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Abstract. The aim of this article is to compare some equivalence relations among open
projections of a C∗-algebra. Such equivalences are crucial in a decomposition scheme of
C∗-algebras and is related to the Cuntz semigroups of C∗-algebras. In particular, we show
that the spatial equivalence (as studied by H. Lin as well as by the authors) and the PZ-
equivalence (as studied by C. Peligrad and L. Zsidó as well as by E. Ortega, M. Rørdam
and H. Thiel) are different, although they look very similar and conceptually the same.

In the development, we also show that the Murray-von Neumann equivalence and the
Cuntz equivalence (as defined by Ortega, Rørdam and Thiel) coincide on open projections of
C0(Ω)⊗K(ℓ2) exactly when the canonical homomorphism from Cu(C0(Ω)) into Lsc(Ω; N̄0)
is bijective. Here, Cu(C0(Ω)) is the stabilized Cuntz semigroup, and Lsc(Ω; N̄0) is the
semigroup of lower semicontinuous functions from Ω into N0 := {0, 1, , 2, . . . ,∞}.

1. Introduction

In their seminal works [15] (see also [9, 14]), Murray and von Neumann classified W ∗-

algebras into three types according to the abelianness and finiteness properties of their

projections. The finiteness of projections is defined through an equivalence relation, the

so-called Murray-von Neumann equivalence ∼Mv. More precisely, for two projections p and

q in a W ∗-algebra M , we write p ∼Mv q if there is a partial isometry u in M such that

p = u∗u and q = uu∗. A projection p is finite in M if p is not equivalent to any of its

proper subprojections. One can study a W ∗-algebra by looking at the set of its projections,

equipped with the order structure as well as the Murray-von Neumann equivalence.

In a similar fashion, in order to get a nice snapshot of a C∗-algebra, one studies its open

projections under certain equivalence relations. For an example, classification frameworks

for C∗-algebras were studied in [16] using either the so called “spatial equivalence” (denoted

by ∼sp) as well as the “PZ-equivalence” (denoted by ∼PZ). Another example is that the

PZ-equivalence was used in [18] to define what is called the “Cuntz equivalence” (denoted

by ∼Cu), which is related to the Cuntz semigroups. These equivalences, however, are quite

Date: December 17, 2014.
2000 Mathematics Subject Classification. 46L05, 46L35.
Key words and phrases. C∗-algebra; open projection; equivalence relation; Cuntz semigroup.
The authors are supported by National Natural Science Foundation of China (11071126 and 11471168),

and Taiwan MOST grant (102-2115-M-110-002-MY2).
1



2 CHI-KEUNG NG AND NGAI-CHING WONG

different from each other. In this paper, we are going to discuss some relationships among

them.

Recall that if A is a C∗-algebra, two open projections p and q of A are “spatially equivalent”

if there is a partial isometry in the bidual A∗∗ of A implementing a ∗-isomorphism between the

corresponding hereditary C∗-subalgebras her(p) and her(q). It is the same as the existence

of a partial isometry that simultaneously implements the Murray-von Neumann equivalences

of all the open subprojections of p and those of q (see [16, Proposition 2.7]). The spatial

equivalence was studied by H. Lin in [12] as well as by the authors in [16] (and it was called

the Cuntz equivalence in [12]).

On the other hand, p and q are “PZ-equivalent” if there is a partial isometry in A∗∗

that implements an isomorphism between the corresponding right ideals R(p) and R(q) (see

Proposition 3.1(a) below). The PZ-equivalence was first introduced by C. Peligrad and L.

Zsidó in [19], and was studied in depth by E. Ortega, M. Rørdam and H. Thiel in [18]. In

his book [11, 3.5.2], H. Lin also discussed a similar notion.

Since there is a canonical bijective correspondence between right ideals and hereditary C∗-

subalgebras of a C∗-algebra, it is tempting to think that the PZ-equivalence is the same as the

spatial equivalence. In fact, a statement before [18, Definition 3.9] seems to indicate this. In

this article, we will show that, in contrast with the above expectation, the PZ-equivalence and

the spatial equivalence are actually different, even for projections in a separable C∗-algebra

of the form C(Ω) ⊗M2. We also give some interesting and hopefully useful comparisons of

different equivalence relations on open projections.

This paper is organized as follows. After giving some preliminary and background results

in Section 2, we give in Section 3 some equivalent formulations of the PZ-equivalence and

those of the spatial equivalence, which show their similarities. Moreover, we find that one

can determine the PZ-equivalence and the Cuntz equivalence (in the sense of [18]) of open

projections of a C∗-algebra A by looking at their atomic parts in the bidual A∗∗ (Proposition

3.1(b)).

In Section 4, we present an easier description for open projections in C0(Ω)⊗K(ℓ2) (Propo-

sition 4.1). We also give some interesting applications of this description in Corollaries 4.2

and 4.3.

In Section 5, we compare equivalence relations on open projections of C0(Ω) ⊗ K(ℓ2).

In particular, we show that the PZ-equivalence is different from the spatial equivalence for

projections in C0(Ω)⊗K(ℓ2) (or even in C0(Ω)⊗M2; see Theorem 5.3). Moreover, we also

show that two open projections of C0(Ω) ⊗ K(ℓ2) are Murray-von Neumann equivalent as

projections in C0(Ω)
∗∗⊗̄B(ℓ2) if and only if they produce the same element in the semigroup
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Lsc(Ω; N̄0) of lower semicontinuous functions from Ω to the one-point compactification N0 of

N ∪ {0} (Proposition 5.4). Consequently, the canonical homomorphism from the stabilized

Cuntz semigroup Cu(C0(Ω)) to Lsc(Ω; N̄0) is bijective if and only if the Cuntz equivalence

coincides with the Murray-von Neumann equivalence. We also give some interesting conse-

quences of this bijectivity (Corollaries 5.7 and 5.8).

2. Preliminaries and Notations

In this article, A and B are separable C∗-algebras, and K (respectively, B) is the algebra

of compact (respectively, bounded) linear operators on the separable infinite dimensional

Hilbert space ℓ2. For any ξ, η, ζ ∈ ℓ2, we set θξ,η(ζ) := ⟨ζ, ξ⟩η. We write SOT and WOT

for, respectively, the strong operator topology and the weak operator topology on the space

of bounded linear operators. For every x ∈ A and any two subsets M and N of A, we put

MN := {bc : b ∈M ; c ∈ N} and xM := {x}M .

Let {Ti}i∈I and T be, respectively, a net and an element in the set, B(H;K), of all

bounded linear operators from a Hilbert space H to another Hilbert space K. Recall that

{Ti}i∈I is said to SOT (respectively, WOT ) converges to T if ∥Tiξ − Tξ∥ → 0 for all ξ ∈ H

(respectively, ⟨Tiξ − Tξ, η⟩ → 0 for all ξ, η ∈ H).

Throughout this paper, Ω is a second countable locally compact Hausdorff space. We use

O(Ω) to denote the set of all open subsets of Ω. If E ⊆ Ω, we denote by E, IntE and ∂E the

closure, the interior and the boundary of E as a subset of Ω. Moreover, χE is the indicator

function of E (i.e., χE = 1 on E and vanishes elsewhere). For U, V ∈ O(Ω), we write

V b U if V is compact and is contained in U.

Denote by N0 := N ∪ {0}, and consider N̄0 := N0 ∪ {∞} (respectively, N̄ := N ∪ {∞}) to be

the one-point compactification of the discrete space N0 (respectively, N).

Let A∗∗ be the bidual of A and let κA : A → A∗∗ be the canonical embedding. For

simplicity, we will usually regard A as a C∗-subalgebra of A∗∗ without mentioning κA if no

confusion arises. We denote by σ∗ the weak-*-topology σ(A∗∗, A∗) on A∗∗, and by za ∈ A∗∗

the central projection such that zaA
∗∗ is the atomic part of A∗∗. Furthermore, Proj(A) is

the set of projections in A, while OP(A) ⊆ Proj(A∗∗) is the set of open projections of A.

Recall that a projection p ∈ A∗∗ is open if there exists an increasing net {ai}i∈I in A+ that

σ∗-converges to p. For each p ∈ OP(A), the corresponding hereditary C∗-subalgebra, right

ideal and linking algebra are given, respectively, by

her(p) := {a ∈ A : pap = a}, R(p) := {a ∈ A : pa = a}, and



4 CHI-KEUNG NG AND NGAI-CHING WONG

L(p) :=

(
her(p) R(p)
R(p)∗ A her(p)A

)
.

It is well-known that

her(p) = A ∩ pA∗∗p = R(p)R(p)∗ = R(p) ∩R(p)∗,
R(p) = A ∩ pA∗∗ = her(p)A = {x ∈ A : xx∗ ∈ her(p)},

the σ∗-closure of her(p) is pA∗∗p, and the σ∗-closure of R(p) is pA∗∗. For every a ∈ A+ \ {0},
we consider pa ∈ OP(A) to be the element defined by

pa := σ∗-limn→∞(a/∥a∥)1/n.

It is easy to see that her(pa) = aAa.

On the other hand, we say that r ∈ Proj(A∗∗) is a closed projection of A if 1−r ∈ OP(A).

A closed projection r is said to be compact if there exists a ∈ A+ satisfying r ≤ a ≤ 1

(which implies ra = r). Clearly, if A is unital, then any closed projection is compact. Let

p, q ∈ OP(A). We use p to denote the smallest closed projection of A dominating p. As in

[18], we say that p is compactly contained in q (and is denoted by p b q) if p is compact and

p ≤ q. Now, we recall

• p ∼Mv q if there is u ∈ A∗∗ such that p = uu∗ and q = u∗u.

• p ∼sp q if there is u ∈ A∗∗ such that

p = uu∗, q = u∗u, u∗ her(p)u = her(q), and u her(q)u∗ = her(p);

• p ∼PZ q if there is u ∈ A∗∗ such that

p = uu∗, q = u∗u, u∗ her(p) ⊆ A, and u her(q) ⊆ A;

• p ∼Cu q if for any r b p, there exists s b q with r ∼PZ s and vice versa;

If it happens that p, q ∈ A, then we write

• p ∼A q if there is u ∈ A such that p = uu∗ and q = u∗u.

Let us state the following known facts for open projections p, q of A (see e.g. [18] and [16]):

(F1) p ∼PZ q ⇒ p ∼sp q ⇒ p ∼Mv q (in fact, the element u satisfying the requirement for

∼PZ will satisfy the requirement for ∼sp).

(F2) p ∼PZ q ⇒ p ∼Cu q ⇒ p ∼Mv q.

(F3) p ∼Mv q ⇒ p and q have the same central support, i.e., A her(p)A = A her(q)A.

(F4) p ∼sp q ⇔ there exists a partial isometry v ∈ A∗∗ satisfying

her(p) ⊆ v her(q)v∗ and her(q) ⊆ v∗ her(p)v.

(F5) p ∈ A and p ∼PZ q ⇒ q ∈ A and p ∼A q (notice that u∗ = u∗p ∈ A).

(F6) p, q ∈ A and p ∼A q ⇒ p ∼PZ q.
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Finally, suppose that B is a hereditary C∗-subalgebra of A and p, q ∈ Proj(B∗∗). Then

we have the following facts (see e.g. [16]).

(H1) p ∈ OP(B) if and only if its canonical images in Proj(A∗∗) lies in OP(A).

(H2) If p ∈ OP(B), then A ∩ pA∗∗p = B ∩ pB∗∗p.

(H3) If p, q ∈ OP(B), then p ∼sp q as elements in OP(A) if and only if p ∼sp q as elements

in OP(B).

3. Reformulation of ∼PZ and ∼sp

By a result of H. Lin (see [10, Theorem 9]), one knows that there is a projection p in

a separable simple unital C∗-algebra A such that p ∼Mv 1 but p ̸∼sp 1. In fact, from the

proof of Theorem 9 in [10], there exists u ∈ A such that uu∗ = 1, u∗u ≤ p and pAp is not

isomorphic to A. As p ≤ 1 as well, by a well-known fact in von Neumann algebra, one has

p ∼Mv 1 (note that, the partial isometry is in A∗∗ instead of A). On the other hand, since

pAp � A, one has p ̸∼sp 1.

One of the concerns in this paper is to determine whether ∼PZ coincides with ∼sp. Let us

first begin with the following easy reformulation of ∼PZ. Part (a) of which can be regarded

as an analogue of (F4) for ∼PZ. In view of this result as well as the bijective correspondence

between right ideals and hereditary C∗-subalgebras, it seems plausible that the equivalence

relations ∼PZ and ∼sp might be the same. Nevertheless, we will see in Theorem 5.3 below

that it is not the case.

Proposition 3.1. Let A be a C∗-algebra and let p, q ∈ OP(A). For any a ∈ A, we set

κaA(a) := zaκA(a) (i.e. the atomic part of κA(a) in A
∗∗).

(a) The following statements are equivalent.

(1) p ∼PZ q.

(2) There is a partial isometry v ∈ A∗∗ with R(p) = vR(q) and R(q) = v∗R(p).

(3) There is a partial isometry v ∈ A∗∗ with her(p) ⊆ vR(q) and her(q) ⊆ v∗R(p).

(4) There is a partial isometry v ∈ A∗∗ with

(v∗ ⊕ 1)L(p)(v ⊕ 1) = L(q) and (v ⊕ 1)L(q)(v∗ ⊕ 1) = L(p).

(b) If A is separable, then p ∼PZ q if and only if there exists w ∈ zaA
∗∗ satisfying

ww∗ = zap, w
∗w = zaq, w

∗κaA(her(p)) ⊆ κaA(A) and wκaA(her(q)) ⊆ κaA(A).
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Proof: (a) Clearly one has (2) ⇒ (3) as well as (2) ⇔ (4) (see (F1) and (F3)).

(1) ⇒ (2). Let v ∈ A∗∗ be a partial isometry satisfying the requirement for p ∼PZ q. Then

v∗R(p) ⊆ A∩ qA∗∗ = R(q) as well as vR(q) ⊆ R(p). The two equalities follows from p = vv∗

and q = v∗v.

(3) ⇒ (1). By Statement (3), one has her(p) ⊆ vR(q)(vR(q))∗ = v her(q)v∗ and p ≤ vv∗. If

we set w := pv, then p = ww∗, R(p) ⊆ wR(q) and R(q) ⊆ w∗R(p). Furthermore, if u := wq,

then q = u∗u (as her(q) ⊆ v∗ her(p)v) and uu∗ = wqw∗ = pvqv∗p ≤ p. On the other hand,

since her(p) ⊆ w her(q)w∗, we see that p ≤ wqw∗ and hence p = uu∗. Moreover, we have

u∗ her(p) ⊆ u∗R(p) = R(q) ⊆ A and u her(q) ⊆ A.

(b) Let Qa : A∗∗ → A∗∗ be given by Qa(x) := zax. By [20, Corollary 4.5.13], Qa is injective

on both OP(A) and κA(A). As A is separable, one can find a ∈ her(p)+ with ∥a∥ = 1

and p = pa. Suppose that w ∈ zaA
∗∗ satisfies the conditions in the statement. It is not

hard to see that w∗κaA(her(p))w = κaA(her(q)) and there exist unique elements b ∈ A+ and

x ∈ A with κaA(b) = w∗κaA(a)w ∈ κaA(A) and κaA(x) = w∗κaA(a)
1/2 ∈ κaA(A). Moreover, as

pb = σ∗- limn κA(b)
1/n, we have

Qa(pb) = σ∗-limnκ
a
A(b)

1/n = σ∗-limn(w
∗κaA(a)w)

1/n = w∗Qa(pa)w = Qa(q)

and hence q = pb. Furthermore, since κaA(xx
∗) = κaA(b) and κ

a
A(x

∗x) = κaA(a)
1/2zapκ

a
A(a)

1/2 =

κaA(a), we know that a = x∗x and b = xx∗. Thus, p = pa ∼PZ pb = q by [18, Proposition

4.3]. The converse is obvious. �

Elements in OPa(A) := za OP(A) are first studied in [2], and are called q-open projections

of A. In fact, a projection p1 ∈ zaA
∗∗ is said to be q-open if there is a hereditary C∗-

subalgebra B ⊆ A such that the σ(zaA
∗∗, zaA

∗)-closure of κaA(B) equals p1A
∗∗ (see [2]), and

it is not hard to check that it is equivalent to p1 ∈ OPa(A).

Suppose that A is separable. It is easy to see that if one replaces A∗∗, R(p) and R(q)

in Statements (2), (3) and (4) in Proposition 3.1(a) above with zaA
∗∗, zaR(p) and zaR(q),

respectively, then the resulting statements are also equivalent to p ∼PZ q. Furthermore, by

[1, Theorem II.17] (see also [20, Corollary 4.5.13]), if r (respectively, s) is either an open or a

closed projection of A, then r ≤ s if and only if zar ≤ zas. In particular, if p1, q1 ∈ OPa(A),

we say that p1 is q-compactly contained in q1 if there exist r1 ∈ OPa(A) and a ∈ A+ such

that r1p1 = 0 and za − r1 ≤ κaA(a) ≤ q1. Clearly, if p, q ∈ OP(A), then zap is q-compactly

contained in zaq if and only if p is compactly contained in q. This tells us that one can

determine ∼PZ and ∼Cu by looking at the images of A and OP(A) in zaA
∗∗.
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We do not know whether the corresponding statements of Proposition 3.1(b) for ∼Mv and

∼sp hold. Note that in the case when A = C0(Ω)⊗K, the corresponding statement for ∼Mv

is precisely Proposition 5.4, while the lack of the corresponding statement for ∼sp is one of

the difficulty in proving Theorem 5.3.

In the following, we give some reformulations of ∼sp, which are the analogues of both

Proposition 3.1(a) and [18, Proposition 3.3]. Let us first set some notations. Let Ã be the

subalgebra of the multiplier algebra M(A) generated by A and 1. We put

HA := {x ∈ A∗∗ : xÃx∗ ⊆ A, x∗Ãx ⊆ A}.

It is easy to see that

(3.1) HA = {x ∈ A∗∗ : xAx∗ ⊆ A, x∗Ax ⊆ A} ∩ {x ∈ A∗∗ : xx∗ ∈ A, x∗x ∈ A}.

Clearly, when A is unital, HA coincides with the first set on the right hand side of the above

equation. However, it can be shown by examples that neither of the two sets on the right

hand side equals HA. Furthermore, if A is the unital C∗-algebra of convergent complex

sequences (identified with c0 ⊕ C), then HA =
{(

(αn)n∈N, α∞
)
∈ ℓ∞ ⊕ C : |αn| → |α∞|

}
,

which is not a vector subspace of A∗∗. The reason for the introduction of the set HA is its

relation with ∼sp as stated in the following proposition. Part (a) of this proposition and

its argument explain the difference between ∼PZ and ∼sp: the right ideal corresponding to

u her(q)u∗ is A ∩ uŘ(q) instead of uR(q). However, one cannot use it to conclude that ∼PZ

and ∼sp are different since the choice for u is not unique.

Proposition 3.2. Let A be a C∗-algebra and p, q ∈ OP(A). Set

Ř(p) := {x ∈ A∗∗ : xÃx∗ ∈ her(p)}.

(a) p ∼sp q if and only if there is a partial isometry v ∈ A∗∗ such that Ř(p) = vŘ(q) and

Ř(q) = v∗Ř(p), which is equivalent to her(p) ⊆ v her(q)HA and her(q) ⊆ v∗ her(p)HA.

(b) If x ∈ HA, then px∗x ∼sp pxx∗.

(c) If p ∼sp q and p = pa for some a ∈ A+, there is x ∈ HA such that a = x∗x and q = pxx∗.

Proof: (a) Suppose that u ∈ A∗∗ is a partial isometry satisfying the requirement for p ∼sp q.

For any y ∈ Ř(q) and b ∈ Ã, one has yby∗ ∈ her(q) = u∗ her(p)u, and so uy ∈ Ř(p) and

y = u∗uy ∈ u∗Ř(p) (observe that y ∈ qA∗∗ as yy∗ ∈ her(q)). Similarly, Ř(p) ⊆ uŘ(q), and

hence Ř(p) = uŘ(q) as well as Ř(q) = u∗Ř(p). Conversely, suppose that v ∈ A∗∗ satisfying

Ř(p) ⊆ vŘ(q) and Ř(q) ⊆ v∗Ř(p). For each x ∈ her(p)+ ⊆ Ř(p), there exists y ∈ Ř(q) with

x1/2 = vy, and hence x = vyy∗v∗ ∈ v her(q)v∗. Consequently, her(p) ⊆ v her(q)v∗. Similarly,

her(q) ⊆ v∗ her(p)v and (F4) gives p ∼sp q.
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Next, we show that p ∼sp q implies the two inclusions in the second half of the statement.

In fact, if u is as above, then her(p) = her(p) her(p) ⊆ u her(q) her(q)u∗ her(p) ⊆ u her(q)HA

(it is easy to see that her(q)u∗ her(p) ⊆ HA). Similarly, her(q) ⊆ u∗ her(p)HA. Conversely, if

v ∈ A∗∗ is a partial isometry with her(p) ⊆ v her(q)HA and her(q) ⊆ v∗ her(p)HA, then the

argument above tells us that p ∼sp q (since her(q)HA ⊆ Ř(q)).

(b) Let a := x∗x and b := xx∗. Suppose that x = ua1/2 is the polar decomposition of x in

A∗∗. As pa = u∗u and pb = uu∗, one has

u her(pa)u
∗ = ua3/2Aa3/2u∗ = xx∗xAx∗xx∗ ⊆ xx∗Axx∗ = her(pb)

⊆ xAx∗ = ua1/2Aa1/2u∗ = u her(pa)u
∗.

Similarly, u∗ her(pb)u = her(pa).

(c) Without loss of generality, we may assume that ∥a∥ = 1 (notice that if p = 0, then so

is q). Suppose that u ∈ A∗∗ is a partial isometry satisfying the requirement for p ∼sp q.

Set b := u∗au ∈ her(q) and x := u∗a1/2. Then x∗x = a ∈ A, xx∗ = b ∈ A and pb = q

(as in [18, Proposition 3.3]). Moreover, xAx∗ = u∗a1/2Aa1/2u ⊆ her(q) ⊆ A. Finally, as

ux = a1/2 = ub1/2u∗, we have x = b1/2u∗ and x∗Ax = ub1/2Ab1/2u∗ ⊆ u her(q)u∗ ⊆ A. Now,

(3.1) tells us that x ∈ HA. �

4. q-open and q-compact projections of C0(Ω)⊗K

In this section, we look at the case when A = C0(Ω) ⊗K. Note that zaA
∗∗ ∼= ℓ∞(Ω;B).

For a projection q in A∗∗, we write qa := zaq for its atomic part. Then qa(ω) ∈ Proj(B), for

any ω ∈ Ω. Denote by

Γq
k := {ω ∈ Ω : rank qa(ω) = k} (k ∈ N̄0).

Let us first describe the set

OPa(A) := {pa : p ∈ OP(A)} ⊆ ℓ∞(Ω;B)

of q-open projections. This description could be known to experts but since it is not stated

explicitly anywhere, we present its details here. Notice that the only place in this section

where the second countability of Ω is needed is to apply the materials in [4, §5.G]. Thus, [4,

5.20] seems to indicate that the second countable assumption on Ω can be dropped for the

results in this section.
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Proposition 4.1. Let A = C0(Ω) ⊗K. For any h : Ω → Proj(B), one has h ∈ OPa(A) if

and only if for any ω∞ ∈ Ω, the map ω 7→ h(ω)h(ω∞) is continuous at ω∞ with respect to

SOT on B.

Proof: ⇒). If p ∈ OP(A) and {ai}i∈I is an increasing net in A+ that σ∗-converges to p, then

⟨ai(ω)ξ, ξ⟩ ↑ ⟨pa(ω)ξ, ξ⟩ for any ω ∈ Ω and ξ ∈ ℓ2. This shows that the map ω 7→ ⟨pa(ω)ξ, ξ⟩
is lower semicontinuous. Hence, if {ωj}j∈J is a net in Ω converging to ω∞, we have

(4.1) ∥pa(ω∞)ξ∥2 ≤ lim inf ∥pa(ωj)ξ∥2 (ξ ∈ ℓ2).

Consequently, for any ζ ∈ pa(ω∞)(ℓ2) and ϵ > 0, there exists j0 ∈ J with

∥ζ∥2 ≤ ∥pa(ωj)ζ∥2 + ϵ (j ≥ j0),

i.e. ∥ζ − pa(ωj)ζ∥2 = ∥ζ∥2 − ∥pa(ωj)ζ∥2 → 0. In other words,

pa(ωj)p
a(ω∞)

SOT−→ pa(ω∞).

⇐). It suffices to verify that h is strongly lsc in the sense of [4, §5.G] (see the discussion in [4,

p. 980]). In other words, we are required to show that h satisfies Conditions (i), (ii) and (iii)

in [4, 5.19]. Notice that the first two conditions automatically hold because h(Ω) ⊆ Proj(B).

Moreover, by the argument of [4, 5.19], subjected to our projection-valued function h, we

only need to show the following weaker version of Condition (iii):

For any ϵ > 0 and K ∈ K with 0 ≤ K ≤ h(ω∞), there is a neighbourhood U

of ω∞ satisfying

(4.2) K ≤ h(ω) + ϵ (ω ∈ U).

Now, assume that 0 ≤ K ≤ h(ω∞). One can find an orthonormal subset {ηk}k∈N in the

range of the projection h(ω∞) such that K =
∑∞

k=1λkθηk,ηk for a null sequence {λk}k∈N of

positive real numbers. Since λk → 0, there is N ∈ N with 0 ≤ λk < ϵ/2 whenever k ≥ N .

By the hypothesis, we have a neighbourhood U of ω∞ such that

∥h(ω)ηk − ηk∥ <
ϵ

8N
(ω ∈ U ; k = 1, 2, ..., N).

Thus, for any ξ ∈ ℓ2 and ω ∈ U , we have⟨∑N

k=1
θηk,ηkξ, ξ

⟩
≤

∑N

k=1

(
|⟨ξ, h(ω)ηk⟩|+ |⟨ξ, (ηk − h(ω)ηk)⟩|

)2
≤

⟨
h(ω)

(∑N

k=1
θηk,ηk

)
h(ω)ξ, ξ

⟩
+
∑N

k=1
2∥ξ∥2∥h(ω)ηk − ηk∥+ ∥ξ∥2∥h(ω)ηk − ηk∥2

≤ ⟨h(ω)ξ, ξ⟩+ ϵ

2
∥ξ∥2.
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Finally, as λk ≤ 1 (k ∈ N), we have

K −
∑∞

k=N+1
λkθηk,ηk ≤

∑N

k=1
θηk,ηk ≤ h(ω) +

ϵ

2

and (4.2) holds (since {ηk}k∈N is an orthonormal set and λk < ϵ/2 for k ≥ N). �

Let p ∈ OP(C0(Ω)⊗K), and let {ωj}j∈J be a net in Ω that converges to ω∞ ∈ Ω.

(O1) If rank pa(ω∞) = ∞, then rank pa(ωj) → ∞. On the other hand, if rank pa(ω∞) < ∞,

then rank pa(ω∞) ≤ rank pa(ωj) eventually.

Indeed, assume on the contrary that there exist k ∈ N and a subsequence {ωjn}n∈N
satisfying rank pa(ωjn) ≤ k < rank pa(ω∞) (n ∈ N). If {ξ1, ..., ξk+1} is an orthonormal

subset in pa(ω∞)(ℓ2), then Relation (4.1) gives j0 ∈ J such that ⟨pa(ωj)ξi, ξi⟩ ≥ 1 −
(2k + 2)−1 for any i = 1, ..., k + 1 and j ≥ j0. By extending {ξ1, ..., ξk+1} to an

orthonormal basis of ℓ2, we arrive at the contradiction that rank pa(ωjn) ≥ k + 1/2

when n is so large that jn ≥ j0.

(O2)
∪

k≥n Γ
p
k ∪ Γp

∞ ∈ O(Ω) for any n ∈ N because of (O1).

(O3) (1 − pa)(ωj) − (1 − pa)(ωj)(1 − pa)(ω∞)
SOT−→ 0 by Proposition 4.1. This property is

actually equivalent to 1− pa being q-closed.

Corollary 4.2. Let r be a compact projection of A = C0(Ω) ⊗K. Suppose that {ωj}j∈J is

a net in Ω converging to ω∞ ∈ Ω.

(a) ∥ra(ωj)− ra(ωj)r
a(ω∞)∥ → 0.

(b) rank ra(ωj) ≤ rank ra(ω∞) for large enough j.

(c) rank ra(ω) <∞ (ω ∈ Ω) and
∪

k≥n Γ
r
k is a compact subset of Ω (n ∈ N).

(d) There is n0 ∈ N such that rank r(ω) ≤ n0 (ω ∈ Ω).

(e) ra|Γr
n
is norm-continuous for each n ∈ N.

Proof: Consider a ∈ A+ to be an element satisfying ra ≤ zaa ≤ 1. Set rj := ra(ωj) and

aj := a(ωj) for j ∈ J ∪ {∞}.
(a) By (O3), one has rj−rjr∞

SOT−→ 0. As {∥rj−rjr∞∥}j∈J is bounded, the SOT-convergence

implies ∥(rj−rjr∞)y∥ → 0 for any y ∈ K. Since rjaj = rj (j ∈ J∪{∞}) and ∥aj−a∞∥ → 0,

we see that

∥rj − rjr∞aj∥ ≤ ∥(rj − rjr∞)(aj − a∞)∥+ ∥(rj − rjr∞)a∞∥ → 0,

and ∥r∞aj − r∞∥ = ∥r∞aj − r∞a∞∥ → 0. Thus, the conclusion follows.

(b) Suppose that the statement is not true. By passing to a subnet if necessary, we may

assume that rank rj > n0 := rank r∞ for all j ∈ J . Let {ξ(1)j , ..., ξ
(n0+1)
j } be an orthonormal
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subset of rj(ℓ
2) (j ∈ J). Define ζ

(1)
j := r∞(ξ

(1)
j ) and put ζ

(l)
j := r∞(ξ

(l)
j ) − ∆

(l)
j (r∞(ξ

(l)
j ))

for l = 2, ..., n0 + 1, where ∆
(l)
j is the orthogonal projection onto the subspace spanned by

{r∞(ξ
(1)
j ), ..., r∞(ξ

(l−1)
j )}. Since ∥rj − r∞rj∥ → 0 (because of part (a)), for each ϵ > 0, one

can find jϵ ∈ J such that if j ≥ jϵ and η ∈ rj(ℓ
2), one has ∥η − r∞η∥ < ϵ∥η∥. Thus,

∥ζ(1)j − ξ
(1)
j ∥ < ϵ and ∥ζ(1)j ∥ ≥ 1− ϵ (j ≥ jϵ).

Hence, ∥ζ(1)j ∥ > 0 when ϵ is small enough. Moreover, as

ζ
(2)
j = r∞(ξ

(2)
j )−

⟨ζ(1)j , r∞(ξ
(2)
j )⟩

∥ζ(1)j ∥2
ζ
(1)
j = r∞(ξ

(2)
j )−

⟨r∞(ξ
(1)
j )− ξ

(1)
j , ξ

(2)
j ⟩

∥ζ(1)j ∥2
ζ
(1)
j

(because ⟨ξ(1)j , ξ
(2)
j ⟩ = 0), one has ∥ζ(2)j − ξ

(2)
j ∥ < ϵ+ ϵ/(1− ϵ) and ∥ζ(2)j ∥ ≥ 1− ϵ− ϵ/(1− ϵ) if

j ≥ jϵ. Again, ∥ζ(2)j ∥ > 0 when ϵ is small enough and the linear span of {r∞(ξ
(1)
j ), r∞(ξ

(2)
j )}

equals that of {ζ(1)j , ζ
(2)
j }. Similarly, ∥ζ(3)j − ξ

(3)
j ∥ < ϵ+ ϵ

1−ϵ
+ ϵ+ϵ/(1−ϵ)

1−ϵ−ϵ/(1−ϵ)
and ∥ζ(3)j ∥ ≥ 1− ϵ−

ϵ
1−ϵ

− ϵ+ϵ/(1−ϵ)
1−ϵ−ϵ/(1−ϵ)

if j ≥ jϵ. Inductively, when ϵ is small enough, the subset {ζ(1)j , ..., ζ
(n0+1)
j }

(for j ≥ jϵ) consists of non-zero orthogonal elements in r∞(ℓ2) which is a contradiction.

(c) Since a(ω) is compact (ω ∈ Ω), we have Γr
∞ = ∅. Moreover, part (b) tells us that

∪
k≥n Γ

r
k

is a closed subset of Ω for n ∈ N. Finally, as a(ω) ≤ 1/2 whenever ω is outside some compact

set K, we see that
∪

n∈N Γ
r
n ⊆ K.

(d) Suppose on the contrary that there is a strictly increasing sequence {nk}k∈N in N such

that each Γr
nk

contains an element γk. By part (c), one can find a subnet of {γk}k∈N that

converges to some γ0 in K with rank ra(γ0) <∞. But this will then contradict part (b).

(e) Suppose that ω∞, ωj ∈ Γr
n for all j ∈ J . Let {ξ(1)j , ..., ξ

(n)
j } be an orthonormal basis

of rj(ℓ
2), and {ζ(1)j , ..., ζ

(n)
j } ⊆ r∞(ℓ2) be the elements constructed from {ξ(1)j , ..., ξ

(n)
j } as

in the proof of part (b). When j is large enough, the argument of part (b) implies that

η
(l)
j := ζ

(l)
j /∥ζ(l)j ∥ (l = 1, ..., n) is well-defined and so {η(1)j , ..., η

(n)
j } is an orthonormal basis

of r∞(ℓ2). Moreover, the argument of part (b) tells us that ∥ζ(l)j − ξ
(l)
j ∥ → 0 (l = 1, ..., n).

Consequently, the projection rj =
∑n

l=1 θξ(l)j ,ξ
(l)
j

will norm converge to r∞ =
∑n

l=1 θη(l)j ,η
(l)
j
. �

Observe that the second countability assumption of Ω is not actually required in Corollary

4.2 (since the part of Proposition 4.1 that is used in the proof do not require the second

countability). Moreover, by the argument of part (b), one may realise part (a) as saying

that the net of subspaces {ra(ωj)(ℓ
2)}j∈I is “asymptotically contained” in ra(ω∞)(ℓ2). In

the simple situation as in Example 4.4(d) below, the compactness of r is actually equivalent

to the condition in part (a) as well as part (c) above.
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Corollary 4.3. Let A = C0(Ω)⊗K, and let p ∈ OP(A). Set

Ω0 :=
∪

n∈N0

Int Γp
n.

(a) If n ∈ N and {ωj}j∈J is a net in Ω converging to ω∞ ∈ Γp
n, then for large enough j ∈ J ,

one can find a rank n subprojection Qj of pa(ωj) such that ∥Qj − pa(ω∞)∥ → 0.

(b) For a fixed ω∞ ∈ Ω0, the map ω 7→ pa(ω)pa(ω∞) is norm-continuous at ω∞, and the

restriction pa|Γp
n
is a norm-continuous function.

(c) pa|Ω0 = pa|Ω0 and χΩ0 · pa = pa0 for a unique p0 ∈ OP(A).

(d) If Γp
∞ \ Int Γp

∞ is a nowhere dense subset of Ω, then Ω0 ∪ Int Γp
∞ is dense in Ω.

(e) If Γp
∞ = ∅, then p = p0, where p0 ∈ OP(A) is as in part (c).

(f) If p0 ∈ OP(A) is as in part (c), then p is compact if and only if Γp
∞ = ∅ and p0 is

compact.

Proof: (a) Consider {ξ(1), ..., ξ(n)} to be an orthonormal basis of pa(ω∞)(ℓ2). For each j ∈ J ,

we set pj := pa(ωj), ξ
(1)
j := pj(ξ

(1)) and ξ
(k)
j := pj(ξ

(k))−∆
(k)
j (pj(ξ

(k))), where k ∈ {2, ..., n}
and ∆

(k)
j is the projection onto the subspace spanned by {pj(ξ(1)), ..., pj(ξ(k−1))}. Since

pjp
a(ω∞)

SOT−→ pa(ω∞) (by Proposition 4.1), for any ϵ > 0, there is jϵ ∈ J such that

∥pj(ξ(k))− ξ(k)∥ < ϵ (k = 1, ..., n; j ≥ jϵ).

Now, using a similar argument as that for Corollary 4.2(b), we know that ∥ξ(k)j − ξ(k)∥ → 0

for k ∈ {1, ..., n}. Thus, η(k)j :=
ξ
(k)
j

∥ξ(k)j ∥
(k = 1, ..., n) is well-defined for large enough j ∈ J and

they form an orthonormal subset of pj(ℓ
2) such that η

(k)
j

∥·∥−→ ξ(k) (k = 1, ..., n). Consequently,

Qj :=
∑n

k=1 θη(k)j ,η
(k)
j

will norm converge to pa(ω∞) =
∑n

k=1 θξ(k),ξ(k) .

(b) The first conclusion follows from Proposition 4.1 as well as the fact that rankpa(ω∞) <∞.

The second conclusion follows directly from part (a).

(c) By part (b), we know that pa|Ω0 is norm-continuous. It is clear that h := χΩ0 ·pa satisfies

the condition in Proposition 4.1, and h = zap0 for a unique p0 ∈ OP(A). On the other hand,

if we set

f(ω) :=

{
pa(ω) if ω ∈ Ω0,

idℓ2 otherwise,

then part (b) and (O3) tell us that f is a q-closed projection. As pa ≤ f , we know that

h ≤ pa ≤ pa ≤ f , which gives the assertion that pa|Ω0 = pa|Ω0 .

(d) Assume on the contrary that there is a non-empty element U in O(Ω) disjoint from

Ω0 ∪ Int Γp
∞. Let us first construct the following decreasing sequence of sets:

Λ0 := Ω and Λn :=
∪

k≥n
Γp
k ∪ Γp

∞ (n ∈ N).
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Then Λk ∈ O(Ω) (see (O2)) and Γp
k = Λk \ Λk+1 (k ∈ N0). Thus, Int Γp

k = Λk \ Λk+1 and

∂Λk = Λk \ Λk. We claim that

Int Γp
∞ ∪ Ω0 = IntΓp

∞ ∪
∪

k∈N0

Λk \ Λk+1 = Ω \
(
(Γp

∞ \ Int Γp
∞) ∪

∪
n∈N

∂Λn

)
.

Indeed, the first equality is clear. Let x be an element in the disjoint union
∪

k∈N0
Λk\Λk+1.

Then x ∈ Λk but x /∈ Λk+1 for a unique k ∈ N0. Thus, x /∈ Γp
∞ ⊆

∩
l∈N0

Λl. Moreover, if

there exists l ∈ N such that x ∈ ∂Λl = Λl \ Λl ⊆ Λl, then l ≤ k, which gives a contradiction

that x /∈ Λk (because x /∈ Λl). On the other hand, let x ∈ Int Γp
∞. Then x ∈ Λn and hence

x /∈ ∂Λn = Λn \ Λn, for all n ∈ N. These give one of the inclusions. Conversely, suppose

that x /∈ (Γp
∞ \ Int Γp

∞) ∪
∪

n∈N(Λn \ Λn). If x ∈ Γp
∞, then x ∈ Int Γp

∞. If x /∈ Γp
∞, there is a

smallest k ∈ N such that x /∈ Λk, which implies that x /∈ Λk. Thus, x ∈ Λk−1 \ Λk. These

establish the other inclusion.

From the claim above, we know that Γp
∞ \ Int Γp

∞ ∪
∪

n∈N ∂Λn contains U . As Γp
∞ \ IntΓp

∞

is nowhere dense and each ∂Λn is a closed subset of Ω, we see that there exists n0 ∈ N with

∂Λn0 having non-empty interior (notice that Ω is a Baire space) which contradicts the fact

that Λn0 ∈ O(Ω).

(e) Since p0 ≤ p, we have p0 ≤ p, and part (c) tells us that

(4.3) pa|Ω0 = p0
a|Ω0 = pa|Ω0 .

On the other hand, let ω∞ ∈ Ω\Ω0. By part (d), Ω0 is dense in Ω and we have a net {ωj}j∈J
in Ω0 that converges to ω∞. By part (a), we may assume that for any j ∈ J , there is a rank

n subprojection Qj of pa(ωj) such that ∥Qj − pa(ω∞)∥ → 0. On the other hand, (O3) and

(4.3) tells us that pa(ωj)p0
a(ω∞) − pa(ωj)

SOT−→ 0. Consequently, {Qjp0
a(ω∞) − Qj}j∈J will

both SOT-converge to 0 and norm-converge to pa(ω∞)p0
a(ω∞)− pa(ω∞). This implies that

pa(ω∞) ≤ p0
a(ω∞), and one has p ≤ p0. As p0 is closed, we see that p ≤ p0.

(f) This follows directly from part (e) and Corollary 4.2(c). �

If r is a closed projection, ω∞ ∈ Ω with rank (1 − r)a(ω∞) < ∞ and {ωi}i∈I is a net in

Ω converging to ω∞, the same reasoning for Corollary 4.3(b) also implies that ∥ra(ωj) −
ra(ωj)r

a(ω∞)∥ → 0. However, one has rank (1 − r)a(ω∞) = ∞ when r is compact (by

Corollary 4.2(c)), and the conclusion of Corollary 4.2(a) does not follow from Corollary

4.3(b).

Corollary 4.3(e) tells us that if rank pa(ω) < ∞ for all ω ∈ Ω, then pa coincides with the

“q-closure” of pa|Ω0 .
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Example 4.4. Let N̄ be the one point compactification of N. Set B := C(N̄)⊗K as well as

D := C(N̄)⊗M2. It is well-known that B∗∗ ∼= ℓ∞(N̄;B) and D∗∗ ∼= ℓ∞(N̄;M2).

(a) As D is canonically a hereditary C∗-subalgebra of B, Proposition 4.1 and (H1) implies

that a map p : N̄ → Proj(M2) belongs to OP(D) if and only if one of the following is satisfied:

i). p(∞) = p(k) = idC2 for large enough k;

ii). rank p(∞) = 1, rank p(k) ≥ 1 eventually and if {p(k) : rank p(k) = 1} is infinite, then

it is a sequence that converges to p(∞);

iii). p(∞) = 0.

By direct verifications, for any p, q ∈ OP(D), one has p ∼Mv q if and only if p ∼PZ q.

(b) For any p ∈ OP(D), the description (O3) for closed projections tells us that one of the

following holds:

I). If {k ∈ N : p(k) = idC2} is infinite, then p(∞) = idC2 .

II). If p(k) → p(∞), then p(∞) = p(∞).

III). If p(∞) = 0, rank p(k) ≤ 1 eventually and {p(k) : rank p(k) = 1} forms an infinite

sequence that converges to some q, then p(∞) = q.

IV). If p(∞) = 0, rank p(k) ≤ 1 eventually and {p(k) : rank p(k) = 1} forms an infinite

non-Cauchy sequence, then p(∞) = idC2 .

As I) - IV) exhaust all the possibilities of closures of open projections of D, we know,

from (O3), that a closed projection r of D is not the closure of any open projection if

and only if r(∞) = idC2 , rank r(k) ≤ 1 eventually, and either r(k) = 0 eventually or

{r(k) : rank r(k) = 1} forms an infinite convergent sequence.

(c) Set f
(k)
n :=

{
0 if k ≤ n(n− 1)/2 or k > n(n+ 1)/2

1 if n(n− 1)/2 < k ≤ n(n+ 1)/2
. Let rn be the diagonal matrix

with diagonal (f
(1)
n , f

(2)
n , ...), considered as a projection in B. Then rankrn = n and rn

SOT−→ 0.

Thus, r :=
(
(rn)n∈N, 0

)
is a closed projection of B by (O3). Note, however, that as Γr

k = {k}
(k ∈ N) and Γr

∞ = ∅, the set
∪

k≥1 Γ
r
k ∪ Γr

∞ is not closed in N̄ (c.f. the contrast with (O2)

and Corollary 4.2(c)).

(d) If r ∈ Proj(B∗∗), then r is compact if and only if

rank r(k) <∞ (k ∈ N̄) and ∥r(k)− r(k)r(∞)∥ → 0.

In fact, we only need to establish the sufficiency in view of Corollary 4.2(a). Suppose that

r satisfies the two conditions as displayed. By (O3), we know that r is a closed projection.

Set a(k) := rk + (1− rk)r∞(1− rk) ∈ K+, where rk := r(k) (k ∈ N̄). Since

rk + (1− rk)r∞(1− rk) = r∞ + rk − rkr∞ + (rkr∞ − rk)rk + rk − r∞rk,

we see that ∥a(k)− a(∞)∥ ≤ 3∥rk − rkr∞∥ → 0. Thus, a ∈ B+ and ra = r as required.
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5. Comparison of equivalence relations on OP(C0(Ω)⊗K)

In this section, we compare some equivalence relations on OP(C0(Ω;K)). Before we present

our first lemma in this section, let us set some notations. Let n ∈ N̄ and Cn be the n-

dimensional Hilbert space (we identify C∞ with ℓ2 in the canonical way). Suppose that In is

the set of isometries in B(Cn; ℓ2), Pn is the set of rank n projections in B, and Un is the set

of unitaries in B(Cn). In the following, we will equip In, Pn and Un with the WOT, which

coincides with the corresponding SOT.

Define a map Fn : In → Pn by

Fn(T ) := TT ∗ (T ∈ In).

It is not hard to check that Fn is continuous when n < ∞. We will see in the following

lemma that Fn is a Borel map (for n ∈ N̄) and it has a Borel right inverse (i.e. a Borel map

ψn : Pn → In satisfying Fn ◦ ψn = idPn). This lemma could be a known fact, but we do not

find it explicitly stated in the literature. We give a proof here for completeness.

Lemma 5.1. Let n ∈ N̄.
(a) We equip B with the WOT and consider Gn : In × In → B to be the map given by

(S, T ) 7→ ST ∗. If n <∞, then Gn is continuous. Moreover, G∞ is Borel.

(b) There exists a Borel right inverse ψn : Pn → In for Fn.

Proof: Let {ς(l)}l∈N be an orthonormal basis for ℓ2. For a fixed k ∈ N, we consider the

projection ek from ℓ2 onto the linear span of {ς(l), ..., ς(k)}.
(a) The first claim is clear. For the second claim, we note first of all, that (S, T ) 7→ ST ∗ek

is a continuous map from I∞ × I∞ to B (recall that WOT coincides with SOT on I∞).

Thus, for any ξ, η ∈ ℓ2, the map (S, T ) 7→ ⟨T ∗ekξ, S
∗ekη⟩ is continuous, which implies that

(S, T ) 7→ ⟨ST ∗ξ, η⟩ is Borel, because ⟨T ∗ξ, S∗η⟩ = limk→∞⟨T ∗ekξ, S
∗ekη⟩.

(b) Consider the continuous action γ of Un on In given by γU(T ) := TU∗ (U ∈ Un;T ∈ In).

Clearly, {F−1
n (P ) : P ∈ Pn} coincides with the set of γ-orbits. These give a bijection

F̂n : In/γ → Pn.

Case 1: n <∞.

The proof of Corollary 4.3(a) tells us that if {Pj}j∈N is a sequence in Pn that converges

to P ∈ Pn with respects to WOT and {ξ(1), ..., ξ(n)} is an orthonormal basis of P (ℓ2), then

for large enough j, one can find an orthonormal basis {ξ(1)j , ..., ξ
(n)
j } of Pj(ℓ

2) such that

∥ξ(k)j − ξ(k)∥ → 0 for all k = 1, ..., n. This shows that F̂−1
n : Pn → In/γ is continuous.

Note that Un is a separable compact metrizable group, In is a Polish space under the norm

topology (which coincides with WOT as n <∞) and the stabilizer subgroup of Un for each
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T ∈ In is trivial. It then follows from [8, Theorem 2.9] that there is a Borel cross section

φn : In/γ → In and we may take ψn := φn ◦ F̂−1
n .

Case 2: n = ∞.

As in the finite dimensional case, we first show that F̂−1
∞ is continuous. Suppose that

{Pj}j∈N is a sequence in P∞ that SOT-converges to P ∈ P∞. Consider {ξ(k)}k∈N to be an

orthonormal basis for P (ℓ2). As in the proof of Corollary 4.3(a), for each j ∈ N, we set ξ(1)j :=

Pj(ξ
(1)) as well as ξ

(k)
j := Pj(ξ

(k)) − ∆
(k)
j (Pj(ξ

(k))), where k ≥ 2 and ∆
(k)
j is the projection

onto the subspace spanned by {Pj(ξ
(1)), ..., Pj(ξ

(k−1))}. By the SOT-convergence, for each

m ∈ N, one can find a positive integer jm > jm−1 (with j0 := 1) such that {ξ(1)j , . . . , ξ
(m)
j } is

a set of non-zero orthogonal vectors whenever j ≥ jm.

Suppose that i ∈ N. Then jmi
≤ i < jmi+1 for some mi ∈ N0, and we consider {η(l)i }l∈N

to be an orthonormal basis for Pi(ℓ
2) such that η

(l)
i =

ξ
(l)
i

∥ξ(l)i ∥
for l = 1, ...,mi. The SOT-

convergence implies that ∥η(l)i − ξ(l)∥ → 0 for every l ∈ N. We denote by Qi the projection

onto the subspace spanned by {η(1)i , . . . , η
(mi)
i } and define Ri, Si ∈ B by

Ri(ς
(l)) :=

{
η
(l)
i if l ≤ mi

0 if l > mi

and Si(ς
(l)) :=

{
0 if l ≤ mi

η
(l)
i if l > mi

.

Then Ri + Si ∈ I∞, RiR
∗
i = Qi and F∞(Ri + Si) = Pi. It is easy to see that Qi

SOT−→ P

and {Ri}i∈N will WOT-converge to the isometry R defined by R(ς(l)) := ξ(l) (l ∈ N). On

the other hand, since SiS
∗
i = Pi − Qi

WOT−→ 0, we have S∗
i

SOT−→ 0 and so Si
WOT−→ 0. Now,

{Ri+Si}i∈N is a sequence in I∞ that WOT-converges to R with F∞(R) = P . Consequently,

F̂−1
∞ is continuous as required.

Secondly, it is well-known that the closed unit ball, B1, of B is a Polish space under SOT.

Thus, P∞ ⊆ B1 is second countable (recall again that WOT coincides with SOT on P∞) and

I∞ (being SOT-closed in B1) is a Polish space. As F̂∞ is a bijective Borel map (since F∞

is a Borel map by part (a)), we know that I∞/γ is countably separated under the quotient

Borel structure. Furthermore, by [7, Lemme 4], U∞ is a Polish group under SOT. One may

then apply the main theorem of [6] to obtain a Borel transversal X ⊆ I∞ for γ. Now, the

argument in [13, Theorem 5.2] (see also (12) ⇒ (13) of [8, Theorem 2.9]) tells us that there

is a Borel cross section φ∞ from the quotient Borel space I∞/γ to I∞. On the other hand,

the argument in [13, Theorem 5.1] (see also (7) ⇒ (6) of [8, Theorem 2.9]) tells us that the

quotient topology of I∞/γ generates the quotient Borel structure. Therefore, ψ∞ := φ∞◦F̂−1
∞

is a Borel map from P∞ to I∞ satisfying the requirement. �
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Lemma 5.2. Let M(Ω;B) be the set of all bounded Borel maps from Ω to B, when B

is equipped with WOT. If p, q ∈ OP(C0(Ω) ⊗ K) satisfying Γp
n = Γq

n (n ∈ N), there is

u ∈ M(Ω;B) with

uu∗ = pa and u∗u = qa.

Proof: By Inequality (4.1), we know that for any ξ ∈ ℓ2, the function ω 7→ ⟨paξ, ξ⟩ is lower
semi-continuous and hence Borel. Thus, the polarization identity tells us that ω 7→ ⟨paξ, η⟩
is a Borel function for any ξ, η ∈ ℓ2. Consequently, pa, qa ∈ M(Ω;B).

Notice also that pa(Γp
n), q

a(Γq
n) ⊆ Pn (n ∈ N̄). Let ψn : Pn → In be the Borel right inverse

of Fn as given by Lemma 5.1(b). Define

un(ω) := ψn(p
a(ω))ψn(q

a(ω))∗ (ω ∈ Γp
n).

Lemma 5.1(a) tells us that un is a bounded Borel map from Γp
n to B such that unu

∗
n = pa|Γp

n

and u∗nun = qa|Γp
n
. Now, we may define u ∈ M(Ω;B) by setting u(ω) := un(ω) whenever

ω ∈ Γp
n, and u(ω) = 0 whenever ω ∈ Γp

0. �

We let M be a maximal family of mutually singular continuous Radon measures on Ω of

norm 1. As in [5, p.434] (see also [4, §5.G]), there is a canonical ∗-isomorphism C0(Ω)
∗∗ ∼=

ℓ∞(Ω)⊕ℓ∞
⊕

µ∈M L∞(Ω, µ) and thus, we can identify

(5.1) (C0(Ω)⊗K)∗∗ = C0(Ω)
∗∗⊗̄B ∼= ℓ∞(Ω;B)⊕ℓ∞

⊕
µ∈M

L∞((Ω, µ);B)

such that the canonical embedding κC0(Ω)⊗K is the one given by the canonical map from

C0(Ω)⊗K to ℓ∞(Ω;B) as well as those from C0(Ω)⊗K to L∞((Ω, µ);B) (µ ∈ M).

For every µ ∈ M, we consider Φµ : M(Ω;B) → L∞((Ω, µ);B) to be the canonical ∗-

homomorphism and set

(5.2) Φ(w) := w +
∑

µ∈M
Φµ(w) (w ∈ M(Ω;B)).

It is easy to see that

(5.3) Φ(κaC0(Ω)⊗K(a)) = κC0(Ω)⊗K(a) (a ∈ C0(Ω)⊗K).

Now, we can produce an example showing that∼sp is different from∼PZ on Proj(C(Ω)⊗K)

for a compact Hausdorff space Ω with dimΩ = 2. Notices that in order to obtain this counter

example, we only need the easier case of n < ∞ in Lemma 5.1(b) (since Γp
∞ = Γq

∞ = ∅ for

the two open projections p and q considered in the proof of Theorem 5.3).

Theorem 5.3. There exists p, q ∈ Proj(C(CP1)⊗K) such that p ∼sp q but p �PZ q.
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Proof: Let A := C(CP1;K) and B := C(CP1;M2). By fixing an embedding of M2 as

a hereditary C∗-subalgebra of K, one can regard B as a hereditary C∗-subalgebra of A.

Moreover, we identify S3 with {ξ ∈ C2 : ∥ξ∥ = 1} and consider Λ : S3 → CP1 to be the

canonical quotient map. Define p, q : CP1 →M2 ⊆ K by setting

p(Λ(ξ)) := θξ,ξ and q(Λ(ξ)) := θη0,η0 (ξ ∈ S3),

where η0 ∈ S3 is a fixed vector. Clearly, p is the canonical continuous map from CP1 to

Proj(M2). Thus, p, q ∈ Proj(A).

Lemma 5.2 gives an element u ∈ M(CP1;B) satisfying uu∗ = pa and u∗u = qa (as

rank p(ω) = 1 = rank q(ω) for all ω ∈ Ω). For any x ∈ her(p) = pBp = pAp and ω ∈ CP1,

one has x(ω) = λ(ω)p(ω) for some λ(ω) ∈ C. By taking the trace on M2, we know that λ is

continuous on CP1. Since

(u∗xu)(ω) = λ(ω)q(ω) (ω ∈ CP1),

we conclude that u∗κaA(x)u ∈ κaA(her(q)). Similarly, uκaA(her(q))u
∗ ⊆ κaA(her(p)).

Suppose that Φ : M(CP1;B) → A∗∗ is the map given by (5.1) and (5.2). Then (5.3) tells

us that κA(b) = Φ(κaA(b)) (b ∈ B), which gives

Φ(u)∗κA(her(p))Φ(u) ⊆ κA(her(q)) and Φ(u)κA(her(q))Φ(u)
∗ ⊆ κA(her(p)).

Consequently, p ∼sp q as elements in OP(A).

Suppose on the contrary that p ∼PZ q as elements in OP(A). By (F5), there is v ∈ A with

p = vv∗ and q = v∗v. As p, q ∈ B, we know that actually v ∈ B. Let ξ(ω) ∈ S3 satisfying

v(ω) = θη0,ξ(ω) and p(ω) = θξ(ω),ξ(ω). Since v ∈ C(CP1;M2), we see that ξ : CP1 → S3 is

a continuous map satisfying Λ ◦ ξ = idCP1 . However, this is impossible because the second

homology group H2(CP1) = Z, while H2(S3) = (0). �

Note that in Theorem 5.3 we also have p ∼sp q as elements in OP(B) (because of (H3)).

On the other hand, the obstruction for p ∼PZ q in the above is the fact that there is no

continuous right inverse of the map Λ : S3 → CP1, although there always exists a Borel right

inverse due to Lemma 5.1(b). In Corollary 5.7(b) below, we will see that the existence of

such a continuous right inverse ties up very closely with the PZ-equivalence.

In the following, we will give some more comparisons among ∼Mv, ∼Cu, ∼PZ and ∼sp.

These comparisons are related to the stabilized Cuntz semigroup of C0(Ω). Let us first

recall from [18, §6.1] that one may consider the stabilized Cuntz semigroup of a separable

C∗-algebra B as the set

Cu(B) = OP(B ⊗K)/ ∼Cu

equipped with the canonical semigroup structure.
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From now on, we set A := C0(Ω)⊗K.

For any p ∈ OP(A), we obtain, from (O2), that the function ω 7→ rank pa(ω) is lower

semicontinuous. This gives a map Θ̂ : OP(A) → Lsc(Ω; N̄0) (the set of lower semicontinuous

functions from Ω to N̄0) satisfying

Θ̂(p)(ω) := rank pa(ω) (p ∈ OP(A);ω ∈ Ω).(5.4)

If p, q ∈ OP(A) with p ∼Cu q, then p ∼Mv q which clearly implies Θ̂(p) = Θ̂(q). Thus, we

obtain a map Θ : Cu(C0(Ω)) → Lsc(Ω, N̄0). The following proposition could be known to

experts. It tells us that Θ̂(p) = Θ̂(q) is actually equivalent to p ∼Mv q.

Proposition 5.4. Suppose that A = C0(Ω)⊗K. If p, q ∈ OP(A), then p ∼Mv q if and only

if there exists v ∈ ℓ∞(Ω;B) such that vv∗ = pa and v∗v = qa (or equivalently, rank pa(ω) =

rank qa(ω) for any ω ∈ Ω).

Proof: It suffices to verify that p ∼Mv q if such a v can be found. For any n ∈ N̄, the
existence of v implies that Γp

n = Γq
n. By Lemma 5.2, one can find u ∈ M(Ω;B) satisfying

uu∗ = pa and u∗u = qa.

Let Φ : M(Ω,B) → A∗∗ be the map given by (5.1) and (5.2). As A is separable, there

exists b ∈ A+ with {κA(b)1/n}n∈N being σ∗-converging to p. For any f ∈ K∗
+, one has

f(b1/n(ω)) ↑ f(pa(ω)) (ω ∈ Ω). Therefore, the monotone convergence theorem gives∫
Ω

f(b1/n(ω))dµ(ω) →
∫
Ω

f(pa(ω))dµ(ω) (µ ∈ M).

This shows that for any µ ∈ M, the sequence {Φµ(κ
a
A(b))

1/n}n∈N will weak-∗-converge to

Φµ(p
a). Since the isomorphism in (5.1) is normal, we see from (5.3) that {κA(b)1/n}n∈N σ∗-

converges to Φ(pa). Similarly, q = Φ(qa). Thus, we have Φ(u)Φ(u)∗ = p and Φ(u)∗Φ(u) = q

as required. �

Remark 5.5. We are grateful to the referee for communicating to us a shorter proof for the

above proposition using a result in [18]. With that proof, one can bypass Lemma 5.1(b),

whose argument is lengthy and complicated (note that the case when n < ∞ of Lemma

5.1(b) is still needed for Theorem 5.3). However, since we think that the fact stated in

Lemma 5.1(b) could be interesting to some other people, we decided to keep our proof.

Nevertheless, for the benefit of the reader, we include the outline of the proof from the

referee in the following.

Since A is separable, there exist a, b ∈ A+ such that p = σ∗-limn κA(a)
1/n and q = σ∗-

limn κA(b)
1/n, respectively. Suppose that rank pa(ω) = rank qa(ω) (ω ∈ Ω). For any lower
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semi-continuous tracial weight τ on A, there is a finite Radon measure µ on Ω such that τ

is given by the integration with respect to µ composing with the trace on B(ℓ2). If τ̃ is the

normal extension of τ to A∗∗, then dτ (a) = τ̃(pa) =
∫
Ω
rankpa(ω)dµ(ω) and a similar relation

holds for dτ (b). Thus, the above assumption implies that dτ (a) = dτ (b) and [18, Theorem

5.8] gives p ∼Mv q as required.

Theorem 5.6. Let Θ : Cu(C0(Ω)) → Lsc(Ω, N̄0) be the map induced by (5.4).

(a) Θ is surjective.

(b) Θ is injective if and only if ∼Mv coincides with ∼Cu on OP(C0(Ω)⊗K).

Proof: (a) We first fix an orthonormal basis {ς(k)}k∈N for ℓ2 and consider elements in B as

infinite matrices. Let e0 := 0, e∞ := idℓ2 , and en :=
∑n

k=1 θς(k),ς(k) (n ∈ N). Suppose that

f ∈ Lsc(Ω, N̄0). For any ω ∈ Ω, we set

hf,ς(ω) = en whenever f(ω) = n.

Since for any ω0 ∈ Ω, the map ω 7→ min{f(ω), f(ω0)} is continuous at ω0, we see that

hf,ς ∈ OPa(C0(Ω)⊗K) (by Proposition 4.1) and the surjectivity is obtained.

(b) Notice that Θ̂(p) = Θ̂(q) if and only if pa is Murray-von Neumann equivalent to qa in

ℓ∞(Ω;B), which in turn is equivalent to p ∼Mv q due to Proposition 5.4. This gives the

conclusion. �

Corollary 5.7. Let

OPs(C0(Ω)⊗K) := {p ∈ OP(C0(Ω)⊗K) : Γp
∞ = ∅ and Γp

n ∈ O(Ω) for every n ∈ N}.

(a) Suppose that Θ : Cu(C0(Ω)) → Lsc(Ω, N̄0) is injective. Let U ∈ O(Ω), n ∈ N and

h : U → Pn be a norm-continuous map. If V ∈ O(Ω) such that V b U , there is a norm-

continuous map φ : V → In satisfying φφ∗ = h|V , i.e., φ(v)φ(v)∗ = h(v), ∀v ∈ V .

(b) ∼PZ coincides with ∼Mv on OPs(C0(Ω)⊗K) if and only if for any n ∈ N, U ∈ O(Ω) and

norm-continuous map h : U → Pn, there is a norm-continuous map ψ : U → In satisfying

ψψ∗ = h.

Proof: Let ς(k) and ek be as in the proof of Theorem 5.6 (k ∈ N0).

(a) Let us first extend h to a function from Ω to Proj(B) by setting h(Ω \ U) = {0}. Then
Proposition 4.1 produces a unique element p ∈ OP(A) with h = pa. Similarly, if we set

g ≡ en on U and g ≡ 0 on Ω \ U , then g = qa for a unique q ∈ OP(A). The same argument

also tells us that there exist r, s ∈ OP(A) with ra = χV · h and sa = χV · g. By multiplying
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h and g with a continuous function from Ω to [0, 1] that takes the value 1 on V and vanishes

outside U , we obtain r b p and s b q (see the discussion following Proposition 3.1). The

injectivity of Θ and Theorem 5.6(b) tell us that p ∼Cu q. Thus, r ∼PZ s1 for an open

projection s1 b q. As rank ra = rank sa1 , we deduce that s1 = s. Let u ∈ ℓ∞(Ω;B) ∼= zaA
∗∗

be an element satisfying the condition in Proposition 3.1(b) for r ∼PZ s such that uu∗ = r

and u∗u = s. Then uu∗|V = h|V and u∗u|V = g|V . Define φ : V → In by

φ(ω)(λ1, ..., λn) := u(ω)
(∑n

i=1
λiς

(i)
)

(ω ∈ V ;λ1, ..., λn ∈ C)

(notice that u∗(ω)u(ω) = en). Now, pick any ω0 ∈ V and any open neighbourhood W of ω0

with W b V . By multiplying g with a continuous function from Ω to [0, 1] that takes the

value 1 on W and vanishes outside V , we obtain b ∈ her(s)+ such that κaA(b)|W = g|W . As

uκaA(b) ∈ κaA(A) and u|W = uκaA(b)|W , one knows that u|W is norm-continuous at ω0. Hence,

φ is norm-continuous at ω0.

(b) The argument of the “only if part” is similar to, but easier than, that of part (a).

For the “if part”, let us suppose that p, q ∈ OPs(A) with p ∼Mv q. Then Γp
n = Γq

n (n ∈ N0).

Consider r ∈ OPs(A) with ra(ω) = en for all ω ∈ Γp
n and n ∈ N0 (whose existence is

ensured by Proposition 4.1). If n ∈ N, we define hn := pa|Γp
n
. By Corollary 4.3(b), hn is

norm-continuous and the hypothesis produces a norm-continuous map ψn : Γp
n → In with

ψnψ
∗
n = hn. Now, define u ∈ ℓ∞(Ω;B) by

u(ω)
(∑∞

k=1
λkς

(k)
)

:=

{
ψn(ω)(λ1, ..., λn) if ω ∈ Γp

n,

0 if ω ∈ Γp
0.

Then u|Γp
n
is norm-continuous for every n ∈ N0, and we have uu∗ = pa as well as u∗u = ra.

Suppose that f ∈ her(p). Note that {Γp
n}n∈N is a disjoint sequence in O(Ω) and

∥f(ωj)∥ → ∥f(ω0)∥ = ∥pa(ω0)f(ω0)∥ = 0

whenever {ωj}j∈J is a net in Ω converging to ω0 ∈ Γp
0. It follows u

∗κaA(f) ∈ κaA(A). Similarly,

we have uκaA(her(r)) ⊆ κaA(A), which implies that p ∼PZ r, because of Proposition 3.1(b). A

similar argument also shows that q ∼PZ r. �

Corollary 5.8. If dimΩ ≤ 1 and A = C0(Ω) ⊗ K, then ∼Mv, ∼PZ, ∼sp and ∼Cu coincide

with each other on OP(A).

Proof: It suffices to show that ∼Mv coincides with ∼PZ on OP(A). Note that since dimΩ ≤
1, the topological stable rank of C0(Ω) is 1, and so is A (by [17, Theorem 6.4]). Thus, [18, §6.2]
tells us that ∼Cu coincides with ∼PZ on OP(A). Now, the result follows from [3, Theorem

3.4] and Theorem 5.6(b) (note that although the result in [3] was stated for the case of
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dimΩ = 1, it actually holds for dimΩ = 0 as well, by using exactly the same argument). �

The fact that [3, Theorem 3.4] holds for the case when dimΩ = 0 was communicated to

us by the referee. Our original proof involves a separate lengthy argument for this case.

Remark 5.9. (a) The proof of Theorem 5.3 tells us that the conclusion of Corollary 5.7(a)

does not hold when Ω = CP1.

(b) Suppose that∼PZ coincides with∼Mv on OPs(C0(Ω)⊗K). For any p ∈ OP(C0(Ω)⊗K), we

obtain from Corollary 5.7(b) and Corollary 4.3(c) a norm continuous map ψ : Ω0 →
∪

n∈N0
In

such that ψψ∗ = pa|Ω0 . Notice also that if Γp
∞ = ∅, then Corollary 4.3(d) says that Ω0 is

dense in Ω.

By [21, Theorems 1.1 and 1.3] and Theorem 5.6, we have the following result.

Corollary 5.10. The equivalence relations ∼Cu and ∼Mv coincide on OP(C0(Ω) ⊗ K) if

and only if dimΩ ≤ 2 and the Cěch cohomology Ȟ2(K;Z) vanishes for any compact subset

K ⊆ Ω.
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