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Abstract
We obtained a “decomposition scheme” of C∗-algebras. We show that the classes of

discrete C∗-algebras (as defined by Peligard and Zsidó), type II C∗-algebras and type III

C∗-algebras (both defined by Cuntz and Pedersen) form a good framework to “classify”
C∗-algebras. In particular, we found that these classes are closed under strong Morita
equivalence, hereditary C∗-subalgebras as well as taking “essential extension” and “nor-
mal quotient”. Furthermore, there exist the largest discrete finite ideal Ad,1, the largest
discrete essentially infinite ideal Ad,∞, the largest type II finite ideal AII,1, the largest type
II essentially infinite ideal AII,∞, and the largest type III ideal AIII of any C∗-algebra A

such that Ad,1+Ad,∞+AII,1+AII,∞+AIII is an essential ideal of A. This “decomposition”
extends the corresponding one for W ∗-algebras.

We also give a closer look at C∗-algebras with Hausdorff primitive ideal spaces, AW ∗-
algebras as well as local multiplier algebras of C∗-algebras. We find that these algebras
can be decomposed into continuous fields of prime C∗-algebras over a locally compact
Hausdorff space, with each fiber being non-zero and of one of the five types mentioned
above.

1. Introduction
Murray and von Neumann defined in [21] (see also [14, 20]) three types of W ∗-

algebras according to the abelianness and finiteness properties of their projections. Since
a C∗-algebra needs not have any non-zero projection, a similar classification for C∗-
algebras cannot go verbatim. Cuntz and Pedersen defined (in [10]) type II and type III

C∗-algebras according to certain abelianness and finiteness properties of their positive
elements. They used these, together with type I C∗-algebras, to obtain a classification
scheme that captures some features of the W ∗-algebra counterpart.

In [25], we use open projections in A∗∗ to obtain another classification scheme for C∗-
algebras parallel to the one of Murray and von Neumann. Meanwhile, we also observe
that discrete C∗-algebras (as defined by Peligard and Zsidó), type II C∗-algebras and
type III C∗-algebras also form a good classification scheme, and some of the results in
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[25] have their counterparts in this scheme. We develop a more comprehensive theory
in the current paper. Note that the overlap materials between the current paper and
[25] is not significant. Actually, only the arguments of Lemma 3·2 and Theorem 5·3 have
overlap with the corresponding results in [25], and some of the statements that have
correspondences in [25] have different proofs here. Moreover, most of the results in this
paper are completely new, e.g., all the results in Subsections 3.3 and 3.5, as well as
Sections 4 and 6 have no correspondences in [25] at all. Conversely, more than half of
the results in [25] has no correspondence in the current paper neither.

Let us first recall the notion of discrete, type II and type III C∗-algebras. A positive
element x ∈ A+ is said to be abelian (in A) if xAx is an abelian algebra (see [26, p.191]).
As in the literature, A is said to be anti-liminary if there is no non-zero abelian element
in A+. Following Cuntz and Pedersen ([10]), for x, y ∈ A+, we write x ∼ y if there is
a sequence {zk}k∈N in A such that x =

∑∞
k=1 z

∗
kzk and y =

∑∞
k=1 zkz

∗
k (in norm). A

positive element x is said to be finite in A if one has y = x whenever y ∈ A+ satisfying
0 ≤ y ≤ x and y ∼ x. It can be shown that a projection in a W ∗-algebra is finite as a
projection in the sense of Murray-von Neumann if and only if it is finite as a positive
element in the sense of Cuntz-Pedersen (see e.g. the proof of Proposition 3·9(d) in Section
3).

Definition 1·1. A C∗-algebra A is said to be
(a) discrete if every non-zero element in A+ dominates a non-zero abelian element in A

([27, Definition 2.1]).
(b) finite (respectively, semi-finite) if every non-zero element in A+ is finite in A (re-
spectively, dominates a non-zero positive finite element in A) ([10, p.140]).
(c) of type II if it has no non-zero abelian element and it is semi-finite ([10, p.149]).
(d) of type III if it has no non-zero finite element ([10, p.149]).

It follows from the definition that any C∗-subalgebra of a finite C∗-algebra is finite.
A W ∗-algebra M is a type I, type II or type III W ∗-algebra if and only if M is a discrete,
type II or type III C∗-algebra (see Proposition 3·9(d)). We also recall that a type I C∗-
algebra is discrete but the converse is not true (e.g. B(ℓ2)). In fact, we obtained in [25,
Proposition 4.3(a)] the following relation:

A C∗-algebra A is of type I if and only if A as well as all the primitive quotient C∗-algebras
of A are discrete.
It is not hard to see that A is discrete if and only if every non-zero hereditary C∗-

subalgebra of A contains a non-zero abelian hereditary C∗-algebra, or equivalently, a
non-zero abelian element (see [27, Theorem 2.3]). We obtain alternative looks of discrete,
type II and type III C∗-algebras in the following theorem. Below, by a normal ideal, we
mean the set J⊥ of annihilators of another ideal J . Observe that an ideal in a W ∗-algebra
is a normal ideal if and only if it is weak-∗-closed. This theorem summarizes Theorem
3·3, Remark 3·4 and Corollary 3·7.

Theorem 1·2. Let A be a C∗-algebra.
(a) A is discrete if and only if every non-zero closed ideal (or equivalently, every non-zero
“normal ideal”) of A contains a non-zero abelian hereditary C∗-subalgebra.
(b) A is of type II if and only if there is no non-zero abelian hereditary C∗-subalgebra of
A and every non-zero closed ideal (or equivalently, every non-zero “normal ideal”) of A
contains a non-zero finite hereditary C∗-subalgebra.
(c) A is of type III if and only if it contains no non-zero finite hereditary C∗-subalgebra.
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We will show that the above three types of C∗-algebras are invariance under strong

Morita equivalence and under essential extension. Here, a C∗-algebra B is an essential
extension of a C∗-algebra A if A is an essential ideal of B (in the sense that I ∩A ̸= (0)

for every non-zero closed ideal I of B).

Theorem 1·3. Let A and B be C∗-algebras.
(a) Assume that B is either strongly Morita equivalent to A or is an essential extension
of A. Then A is discrete (respectively, of type II, of type III or semi-finite) if and only if
B is so (see Theorem 3·3(c) and Proposition 3·5(b)).
(b) If A is discrete (respectively, of type II, of type III or semi-finite), B is a hereditary
C∗-subalgebra of A, and J is a “normal ideal” of A, then both B and A/J are discrete
(respectively, of type II, of type III or semi-finite) (see Proposition 3·5(b)&(c)).
(c) The class of discrete (respectively, semi-finite or type II) C∗-algebras is the smallest
class that contains all abelian (respectively, finite or anti-liminary finite) C∗-algebras and
is closed under strong Morita equivalence and essential extension (see Theorem 3·8).
(d) A is of type III if and only if for every hereditary C∗-subalgebra B ⊆ A, there is
an essential closed ideal of B with the bidual being a properly infinite W ∗-algebra (see
Corollary 4·7).

We say that a C∗-algebra is essentially infinite if it does not contain any non-zero finite
ideal. By Proposition 4·6(a), a C∗-algebra is essentially infinite if there is an essential
closed ideal with its bidual being a properly infinite W ∗-algebra. Thus, part (d) above
tells us that a C∗-algebra is of type III if and only if all of its hereditary C∗-subalgebras
are essentially infinite.

We obtain the following decomposition scheme of C∗-algebras. In this theorem, a nor-
mal quotient is a quotient by a normal ideal, and the term “universal” is used to indicate
the fact that it is the “biggest such quotient”.

Theorem 1·4. Let A,B be C∗-algebras.
(a) There exists the largest discrete (respectively, semi-finite, type II and type III) hereditary
C∗-subalgebra Ad (respectively, Asf , AII and AIII) of A (see Theorem 5·3(a)).
(b) Ad, Asf , AII and AIII are ideals of A such that Ad, AII and AIII are disjoint and
AIII ∩Asf = (0) (see Theorem 5·3(a)).
(c) Ad+AII+AIII is an essential ideal of A, and Ad+AII is an essential ideal of Asf (see
Theorem 5·3(b)).
(d) A/Ad (respectively, A/(AII+AIII)

⊥⊥, A/AIII and A/Asf) is the universal anti-liminary
(respectively, discrete, semi-finite and type III) “normal quotient” of A (see Corollary
5·5(a) and Theorem 5·3(c)&(d)).
(e) If A is semi-finite, then A/AII (respectively, A/Ad) is the universal discrete (respec-
tively, type II) “normal quotient” of A (see Corollary 5·5(b)).
(f) If B is a hereditary C∗-subalgebra of A, then Bd = Ad∩B, Bsf = Asf∩B, BII = AII∩B
and BIII = AIII ∩B (see Proposition 5·6(a)).
(g) If J is an essential closed ideal of A, then A# = {x ∈ A : xJ ⊆ J#}, for # = d, sf, II, III

(see Proposition 5·6(b)).
(h) If A and B are strongly Morita equivalent, then A# and B# (for # = d, sf, II, III)
corresponds to each other, under the canonical bijection between ideals of A and ideals of
B given by the imprimitivity bimodule (see Corollary 5·4).
(i) There exist the largest finite ideal A1 and the largest essentially infinite ideal A∞ of
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A. One has A1 ∩ A∞ = (0) and A1 + A∞ is an essential ideal of A (see Remark 4·3,
Lemma 4·4 and Theorem 4·5(b)).
(j) A/A1 is the universal essentially infinite “normal quotient” of A, and A/A∞ is the
universal finite “normal quotient” of A (see Theorem 4·5(a)&(b)).
(k) If A is discrete (respectively, semi-finite or of type II), then so are A/A1 and A/A∞
(see Theorem 4·5(c)).
(l) Let J ⊆ A be a closed ideal, and q : A → A/J⊥ be the quotient map. Then J1 = J∩A1,
J∞ = J ∩A∞, q(A)1 = q(A1)

⊥⊥ and q(A)∞ = q(A∞)⊥⊥ (see Theorem 4·5(d)&(e)).
(m) Ad,1 := Ad ∩ A1 (respectively, AII,1 := AII ∩ A1) is the largest discrete finite (re-
spectively, type II finite) ideal of A. On the other hand, Ad,∞ := Ad ∩ A∞ (respectively,
AII,∞ := AII ∩ A∞) is the largest discrete essentially infinite (respectively, type II essen-
tially infinite) ideal of A. One has Ad,1 + Ad,∞ + AII,1 + AII,∞ + AIII being an essential
ideal of A (see Corollary 5·7).
(n) If A is a W ∗-algebra, then Ad, AII and AIII are respectively, the type I, the type II and
the type III W ∗-summands of A. Furthermore, A1 and A∞ are respectively, the finite part
and the infinite part of A (see Theorem 5·3(e)).

From these, for any C∗-algebra A, one has

Ad,1⊕Ad,∞⊕AII,1⊕AII,∞⊕AIII ⊆ A ⊆ M(Ad,1)⊕M(Ad,∞)⊕M(AII,1)⊕M(AII,∞)⊕M(AIII),

and the C∗-algebras M(Ad,1), M(Ad,∞), M(AII,1), M(AII,∞) and M(AIII) are also discrete
finite, discrete essentially infinite, type II finite, type II essentially infinite and type III,
respectively.

As seen in Theorems 1·3(b) and 1·4(c), normal ideals play an important role in the
structure theory of C∗-algebras. Hence, prime C∗-algebras (i.e., C∗-algebra containing no
non-zero normal ideal) can be considered as the counterpart of factors in the C∗-world.
The following tells us that every prime C∗-algebra is of one of the five types as in the
above “decomposition”.

Corollary 1·5. Any prime C∗-algebra is of one of the five types: discrete finite, dis-
crete essentially infinite, type II finite, type II essentially infinite, or type III (see Propo-
sition 6·1).

Example 1·6. (a) Discrete finite prime C∗-algebras are exactly matrix algebras (see
Proposition 6·2(b)).
(b) Discrete essentially infinite prime C∗-algebras are those algebras that contain K(H) as
an essential ideal for some infinite dimensional Hilbert space H (see Proposition 6·2(a)).
A concrete example is the unitalization of K(ℓ2).
(c) For a countable ICC group Γ, its reduced group C∗-algebra C∗

r (Γ) is a type II finite
prime C∗-algebra (see Example 6·3(b)).
(d) A simple non-type I AF -algebra that admits no tracial state is a type II essentially
infinite prime C∗-algebra (see Example 6·3(c)).
(e) The Calkin algebra is a type III prime C∗-algebra (see Example 6·3(d)).

One consequence of the above is the following corollary.

Corollary 1·7. (a) If the primitive ideal space Prim(A) of A is Hausdorff, or A

is an AW ∗-algebra, or A is the local multiplier algebra of a C∗-algebra, then A can be
represented as the algebra of C0-sections of an (F)-Banach bundle over an open dense
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subset Ω of Prim(ZM(A)) with each fiber being a non-zero prime C∗-algebra of one of
the five types. If, in addition, A is discrete (respectively, essentially infinite), there is a
dense subset of Ω on which each fiber is discrete (respectively, essentially infinite) (see
Corollary 6·11).
(b) If the primitive ideal space of A is extremally disconnected (in particular, when A is
AW ∗-algebra), then A = Ad,1 ⊕Ad,∞ ⊕AII,1 ⊕AII,∞ ⊕AIII (see Proposition 6·6(a)).

2. Notations and preliminaries
Throughout this article, A and B are C∗-algebras, Z(A) is the center of A, A+ is the

positive cone of A, Proj1(A) is the set of non-zero projections in A, A∗∗ is the bidual of A
(equipped with the canonical W ∗-algebra structure), and M(A) ⊆ A∗∗ is the multiplier
algebra of A. As usual, we write ZM(A) for Z(M(A)). For any subsets X,Y, Z ⊆ A, we
write XY (respectively, XY Z) for the linear span of {xy : x ∈ X, y ∈ Y } (respectively,
{xyz : x ∈ X, y ∈ Y, z ∈ Z}). We also write

X⊥ :=
{
a ∈ A : aX = {0} = Xa

}
.

Notice that if I is a closed ideal of A, then I⊥ is a closed ideal and I⊥ = {a ∈ A : aI = (0)}
(since any closed ideal is ∗-invariant).

A C∗-subalgebra B of A is said to be hereditary if B+ is a hereditary subcone of A+

in the following sense:

B+ = {a ∈ A+ : a ≤ x, for some x ∈ B+}. (2·1)

Clearly, the intersection of two hereditary C∗-subalgebras is hereditary (we use the con-
vention that the zero subalgebra is hereditary). It is well-known that (see e.g. [19, The-
orem 3.2.2]) a ∗-invariant closed subspace B ⊆ A is a hereditary C∗-subalgebra if and
only if BAB ⊆ B. Hence, any closed ideal is a hereditary C∗-subalgebra. Furthermore,
if D ⊆ A is any C∗-subalgebra, then D⊥ is a hereditary C∗-subalgebra. Moreover, if D
is a hereditary C∗-subalgebra of B and B is a hereditary C∗-subalgebra of A, then D is
a hereditary C∗-subalgebra of A (in fact, if a ∈ A+ satisfying a ≤ x ∈ D+, then a ∈ B+

because D+ is a subset of the hereditary subcone B+ of A+, and hence a ∈ D+ because
D+ is a hereditary subcone of B+).

Let us also give a brief account on open projections, which was introduced by Akemann
in [1] (see also [2, 18, 26, 27, 30] for more information). A projection p ∈ A∗∗ is called
an open projection of A if there is an increasing net {ai}i∈I of positive elements in A+

with limi ai = p in the σ(A∗∗, A∗)-topology. A projection q ∈ A∗∗ is said to be closed if
1 − q is open. We use OP1(A) to denote the collection of non-zero open projections of
A. In the case when A is commutative, open projections of A are exactly the images (in
A∗∗) of characteristic functions of open subsets of the spectrum of A.

By [26, Proposition 3.11.9], we know that a projection p ∈ A∗∗ is open if and only
if it lies in the norm-closure of the set (Ãsa)

m of σ(A∗∗, A∗)-limits of increasing nets in
the self-adjoint part Ãsa of the unitalization Ã of A. Furthermore, it was shown in [26,
Theorem 3.12.9] that

M(A)sa = (Ãsa)
m ∩ (Ãsa)m,

where M(A)sa is the self-adjoint part of the multiplier algebra M(A) of A and (Ãsa)m is
the set of σ(A∗∗, A∗)-limits of decreasing nets in Ãsa. Thus, every element in Proj1(M(A))∪
{0} is both an open projection and a closed projection of A. Conversely, if a projection
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p ∈ A∗∗ is both open and closed, then it is the σ(A∗∗, A∗)-limit of an increasing in A+

as well as a σ(A∗∗, A∗)-limit of a decreasing in Ãsa, which means that p ∈ M(A)sa.
For every projection (respectively, central projection) e in A∗∗ the C∗-subalgebra,

herA(e) := eA∗∗e ∩A

is a hereditary C∗-subalgebra (respectively, a closed ideal). Let us list the following two
facts from [26] (which may be used implicitly throughout this article):
O1). The assignment: e 7→ herA(e) is a bijection from the set of open (respectively, central

open) projections on A onto the set of hereditary C∗-subalgebras (respectively,
closed ideals) of A (see [26, Remark 3.11.10]).

O2). A projection e ∈ Proj1(A∗∗) is an open projection of A if and only if e belongs to
the σ(A∗∗, A∗)-closure of herA(e) (see [26, Proposition 3.11.9]). In this case, any
approximate unit in herA(e) will σ(A∗∗, A∗)-converge to e (see the proof of [26,
Proposition 3.11.9]).

The following proposition contains some well-known facts about open projections and
hereditary C∗-subalgebras.

Proposition 2·1. Suppose that A is a C∗-algebra and e, p, q ∈ OP1(A) with p, q ∈
Z(A∗∗).
(a) If z(e) is the central cover of e in A∗∗, then z(e) ∈ OP1(A) and herA(z(e)) is the
closed ideal, AherA(e)A, generated by herA(e).
(b) ep ∈ OP1(A) and herA(ep) = herA(e) ∩ herA(p) = herA(e) herA(p) herA(e).
(c) If herA(e) ⊆ herA(p) + herA(q), then one has herA(e) ∩ herA(p) ̸= (0) or herA(e) ∩
herA(q) ̸= (0).

Proof. (a) Set B := herA(e) and I := ABA. Denote by z0 ∈ OP1(A) ∩ Z(A∗∗) the
projection with I = herA(z0) = z0A

∗∗ ∩ A. As B ⊆ I, we know that e ≤ z0. If z ∈
Proj1(A∗∗)∩Z(A∗∗) satisfying e ≤ z, then B ⊆ zA∗∗ which implies I ⊆ zA∗∗ and hence
z0 ≤ z (see (O2)). These show that z0 = z(e).
(b) Suppose that {xi}i∈I and {yj}j∈J are increasing nets in herA(e)+ and herA(p)+ that
σ(A∗∗, A∗)-converge to e and p, respectively. For a fixed i ∈ I, it follows from

epx
1/2
i yjx

1/2
i = x

1/2
i yjx

1/2
i = x

1/2
i yjx

1/2
i ep

(because p ∈ Z(A∗∗)) that the increasing net
{
x
1/2
i yjx

1/2
i

}
j∈J

lies in herA(ep), and it will
σ(A∗∗, A∗)-converge to xip = x

1/2
i px

1/2
i . Consequently, ep, being the σ(A∗∗, A∗)-limit of

{xip}i∈I, lies inside the σ(A∗∗, A∗)-closure of herA(ep), and Statement (O2) implies that
ep is an open projection of A.

Let D be the hereditary C∗-subalgebra herA(e) ∩ herA(p) of A and f ∈ OP1(A) such
that D = herA(f). Since p is central, ep = e ∧ p, and we know that herA(ep) ⊆ D (and
so, ep ≤ f). Conversely, as f ≤ e ∧ p, we know that D ⊆ herA(ep).

On the other hand, we denote D0 := herA(e) herA(p) herA(e). As every element in D

is a product of three elements in D, we know that D ⊆ D0. Conversely, as herA(p) is an
ideal and herA(e) is hereditary, we know that D0 ⊆ D.
(c) Since herA(p) + herA(q) ⊆ herA(p + q − pq), we know that e ≤ p + q − pq. Suppose
on the contrary that

herA(e) ∩ herA(p) = (0) = herA(e) ∩ herA(q).
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By part (b), we know that ep = eq = 0. Hence, we will arrive at the contradiction that
e = e(p+ q − pq) = 0.

Remark 2·2. Suppose that e, f ∈ OP1(A) with e ≤ f and B,D ⊆ A are hereditary
C∗-subalgebras.
(a) By [25, Remark 2.2(b)], one may identify

OP1(herA(f)) = {r ∈ OP1(A) : r ≤ f}.

Let ef be the closure of e in herA(f) (see [1, Definition II.11]); i.e., ef is the smallest
closed projection of herA(f) that dominate e. Consequently, f − ef is the largest element
in

{r ∈ OP1(A) ∪ {0} : r ≤ f and re = 0}

(notice that f is the identity of herA(f)). From which, one can obtain

herA(e)
⊥ = herA(1− e1). (2·2)

Indeed, we see from Statement (O2) that herA(e)
⊥ = {x ∈ A : ex = 0 = xe}. So, if

p ∈ OP1(A), then herA(p) ⊆ herA(e)
⊥ if and only if pe = 0, which is equivalent to

p ≤ 1− e1. Thus, Relation (2·2) follows from the description of f − ef in the above and
the fact that herA(e)⊥ is a hereditary C∗-subalgebra of A.
(b) D is said to be disjoint from B if BD = (0). Clearly, D is disjoint from B if and only
if D ⊆ B⊥. As in [30], we say that B is essential in A if there is no non-zero hereditary
C∗-subalgebra of A that is disjoint from B (or equivalently, B⊥ = (0)).

We say that e is dense in f if ef = f . Relation (2·2) (applying to the case when A is
replaced by herA(f)) tells us that e is dense in f if and only if herA(e) is essential in
herA(f).
(c) The ideal I := ABA is essential in A as a hereditary C∗-subalgebra if and only if
for every non-zero closed ideal J of A, one has BJ ̸= (0) (or equivalently, B⊥ does not
contain a non-zero ideal of A). In fact, if I is essential in A but there is a non-zero closed
ideal J ⊆ A with BJ = (0), then

IJ = ABAJ ⊆ ABJ = (0),

which is a contradiction. Conversely, suppose that B satisfies the said condition, and
D ⊆ A is a non-zero hereditary C∗-subalgebra. If J := ADA, then BJ ̸= (0), and hence

(0) ≠ ABADA ⊆ IDA

(by considering an approximate identity in A), which implies that ID ̸= (0) as required.
(d) Let E be another C∗-algebra. Then A contains (a ∗-isomorphic copy of) E as an
essential ideal if and only if there is an injective ∗-homomorphism φ : A → M(E) such
that E ⊆ φ(A).

In fact, if A contains E as an essential ideal, then by [19, Theorem 3.1.8], there is
an injective ∗-homomorphism from A to M(E) extending the inclusion map E ⊆ M(E).
Conversely, suppose that such a map φ exists. Then E is clearly an ideal of φ(A).
Moreover, as E is an essential ideal of M(E) (see e.g. [19, p.82]), one has{

a ∈ φ(A) : aE = {0} = Ea
}
⊆

{
x ∈ M(E) : xE = {0} = Ex

}
= {0}.

This shows that E is an essential ideal of φ(A) (see part (b) above).
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Next, we give a brief account for the notion of strong Morita equivalence. The readers

may consult some standard literature on this subject (e.g., [16]) for more information.
Let X be a right A-module equipped with an “A-valued inner product”, i.e. a map
⟨·, ·⟩A : X ×X → A such that it is A-linear in the second variable and it satisfies

⟨x, y⟩∗A = ⟨y, x⟩A, ⟨x, x⟩A ≥ 0 (x, y ∈ X)

as well as {x ∈ X : ⟨x, x⟩A = 0} = {0}. If X is complete under the norm defined by

∥z∥ := ∥⟨z, z⟩A∥1/2 (z ∈ X),

then it is called a Hilbert A-module. A Hilbert A-module is said to be full if the linear
span of {⟨x, y⟩A : x, y ∈ X} is dense in A. For any x, y ∈ X, we define θx,y : X → X by

θx,y(z) := x⟨y, z⟩A (z ∈ X).

The closure, KA(X), of the linear span of {θx,y : x, y ∈ X} in the Banach space of
bounded linear operators on X is naturally a C∗-algebra with the involution satisfying
θ∗x,y := θy,x. If B is another C∗-algebra such that there exists a full Hilbert A-module X

with B ∼= KA(X), then we say that A and B are strongly Morita equivalent.

Remark 2·3. Suppose that X is a full Hilbert A-module and B = KA(X).
(a) Let X̃ be the conjugate vector space of X with the canonical conjugate linear bijection
being denoted by x 7→ x .̃ One may equip X̃ with a Hilbert B-module structure as follows:

y b̃ = (b∗y)̃ and ⟨x ,̃ y ⟩̃B := θx,y (x, y ∈ X; b ∈ B).

For every a ∈ A, the map defined by Ψ(a)(x )̃ := (xa∗)̃ belongs to KB(X̃), and Ψ is a
∗-isomorphism from A onto KB(X̃). In fact, Ψ is clearly a linear homomorphism from A

to the algebra of bounded linear operators on X̃. It is easy to see that Ψ(⟨x, y⟩A) = θx˜,y˜
(x, y ∈ X). This implies that Ψ(A) ⊆ KB(X̃) (because X is full) and that Ψ(A) is dense
in KB(X̃). Furthermore, Ψ preserves the adjoint since

⟨Ψ(a∗)(x )̃, y ⟩̃ = ⟨(xa)̃ , y ⟩̃ = θxa,y = θx,ya∗ = ⟨x ,̃Ψ(a)y ⟩̃ (x, y ∈ X; a ∈ A).

Hence, Ψ : A → KB(X̃) is a ∗-homomorphism, which implies that its range is closed and
thus it is also surjective. Finally, if Ψ(a) = 0, then a⟨x, y⟩a∗ = ⟨xa∗, ya∗⟩ = 0 for any
x, y ∈ X (because (xa∗)̃ = (ya∗)̃ = 0) and the fullness of X implies that aAa∗ = {0},
and hence a = 0.
(b) One may equip D :=

( A X̃

X B

)
with a canonical C∗-algebra structure (which is

called the linking algebra). Consider e :=
( 1 0

0 0

)
∈ M(D). Then A ∼= eDe = herD(e)

and B ∼= (1− e)D(1− e) = herD(1− e). Moreover, as the closed ideal of D generated by
A is the whole algebra D and the same is true for B, we know from Proposition 2·1(a)
that z(e) = 1 = z(1 − e). As a more explicit reference, the readers may consult, e.g. [5,
Theorem II.7.6.9].
(c) For every closed ideal I of A, the subset XI := {xa : x ∈ X; a ∈ I} ⊆ X coincides
with its linear span XI and is a full Hilbert I-module. Moreover,

KA,I(X) := span {θx,y : x, y ∈ XI}

is an ideal of B = KA(X) that can be identified with KI(XI).
In fact, if F is the closure of XI, then clearly F is a Hilbert I-module containing XI ,
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and it follows from the Cohen factorization theorem (see e.g. Theorem 1.11.10 in [7,
p.61]) that elements in F are of the form ya for some y ∈ F ⊆ X and a ∈ I, which gives
the required inclusion F ⊆ XI . On the other hand, since any element in I is a product
of three elements in I, we know from fullness of X that XI is a full Hilbert I-module.

It is clear that KA,I(X) is an ideal of B. Moreover, one has

T (X) ⊆ XI (T ∈ KA,I(X)),

and it is easy to check that T 7→ T |XI is a surjective ∗-homomorphism from KA,I(X)

onto KI(XI). Suppose that T |XI = 0. If x ∈ X and {ui}i∈I is an approximate unit of
I, then

0 = T (xui) = T (x)ui → T (x) ∈ XI,

which implies that T = 0.
Furthermore, part (a) ensures that the map I 7→ KI(XI) is a bijection from the

collection of closed ideals of A onto that of B.
(d) Suppose that C is a hereditary C∗-subalgebra of A such that ACA = A. Then
C is strongly Morita equivalent to A. In fact, if one takes X := CA and equips it
with the canonical Hilbert A-module structure, then θx1a1,x2a2

7→ x1a1a
∗
2x2 induces a

∗-isomorphism from KA(X) onto C, because θx1a1,x2a2
(yb) = x1a1a

∗
2x2yb (x1, x2, y ∈

C; a1, a2, b ∈ A). In particular, if A is a separable simple C∗-algebra, then for any non-
zero hereditary C∗-subalgebra D ⊆ A, one has D ⊗K(ℓ2) ∼= A⊗K(ℓ2).

3. Two new looks of discreteness, type II and type III

Let us start the main content of this paper with the following simple lemma, which
is implicitly included in [10]. Since some of them are not explicitly stated there, we will
give a full account here.

Lemma 3·1. Let B ⊆ A be a non-zero hereditary C∗-subalgebra and FA be the set of
all non-zero positive elements that are finite in A.
(a) If b ∈ A satisfying bb∗, b∗b ∈ B, then b ∈ B.
(b) FB = FA ∩B.
(c) If x ∈ FA and ϵ ∈ (0, ∥x∥), then (x− ϵ)+A(x− ϵ)+ is a finite C∗-algebra.
(d) If x ∈ FA such that 0 is an isolated point of σ(x) ∪ {0} (in particular, if x is a
projection), then xAx is a finite C∗-algebra.

Proof. (a) Let e ∈ OP1(A) with B := herA(e). As b∗b ∈ herA(e), by considering
the polar decomposition of b, we see that be = b. Similarly, we have eb = b. Hence,
b = ebe ∈ herA(e).
(b) It is obvious that FA∩B ⊆ FB . Conversely, suppose that x ∈ FB . Consider y ∈ A+

and a sequence {zk}k∈N in A such that y ≤ x, y =
∑∞

k=1 zkz
∗
k and x =

∑∞
k=1 z

∗
kzk. Since

B+ is a hereditary subcone of A+ (see (2·1)), we have y ∈ B+ and z∗kzk, zkz
∗
k ∈ B+

(k ∈ N). By part (a), we know that zk ∈ B. Now, x ∈ FB gives y = x.
(c) Let D := (x− ϵ)+A(x− ϵ)+ and set

F0 := {a ∈ A+ \ {0} : a = ay for some y ∈ FA}.

By [10, Lemma 4.1], one has F0 ⊆ FA. Consider f(t) := max{t− ϵ, 0} (t ∈ σ(x)). There
exists g ∈ C(σ(x))+ as well as λ > 0 satisfying g(t)f(t) = f(t) and g(t) ≤ λt (t ∈ σ(x)).



10 Chi-Keung Ng and Ngai-Ching Wong
Hence, g(x) ≤ λx, and this gives g(x) ∈ FA (because of [10, Lemma 4.1]). Moreover, we
know from f(x) = f(x)g(x) that for any z ∈ D+, one has zg(x) = z, which implies

z ∈ F0 ∩D ⊆ FA ∩D ⊆ FD.

Consequently, D is a finite C∗-algebra.
(d) As 0 is an isolated point of σ(x) ∪ {0}, one can find g ∈ C(σ(x) ∪ {0})+ and λ > 0

such that g(t)t = t and g(t) ≤ λt (t ∈ σ(x)∪{0}). The same argument as in part (c) will
give the required conclusion.

The corresponding statement of part (b) above for abelian elements follows from the
fact that if x ∈ B+\{0} is abelian, then xAx ⊆ x1/2(x1/2Ax1/2)x1/2 ⊆ x1/2Bx1/2 = xBx

and hence, is an abelian algebra.
Our next lemma is a crucial step toward the new looks and the decomposition scheme.

A different proof of the statement concerning abelian elements can be found in [25,
Proposition 3.8(a)].

Lemma 3·2. Let A and B be two strongly Morita equivalent C∗-algebras. Then A has
a non-zero abelian element (respectively, finite elements) if and only if B does.

Proof. We will only give the proof for the statement concerning finite elements since the
other statement follows from a similar argument. Let D and e ∈ Proj1(M(D)) ⊆ OP1(D)

be as in Remark 2·3(b). In particular, A = herD(e) and z(e) = 1 in OP1(D).
Suppose that FB ̸= ∅. Lemma 3·1(b) implies that FD ̸= ∅. By Lemma 3·1(c), we

know that D contains a non-zero finite hereditary C∗-subalgebra D0. Let p ∈ OP1(D)

with D0 = herD(p). Then [27, Theorem 1.9] gives e0, e1, p0, p1 ∈ OP1(D)∪{0} such that
e0, e1 ≤ e, p0, p1 ≤ p, e0e1 = 0, p0p1 = 0,

e0 + e1
e
= e, p0 + p1

p
= p, z(e0)z(p0) = 0 and herD(e1) ∼= herD(p1)

(notice that the equivalence relation in [27] produces a ∗-isomorphism between herD(e1)

and herD(p1)).
Let us first show that p1 ̸= 0. Suppose on the contrary that p1 = 0. The relation

herD(e1) ∼= herD(p1) implies e1 = 0 (see Statement (O1)). Thus, e0e = e tells us that
z(e0) is dense in z(e) = 1 (by [27, Lemma 1.8]). This implies that z(p0) = 0 (because
z(e0)z(p0) = 0 and we have Proposition 2·1(a) as well as Remark 2·2(a)). Hence, p0 = 0,
which is absurd since p0

p = p ̸= 0.
Now, herD(p1) ⊆ D0 is a non-zero finite hereditary C∗-subalgebra of D. As herD(e1)

is ∗-isomorphic to herD(p1), we conclude that herD(e1) is a non-zero finite hereditary
C∗-subalgebra of herD(e). Consequently, FA ̸= ∅ (by Lemma 3·1(b)) as required.

When both A and B are separable, there is a simpler proof of the above, using the
fact that A and B are stably isomorphic whenever they are strongly Morita equivalent.
In fact, if FA ̸= ∅ and p ∈ K(ℓ2) is a rank one projection, we know from Lemma 3·1(c)
that there is a non-zero finite hereditary C∗-subalgebra D of A⊗ p ⊆ A⊗K(ℓ2). Let E

be the corresponding non-zero finite hereditary C∗-subalgebra of B ⊗ K(ℓ2) under the
stably isomorphism. Then (1⊗ q)E(1⊗ q) ̸= {0} for some rank one projection q ∈ K(ℓ2),
and we know that FB ̸= ∅.

3·1. The first set of new looks
The following theorem is our first set of new looks. Note that there is no ambiguity in

part (b) of this theorem because of Lemma 3·1(b).
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Theorem 3·3. (a) A is discrete if and only if every non-zero closed ideal of A contains

a non-zero abelian element.
(b) A is semi-finite if and only if every non-zero closed ideal of A contains a non-zero
finite element.
(c) Let A and B be two strongly Morita equivalent C∗-algebras. If A is discrete (respec-
tively, anti-liminary, semi-finite, of type II or of type III), then so is B.

Proof. (a) It is clear that if A is discrete, the required condition holds. Conversely,
suppose that A satisfies the condition as stated, and D ⊆ A is a non-zero hereditary C∗-
algebra. If I := ADA, then Remark 2·3(d) tells us that I is strongly Morita equivalent
to D. Now, we know from Lemma 3·2 that D contains a non-zero abelian element and
hence A is discrete (by [27, Theorem 2.3]).
(b) Since the “only if part” is clear (recall that the cone of a closed ideal of A is a
hereditary subcone of A+), we only need to consider the “if part”. Let a ∈ A+ \ {0}
and set D := aAa. By Remark 2·3(d), D is strongly Morita equivalent to ADA. The
hypothesis and Lemma 3·2 produces x ∈ FD = FA ∩ D with ∥x∥ = 1 (see Lemma
3·1(b)). Notice that if a1/2x1/2 = 0, then we have a contradiction that Dx1/2 = 0.
Moreover, since x1/2ax1/2 ≤ ∥a∥x and a1/2xa1/2 ∼ x1/2ax1/2, we know from [10, Lemma
4.1] that a1/2xa1/2 ∈ FA. As a1/2xa1/2 ≤ a, we see that A is semi-finite.
(c) It follows from Lemma 3·2 that if A is anti-liminary (respectively, type III), then so is
B. Let J be a non-zero closed ideal of B. By Remark 2·3(c), there is a closed ideal I ⊆ A

that is strongly Morita equivalent to J . If A is discrete (respectively, semi-finite), then by
part (a) (respectively, part (b)) as well as Lemma 3·2, we know that J contains a non-zero
abelian (respectively, finite) element, and hence B is discrete (respectively, semi-finite).
Since a C∗-algebra is of type II if and only if it is anti-liminary and semi-finite, we know
that the property of being type II is also preserved under strong Morita equivalence.

Remark 3·4. (a) It is clear that one can replace “abelian element” in Theorem 3·3(a)
by “abelian hereditary C∗-subalgebra”. Moreover, by Lemma 3·1(c), one may also replace
“finite element” in Theorem 3·3(b) by “finite hereditary C∗-subalgebra”. The same reason
also tells us that:

a C∗-algebra is of type III if and only if it has no non-zero finite hereditary C∗-subalgebra.
(b) Remark 2·3(d) and Theorem 3·3(c) implies that every discrete (respectively, anti-
liminary, semi-finite, type II or type III) hereditary C∗-subalgebra of A is contained in a
discrete (respectively, anti-liminary, semi-finite, type II or type III) closed ideal of A.

The following statement is a direct consequence of Theorem 3·3(b) and [22, Theorem
2.7]:

Let A be a C∗-algebra and α be an action of a compact group G on A. Suppose that the
linear span of functions of the form t 7→ αt(a)b, where a, b ∈ A, is dense in C(G;A). Then
the fixed point algebra Aα is discrete (respectively, anti-liminary, semi-finite, of type II or
of type III) if and only if the crossed product Aoα G has the same property.

3·2. Some permanence properties
With the help of Theorem 3·3, we will obtain in Proposition 3·5 below some permanence

properties of discreteness, type II, type III and semi-finiteness. Apart from part (a), these
properties seem to be new. Notice that, by Remark 2·2(c), the hypothesis in part (b)
means that B⊥ does not contain any non-zero ideal of A, but the presentation in the
statement here seems more informative.
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Proposition 3·5. Let B be a discrete (respectively, type II, type III, semi-finite or

anti-liminary) C∗-algebra.
(a) If A is a hereditary C∗-subalgebra of B, then A is discrete (respectively, of type II, of
type III, semi-finite or anti-liminary).
(b) If B is a hereditary C∗-subalgebra of a C∗-algebra A such that I := ABA is an
essential ideal of A, then A is discrete (respectively, of type II, of type III, semi-finite
or anti-liminary). In particular, M(B) is discrete (respectively, of type II, of type III,
semi-finite or anti-liminary).
(c) If B is a closed ideal of a C∗-algebra A, then both B⊥⊥ and A/B⊥ are discrete
(respectively, of type II, of type III, semi-finite or anti-liminary).
(d) If I is an ideal of B, then B/I⊥ is discrete (respectively, of type II, of type III,
semi-finite or anti-liminary).

Proof. (a) This part follows from the definitions, Lemma 3·1(b) as well as the para-
graph following Lemma 3·1.
(b) We will only consider the case when B is of type II (as the argument for the other
cases are similar). By Remark 2·3(d) and Theorem 3·3(c), we know that I is of type II.
Suppose that (0) ̸= D ⊆ A is a hereditary C∗-subalgebra. Then ID is non-zero, because
I is essential. Hence, D ∩ I = DID ̸= (0) and is a hereditary C∗-subalgebra of I. This
ensures that D contains a non-zero finite element. On the other hand, if D = aAa for an
abelian element a ∈ A+, then D ∩ I is a non-zero abelian hereditary C∗-subalgebra of I,
which is impossible. These show that A is of type II.
(c) Let φ : A → M(B) be the canonical ∗-homomorphism. As kerφ = B⊥, we know that
φ|B⊥⊥ is injective and so is the induced ∗-homomorphism φ̂ : A/B⊥ → M(B). Since
both φ(B⊥⊥) and φ̂(A/B⊥) contains the image of B as an essential ideal (see Remark
2·2(d)), the conclusion follows from part (b).
(d) By part (a), we know that I is discrete (respectively, of type II, of type III, semi-finite
or anti-liminary). Hence, by part (c), we know that B/I⊥ is discrete (respectively, of
type II, of type III, semi-finite or anti-liminary).

Definition 3·6. (a) We say that A is an essential extension of B if it contains B as
an essential ideal.
(b) An ideal I ⊆ A is called a normal ideal if I = J⊥ for some ideal J ⊆ A.
(c) If I ⊆ A is a normal ideal, then A/I is called a normal quotient of A.

Notice that the name “normal ideal” comes from the fact that an ideal of a W ∗-algebra
M is a normal ideal if and only if it is σ(M,M∗)-closed.

Proposition 3·5(b) implies that the properties of being discrete, type II, type III, semi-
finite and anti-liminary are stable under essential extensions. Furthermore, Proposition
3·5(d) states that these types are preserved under normal quotients. In contrast, the
quotient of a discrete C∗-algebra by an arbitrary closed ideal needs not be discrete (e.g.
B(ℓ2) is a discrete C∗-algebra but B(ℓ2)/K(ℓ2) is of type III).

Corollary 3·7. A is discrete (respectively, semi-finite) if and only if every non-
zero normal ideal of A contains a non-zero abelian (respectively, finite) hereditary C∗-
subalgebra.

Proof. If A is discrete (respectively, semi-finite), then A will satisfy the said condition
because of Theorem 3·3(a) (respectively, Theorem 3·3(b)). Conversely, assume that the
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said condition is satisfied. Let I be a non-zero closed ideal of A. The assumption tells us
that I⊥⊥ contains a non-zero abelian (respectively, finite) element. It follows from the
definition (respectively, from Lemma 3·1(c)) that I⊥⊥ contains a non-zero abelian (re-
spectively, finite) hereditary C∗-subalgebra D. As I is an essential ideal of I⊥⊥, we know
that I ∩ D = DID ̸= (0). Now, Remark 3·4(a) implies that A is discrete (respectively,
semi-finite).

3·3. The second set of new looks
The following can be regarded as another new looks of discreteness, semi-finiteness and

type II.

Theorem 3·8. Let A, F and Fal denote the class of abelian C∗-algebras, the class of
finite C∗-algebras and the class of finite and anti-liminary finite C∗-algebras, respectively.
Let D (respectively, S and T2) be the smallest class containing A (respectively, F and
Fal) which is closed under strong Morita equivalences and essential extensions. Then
D (respectively, S and T2) is the class of discrete (respectively, semi-finite and type II)
C∗-algebras.

Proof. By Theorem 3·3(c) and Proposition 3·5(b), we know that every member in D

(respectively, S and T2) is discrete (respectively, semi-finite and type II).
Suppose that A is a non-zero discrete C∗-algebra. Then [27, Theorem 2.3(iii)] gives

an abelian hereditary C∗-subalgebra A1 of A such that AA1A is an essential ideal of A.
Thus, by Remark 2·3(d), we know that A ∈ D.

Secondly, assume that A is a semi-finite C∗-algebra. In order to show that A is a
member of S, it suffices to show that there is a finite hereditary C∗-subalgebra A2 ⊆ A

with AA2A being an essential ideal of A (because of Remark 2·3(d)). Indeed, by Zorn’s
Lemma, there exists a maximal family {Bi}i∈I of finite hereditary C∗-subalgebras of A
such that ABiA and ABjA are disjoint for all i ̸= j, and we set

A2 :=
∑

i∈I
Bi.

Because A2 is the c0-direct sum of finite C∗-algebras, it is finite. Moreover, the ideal
AA2A is essential, by the maximality of {Bi}i∈I and Remark 3·4(a).

Finally, let A be a type II C∗-algebra. As in above, we consider a maximal family
{Di}i∈I of anti-liminary finite hereditary C∗-subalgebras with ADiA and ADjA being
disjoint when i ̸= j. If A3 :=

∑
i∈IDi, then A3 is an anti-liminary finite hereditary C∗-

subalgebra of A. Again by Remark 3·4(a) and the maximality, the ideal AA3A is essential
in A, and we know that A is a member of T2.

From the proof above, a C∗-algebra is type II (respectively, semi-finite or discrete) if
and only if it contains an essential ideal that is strongly Morita equivalent to an anti-
liminary finite (respectively, a finite or an abelian) C∗-algebra.

3·4. C∗-algebras of real rank zero and W ∗-algebras
We want to compare discreteness, type II and type III of C∗-algebras with the corre-

sponding properties of W ∗-algebras. These comparisons could be known, but since we
do not find them in the literature, we present them in Proposition 3·9(d) below for later
reference. On our way, we also give alternative descriptions of these types in the case of
real rank zero C∗-algebras.
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Proposition 3·9. Let A be a C∗-algebra of real rank zero.

(a) A is discrete (respectively, semi-finite) if and only if every non-zero projection in A

dominates a non-zero projection that is an abelian element of A (respectively, is a finite
element in A).
(b) A is of type II if and only if every non-zero projection in A is not abelian but dominates
a non-zero projection that is finite in A.
(c) A is of type III if and only if it has no non-zero projection which is finite in A.
(d) If, in addition, A is a W ∗-algebra, then A is a type I, type II, type III or semi-finite
W ∗-algebra if and only if it is, respectively, a discrete, type II, type III or semi-finite
C∗-algebra.

Proof. (a) Suppose that A is discrete (respectively, semi-finite). Any projection p ∈ A

will dominate a non-zero abelian (respectively, finite) element x ∈ A+. As (pAp)+ is a
hereditary subcone of A, we know that x ∈ pAp. Hence, pAp will contains the non-zero
abelian hereditary C∗-subalgebra xAx (respectively, the non-zero finite hereditary C∗-
subalgebra yAy for y := (x− p∥x∥/2)+;see Lemma 3·1(c)), and any non-zero projection
in this subalgebra will be dominated by p.

Conversely, assume that the said condition holds. If I ⊆ A is a non-zero closed ideal
and p ∈ Proj1(I), then p will dominate an non-zero abelian (respectively, finite) element
and this element will belong to I (as I+ is a hereditary subcone of A+). Thus, A is
discrete (respectively, semi-finite) by Theorem 3·3.
(b) This part follows directly from part (a).
(c) The “only if part” is clear, and the converse follows from Lemma 3·1(c).
(d) By parts (a), (b) and (c) above, it suffices to show that a projection is finite in A

if and only if it is finite in the sense of Murry and von Neumann. In fact, one of the
implication is clear because the equivalence relation “∼” (about positive elements) in
the beginning of Section 1, when restricted to the set of projections, is weaker than the
Murry-von Neumann equivalence. Conversely, suppose that a projection p ∈ Proj1(A) is
finite in the sense of Murry and von Neumann. Then pAp is finite as a W ∗-algebra, and
the set of normal tracial states will separate 0 from other positive elements in pAp (i.e.,
for any x ∈ (pAp)+ \ {0}, there exists a normal tracial state τ with τ(x) ̸= 0). Hence,
we know from [10, Theorem 3.4] that pAp is a finite C∗-algebra and p ∈ pAp is finite in
A.

3·5. Purely infinite C∗-algebras and tracially infinite C∗-algebras
Another application of Proposition 3·5 is Proposition 3·10 below, which shows that

type III is weaker than the notion of purely infiniteness as defined by Cuntz in [9] (in
the case of simple C∗-algebras) as well as by Kirchberg and Rørdam [15] (in the general
case). Note that Proposition 3·10 implies, in particular, [15, Proposition 4.4].

In order to obtain this comparison, we will investigate another property that looks
very similar to type III (compare Proposition 3·10(a) as well as Corollary 4·7 in the
next section), and lies between type III and pure infiniteness. This property will also be
considered in Section 6 below.

Let us first recall the notion of traces on C∗-algebras. As in [26, §5.2], by a trace,
we mean an additive and positively homogeneous map (i.e., a weight) τ : A+ → [0,∞]

satisfying
τ(u∗xu) = τ(x)



On the decomposition into Discrete, Type II and Type III C∗-algebras 15
for any x ∈ A+ and unitary u in the unitalization of A. A trace τ is said to be lower
semi-continuous if {x ∈ A+ : τ(x) ≤ λ} is norm closed in A, for every λ ∈ R+. Moreover,
as in [11, Definition 6.1.1], τ is called semi-finite if

τ(x) = sup{τ(y) : 0 ≤ y ≤ x and τ(y) < +∞} (x ∈ A+).

Note that this semi-finiteness is slightly stronger than the one in [10]. In the following,
we denote by T (A) the set of all lower semi-continuous semi-finite traces on A, and by
Ts(A) the set of tracial states (i.e. states that are also traces) on A.

Proposition and Definition 3·10. A C∗-algebra A is said to be tracially infinite
if it contains an essential closed ideal J with T (J) = {0}.
(a) A is tracially infinite if and only if A contains an essential ideal J such that for every
hereditary C∗-subalgebra B ⊆ J , it bidual B∗∗ is a properly infinite W ∗-algebra.
(b) If A is tracially infinite, then A is of type III. In particular, every purely infinite
C∗-algebra is of type III.

Proof. (a) It suffices to show that for any C∗-algebra D, one has T (D) = {0} if and
only if Ts(B) = ∅ for every non-zero hereditary C∗-subalgebra B ⊆ D (we may then
apply this statement to D = J ; note that B∗∗ is a properly infinite W ∗-algebra if and
only if Ts(B) = ∅).

Suppose that there exist a non-zero hereditary C∗-subalgebra B ⊆ D and an element
φ ∈ Ts(B). Let τ be the lower semi-continuous trace extension of φ as given in the proof
of [10, Lemma 4.6]; namely,

τ(x) := sup{φ(y) : y ∈ B+, y ∼ z ≤ x} (x ∈ D+).

It is not hard to check that τ is semi-finite, and T (D) ̸= ∅.
Conversely, if τ ∈ T (D) \ {0}, then the semi-finiteness of τ will produce an element

x ∈ D+ with 0 < τ(x) < +∞. Without loss of generality, assume that ∥x∥ = 1. It is clear
that ∥x− (x− 1

n )+∥ → 0 and the lower semi-continuity of τ tells us that τ
(
(x− 1

n )+
)
→

τ(x). Set y := (x − 1
n0

)+, where n0 is big enough so that τ
(
(x − 1

n0
)+

)
> 0. Using a

similar argument as that of Lemma 3·1(c), one can find g ∈ C(σ(x))+ and λ > 0 such
that y = yg1/2(x) and g(x) ≤ λx. Thus,

τ(z) = τ
(
g1/2(x)zg1/2(x)

)
≤ λ∥z∥τ(x) < +∞ (z ∈ (yDy)+),

and hence Ts(yDy) ̸= ∅.
(b) Let J be an essential closed ideal of A with T (J) = {0}. By Proposition 3·5(b), it
suffices to show that J is of type III. Suppose on the contrary that J contains a non-zero
finite hereditary C∗-subalgebra B (see Remark 3·4(a)). Then [10, Theorem 3.4] implies
that Ts(B) ̸= ∅, and the argument of part (a) produces a non-zero element in T (J),
which is a contradiction.

For the second statement, if A is purely infinite, it follows from [15, Proposition 5.1]
that T (A) = {0} and A is tracially infinite.

Recall that pure infiniteness passes to quotients (see [15, Theorem 4.19]) but the
quotient of a type III C∗-algebra can be semi-finite (see e.g. [10, Remark 3.14]). Conse-
quently, these two properties are difference. On the other hand, we do not know whether
tracial infiniteness coincides with type III. One can find in [24] some equivalences of the
statement: “every type III C∗-algebra is tracially infinite”.
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The following is a direct application of Proposition 3·10, Theorem 3·3(c) and Proposi-

tion 3·5(b).

Corollary 3·11. Let A be a purely infinite C∗-algebra.
(a) If A is strongly Morita equivalent to a C∗-algebra B, then B is of type III.
(b) An essential extension of A (in particular, M(A)) is of type III.

Notice that if A and B are strongly Morita equivalent separable C∗-algebras with A

being purely infinite, then [15, Theorem 4.23] implies that B is also purely infinite. We
do not know if the same is true for non-separable C∗-algebras.

Example 3·12. For every non-unital C∗-algebra B, the C∗-algebras M(B⊗O∞) and
M(B ⊗ O2) are of type III (by Corollary 3·11(b) and [15, Proposition 4.5]).

4. Essentially infinite C∗-algebras and another equivalent form of type III C∗-algebras
As seen in Theorem 3·8, stability under both strong Morita equivalence as well as

essential extension plays an important role in understanding discrete and type II C∗-
algebras. Clearly, finiteness is not preserved under strong Morita equivalence (e.g. C is
strongly Morita equivalent to C∗-algebra K(ℓ2) that is not finite). However, it is stable
under essential extension, as stated in part (a) of the following lemma. This lemma could
be known, but we present it here for completeness.

Lemma 4·1. (a) If B is a finite C∗-algebra, then every essential extension of B is
finite.
(b) If I is a non-zero closed ideal of A, every τ ∈ Ts(I) extends to an element of Ts(A).

Proof. (a) Since a C∗-subalgebra of a finite C∗-algebra is finite, we need only to con-
sider the essential extension M(B) of B (see Remark 2·2(d)). By [10, Theorem 3.4],
Ts(B) separates 0 from other positive elements in B; in other words,

{x ∈ B+ : τ(x) = 0, for all τ ∈ Ts(B)} = {0}.

For any element τ ∈ Ts(B), let (πτ ,Hτ , ξτ ) be its GNS construction. If π0 :=
⊕

τ∈Ts(B) πτ ,
then the above tells us that π0 is faithful and hence extends to a faithful ∗-representation
π̃0 of M(B). On the other hand, each σ ∈ Ts(B) extends to a tracial state σ̄ on
D :=

⊕ℓ∞

τ∈Ts(B) πτ (B)′′ such that

σ̄
(
(yτ )τ∈Ts(B)

)
= ⟨yσξσ, ξσ⟩

(
(yτ )τ∈Ts(B) ∈ D

)
.

As π̃0(M(B)) ⊆ D, we can define σ̃ := σ̄◦π̃0. It is easy to see that (πσ̃,Hσ̃) is the canonical
extension of (πσ,Hσ) on M(B). Moreover, we have kerπσ̃ = {x ∈ M(B) : σ̃(x∗x) = 0},
since σ̃ is a tracial state. Now, if a ∈ M(B)+ satisfying σ̃(a) = 0 for every σ ∈ Ts(B), then
πσ̃(a

1/2) = 0 (σ ∈ Ts(B)), which gives π̃0(a
1/2) = 0 and hence a1/2 = 0. Consequently,

M(B) is finite (by [10, Theorem 3.4]).
(b) As I is an essential closed ideal of I⊥⊥, the argument of part (a) tells us that τ can
be extended to a tracial state τ0 on I⊥⊥. Furthermore, as I⊥⊥ + I⊥ is an essential ideal
of A, the trivial extension of τ0 on I⊥⊥ + I⊥ (i.e. it vanishes on I⊥) will again extends
to a tracial state on A.

Motivated by the classification theory of W ∗-algebras, we make the following definition
of essentially infiniteness. Note that a W ∗-algebra is essentially infinite if and only if it is
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properly infinite, but the name “properly infinite C∗-algebras” is already in used in the
literature. The term “essentially infinite” also comes from Proposition 4·6(a) below.

Definition 4·2. A C∗-algebra A is said to be essentially infinite if it contains no
non-zero finite closed ideal.

Remark 4·3. (a) Let us set

A∞ :=
∩

{J⊥ : J is a finite closed ideal of A} and A1 := A⊥
∞.

It is easy to see that A∞ is essentially infinite. On the other hand, if I is an arbitrary
essentially infinite ideal of A, then for any finite ideal J ⊆ A, one has I ∩J = {0}, which
implies that I ⊆ A∞.
(b) If I ⊆ A is a non-zero closed ideal such that I ∩ A∞ = {0}, then by the definition,
I ⊆ A1. This shows that A1 +A∞ is an essential ideal of A.
(c) It is clear that any non-zero closed ideal of an essentially infinite C∗-algebra is
essentially infinite.
(d) If A is simple, then either A = A∞ or A = A1.

We will show that A1 and A∞ can be viewed as the “finite part” and the “infinite
part” of A, respectively. Let us first give the following lemma.

Lemma 4·4. Let J be a maximal collection of pairwise disjoint non-zero finite ideals
of A. Then J0 :=

∑
J∈J J is a finite ideal of A such that J0 + A∞ is essential in A.

Moreover, A∞ = J⊥
0 .

Proof. J0 is finite because it is a c0-direct sum of finite C∗-algebras. Suppose that I

is a non-zero closed ideal of A. If I contains a non-zero finite ideal, then I ∩ J0 ̸= (0)

(otherwise, J cannot be a maximal family). If I does not contain a non-zero finite ideal,
then I ⊆ A∞ (see Remark 4·3(a)). This shows that J0 +A∞ is essential.

Furthermore, it is clear that A∞ ⊆ J⊥
0 . Conversely, as J⊥

0 cannot contain any non-zero
finite ideal (because J is maximal), J⊥

0 is essentially infinite and is contained in A∞.

Observe that the construction in Lemma 4·4 needs not give a maximal finite ideal of
A. For example, if A = ℓ∞ and J is the collection of all one-dimensional ideals of A, then
J0 = c0, while the abelian C∗-algebra ℓ∞ is itself finite.

Theorem 4·5. Let A be a C∗-algebra, I ⊆ A be a closed ideal of A and q : A → A/I⊥

be the quotient map.
(a) A⊥

1 coincides with the largest essentially infinite ideal A∞ of A, and A/A1 is the
universal essentially infinite normal quotient of A; i.e., if a normal quotient of A (see
Definition 3·6(c)) is essentially infinite, then the corresponding quotient map will factor
through A/A1.
(b) A1 is the largest finite ideal of A, and A/A∞ is the universal finite normal quotient
of A; i.e., the quotient map of any finite normal quotient of A factors through A/A∞.
(c) If A is discrete (respectively, of type II, semi-finite or anti-liminary), then so are
A/A1 and A/A∞.
(d) I1 = I ∩A1 and I∞ = I ∩A∞.
(e) q(A1) ∼= A1/(I

⊥)1 (respectively, q(A∞) ∼= A∞/(I⊥)∞) and is an essential ideal of
(A/I⊥)1 (respectively, (A/I⊥)∞).
(f) If A is a W ∗-algebra, then A1 and A∞ are, respectively, the finite part and the infinite
part of A.
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Proof. (a) We learn from Remark 4·3(a) that A∞ is the largest essentially infinite ideal

of A. Suppose that θ : A → M(A∞) is the canonical embedding. Then ker θ = A⊥
∞ = A1

and θ induces a ∗-monomorphism θ̂ : A/A1 → M(A∞). Since θ̂(A/A1) contains θ(A∞)

as an essential ideal (see Remark 2·2(d)), if there exists a non-zero finite ideal J of A/A1,
then θ̂(J)∩θ(A∞) will be a non-zero finite ideal of θ(A∞) which is a contradiction. Thus,
A/A1 is essentially infinite.

Assume that A/I⊥ is essentially infinite. Then I is ∗-isomorphic to the ideal q(I)

of A/I⊥ and hence is essentially infinite (see Remark 4·3(c)). Therefore, I ⊆ A∞ and
A1 ⊆ I⊥, which means that q factors through A/A1.

On the other hand, θ restricts to an injection from A⊥
1 = A⊥⊥

∞ to M(A∞). It follows
from Remark 2·2(d) that θ(A∞) is an essential ideal of θ(A⊥

1 ), and the same argument
as the essential infiniteness of A/A1 implies that A⊥

1 is essentially infinite. Consequently,
we obtain the converse inclusion A⊥

1 ⊆ A∞.
(b) Let J and J0 be as in Lemma 4·4. Suppose that φ : A → M(J0) is the canonical
∗-homomorphism. Since φ|A1 is a ∗-monomorphism (because kerφ = J⊥

0 = A∞), we
know that A1 is finite (see Lemma 4·1(a) and Remark 2·2(d)). Moreover, if J ⊆ A is a
finite ideal, then J ∩A∞ = {0} (by the definition of A∞), and J ⊆ A⊥

∞ = A1.
To show the finiteness of A/A∞, we note that the canonical map from A to M(A1)

induces an injection on A/A∞ (as A∞ = A⊥
1 by part (a)). Hence, we know from the

finiteness of A1 and Lemma 4·1(a) that A/A∞ is finite.
Assume that A/I⊥ is finite. Since q restricts to an injection on I, one may identify

I with an ideal of A/I⊥ and hence is finite. Thus, I ⊆ A1 and A∞ = A⊥
1 ⊆ I⊥.

Consequently, q factors through A/A∞.
(c) By part (a) and the definition of A1, both A/A1 and A/A∞ are normal quotient of
A. Thus, this part follows from Proposition 3·5(d).
(d) If J is any closed ideal of A, then, by considering an approximate unit of I, one has

J⊥ ∩ I = (J ∩ I)⊥ ∩ I. (4·1)

This gives

A∞ ∩ I =
∩

{(J ∩ I)⊥ ∩ I : J is a finite ideal of A} = I∞,

and A1 ∩ I = A⊥
∞ ∩ I = (A∞ ∩ I)⊥ ∩ I = I⊥∞ ∩ I = I1.

(e) By part (d) and Relation (4·1), one has

(I⊥)1 = I⊥ ∩A1 = (I1)
⊥ ∩A1

and the canonical ∗-homomorphism from A1 to M(I1) induces a ∗-monomorphism from

q(A1) ∼= A1/(I
⊥ ∩A1) = A1/(I

⊥)1 = A1/((I1)
⊥ ∩A1)

to M(I1). It follows from Lemma 4·1(a) and Remark 2·2(d) that A1/((I1)
⊥∩A1) (whose

faithful image in M(I1) contains I1) is a finite C∗-algebra. Consequently, q(A1) ⊆ q(A)1
(because of part (b)).

Suppose that J is a non-zero closed ideal of the largest finite ideal q(A)1 of q(A).
Since q restricts to an injection from q−1(J) ∩ I⊥⊥ to the finite C∗-algebra J , we know
that q−1(J) ∩ I⊥⊥ is an ideal of A1 and is non-zero (because q−1(J) * I⊥). Thus,
J ∩ q(A1) ̸= (0), and q(A1) is an essential ideal of q(A)1.

In a similar way, the canonical map from A∞ to M(I∞) induces a ∗-monomorphism
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from

q(A∞) ∼= A∞/(I⊥ ∩A∞) = A∞/(I⊥)∞ = A∞/((I∞)⊥ ∩A∞)

(see (4·1)) to M(I∞). Remark 2·2(d) tells us that the image of q(A∞) in M(I∞) contains
I∞ as an essential ideal. Since I∞ is essentially infinite, so is q(A∞) (by the definition)
and hence q(A∞) ⊆ q(A)∞ (because of part (a)).

Consider J ′ to be a non-zero closed ideal of the largest essentially infinite ideal q(A)∞
of q(A). Since q restricts to an injection from q−1(J ′)∩ I⊥⊥ to an ideal of the essentially
infinite C∗-algebra J ′ (see Remark 4·3(c)), we know that q−1(J ′) ∩ I⊥⊥ is a non-zero
(because q−1(J ′) * I⊥) closed ideal of A∞. Thus, J ′ ∩ q(A∞) ̸= (0), and q(A∞) is an
essential ideal of q(A)∞.
(f) Recall that a W ∗-algebra is finite in the sense of Murray-von Neumann if and only
if it is finite in the sense of Cuntz-Pedersen (see the proof of Proposition 3·9(d)). As J⊥

is σ(A,A∗)-closed for every ideal J ⊆ A, we see that A1 is the largest σ(A,A∗)-closed
finite ideal of A (as A1 = A⊥

∞). Moreover, A∞ is the largest σ(A,A∗)-closed ideal of A
that contains no σ(A,A∗)-closed finite ideal (see part (a)).

We learn from [10, Theorem 3.4] that A is finite if and only if it has enough tracial
states; in the sense that

∩
τ∈Ts(A) kerπτ = (0) (we use the convention that this inter-

section is A when Ts(A) = ∅). In the following, we will establish that A is essentially
infinite if and only if

∩
τ∈Ts(A) kerπτ is an essential ideal of A. Notice that it is possible

for an essentially infinite C∗-algebra to have a tracial state. For example, if A is the
unitalization of K(ℓ2), then A is essentially infinite (by Proposition 4·6(a) below), but
the canonical non-degenerate one-dimensional representation τ of A is a tracial state.

Proposition 4·6. Let A be a C∗-algebra.
(a) The following statements are equivalent.
1) A is essentially infinite.
2)

∩
τ∈Ts(A) kerπτ is an essential ideal of A.

3) There is an essential ideal J of A with J∗∗ being a properly infinite W ∗-algebra.
(b) If A is separable, then A is essentially infinite if and only if kerπτ is an essential
ideal of A for every τ ∈ Ts(A)

Proof. (a) Set J0 :=
∩

τ∈Ts(A) kerπτ .
1) ⇒ 2). Suppose on the contrary that J⊥

0 ̸= (0). As the representation
⊕

τ∈Ts(A) πτ is
injective on J⊥

0 , one knows that

{x ∈ (J⊥
0 )+ : τ(x) = 0, for all τ ∈ Ts(A)} = {0}.

Thus, we arrive at the contradiction that J⊥
0 is a finite closed ideal of A (using [10,

Theorem 3.4]).
2) ⇒ 3). We will verify that J∗∗

0 is a properly infinite W ∗-algebra. Assume on the contrary
that one can find τ0 ∈ Ts(J0). By Lemma 4·1(b), τ0 extends to an element τ1 ∈ Ts(A).
Since πτ1(J0) = {0}, one has τ0((J0)+) = τ1((J0)+) = {0}, which gives the contradiction
that τ0 = 0.
3) ⇒ 1). Suppose on the contrary that A contains a non-zero finite closed ideal I. Then
I0 := I ∩ J ̸= (0). As I0 is finite, it has a tracial state τ and τ extends to a tracial state
on J (because of Lemma 4·1(b)), which contradicts the proper infiniteness of J∗∗.
(b) Assume that there is a non-zero finite closed ideal I ⊆ A. By [10, Corollary 3.6], there
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is a faithful tracial state τ on I, and it extends to τ0 ∈ Ts(A) (see Lemma 4·1(b)). For
any x ∈ (I ∩ kerπτ0)+, we have τ0(x) = 0, and the faithfulness of τ gives x = 0. Hence,
I ∩ kerπτ0 = {0} and kerπτ0 is not an essential ideal. The converse follows directly from
part (a).

The above and Remark 3·4(a) give the following. The reader may note the similarity
and difference between Statement (3) below and Proposition 3·10(a).

Corollary 4·7. The following statements are equivalent.
1) A is of type III.
2) All hereditary C∗-subalgebras of A are essentially infinite.
3) For every hereditary C∗-subalgebra B ⊆ A, there is an essential ideal I of B with

I∗∗ being a properly infinite W ∗-algebra.
In particular, all type III C∗-algebra are essentially infinite.

Example 4·8. (a) If G is a separable connected non-amenable locally compact group,
then it follows from Proposition 4·6(a) and the main result of [23] that the reduced group
C∗-algebra C∗

r (G) is essentially infinite.
(b) Let Γ be a countably infinite amenable group and c0(Γ)

1 be the unitalization of c0(Γ).
Consider β to be the unique extension of the left translation action of Γ on c0(Γ) to
c0(Γ)

1, and B := c0(Γ)
1 oβ Γ. The primitive ideal space Prim(c0(Γ)

1) equals the one-
point compactification, Γ ∪ {∞}, of Γ. For any t ∈ Γ \ {e}, one has

Prim(c0(Γ)
1)t :=

{
x ∈ Γ ∪ {∞} : β̃t(x) = x

}
= {∞},

where β̃ is the induced action of Γ on Prim(c0(Γ)
1). Hence, the action β is almost free

in the sense of [17, Definition 4]. Suppose that J is a non-zero closed ideal of B. It
follows from [17, Theorem 9] that there is a non-zero β-invariant ideal I ⊆ c0(Γ)

1 with
I oβ Γ ⊆ J . Since c0(Γ) is essential in c0(Γ)

1, we know that I ∩ c0(Γ) ̸= {0}, and this
gives

I oβ Γ ∩ c0(Γ)oβ Γ ̸= {0}.

Consequently, K(ℓ2(Γ)) = c0(Γ) oβ Γ is an essential ideal of B, and Proposition 4·6(a)
tells us that B is essentially infinite.

On the other hand, the short exact sequence 0 → c0(Γ) → c0(Γ)
1 → C → 0 induces the

exact sequence
0 → c0(Γ)oβ Γ → B → C∗(Γ) → 0.

From which, we know that there exists a tracial state on B.
(c) The simple C∗-algebras obtained by Rørdam in Sections 5 and 6 of [28] that contain a
finite projection and an infinite projection (both in the sense of Murray and von Neumann)
are of type III.

More generally, every stably infinite simple C∗-algebra A (in the sense that A⊗K(ℓ2)

contains an infinite projection) is of type III. In fact, suppose that A is a simple C∗-algebra
such that A⊗K(ℓ2) contains an infinite projection p. Then p(A⊗K(ℓ2))p is a simple C∗-
algebra (see Remark 2·3(d)) with its identity p being infinite. Thus, Ts

(
p(A⊗K(ℓ2))p

)
= ∅

(because any tracial state on a simple C∗-algebra is faithful). Since p(A⊗K(ℓ2))p is simple
and unital, the above implies T

(
p(A⊗K(ℓ2))p

)
= {0}. This means that p(A⊗K(ℓ2))p

is of type III (see Proposition 3·10(b)). Now, it follows from Remark 2·3(d) and Theorem
3·3(c) that A is also of type III.
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As a partial converse to part (c) above, one knows from [6, Corollary II.4.11] and the

main result of [13] that if A is a simple exact stably finite unital C∗-algebra, then A has
a tracial state, and hence is finite (or equivalently, semi-finite as A is simple and unital).
However, we do not know if the same is true when the exactness assumption or the unital
assumption is removed.

5. The decomposition scheme in terms of discreteness, type II and type III

In this section, we will consider the remaining statements in Theorem 1·4. Let us begin
with the following two simple lemmas.

Lemma 5·1. If A is not discrete, then A contains a non-zero closed ideal of either type
II or type III.

Proof. By Theorem 3·3(a), there is a non-zero anti-liminary closed ideal I ⊆ A. If I
does not contain a non-zero finite element as well, then it is of type III. Otherwise, I will
contain a non-zero finite hereditary C∗-subalgebra B (see Lemma 3·1(c)). The non-zero
ideal J := IBI of I is semi-finite, because of Remark 2·3(d) and Theorem 3·3(c). Hence,
J is of type II.

Lemma 5·2. Let I and J be two closed ideals of A such that I ∩ J = (0) and I + J

is essential. If φ : A → M(I) is the canonical ∗-homomorphism, then φ restricts to an
injection on J⊥.

Proof. Observe that (I + J)⊥ = J⊥ ∩ I⊥. If J⊥ ∩ I⊥ is non-zero, then the assumption
on I+J gives the contradiction that (I+J)⊥∩(I+J) ̸= (0). Consequently, J⊥∩I⊥ = (0)

and φ|J⊥ is injective (as kerφ = I⊥).

Theorem 5·3. Let A be a C∗-algebra.
(a) There exists the largest discrete (respectively, semi-finite, type II and type III) hereditary
C∗-subalgebra Ad (respectively, Asf , AII and AIII) of A. Moreover, Ad, Asf , AII and AIII

are ideals of A such that Ad, AII and AIII are disjoint and AIII ∩Asf = (0).
(b) Ad +AII +AIII is an essential ideal of A and Ad +AII is an essential ideal of Asf .
(c) Aal := A⊥

d is the largest anti-liminary hereditary C∗-subalgebra of A.
(d) Ad = A⊥

al = (AII + AIII)
⊥, AII = Asf ∩ A⊥

d , Ad = Asf ∩ A⊥
II , AIII = A⊥

sf = (Ad + AII)
⊥

and Asf = A⊥
III.

(e) If A is a W ∗-algebra, then Ad, AII and AIII are respectively, the type I, the type II and
the type III W ∗-algebra summands of A.

Proof. (a) Let us first construct the largest type II hereditary C∗-subalgebra of A and
verify that it is an ideal. In order to do so, we will show that the collection JII of all type
II closed ideals of A is a directed set, and that

AII :=
∑

J∈JII

J,

is the largest type II hereditary C∗-subalgebra of A, which is clearly an ideal.
For the first claim, we will verify that J1 + J2 ∈ JII for any arbitrary elements J1, J2 ∈

JII. In fact, if B is a non-zero hereditary C∗-subalgebra of J1 + J2, then by Proposition
2·1(c), we have B∩J1 ̸= (0) or B∩J2 ̸= (0). If B∩J1 ̸= (0), then one obtains a non-zero
finite element x ∈ FB∩J1 ⊆ FB . Similarly, if B ∩ J2 ̸= (0), then B will also contains a
non-zero finite element. On the other hand, suppose that there exists a non-zero abelian
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element a ∈ (J1 + J2)+. Set D := a(J1 + J2)a. Again, it follows from Proposition 2·1(c)
that D ∩ J1 ̸= (0) or D ∩ J2 ̸= (0). However, this contradicts with J1, J2 ∈ JII, because
D∩J1 ⊆ J1 and D∩J2 ⊆ J2 are abelian hereditary C∗-subalgebras. Thus, J1 +J2 ∈ JII.

Now, for any non-zero closed ideal J of A, let us denote by pJ the element in OP1(A)∩
Z(A∗∗) with J = herA(pJ). It is easy to see that pAII is the σ(A∗∗, A∗)-limit of the
increasing net {pJ}J∈JII

. Suppose that e ∈ OP1(A) satisfying herA(e) ⊆ AII. Then

e = epAIIe = w∗-limJ∈JIIepJe,

and there is J ∈ JII with epJ ̸= 0. This means that herA(e)∩J is non-zero (see Proposition
2·1(b)), and is a hereditary C∗-subalgebra of J . Hence, herA(e) ∩ J contains a non-zero
finite element. On the other hand, assume that there is a non-zero abelian positive element
a in AII. Consider f ∈ OP1(A) such that herA(f) = aAa ⊆ AII. As in the above, one
can find J ∈ JII with fpJ ̸= 0. Thus, herA(f) ∩ J is a non-zero abelian hereditary C∗-
subalgebra of J , which contradicts J being of type II. Consequently, one has AII ∈ JII.
Finally, if B ⊆ A is a hereditary C∗-subalgebra of type II, then, by Remark 2·3(d) and
Theorem 3·3(c), one knows that B ⊆ ABA ⊆ AII.

The existences of Asf , AII and AIII as well as the fact that they are ideals follow from
similar arguments. The disjointness statements are obvious.
(b) This part follows directly from Lemma 5·1 (namely, every non-zero non-discrete closed
ideal interests AII or AIII).
(c) If Aal contains a non-zero abelian positive element x, then xAx ⊆ Ad, and we have
a contradiction that x ∈ Aal ∩ Ad. Thus, Aal is anti-liminary. Furthermore, if B ⊆ A is
a non-zero anti-liminary hereditary C∗-subalgebra, then BAdB = Ad ∩ B = (0), which
means that B ⊆ A⊥

d = Aal.
(d) By parts (a) and (c), one has Ad ⊆ A⊥

al ⊆ (AII+AIII)
⊥. Since Ad∩(AII+AIII) = (0) and

Ad +AII +AIII is an essential ideal of A, we obtain from Lemma 5·2 a ∗-monomorphism
from (AII +AIII)

⊥ to M(Ad) whose image clearly contains Ad. Therefore, Remark 2·2(d)
and Proposition 3·5(b) tells us that (AII+AIII)

⊥ is discrete; i.e, (AII+AIII)
⊥ ⊆ Ad. These

give the first equality.
Secondly, since AIIAd = (0) and Ad + AII is essential in Asf (see part (b)), we have

AII ⊆ Asf ∩A⊥
d and Lemma 5·2 produces a ∗-monomorphism from Asf ∩A⊥

d to M(AII). As
in the above, this gives the opposite inclusion Asf∩A⊥

d ⊆ AII. The equality Ad = Asf∩A⊥
II

follows from the same argument.
To establish the fourth equality, let us set J3 := (Ad + AII)

⊥. As AIIIAsf = (0) and
Ad + AII ⊆ Asf , we see that AIII ⊆ A⊥

sf ⊆ J3. It remains to show that J3 is of type III. In
fact, suppose on the contrary that J3 contains a non-zero finite hereditary C∗-subalgebra
B. Then B ∩ Ad = (0) (because J3 ⊆ A⊥

d ). This implies that B is of type II, which
contradicts J3 ⊆ A⊥

II .
Finally, it is clear that Asf ⊆ A⊥

III. Conversely, since Asf ∩ AIII = (0) and Asf + AIII

contains the essential ideal AI +AII +AIII of A, one learns from Lemma 5·2 that there is
a ∗-monomorphism from A⊥

III to M(Asf) whose image clearly contains Asf . It now follows
from Remark 2·2(d) and Proposition 3·5(b) that A⊥

III is semi-finite, and thus A⊥
III ⊆ Asf .

(e) This part follows from Proposition 3·9(d) and the fact that Ad, AII and AIII are
σ(A,A∗)-closed, because of part (d) (and the fact that (I + J)⊥ = J⊥ ∩ I⊥ for any two
ideals I and J).

This theorem produces the following result concerning the stability of the above de-
composition under strong Morita equivalence (see Remark 2·3(c) for the notation).
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Corollary 5·4. If X is a full Hilbert A-module and B := KA(X), then Bd =

KA(XAd), BII = KA(XAII) and BIII = KA(XAIII).

Proof. It follows from Remark 2·3(c) that the assignment I 7→ KA(XI) is a bijection
from the set of closed ideals of A to that of B, and that the ideal I of A is strongly
Morita equivalent to KA(XI). Since Ad (respectively, AII and AIII) is the largest discrete
(respectively, type II and type III) ideal of A, we know from the above and Theorem 3·3(c)
that Bd (respectively, BII and BIII) is the largest discrete (respectively, type II and type
III) ideal of B.

On the other hand, we have the following result. The meaning of universal “#” normal
quotient in its statement is understood in similar ways as those of parts (a) and (b) of
Theorem 4·5.

Corollary 5·5. (a) A/Aal (respectively, A/Ad, A/AIII and A/Asf) is the universal
discrete (respectively, anti-liminary, semi-finite and type III) normal quotient of A.
(b) Asf/AII (respectively, Asf/Ad) is the universal discrete (respectively, type II) normal
quotient of Asf .

Proof. (a) It follows from Theorem 5·3(c) (respectively, Theorem 5·3(d)) that A/Aal =

A/A⊥
d (respectively, A/Ad = A/A⊥

al, A/AIII = A/A⊥
sf and A/Asf = A/A⊥

III), and hence it
is a normal quotient. Moreover, we know from Proposition 3·5(c) that A/Aal is discrete
(respectively, A/Ad is anti-liminary, A/AIII is semi-finite and A/Asf is of type III).

Let I be an ideal of A and q : A → A/I⊥ be the quotient map. Suppose that A/I⊥

is discrete (respectively, anti-liminary, semi-finite and type III). Then q restricts to an
injection on I with q(I) being an ideal of A/I⊥. Proposition 3·5(a) tells us that I is
discrete (respectively, anti-liminary, semi-finite and type III), and so I ⊆ Ad (respectively,
I ⊆ Aal, I ⊆ Asf and I ⊆ AIII). Consequently, Aal ⊆ I⊥ (respectively, Ad ⊆ I⊥, AIII ⊆ I⊥

and AII ⊆ I⊥), because of parts (c) and (d) of Theorem 5·3, and we conclude that q

factors through A/Aal (respectively, A/Ad, A/AIII and A/Asf).
(b) This part follows from the argument of part (a). Notice that AII = Asf ∩ A⊥

d and
Ad = Asf ∩A⊥

II (see Theorem 5·3(d)).

Furthermore, we want to see how type decompositions pass to hereditary C∗-subalgebras,
essential extensions and normal quotients.

Proposition 5·6. Let B ⊆ A be a hereditary C∗-subalgebra and I, J ⊆ A be closed
ideals with J being essential. Let q : A → A/I⊥ be the quotient map.
(a) Bd = Ad ∩B, Bsf = Asf ∩B, Bal = Aal ∩B, BII = AII ∩B and BIII = AIII ∩B.
(b) Consider # = d, sf, al, II or III. Then q(A#) is an essential ideal of (A/I⊥)# and

(A/I⊥)# = q({a ∈ A : aI ⊆ I#}). (5·1)

In particular, A# = {a ∈ A : aJ ⊆ J#}.
(c) AII = {x ∈ A : xJd = (0) and xJ ⊆ Jsf}
(d) AIII = {x ∈ A : xJsf = (0)} = {x ∈ A : xJd = (0) and xJII = (0)}.

Proof. (a) By Proposition 3·5(a), Ad ∩ B, Asf ∩ B, Aal ∩ B, AII ∩ B and AIII ∩ B

are respectively, discrete, semi-finite, anti-liminary, type II and type III hereditary C∗-
subalgebras of B. On the other hand, if D ⊆ B is a hereditary C∗-subalgebra which is
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discrete (respectively, semi-finite, anti-liminary, type II and type III), then D is a hered-
itary C∗-subalgebra of A and hence is contained in Ad (respectively, Asf , Aal, AII and
AIII). These give the required statement.
(b) Let us first establish the third claim; i.e., A# = Ǎ#, where

Ǎ# := {x ∈ A : xJ ⊆ J#} (# = d, sf, al, II, III).

We will consider only the case when # = II (because the other cases follow from similar
arguments). In fact, it follows from AIIJ = JII (see part (a)) that AII ⊆ ǍII. Consider
B ⊆ ǍII to be an arbitrary non-zero hereditary C∗-subalgebra. Then B ∩ J = BJB is
contained in JII and BJB ̸= (0), as J is essential. Thus, we obtain a non-zero finite
element in (B ∩ J)+. On the other hand, suppose that ǍII contains a non-zero abelian
positive element a. If we set D := aAa, then D ∩ J = DJD is a non-zero abelian
hereditary C∗-subalgebra of JII, which is absurd. Consequently, ǍII is of type II and is
contained in AII.

Secondly, we will verify Relation (5·1). Notice that, by considering the canonical ∗-
monomorphism φ : A/I⊥ → M(I), one sees that φ(A/I⊥) as an essential extension of I
(see Remark 2·2(d)). Thus, the last statement in this part that we have just established
(i.e. the statement that concerns with J#) implies (A/I⊥)# = {x ∈ A/I⊥ : φ(x)I ⊆ I#}.
This gives Relation (5·1), because we have

φ((A/I⊥)#) = {φ(x) : x ∈ A/I⊥;φ(x)I ⊆ I#} = {φ(q(a)) : a ∈ A;φ(q(a))I ⊆ I#}

as well as φ(q(a))x = ax for all a ∈ A and x ∈ I.
Thirdly, we will show that q(A#) is an essential ideal of (A/I⊥)#. Indeed, by Relation

(4·1) and part (a) above, one has

I⊥ ∩Ad = (Id)
⊥ ∩Ad,

which produces a ∗-monomorphism from q(Ad) ∼= Ad/(I
⊥∩Ad) to M(Id) with its image

containing Id. Therefore, Remark 2·2(d) and Proposition 3·5(b) imply that the ideal
q(Ad) of A/I⊥ lies inside (A/I⊥)d. Moreover, suppose that J ⊆ (A/I⊥)d is a non-zero
closed ideal. As q restricts to an injection from q−1(J) ∩ I⊥⊥ to an ideal of the discrete
C∗-algebra (A/I⊥)d, we know that q−1(J) ∩ I⊥⊥ ⊆ Ad (because of Proposition 3·5(a))
and that q−1(J) ∩ I⊥⊥ ̸= {0} (since q−1(J) * I⊥). These show that J ∩ q(Ad) ̸= {0}.
The arguments for the statements concerning q(Asf), q(Aal), q(AII) and q(AIII) are the
same.
(c) Obviously, for any x ∈ A, one has xJd = (0) if and only if xJJd = (0). Thus, this
part follows from part (b) and the fact that JII = Jsf ∩ J⊥

d (see Theorem 5·3(d)).
(d) Note that we have xJ# = (0) if and only if xJJ# = (0) for # = II, sf. Hence, this
part follows from part (b) as well as the two equalities JIII = J⊥

sf = (Jd + JII)
⊥ (as given

in Theorem 5·3(d)).

Corollary 5·7. Let Ad,1 := Ad ∩ A1, Ad,∞ := Ad ∩ A∞, AII,1 := AII ∩ A1 and
AII,∞ := AII ∩A∞. Then Ad,1, Ad,∞, AII,1 and AII,∞ are the largest discrete finite ideal,
the largest discrete essentially infinite ideal, the largest type II finite ideal and the largest
type II essentially infinite ideal respectively. These are disjoint normal ideals. Moreover,
Ad,1 +Ad,∞ +AII,1 +AII,∞ +AIII is an essential ideal of A, or equivalently,

Ad,1⊕Ad,∞⊕AII,1⊕AII,∞⊕AIII ⊆ A ⊆ M(Ad,1)⊕M(Ad,∞)⊕M(AII,1)⊕M(AII,∞)⊕M(AIII).
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Proof. We first note that by Theorem 4·5(d),

Ad,1 = (Ad)1, Ad,∞ = (Ad)∞, AII,1 = (AII)1 and AII,∞ = (AII)∞. (5·2)

Thus, the first claim follows from Proposition 3·5(a), parts (a) and (b) of Theorem 4·5
as well as Theorem 5·3(a). These four ideals are clearly disjoint and they are normal
because of Remark 4·3(a), Theorem 4·5(a), parts (c) and (d) of Theorem 5·3 as well as
the fact that I⊥∩J⊥ = (I+J)⊥ for any two closed ideals I, J ⊆ A. In order to establish
the third statement, we consider a non-zero closed ideal J ⊆ A. By Theorem 5·3(b) and
Proposition 2·1(c), we know that

J ∩Ad ̸= {0}, J ∩AII ̸= {0} or J ∩AIII ̸= {0}.

If J ∩Ad ̸= {0}, we know from Remark 4·3(b) as well as the first two equalities of (5·2)
that J ∩ Ad,1 ̸= {0} or J ∩ Ad,∞ ̸= {0}. Similarly, if J ∩ AII ̸= {0}, then J ∩ AII,1 ̸= {0}
or J ∩ AII,∞ ̸= {0}. Thus, Ad,1 + Ad,∞ + AII,1 + AII,∞ + AIII is an essential ideal. The
displayed relations follow from the well-known fact that M(B⊕D) = M(B)⊕M(D) for
two C∗-algebras B and D.

Observe that the C∗-algebras M(Ad,1), M(Ad,∞), M(AII,1), M(AII,∞) and M(AIII) are
also discrete finite, discrete essentially infinite , type II finite, type II essentially infinite
and type III, respectively (by Proposition 3·5(b) and the argument of Theorem 4·5).
Furthermore, one may obtain results similar to those in Corollary 5·5 for Ad,1, Ad,∞,
AII,1 and AII,∞, but we leave them to the readers.

6. Some special cases
In this section, we will consider special classes of C∗-algebras for which we have a

better decomposition in Corollary 5·7.

6·1. Prime C∗-algebras
The first special class is that of prime C∗-algebras. Recall that a C∗-algebra A is

prime if {0} is a prime ideal of A, or equivalently, A has no non-trivial normal ideal.
Since the ideals Ad,1, Ad,∞, AII,1, AII,∞ and AIII are normal (see Corollary 5·7), we have
the following.

Proposition 6·1. Any prime C∗-algebra is of one of the five types: discrete finite,
discrete essentially infinite, type II finite, type II essentially infinite or type III.

It is well-known that the kernel of a factor representation of a C∗-algebra is a prime
ideal. If the C∗-algebra is separable, one has the strong converse that every prime ideal
is primitive. These give the following well-known fact for a C∗-algebra A:
(P1). If there is an injective ∗-homomorphism φ from A to a factor M with φ(A)′′ = M ,

then A is prime.
(P2). If A is a separable prime C∗-algebra, there exists a faithful irreducible ∗-representation

of A.
Clearly, a W ∗-algebra is a factor if and only if it is a prime C∗-algebra. Because of this,

as well as Proposition 6·6(b) and Corollary 6·11 below, one may regard prime C∗-algebras
as “C∗-algebra factors”.

Let us present the following description of discrete prime C∗-algebras. This result is
more or less a reformation of [27, Corollary 2.4].
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Proposition 6·2. Let A be a C∗-algebra.

(a) The following statements are equivalent.
1) A is prime and discrete.
2) There exists a Hilbert space H such that K(H) ⊆ A ⊆ B(H).
3) A contains K(H) as an essential ideal for some Hilbert space H.

(b) A is prime, discrete and finite if and only if A ∼= Mn(C) for some n ∈ N.

Proof. (a) 1) ⇒ 2). This follows directly from [27, Corollary 2.4].
2) ⇒ 3). This follows from Remark 2·2(d).
3) ⇒ 1). Since A contains K(H) as an essential ideal, Proposition 3·5(b) implies that A is
discrete. Moreover, if J ⊆ A is a non-zero closed ideal, then J ∩K(H) = K(H) (as K(H)

is simple and essential) which means that J⊥ ⊆ K(H)⊥ = {0}. In other words, A has no
non-zero normal ideal and hence it is prime.
(b) It is well-known that Mn is a discrete finite simple C∗-algebra. Conversely, if H is as
in Statement (2) of part (a), then the ideal K(H) of A is finite. Hence, n := dimH < ∞
and A ∼= Mn(C).

For instance, the uniform Roe algebra of any uniformly locally finite metric space is
an essentially infinite discrete prime C∗-algebra. In the following, we give some more
examples of prime C∗-algebras of different types which are not W ∗-algebra.

Example 6·3. (a) If Γ is a countably infinite amenable group, and β is as in Example
4·8(b), then c0(Γ)

1oβ Γ contains K(ℓ2(Γ)) as an essential ideal, and hence it is a discrete
essentially infinite prime C∗-algebra.
(b) Let Γ be any countable ICC group. Since the group von Neumann algebra L(Γ) is a
factor, Statement (P1) above implies that the reduced group C∗-algebra C∗

r (Γ) is prime.
Moreover, since C∗

r (Γ) has a faithful trace, it is finite. Consequently, by Propositions 6·1
and Proposition 6·2(b), C∗

r (Γ) is type II finite.
As in the case of W ∗-algebra, if, in addition, Γ is amenable, then C∗

r (Γ) is nuclear,
and is non-isomorphic to the non-nuclear type II finite prime C∗-algebra C∗

r (F2), where
F2 is the free group on two generators.
(c) Suppose that A � K(ℓ2) is a simple AF -algebra that does not have a tracial state.
Then A is a type II essentially infinite prime C∗-algebra. In fact, A is not finite as it
has no tracial state. By [10, Proposition 4.11], A is semi-finite. However, since discrete
simple C∗-algebras are of the form K(ℓ2), we know that A is not discrete.
(d) The Calkin algebra B(ℓ2)/K(ℓ2) is a simple purely infinite C∗-algebra. Hence it is a
type III prime C∗-algebra (by Proposition 3·10(b)).

6·2. C∗-algebras with extremally disconnected primitive ideal spaces
The second special class are C∗-algebras of which all normal ideals are complementary.

Before looking at this class, let us first give the following result concerning normal ideals
of essential extensions.

Lemma 6·4. If A is an essential extension of a C∗-algebra B, the map Γ : J 7→ J ∩B

is a bijection from the set of normal ideals of A onto that of B.

Proof. Let I ⊆ A be a closed ideal. We first show that

I⊥ = (I ∩B)⊥. (6·1)

Indeed, one clearly has I⊥ ⊆ (I ∩ B)⊥. Suppose on the contrary that there is x ∈
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(I ∩ B)⊥ \ I⊥. Then xI ̸= (0) and hence IxI is a non-zero ideal of A. As B is an
essential ideal of A, one can find b ∈ IxI ∩ B \ {0}. Thus, b can be approximated in
norm by elements of the form

∑n
k=1 ykxzk where y1, ..., yn, z1, ..., zn ∈ I, and bb∗ can be

approximated by elements of the form
∑n

k=1 ykxzkb
∗. Since zkb

∗ ∈ I ∩B, we obtain the
contradiction that bb∗ = 0.

Now, if J = I⊥, then by Relation (4·1), one has J ∩B = (I ∩B)⊥ ∩B and hence Γ(J)

is a normal ideal of B. Furthermore, as

Γ(J)⊥⊥ = (J ∩B)⊥⊥ = J⊥⊥ = J (6·2)

(by Relation (6·1)), we see that Γ is injective.
Finally, let J0 be a normal ideal of B and I0 ⊆ B be an ideal satisfying J0 = I⊥0 ∩B.

If J := I⊥0 , then obviously, Γ(J) = J0.

Recall that a topological space (not necessarily Hausdorff) is extremally disconnected
if the closure of every open subset is again open. It happens that those C∗-algebras
described in the beginning of this subsection are precisely those with extremally discon-
nected primitive spectra (equipped with the hull-kernel topology). We will give some
other equivalent forms of these algebras in the following proposition (although not all of
them are needed in this paper).

Proposition 6·5. The following statements are equivalent.
1) The primitive ideal space Prim(A) is extremally disconnected.
2) A = I⊥ + I⊥⊥, for every closed ideal I ⊆ A.
3) p1 ∈ OP1(A) for every p ∈ OP1(A) ∩ Z(A∗∗).
4) Λ(q) := qA is a surjection (and hence a bijection) from Proj1(ZM(A)) ∪ {0} onto

the set of normal ideals of A.
5) Prim(M(A)) is extremally disconnected.
6) ZM(A) is an AW ∗-algebra and ∆ : J 7→ J ∩ ZM(A) is an injection (equivalently,

a bijection) from the set of normal ideals of M(A) to the set of normal ideals of
ZM(A).

7) A is boundedly centrally closed (in the sense of [3, p.165]).

Proof. 1) ⇔ 2). Let I ⊆ A be an ideal. Since any element P ∈ Prim(A) is prime, we
know that I ⊆ P or I⊥ ⊆ P . This ensures that Prim(A) \ hull(I) ⊆ {P ∈ Prim(A) :

I⊥ ⊆ P}, which gives

I ′ :=
∩

Prim(A) \ hull(I) ⊇
∩

{P ∈ Prim(A) : I⊥ ⊆ P} = I⊥.

Conversely, one has I ′ ⊆ I⊥. In fact, suppose on the contrary that I ′I ̸= {0}. Then
one can find P0 ∈ Prim(A) with I ′I * P0. Thus, P0 /∈ hull(I), and we arrive at the
contradiction that I ′ ⊆ P0. In other words,

Prim(A) \ hull(I) = hull(I⊥). (6·3)

Consequently, Prim(A) \ hull(I) is open if and only if hull(I⊥) is open, which, because
of (6·3), is equivalent to

Prim(A) \ hull(I⊥) = Prim(A) \ hull(I⊥) = hull(I⊥⊥).

Therefore, Prim(A) \ hull(I) being open is, again because of (6·3), the same as

hull(I⊥) ∩ hull(I⊥⊥) = ∅. (6·4)
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Finally, Relation (6·4) and A = I⊥+I⊥⊥ are equivalent, because a closed ideal I0 ⊆ A

is proper if and only if there is P ∈ Prim(A) satisfying I0 ⊆ P .
2) ⇒ 3). Suppose that p ∈ OP1(A)∩Z(A∗∗). As the closed ideal herA(p)⊥ = herA(1−p1)

(see Equality (2·2)), we know from Statement (2) that

herA(1− p1) + herA(1− p1)⊥ = A.

Hence, for any a ∈ A, there exist x ∈ herA(1−p1) and y ∈ herA(1−p1)⊥ with a = x+y.
This shows that (1− p1)a = x ∈ A. Consequently, 1− p1 belongs to M(A), and hence is
a central closed projection of A.
3) ⇒ 4). We first note that Λ is always injective, because Proj1(ZM(A)) ⊆ OP1(A) ∩
Z(A∗∗) and we have Statement (O1). Moreover, it is clear that Λ(q) equals ((1− q)A)⊥

and hence is a normal ideal of A. Suppose that I ⊆ A is a closed ideal and J := I⊥. If
p, q ∈ OP1(A) ∩ Z(A∗∗) with I = herA(p) and J = herA(q), then Relation (2·2) tells us
that q = 1 − p1. As p1 is both open and closed (by Statement (3)), it belongs to M(A)

and so is q. Thus, J = qA as required.
4) ⇒ 2). If Λ is surjective, then for any closed ideal I ⊆ A, there is q ∈ Proj1(ZM(A))∪
{0} with I⊥ = qA, which gives A = qA+ (1− q)A = I⊥ + I⊥⊥.
4) ⇔ 5). Notice that Statement (5) is exactly Statement (1) for the C∗-algebra M(A).
Thus, the equivalence of Statements (1) and (4) for the C∗-algebra M(A) (which was
established above) implies that Statement (5) is the same as the following statement:
4’) For any normal ideal J ⊆ M(A), there is q ∈ Proj1(ZM(A))∪{0} with J = qM(A).

Consequently, it suffices to show that Statement (4) for the C∗-algebra A is equivalent
to Statement (4’).

In fact, suppose that J is a normal ideal of M(A). By Lemma 6·4, the ideal J ∩A ⊆ A

is normal. Hence, Statement (4) (for the C∗-algebra A) gives q ∈ Proj1(ZM(A)) ∪ {0}
with J ∩ A = qA. Observe that if x ∈ M(A) satisfying xqA = (0), then x = (1 − q)x.
This, together with Relation (6·2), tells us that

J = (J ∩A)⊥⊥ = (qA)⊥⊥ =
(
(1− q)M(A)

)⊥
= qM(A)

(note that these ⊥ are taken in M(A)).
Conversely, if I is a normal ideal of A, then Lemma 6·4 and Statement (4’) produce

q ∈ Proj1(ZM(A)) ∪ {0} satisfying I = qM(A) ∩A = qA, as is required.
1) ⇒ 6). Suppose that I is a closed ideal of ZM(A) ∼= Cb(Prim(A)) (by the Dauns-
Hofmann theorem; see e.g. [26, Corollary 4.4.8]). Then

UI := {J ∈ Prim(A) : f(J) ̸= 0, for some f ∈ I}

is open, and its closure UI is an open subset of Prim(A) (by Statement (1)). One may
regard I0 := Cb(UI) and J0 := Cb(Prim(A) \ UI) as disjoint ideals of Cb(Prim(A))

with their sum equals Cb(Prim(A)). Thus, J0 = I⊥0 and I0 = J⊥0 (here ⊥ are taken in
Cb(Prim(A))). Since I ⊆ I0 and I⊥ ⊆ J0 (by the definition of UI, one has g(UI) = {0} for
any g ∈ I⊥), we see that J0 = I⊥ as well as I0 = I⊥⊥. Thus, ZM(A) = I⊥+ I⊥⊥ and the
primitive ideal space of ZM(A) is extremally disconnected, because of the equivalence
of Statements (1) and (2) for ZM(A) (which was established above).

Let J be a normal ideal of M(A). By Statement (4’) (which was shown to be equivalent
to Statement (1) in the above), there is q ∈ Proj1(ZM(A)) ∪ {0} with J = qM(A), and
hence

J ∩ ZM(A) = qZM(A),
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which is a normal ideal of ZM(A). The injectivity of ∆ follows from the fact that if
p, q ∈ Proj1(ZM(A)) ∪ {0} with pZM(A) = qZM(A), then p = q.

On the other hand, we claim that ∆ is surjective when ZM(A) is an AW ∗-algebra.
In fact, since Prim(ZM(A)) is extremally disconnected, we know from Statement (4) for
ZM(A) (which was shown to be equivalent to Statement (1) for ZM(A)) that any normal
ideal J0 of ZM(A) comes from a projection q0 in ZM(A), and we have ∆(q0M(A)) = J0.
6) ⇒ 1). By the equivalence of Statements (1) and (4’), which was established above, it
suffices to verify Statement (4’). Suppose that J is a non-zero normal ideal of M(A). By
the assumption, J ∩ZM(A) is a normal ideal and there is q ∈ Proj1(ZM(A))∪{0} with
J ∩ZM(A) = qZM(A), because ZM(A) is a commutative AW ∗-algebra, and we can ap-
ply Statement (4) for ZM(A) (which is equivalent to Statement (1) for ZM(A), namely,
Prim(ZM(A)) being extremally disconnected). Since qM(A) ∩ ZM(A) = qZM(A) =

J ∩ ZM(A), the injectivity of ∆ tells us that J = qM(A).
1) ⇔ 7). This is precisely [3, Proposition 2.9].

If Prim(A) is extremally disconnected, we know from the above that there are bijective
correspondences between Proj1(ZM(A)) ∪ {0}, the set of normal ideals of A, the set of
normal ideals of M(A) as well as the set of normal ideals of ZM(A).

In the case when A unital, the implication 1) ⇒ 6) also follows implicitly from [29,
Theorem 2.1] and [4, Proposition 3.2]. However, it will be easier to prove this directly
than to recall the definition of “quasi-standard” C∗-algebras and their properties.

Since the canonical map from the spectrum of a C∗-algebra A to Prim(A) induces a
bijection from the collection of open subsets (respectively, closed subsets) of the spectrum
to the collection of open subsets (respectively, closed subsets) of Prim(A), we know that
Prim(A) is extremally disconnected if and only if A has an extremally disconnected
spectrum.

By [3, Example 2.10], all prime C∗-algebras, all AW ∗-algebras and local multipliers
algebras of all C∗-algebras will satisfy the equivalent conditions in Proposition 6·5. More-
over, Proposition 6·5 also tells us that if A has an extremally disconnected spectrum, then
A is prime if and only if dimZM(A) = 1.

In the following, we denote by βI the Stone-Cech compactification of a set I (as a
discrete topological space).

Proposition 6·6. Let A be a C∗-algebra with an extremally disconnected spectrum.
(a) A = Ad,1 ⊕Ad,∞ ⊕AII,1 ⊕AII,∞ ⊕AIII.
(b) Suppose, furthermore, that ZM(A) ∼= ℓ∞(I) for a set I. Then I is the disjoint union
of subsets Id,1, Id,∞, III,1, III,∞ and IIII such that for # equals d, 1 or d,∞ or II, 1 or II,∞
or III, one can find a continuous field {Aω}ω∈βI#

of C∗-algebras on βI# with A# being
the algebra of continuous sections of {Aω}ω∈βI#

. Moreover, for each i ∈ I# ⊆ βI#, the
C∗-algebra Ai is prime and it is an ideal of A#. The canonical map Θ : A# →

∏ℓ∞

i∈I#
Ai

is injective and
∑

i∈I#
Ai can be regarded as an essential ideal of A#.

Proof. (a) By Relation 2·2, Proposition 6·5, as well as Theorems 4·5 and 5·3, the central
open projections corresponding to the ideals Ad,1, Ad,∞, AII,1, AII,∞ and AIII belong to
M(A) (since these projections are both open and closed) with their sum being 1 (because
this sum belongs to M(A) and is dense in 1 by Corollary 5·7). This gives the conclusion.
(b) Let p# be the projection in ZM(A) with A# = p#A (see Statement (4) of Proposition
6·5). Then p# ∈ ℓ∞(I) is the characteristic function for a subset I#, and I is the disjoint
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union of Id,1, Id,∞, III,1, III,∞ and IIII (by part (a)). As A = Ad,1⊕Ad,∞⊕AII,1⊕AII,∞⊕
AIII, we know that

ZM(A) = ZM(Ad,1)⊕ ZM(Ad,∞)⊕ ZM(AII,1)⊕ ZM(AII,∞)⊕ ZM(AIII),

and ZM(A#) = ℓ∞(I#). Moreover, one may regard A# as a Banach ℓ∞(I#)-normed
module, and hence consists of the continuous sections of a continuous field {Aω}ω∈βI#

of C∗-algebras (see e.g. [12]).
For every i ∈ I#, we consider pi to be the projection in ZM(A) corresponding to the

point mass at i. Then we have

Ai
∼= A/(1− pi)A ∼= piA = herA(pi).

Suppose that J is a non-zero closed ideal of Ai and p ∈ OP1(A) with J = herA(p). As
p ≤ pi and pi ∈ M(A) (which implies that pi is a closed projection of A), we know that
p1 ≤ pi. Since p1 ∈ M(A) (by Statement (3) of Proposition 6·5) and pi is a minimal
projection in ZM(A), we know that p1 = pi and J is an essential ideal of Ai. This shows
that Ai is prime.

Clearly, Ai is an ideal of A# and I# :=
∑

i∈I#
Ai is a closed ideal of A#. Note that

A# also has an extremally disconnected spectrum. There exists, by Statement (4) of
Proposition 6·5, a projection q ∈ ZM(A#) with I⊥# = qA#. Hence, q is the characteristic
function in ℓ∞(I#) for a subset S ⊆ I#. If S is non-empty, then for each i ∈ S, we have
the contradiction that Ai ⊆ I# ∩ I⊥# . Thus, I# is an essential ideal of A#.

Finally, suppose that a ∈ kerΘ. If we regard a as a continuous section on {Aω}ω∈βI#
,

then its values at every i ∈ I# is zero and hence a is the zero section (as I# is dense in
βI#).

Proposition 6·6(a) tells us that the decomposition in Corollary 5·7 extends the corre-
sponding one for AW ∗-algebras. Moreover, part (b) applies to all AW ∗-algebras whose
centers are of the form ℓ∞(I).

6·3. Standard C∗-algebras and C∗-algebras with Hausdorff primitive ideal spaces
We end this paper by considering some situations under which the C∗-algebra can be

“decomposed” as a continuous field of prime C∗-algebras. Let us begin with the following
result.

Proposition 6·7. If A is discrete (respectively, essentially infinite or tracially infinite;
see Definition 3·10), there is an open dense subset Ξd (respectively, Ξ∞ or Ξti) of Prim(A)

such that A/P is discrete (respectively, essentially infinite or tracially infinite) for every
P in Ξd (respectively, Ξ∞ or Ξti).

Proof. Suppose that A is discrete. By [27, Theorem 2.3(v)], the largest type I ideal AI

is essential. Thus,
Ξd := Prim(A) \ hull(AI)

is an open dense subset of Prim(A). For every P ∈ Ξd, the image of AI in A/P is a non-
zero closed ideal of type I. Thus, by Proposition 6·1, we know that the prime C∗-algebra
A/P is discrete.

Secondly, we consider the case when A is essentially infinite. By Proposition 4·6(a),
there is an essential closed ideal J0 of A with Ts(J0) = ∅. Set

Ξ∞ := Prim(A) \ hull(J0).
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Then Ξ∞ is an open dense subset of Prim(A). If P ∈ Ξ∞ and q : A → A/P is the quotient
map, then q(J0) ̸= (0) and does not have a tracial state. Thus, q(J0) is essentially infinite
and so is the prime C∗-algebra A/P (by Proposition 6·1).

In the case when A is tracially infinite, there is an essential closed ideal J1 ⊆ A with
T (J1) = {0}. The set

Ξti := Prim(A) \ hull(J1).

is open and dense in Prim(A). Let P ∈ Ξti and consider q : A → A/P to the quotient
map. By the construction, q(J1) ̸= (0).

Suppose that T (q(J1)) ̸= {0}. By the argument of Proposition 3·10(a), one can find
y ∈ q(J1)+ with Ts

(
yq(J1)y

)
̸= ∅. Thus, the hereditary C∗-subalgebra q−1

(
yq(J1)y

)
∩J1

of J1 (which is non-zero because J1 is an essential ideal of A) has a tracial state τ . As
in the proof of Proposition 3·10(a), the lower semi-continuous trace extension of τ to J1
(as given in [10, Lemma 4.6]) is semi-finite. This gives a contradiction.

Now, because T (q(J1)) = {0} and q(J1) is an essential ideal of A/P (as A/P is prime),
we know that A/P is tracially infinite.

Example 6·8. Let A = B(ℓ2) and P = K(ℓ2). Then A is discrete and A/P is of type
III. Therefore, one cannot expect Ξd = Prim(A) in Proposition 6·7(b).

By the Dauns-Hofmann theorem (see e.g. [26, Corollary 4.4.8]), one has a continuous
map

Φ : Prim(A) → Prim(ZM(A))

with dense range. In fact, if we identify elements in Prim(ZM(A)) with one-dimensional
unital ∗-representations (i.e., characters) of ZM(A), then Φ(P )(x) = ∥x+ P̃∥M(A)/P̃ for
every x ∈ ZM(A)+, where is P̃ the unique element in Prim(M(A)) with P̃ ∩A = P , i.e.,

P̃ := {m ∈ M(A) : mA,Am ⊆ P}.

Thus, if ω is a character on ZM(A), then Φ(P ) = ω if and only if ker(ω) ⊆ P̃ .
Let I be a closed ideal of A. It is well-known that I is the algebra of bounded continuous

sections of a continuous fields ΥI of C∗-algebras over Prim(ZM(A)) with the fiber ΥI
ω

over ω ∈ Prim(ZM(A)) being I/I ker(ω) (see e.g. [12]).
The following lemma gives another description for the fiber and it also gives a “visual

description” of the image of an open subset of Prim(A) under Φ. This lemma could
be known, but since we do not find it in the literature, we give it argument here for
completeness.

Lemma 6·9. Let I ⊆ A be a non-zero closed ideal. Consider any ω0 ∈ Prim(ZM(A))

and P0 ∈ Prim(A) \ hull(I).
(a) Φ(P0) = ω0 if and only if I ker(ω0) ⊆ P0.
(b) I ker(ω0) =

∩
{P ∈ Prim(A) \ hull(I) : Φ(P ) = ω0}.

(c) Φ
(
Prim(A) \ hull(I)

)
=

{
ω ∈ Prim(ZM(A)) : ΥI

ω ̸= (0)
}

.

Proof. (a) If ω0 = Φ(P0), then ker(ω0) ⊆ P̃0, and we have I ker(ω0) ⊆ P0. Conversely,
suppose that I ker(ω0) ⊆ P0. Let Q0 := P0 ∩ I ∈ Prim(I) and

Q̃0 := {m ∈ M(I) : mI, Im ⊆ Q0}.

Consider Ψ : M(A) → M(I) to be the canonical ∗-homomorphism. Set J := AΨ−1
(
Q̃0

)
.
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As I ker(ω0) ⊆ P0 ∩ I, one has Ψ(ker(ω0)) ⊆ Q̃0, and so

A ker(ω0) ⊆ J.

Moreover, it follows from Ψ(IJ) ⊆ IQ̃0 ⊆ Q0 that IJ ⊆ Q0 ⊆ P0 (since Ψ restricts to
the identity map on I). This implies that J ⊆ P0 (as I * P0 by the assumption). Thus,
A ker(ω0) ⊆ P0, which implies that ker(ω0) ⊆ P̃0 and so, ω0 = Φ(P0).
(b) Since I ker(ω0) is a closed ideal of I, one has

I ker(ω0) =
∩

{P ∈ Prim(A) \ hull(I) : I ker(ω0) ⊆ P},

and this part follows from part (a).
(c) It follows from part (a) that ω ∈ Φ

(
Prim(A) \ hull(I)

)
if and only if there exists

P ∈ Prim(A) \ hull(I) = Prim(I) such that I ker(ω) ⊆ P , which is equivalent to the
closed ideal I ker(ω) of I being proper (in other words, I/I ker(ω) ̸= (0)).

Following [4, p.351] and [29, p.125], for each ω ∈ Prim(ZM(A)), we call

G(ω) :=
∩

Φ−1(ω)

a Glimm ideal of A (here we use the usual convention that
∩

∅ = A).

Theorem 6·10. Suppose that the map Φ is open and that every non-zero Glimm ideal
of a C∗-algebra A is a prime ideal.
(a) A is the algebra of C0-sections of a continuous field of C∗-algebras over ΩA :=

Φ(Prim(A)) with each fiber being a non-zero prime C∗-algebra (and hence of one of the
five types).
(b) If A is discrete (respectively, essentially infinite or tracially infinite), there is an
open dense subset Ωd (respectively, Ω∞ or Ωti) of ΩA such that the fiber over elements
in Ωd (respectively, Ω∞ or Ωti) are discrete (respectively, essentially infinite or tracially
infinite).

Proof. (a) Consider any ω ∈ ΩA. By Lemma 6·9(b), one has

A ker(ω) = G(ω),

and hence is a prime ideal by the hypothesis. Moreover, it follows from Lemma 6·9(c)
that A/A ker(ω) = ΥA

ω ̸= (0). Now, Proposition 6·1 tells us that they are of one of the
five types.
(b) We will only consider the case when A is discrete since the other two cases follow
from similar arguments. Suppose that AI is the largest type I closed ideal of A and
Ξd := Prim(A) \ hull(AI). By the proof of Proposition 6·7, Ξd is an open dense subset of
Prim(A). Set Ωd := Φ(Ξd). Then Ωd is an open dense subset of ΩA (by the hypothesis)
satisfying

Ωd ⊆ {ω ∈ ΩA : G(ω) ⊆ P, for some P ∈ Ξd}

(since G(ω) ⊆ P whenever P ∈ Φ−1(ω)).
Pick any ω ∈ Ωd. If AI is contained in G(ω), then we know that AI ⊆ P for some

P ∈ Prim(A) \ hull(AI), which is absurd. Consequently, for every ω ∈ Ωd, the image of
AI in the prime C∗-algebra ΥA

ω = A/G(ω) is a non-zero type I closed ideal, which implies
that ΥA

ω is discrete (because of Proposition 6·1).
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If Prim(A) is Hausdorff (which is weaker than the assumption that the spectrum of A is

Hausdorff), then Φ is injective and the hypothesis of Theorem 6·10 is satisfied. Moreover,
if A is a “standard” C∗-algebras as in [29, p.127], then the two hypothesis in Theorem
6·10 are satisfied (see also [4, Theorem 3.4]). Thus, Theorem 6·10 gives the following
corollary, thanks to [29, p.127] and [29, Theorem 2.4].

Corollary 6·11. If either Prim(A) is Hausdorff, or A is an AW ∗-algebra, or A is
the local multiplier algebra of another C∗-algebra, then A is the algebra of continuous
C0-sections of a continuous fields of prime C∗-algebras over a locally compact Hausdorff
space ΩA with each fiber being non-zero and of one of the five types. If, in addition, A

is discrete (respectively, essentially infinite or tracially infinite), there is an open dense
subset of ΩA on which the fiber are non-zero and discrete (respectively, essentially infinite
or tracially infinite).
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