a unitary matrix S in Mr such that

π(A) = S

(
Ik ⊗A 0

0 0r−kn

)
S∗.

By construction,

Φ(A) = π(A)Φ(In) = S

(
Ik ⊗A 0

0 0r−kn

)
S∗Φ(In) for all A ∈Mn.

Setting T = S∗Φ(In), we complete the proof.

The following can be considered as an enhanced version of a special case of the general

results about orthogonality preserving linear maps of JB*-triples discussed in, e.g., [4]. When

Φ is surjective, it is also discussed in [23] (see also [12, Theorem 2.2]), which applies indeed for

general C*-algebras.
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Theorem 4.8. Let Φ : Mn → Mr be a complex linear map preserving double orthogonality,

i.e.,

Φ(A)Φ(B)∗ = Φ(B)∗Φ(A) = 0 whenever A,B ∈Mn satisfy AB∗ = B∗A = 0.

Suppose that Φ(In) is a self-adjoint matrix in Mr of rank s. Then there are nonnegative integers

k1, k2 such that s = nk where k = k1 + k2, and there is a unitary S in Mr, and invertible self-

adjoint matrices R1 in Mk1, R2 in Mk2 such that

Φ(A) = S

R1 ⊗A 0 0
0 R2 ⊗At 0
0 0 0r−nk

S∗ for all A ∈Mn. (4.10)

Proof. Let P,Q be orthogonal projections in Mn. By the double orthogonality preserving

property of Φ, we have

Φ(P )∗Φ(Q) = Φ(Q)Φ(P )∗ = 0.

Putting P = In −Q, we have

(Φ(In)∗ − Φ(Q)∗)Φ(Q) = Φ(Q)(Φ(In)∗ − Φ(Q)∗) = 0.

Since Φ(In)∗ = Φ(In), we have

Φ(In)Φ(Q) = Φ(Q)∗Φ(Q) = Φ(Q)∗Φ(In),

Φ(Q)Φ(In) = Φ(Q)Φ(Q)∗ = Φ(In)Φ(Q)∗. (4.11)

Hence

Φ(In)2Φ(Q) = Φ(In)Φ(Q)∗Φ(In) = Φ(Q)Φ(In)2.

Write the self-adjoint matrix Φ(In) = Φ(In)+ − Φ(In)− as the orthogonal difference of its

positive and negative parts. The fact that Φ(Q) commutes with Φ(In)2 = Φ(In)2+ + Φ(In)2−
implies that Φ(Q) commutes with both Φ(In)+ and Φ(In)−, and thus also with Φ(In). By

Lemma 2.1(f), Φ(In) commutes with Φ(A) for any A in Mn. It follows from (4.11) that both

the left and right support projections of Φ(Q) is dominated by the support projection of the

self-adjoint Φ(In). Thus, it is also true for Φ(A) for any A in Mn.

Choose a unitary matrix S1 from Mr such that S∗1Φ(In)S1 = D1⊕ 0r−s, where D1 is an s× s
invertible diagonal matrix with all nonzero (real) eigenvalues on the diagonal. From above we

see that S∗1Φ(A)S1 = Φ1(A)⊕ 0r−s for a linear map Φ1 : Mn →Ms. Clearly, Φ1 also preserves

double orthogonality and Φ1(In) = D1. Moreover,

D1Φ1(A) = Φ1(A)D1 for all A ∈Mn.

Let π : Mn →Ms be defined by

π(A) = D−11 Φ1(A) for all A ∈Mn.

It is clear that π preserves double orthogonality. Therefore, π satisfies (4.11) as Φ does. Since

π(In) = Is, we have

π(Q) = π(Q)∗π(Q) = π(Q)∗

for every projection Q in Mn. Therefore, π sends projections to projections. By Lemma 2.2(b),

π is a unital Jordan *-homomorphism from Mn into Ms.
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It follows from Theorem 4.4 that there are nonnegative integers k1, k2 such that s = nk where

k = k1 + k2, and there is a unitary U1 in Mnk such that

π(A) = U1

(
Ik1 ⊗A 0

0 Ik2 ⊗At

)
U∗1 for all A ∈Mn.

Let

S = S1

(
U1 0
0 Ir−nk

)
and R = U∗1D1U1.

Then

Φ(A) = S1

(
Φ1(A) 0

0 0

)
S∗1 = S1

(
D1 0
0 0

)(
π(A) 0

0 0

)
S∗1

= S1

(
D1 0
0 0

)(
U1 0
0 Ir−nk

)Ik1 ⊗A 0 0
0 Ik2 ⊗At 0
0 0 0r−nk

(U1 0
0 Ir−nk

)∗
S∗1

= S

(
R 0
0 0r−nk

)Ik1 ⊗A 0 0
0 Ik2 ⊗At 0
0 0 0r−nk

S∗.

Moreover, by construction the self-adjoint matrix R satisfies

R

(
Ik1 ⊗A 0

0 Ik2 ⊗At

)
=

(
Ik1 ⊗A 0

0 Ik2 ⊗At

)
R for all A ∈Mn.

Thus

R =

(
R1 ⊗ In 0

0 R2 ⊗ In

)
for some self-adjoint invertible matrices R1 in Mk1 and R2 in Mk2 . This establishes the assertion

(4.10).

Denote by Hn the real linear space of self-adjoint matrices in Mn(C).

Theorem 4.9. Let Φ : Hn →Mr(C) be a real linear map preserving zero products. Then

• there are nonnegative integers k1, k2 such that s = n(k1 + k2) is the rank of Φ(In),

• there are invertible matrices S in Mr(C), R1 in Mk1(C) and R2 in Mk2(C), and

• there is a real linear map Φ0 : Hn →Mr−s preserving zero Jordan products,

such that Φ carries the form

A 7→ S

R1 ⊗A 0 0
0 R2 ⊗At 0
0 0 Φ0(A)

S−1.

If the nilpotent part of Φ(In) is zero, then

Φ0(X)Φ0(Y ) + Φ0(Y )Φ0(X) = 0 for all X,Y ∈ Hn. (4.12)
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Furthermore, if Φ(Hn) ⊆ Hr, i.e., Φ(A)∗ = Φ(A) for all A in Hn, then S can be chosen to be

unitary, R1 = R∗1, R2 = R∗2, and Φ carries the form

A 7→ S

R1 ⊗A 0 0
0 R2 ⊗At 0
0 0 0

S∗.

Proof. For any projection P in Mn, we have P (In − P ) = (In − P )P = 0, which implies

Φ(P )Φ(In − P ) = Φ(In − P )Φ(P ) = 0. Hence,

Φ(In)Φ(P ) = Φ(P )2 = Φ(P )Φ(In).

By Lemma 2.1(f),

Φ(In)Φ(A2) = Φ(A)2 = Φ(A2)Φ(In) for all A ∈ Hn. (4.13)

We choose an invertible S1 from Mr such that S−11 Φ(In)S1 = R ⊕ N , where R is an s × s
invertible matrix and N is an (r−s)× (r−s) nilpotent matrix. Replacing Φ(·) with S−11 Φ(·)S1,
we can assume that Φ(In) = R ⊕N . Note that N = 0r−s and we can choose S1 to be unitary

and R = R∗ to be a real diagonal invertible matrix if Φ(In) is self-adjoint. Because every

self-adjoint matrix is the difference of two positive matrices, and positive matrices have positive

square roots, it follows from (4.13) that Φ(In)Φ(A) = Φ(A)Φ(In) for all A in Hn.

Arguing as in the proof of Theorem 3.1, we can write Φ(A) = Φ1(A) ⊕ Φ0(A), where Φ1 :

Hn → Ms is a zero product preserving real linear map such that RΦ1(A) = Φ1(A)R for all A

in Hn, and Φ0 : Hn → Mr−s is a zero product real linear map into nilpotent matrices. When

Φ(Hn) ⊆ Hr, we see that Φ0 is the zero map. In general, if N = 0 then by (4.13) we establish

(4.12).

Consider the map Φ2(·) = R−1Φ1(·) = Φ1(·)R−1. We see that Φ2 is a unital zero product

preserving real linear map from Hn into Ms. It follows from (4.13) again that Φ2 is a unital real

linear Jordan homomorphism. Extend Φ2 to a complex linear map Φ3 : Mn →Ms by setting

Φ3(A+ iB) = Φ2(A) + iΦ2(B) for all A,B ∈ Hn.

Then Φ3 is a unital complex linear Jordan homomorphism. It follows from Theorem 4.4 that

Φ3 assumes the form

A 7→ S2[(Ik1 ⊗A)⊕ (Ik2 ⊗At)]S−12

for some invertible S2 in Ms and some nonnegative integers k1, k2 such that s = n(k1 + k2).

When Φ, and thus Φ2, sends into self-adjoint matrices, Φ3 is a Jordan *-homomorphism, and

we can assume S2 is unitary.
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Consequently,

Φ(A) = S1(R⊕ Ir−s)(S2 ⊕ Ir−s)

Ik1 ⊗A 0 0
0 Ik2 ⊗At 0
0 0 Φ0(A)

 (S−12 ⊕ Ir−s)S
−1
1

= S1(S2 ⊕ Ir−s)(S−12 RS2 ⊕ Ir−s)

Ik1 ⊗A 0 0
0 Ik2 ⊗At 0
0 0 Φ0(A)

 (S−12 ⊕ Ir−s)S
−1
1

= S(S−12 RS2 ⊕ Ir−s)

Ik1 ⊗A 0 0
0 Ik2 ⊗At 0
0 0 Φ0(A)

S−1

= S(R′ ⊕ Ir−s)

Ik1 ⊗A 0 0
0 Ik2 ⊗At 0
0 0 Φ0(A)

S−1.

Here, S = S1(S2 ⊕ Ir−s) is invertible in Mr and R′ = S−12 RS2 in Ms satisfies

R′
(
Ik1 ⊗A 0

0 Ik2 ⊗At

)
=

(
Ik1 ⊗A 0

0 Ik2 ⊗At

)
R′ for all A ∈ Hn.

Hence,

R′ =

(
R1 ⊗ In 0

0 R2 ⊗ In

)
for some invertible matrices R1 in Mk1 and R2 in Mk2 . When Φ has self-adjoint images, we can

assume that S is unitary and R1, R2 are self-adjoint. The assertions follow.

Denote by Sn(F) the set of n× n symmetric matrices in Mn(F).

Theorem 4.10. Let Φ : Sn(C)→Mr(C) be a zero product preserving complex linear map. The

following are equivalent.

(a) Φ(A) is a (resp. symmetric) idempotent whenever A is a rank one idempotent in Sn(R).

(b) There is a nonnegative integer k and an invertible (resp. complex orthogonal) matrix S in

Mr such that Φ has the form

A 7→ S−1
(
Ik ⊗A 0

0 0r−kn

)
S.

Proof. We verify the implication (a) =⇒ (b) only. By (a), Φ(Eii) are all idempotents and

Φ(Eii)Φ(Ejj) = 0 if i 6= j. Hence, Φ(In) =
∑n

i=1 Φ(Eii) is an idempotent. Assume S in Mr(C)

is invertible and that S−1Φ(In)S = Is ⊕ 0r−s. As in the proof of Theorem 3.3, replacing Φ(·)
with S−1Φ(·)S, we can assume that r = s, Φ(In) = Is and

Φ(Eii) = 0k1 ⊕ · · · ⊕ Iki ⊕ 0ki+1
⊕ · · · ⊕ 0kn , i = 1, . . . , n.

Here, k1 + k2 + · · ·+ kn = s.

Let

B = Φ(E12 + E21) =

(
B11 B12

B21 B22

)
⊕ 0s′ ,
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where Bij are ki × kj complex matrices for i, j = 1, 2, and s′ = s − k1 − k2. For any nonzero

real γ, consider

X1 =

(
γ 1
1 1/γ

)
⊕ 0n−2 and X2 =

(
1/γ −1
−1 γ

)
⊕ 0n−2.

Because X1X2 = 0n, we see that

0s = Φ(X1)Φ(X2) = (Φ(γE11 + E22/γ) +B)(Φ(E11/γ + γE22)−B)

=

[(
γIk1 0

0 Ik2/γ

)
⊕ 0s′ +B

] [(
Ik1/γ 0

0 γIk2

)
⊕ 0s′ −B

]
=

(
Ik1 0
0 Ik2

)
⊕ 0s′ −B2 −

(
γB11 γB12

B21/γ B22/γ

)
⊕ 0s′ +

(
B11/γ γB12

B21/γ γB22

)
⊕ 0s′

=

(
Ik1 0
0 Ik2

)
⊕ 0s′ −B2 −

(
(γ − 1/γ)B11 0

0 (1/γ − γ)B22

)
⊕ 0s′ .

Since this is true for all nonzero real γ, we see that B11 and B22 are zero blocks. Because the

(1, 1) and (2, 2) blocks of B are zero, we get

B12B21 = Ik1 and B21B12 = Ik2 .

Hence, k1 = k2 and B21 = B−112 . Similarly, we get all k1 = k2 = · · · = kn, and we set this

common value to be k. It follows s = nk.

Now, we may replace Φ with the map (B−112 ⊕ Ik ⊕ Is−2k)Φ(X)(B12⊕ Ik ⊕ Is−2k) so that B12

is changed to Ik. Consequently, we can assume

B = Φ(E12 + E21) =

(
0 Ik
Ik 0

)
⊕ 0s−2k.

In a similar manner, we can assume, up to similarity,

Φ(E1j + Ej1) = (E1j + Ej1)⊗ Ik for all j = 1, . . . , n.

Notice that all Eij + Eji with i, j = 2, . . . , n, are disjoint from E11. It follows that all

Φ(Eij) + Φ(Eji) are disjoint from Φ(E11) = Ik ⊕ 0s−k for i, j = 2, . . . , n. Consequently, all

Φ(Eij)+Φ(Eji) are contained in (0k⊕Is−k)Ms(0k⊕Is−k). Therefore, Φ induces a zero product

preserving complex linear map Φ′ : Sn−1(C) → Ms−k(C) such that condition (a) is satisfied.

Therefore, with an induction argument we can show that

Φ(Eij + Eji) = (Eij + Eji)⊗ Ik for all i, j = 1, . . . , n.

After a permutation similarity, we can assume instead

Φ(Eij + Eji) = Ik ⊗ (Eij + Eji) for all i, j = 1, . . . , n.

Since {Eij +Eji : i, j = 1, . . . , n} is a basis for Sn(C), we arrive at the asserted representation.

Finally, if Φ sends rank one real symmetric idempotents to symmetric idempotents, the

matrix S above can be chosen to be complex orthogonal as in the proof of Theorem 3.3(c).
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5. Future projects

One can consider additive or linear maps Φ : Mn(F)→Mr(F) satisfying

Φ(A) · Φ(B) = 0r whenever A,B ∈Mn(F) satisfy A ·B = 0n

for different kinds of products (binary operations). For instance, one may consider the Jordan

product A · B = AB + BA, the Jordan triple product A · B = ABA, the Lie product A · B =

AB−BA, the skew product A ·B = AB∗, etc. We note that although some results about these

problems are known for the case when r ≤ n, they are indeed challenging in general.

In particular, we are interested in characterizing the following additive/linear maps Φ :

Mn(F) → Mr(F) between matrix algebras. We hope their characterizations will be done in a

future project.

(1) Φ(A)Φ(B) + Φ(B)Φ(A) = 0 whenever A,B ∈Mn(F) satisfy AB +BA = 0.

(2) Φ(ABA) = 0 whenever A,B ∈Mn(F) satisfy ABA = 0.
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