
MAPS PRESERVING SCHATTEN p-NORMS OF CONVEX

COMBINATIONS

DAVID LI-WEI KUO, MING-CHENG TSAI, NGAI-CHING WONG AND JUN ZHANG†

Abstract. In this paper, we study maps φ of positive operators of Schatten p-classes (1 <

p < +∞), which preserve the p-norms of convex combinations, that is,

‖tρ+ (1− t)σ‖p = ‖tφ(ρ) + (1− t)φ(σ)‖p, ∀ρ, σ ∈ S+
p (H)1, t ∈ [0, 1].

They are exactly those carrying the form φ(ρ) = UρU∗ for a unitary or anti-unitary U . In

the case p = 2, we have the same conclusion whenever it just holds

‖ρ+ σ‖2 = ‖φ(ρ) + φ(σ)‖2

for all positive Hilbert-Schmidt class operators ρ, σ of norm 1. Some examples are demon-

strated.
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1. Introduction

The Mazur-Ulam theorem states that every bijective distance preserving map Φ from a

Banach space onto another is affine, i.e.,

Φ(tx+ (1− t)y) = tΦ(x) + (1− t)Φ(y), ∀x, y, 0 ≤ t ≤ 1.

After translation, we can assume Φ(0) = 0 and Φ is indeed a surjective real linear isometry.

Let us consider another version of this statement. Suppose that Φ is a bijective map from a

Hilbert space H onto H and Φ preserves norm of convex combinations:

‖tΦ(x) + (1− t)Φ(y)‖ = ‖tx+ (1− t)y‖, ∀x, y ∈ H, 0 ≤ t ≤ 1. (1.1)

Let us further relax the assumption that (1.1) holds for just one fixed t in (0, 1). By letting

y = x in (1.1), we see that ‖Φ(x)‖ = ‖x‖ for all x in H. Squaring both sides of (1.1), we will

see that the real parts of the inner products coincide, i.e.

Re 〈x, y〉 = Re 〈Φ(x),Φ(y)〉, ∀x, y ∈ H.
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Then the classical Wigner theorem (see, e.g., [7, Theorem 3]) ensures that there is a surjective

real linear isometry U : H → H such that Φ(x) = Ux for all x in H.

Characterizing isometries, linear or not, of spaces of operators under various norms has

been a fruitful area of research for a long time. See, e.g., [3,5] for good surveys. In particular,

the spaces Sp(H) of Schatten p-class operators on a (complex) Hilbert space H (1 ≤ p < +∞)

are important objects in both analysis and physics. They are widely used in operator theory

and quantum mechanics, for example.

Let S+p (H) be the set of all positive operators in Sp(H), and let S+p (H)1 be the set of

all positive operators in S+p (H) of p-norm one. Recall that an affine automorphism (or S-

automorphism in [2], or Kadison automorphism in [11]) is a bijective affine map φ : S+1 (H)1 →
S+1 (H)1, i.e.,

φ(tρ+ (1− t)σ) = tφ(ρ) + (1− t)φ(σ), ∀ρ, σ ∈ S+1 (H)1, t ∈ [0, 1].

It is known (see, e.g., [9]) that affine automorphisms are exactly those carrying the form

φ(ρ) = UρU∗ for a unitary or anti-unitary U on H.

Recently, Nagy [10] established a Mazur-Ulam type result for the Schatten p-class opera-

tors. Suppose φ : S+p (H)1 → S+p (H)1 (1 < p < +∞) is a bijective map preserving the distance

induced by the norm ‖ · ‖p. Then φ is implemented by a unitary or an anti-unitary operator

U such that φ(ρ) = UρU∗. In this paper, we will establish a counter part of Nagy’s result

similar to the one demonstrated in the first paragraph. More precisely, we will characterize

those maps φ : S+p (H)1 → S+p (H)1 satisfying

‖tρ+ (1− t)σ‖p = ‖tφ(ρ) + (1− t)φ(σ)‖p, ∀ρ, σ ∈ S+p (H)1, t ∈ [0, 1].

We will show that they are implemented by a unitary or an anti-unitary operator.

Our main theorem follows.

Theorem 1.1. Let H be a separable complex Hilbert space of finite or infinite dimension.

Let 1 < p < +∞. Suppose that φ is a map from S+p (H)1 into S+p (H)1, which will be assumed

to be surjective when dim H = +∞. The following conditions are equivalent.

(1) φ preserves the Schatten p-norms of convex combinations, i.e.,

‖tρ+ (1− t)σ‖p = ‖tφ(ρ) + (1− t)φ(σ)‖p, ∀ρ, σ ∈ S+p (H)1, t ∈ [0, 1]. (1.2)

(2) φ preserves the pairings, i.e., for all ρ, σ ∈ S+p (H)1, we have σp−1ρ ∈ S1(H), and

tr(σp−1ρ) = tr(φ(σ)p−1φ(ρ)). (1.3)

(3) There exists a unitary or anti-unitary operator U on H such that

φ(ρ) = UρU∗, ∀ρ ∈ S+p (H)1.
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We note that the condition (1.2) becomes a tautology when p = 1. On the other hand, the

conclusion of Theorem 1.1 holds again if we replace S+p (H)1 by S+p (H) everywhere. In this

case, setting σ = ρ in (1.2) we see that φ does map S+p (H)1 into S+p (H)1.

The proof of Theorem 1.1 is given in Section 2. When p = 2, we see in Section 3 that for φ

carrying the expected form stated in Theorem 1.1(3) it suffices condition (1.2) held for only

one fixed t in (0, 1). Finally, we demonstrate some examples in Section 4.

2. Proof of the main theorem

In what follows, we fix some notation and definitions used throughout the paper. Let H

stand for a separable complex Hilbert space of finite dimension or infinite dimension. Let

B(H) denote the algebra of all bounded linear operators on H. For a compact operator T

in B(H), let s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 denote the singular values of T , i.e., the eigenvalues

of |T | = (TT ∗)
1
2 arranged in their decreasing order (repeating according to multiplicity). A

compact operator T belongs to the Schatten p-classes Sp(H) (1 ≤ p < +∞) if

‖T‖p :=

( ∞∑
i=1

si(T )p

)1/p

= (tr |T |p)1/p < +∞, (2.1)

where tr denotes the trace functional. We call ‖T‖p the Schatten p-norm of T . In particular,

S1(H) is the trace class and S2(H) is the Hilbert-Schmidt class. The cone of positive operators

in Sp(H) is denoted by S+p (H), and the set of rank one projections in S+p (H) is denoted by

P1(H).

Recall that the norm of a normed space is Fréchet differentiable at x 6= 0 if lim
t→0

‖x+ ty‖ − ‖x‖
t

exists and uniform for all norm one vectors y.

Lemma 2.1 ( [1, Theorem 2.3]). Let 1 < p < +∞ and ρ in S+p (H) be nonzero. The norm

of S+p (H) is Fréchet differentiable at ρ. For any σ in S+p (H) we have

d‖ρ+ tσ‖p
dt

∣∣∣
t=0

= tr

(
ρp−1σ

‖ρ‖p−1p

)
. (2.2)

Lemma 2.2. Suppose ρ, σ ∈ S+p (H) (1 < p < +∞). The following conditions are equivalent.

(1) ρ = σ.

(2) ‖tρ+ (1− t)P‖p = ‖tσ + (1− t)P‖p for all P in P1(H) and all t in [0, 1].

(3) tr(Pρ) = tr(Pσ) for all P in P1(H).

Proof. (1)⇒ (2) is obvious.

(2)⇒ (3): Differentiating both sides of ‖tρ+ (1− t)P‖p = ‖tσ + (1− t)P‖p at t = 0+, we

have trPρ = trP p−1ρ = trP p−1σ = trPσ by Lemma 2.1.
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(3) ⇒ (1): Since ρ and σ are positive, ρ − σ is hermitian. There exists an orthonormal

basis {ei}∞i=1 of H such that ρ − σ =

∞∑
i=1

λiei ⊗ ei. Choosing Pi = ei ⊗ ei, we have λi =

tr(Pi(ρ− σ)) = 0 for all i = 1, 2, . . .. It follows ρ− σ = 0. �

We say that two self-adjoint operators ρ, σ in B(H) are orthogonal if ρσ = 0, which is

equivalent to the property that they have mutually orthogonal ranges.

Lemma 2.3. Suppose that ρ, σ ∈ S+p (H) for 1 < p < +∞. The following conditions are

equivalent.

(1) ρ, σ are orthogonal, i.e., ρσ = 0.

(2) ‖αρ+ (1− α)σ‖pp = αp‖ρ‖pp + (1− α)p‖σ‖pp for any (and thus all) α in (0, 1).

(3) tr(ρσ) = 0.

(4) ‖ρ+ tσ‖p ≥ ‖ρ‖p for all t in R, that is, ρ ⊥ σ in Birkhoff’s sense.

(5) tr(ρp−1σ) = 0.

Proof. (1)⇔ (2): From [6, Lemma 2.6], we know that for any two positive operators A,B in

S+p (H), we have

tr(A+B)p ≥ trAp + trBp.

Here the equality holds if and only if AB = 0. Setting A = αρ and B = (1− α)σ, we get

ρσ = 0⇔ (αρ)((1− α)σ) = 0

⇔ tr(αρ+ (1− α)σ)p = tr(αρ)p + tr((1− α)σ)p

⇔ ‖αρ+ (1− α)σ‖pp = αp‖ρ‖pp + (1− α)p‖σ‖pp.

(1)⇔ (3): One direction is obvious. For the other, because ρ, σ are positive,

tr[(ρ
1
2σ

1
2 )(ρ

1
2σ

1
2 )∗] = tr(ρ

1
2σ

1
2σ

1
2 ρ

1
2 ) = tr(ρσ) = 0.

This forces ρ
1
2σ

1
2 = 0, and thus ρσ = ρ

1
2 (ρ

1
2σ

1
2 )σ

1
2 = 0.

(1) ⇒ (4): Since ρσ = 0, there exists an orthonormal basis {ei}∞i=1 of H such that ρ =
∞∑
i=1

λiei ⊗ ei, σ =

∞∑
i=1

µiei ⊗ ei, λi ≥ 0, µi ≥ 0, and λiµi = 0 for all i = 1, 2, · · · . Hence,

‖ρ+ tσ‖pp = tr |ρ+ tσ|p =
∞∑
i=1

(λi + |t|µi)p ≥
∞∑
i=1

λpi = ‖ρ‖pp.

(4)⇒ (5): Without loss of generality, we can assume that ρ 6= 0. Define f(t) = ‖ρ+tσ‖p ≥
‖ρ‖p. Then f(t) is differentiable and attains its minimum at t = 0. From Lemma 2.1,

0 =
d‖ρ+ tσ‖p

dt

∣∣∣
t=0

= tr

(
ρp−1σ

‖ρ‖p−1p

)
,

and assertion (5) follows.
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(5)⇒ (1): As in proving (3)⇒ (1), we have ρp−1σ = 0. Then there exists an orthonormal

basis {e′i}∞i=1 of H such that ρp−1 =

∞∑
i=1

ξie
′
i ⊗ e′i, σ =

∞∑
i=1

ηie
′
i ⊗ e′i, with ξi ≥ 0, ηi ≥ 0, and

ξiµi = 0 for all i = 1, 2, · · · . Thus, tr(ρσ) =
∞∑
i=1

ξ
1

p−1

i ηi = 0. �

r

Lemma 2.4. Let 1 < p < +∞. Suppose that φ is a map from S+p (H)1 into S+p (H)1
preserving the Schatten p-norms of convex combinations, i.e., equation (1.2) holds. Then we

have

tr(σp−1ρ) = tr(φ(σ)p−1φ(ρ)). (2.3)

Proof. Differentiating both sides of (1.2) with respect to t and evaluating at t = 0, we have

d‖tρ+ (1− t)σ‖p
dt

∣∣∣
t=0

=
d‖σ + t(ρ− σ)‖p

dt

∣∣∣
t=0

= tr

(
σp−1(ρ− σ)

‖σ‖p−1p

)

=
tr(σp−1ρ)

‖σ‖p−1p

− ‖σ‖p

= tr(σp−1ρ)− 1,

and

d‖tφ(ρ) + (1− t)φ(σ)‖p
dt

∣∣∣
t=0

=
tr(φ(σ)p−1ρ)

‖φ(σ)‖p−1p

− ‖φ(σ)‖p

= tr(φ(σ)p−1ρ)− 1.

Since (1.2) holds for t in (0, 1], these derivatives agree. Therefore, tr(σp−1ρ) = tr(φ(σ)p−1φ(ρ)).

�

Proposition 2.5. Suppose φ : S+p (H)1 → S+p (H)1 satisfies that

tr(σp−1ρ) = tr(φ(σ)p−1φ(ρ)), ∀ρ, σ ∈ S+p (H)1. (2.4)

Then the following assertions hold.

(1) φ preserves orthogonality in both directions, that is

ρσ = 0⇔ φ(ρ)φ(σ) = 0, ∀ρ, σ ∈ S+p (H)1.

(2) When dimH < +∞, φ maps rank one projections to rank one projections. This also

holds when dimH = +∞ and φ is surjective.

(3) When dimH < +∞, we have

trPQ = trφ(P )φ(Q), ∀P,Q ∈ P1(H).

This also holds when dimH = +∞ and φ is surjective.
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Proof. (1) follows from Lemma 2.3.

(2) First, we assume dim H = n < +∞. Suppose ρ is a rank one projection. We

can find n − 1 pairwise orthogonal rank one projections ρ1, · · · , ρn−1 such that ρρi = 0 for

1 ≤ i ≤ n − 1. From (1), we know that φ(ρ), φ(ρ1), · · · , φ(ρn−1) are nonzero and pairwise

orthogonal. This forces φ(ρ) has rank one since dimH = n. By (2.4), taking σ = ρ, we

see that trφ(ρ)p = tr ρp = tr ρ = 1. Therefore, the rank one positive operator φ(ρ) is a

projection.

Next, we consider the case dim H = +∞ and φ is surjective. Suppose that there exists a

rank one projection ρ in S+p (H) such that φ(ρ) has rank greater than one. Then there are

two nonzero orthogonal operators T1 and T2 in S+p (H) such that φ(ρ) = T1 + T2. Since φ is

surjective and preserves orthogonality in both directions, there are two nonzero orthogonal

operators ρ1 and ρ2 in S+p (H)1 such that φ(ρ1) = T1/‖T1‖p and φ(ρ2) = T1/‖T2‖p. For any

σ in S+p (H) with σρ = 0, we have

φ(σ)(‖T1‖pφ(ρ1) + ‖T2‖pφ(ρ2)) = φ(σ)(T1 + T2) = φ(σ)φ(ρ) = 0.

It forces

‖T1‖pφ(σ)φ(ρ1)φ(σ) = −‖T2‖pφ(σ)φ(ρ2)φ(σ) = 0,

and hence φ(σ)φ(ρ1) = φ(σ)φ(ρ2) = 0, because φ(σ), φ(ρ1) and φ(ρ2) are all positive. This

implies σρ1 = σρ2 = 0. Therefore, ρ1 = λ1ρ and ρ2 = λ2ρ for some nonzero λ1, λ2. This

contradicts to that ρ1ρ2 = 0.

(3) From (2), we know that φ(P ), φ(Q) are rank one projections in P1(H). Therefore,

P p−1 = P, φ(P )p−1 = φ(P ). Using Equation (2.4) with σ = P, ρ = Q we have

trPQ = tr(P p−1Q) = tr(φ(P )p−1φ(Q)) = trφ(P )φ(Q).

�

Proof of Theorem 1.1. (1)⇒ (2) follows from Lemma 2.4.

(3)⇒ (1) is obvious.

(2) ⇒ (3): From Proposition 2.5, we obtain that φ|P1(H) : P1(H) → P1(H) satisfies

trPQ = trφ(P )φ(Q) for all rank one projections P,Q in P1(H). From a nonsurjective

version of Wigner’s theorem, c.f. [9, Theorem 2.1.4], there exists an isometry or anti-isometry

U on H such that

φ(P ) = UPU∗, ∀P ∈ P1(H).

Note that U is indeed surjective even when H is of infinite dimension, since φ is assumed to

be surjective in this case.

For any rank one projection P in P1(H), setting σ = P in (1.3) we have

tr(Pρ) = tr(P p−1ρ) = tr(φ(P )p−1φ(ρ)) = tr(φ(P )φ(ρ))

= tr(UPU∗φ(ρ)U) = tr(PU∗φ(ρ)U)
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We have U∗φ(ρ)U = ρ by Lemma 2.2. This gives φ(ρ) = UρU∗. �

3. Maps preserving norms of just a special convex combination

A careful look at the proof of Lemma 2.4 tells us that the condition ‖tρ + (1 − t)σ‖p =

‖tφ(ρ) + (1 − t)φ(σ)‖p suffices to hold for the members of any sequence in (0, 1] converging

to 0 rather than for any point t in [0, 1]. Indeed, in order to get some good properties of φ

stated in the previous section, we only need to assume that φ preserves the Schatten p-norm

of convex combination with a given system of coefficients.

Proposition 3.1. Let φ : S+p (H)1 → S+p (H)1 (1 < p < +∞). Let α in (0, 1) be arbitrary

but fixed. Suppose

‖αρ+ (1− α)σ‖p = ‖αφ(ρ) + (1− α)φ(σ)‖p, ∀ρ, σ ∈ S+p (H)1, (3.1)

The following properties are satisfied.

(1) φ is injective.

(2) φ preserves orthogonality in both directions.

(3) When dim H < +∞, φ maps rank one projections to rank one projections. This also

holds when dimH = +∞ and φ is surjective.

Proof. (1) Assume φ(ρ) = φ(σ). We have ‖αφ(ρ) + (1 − α)φ(σ)‖p = 1. From (3.1) we get

‖αρ+ (1− α)σ‖p = 1. Hence,

‖αρ+ (1− α)σ‖p = α‖ρ‖p + (1− α)‖σ‖p.

This forces ρ = σ since the norm ‖ · ‖p is strictly convex for 1 < p < +∞.

(2) Assume ρσ = 0. From Lemma 2.3, we have

‖αρ+ (1− α)σ‖pp = αp‖ρ‖p + (1− α)p‖σ‖p

= αp‖φ(ρ)‖p + (1− α)p‖φ(σ)‖p.

Together with (3.1), we have

‖αφ(ρ) + (1− α)φ(σ)‖pp = αp‖φ(ρ)‖p + (1− α)p‖φ(σ)‖p.

Hence, we have φ(ρ)φ(σ) = 0 from Lemma 2.3 again. The other implication follows similarly.

(3) The proof is similar to that of Proposition 2.5(2). �

When p = 2, we get an improvement of Theorem 1.1.

Theorem 3.2. Let H be a separable complex Hilbert space. Suppose that φ : S+2 (H)1 →
S+2 (H)1, which needs to be surjective when dim H = +∞. The following conditions are

equivalent.
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(1) φ preserves the Hilbert-Schmidt norms of all convex combinations, i.e.,

‖tρ+ (1− t)σ‖2 = ‖tφ(ρ) + (1− t)φ(σ)‖2, ∀ρ, σ ∈ S+2 (H)1, t ∈ [0, 1].

(2) For any (and thus all) α in (0, 1) we have

‖αρ+ (1− α)σ‖2 = ‖αφ(ρ) + (1− α)φ(σ)‖2, ∀ρ, σ ∈ S+2 (H)1.

A special case states

‖ρ+ σ‖2 = ‖φ(ρ) + φ(σ)‖2, ∀ρ, σ ∈ S+2 (H)1.

(3) tr(ρσ) = tr(φ(ρ)φ(σ)) for all ρ, σ in S+2 (H)1.

(4) There exists a unitary or anti-unitary operator U such that

φ(ρ) = UρU∗, ∀ρ ∈ S+2 (H)1.

Proof. We prove (2)⇒ (3) only. Observe

‖αρ+ (1− α)σ‖22 = tr(αρ+ (1− α)σ)2 = α2 tr ρ2 + 2α(1− α) tr(ρσ) + (1− α)2 trσ2,

and

‖αφ(ρ) + (1− α)φ(σ)‖22 = α2 trφ(ρ)2 + 2α(1− α) tr(φ(ρ)φ(σ)) + (1− α)2 trφ(σ)2.

We have, tr(ρσ) = tr(φ(ρ)φ(σ)).

�

4. Examples

We remark that all results in previous sections hold for a map φ : S+p (H)→ S+p (H) which

satisfies instead of (1.2), the condition

‖tρ+ (1− t)σ‖p = ‖tφ(ρ) + (1− t)φ(σ)‖p, ∀ρ, σ ∈ S+p (H), t ∈ [0, 1].

The proofs go in exactly the same ways.

The following example shows that a norm preserver of S+p (H) might not be affine.

Example 4.1. Let H be a finite dimensional Hilbert space with an orthonormal basis {ei}ni=1.

Let 1 < p < +∞. Define a map φ from S+p (H) into itself by

φ(ρ) =


0, if ρ = 0,

‖ρ‖p
‖
∑n

i=1 PiρPi‖p

n∑
i=1

PiρPi, if ρ 6= 0,
(4.1)

where Pi = ei ⊗ ei is a rank one projection for i = 1, . . . , n. Obviously, φ(ρ) is positive and

‖φ(ρ)‖p = ‖ρ‖p for all ρ in S+p (H). However, φ does not preserve the Schatten p-norms of

convex combinations, as the eigenvalues of ρ and φ(ρ) can be different from each other.
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Our theorems are about Schatten p-norms for 1 < p < +∞. Here is an example of a map of

S+1 (H) which preserves trace norms of convex combinations. However, it is not implemented

by a unitary or anti-unitary.

Example 4.2. Consider Example 4.1 in the case where p = 1. In this case,

φ(ρ) =

n∑
i=1

PiρPi. (4.2)

It is easy to see that the map φ satisfies the condition

‖tρ+ (1− t)σ‖1 = ‖tφ(ρ) + (1− t)φ(σ)‖1, ∀ρ, σ ∈ S+1 (H), t ∈ [0, 1].

But there does not exist a unitary or anti-unitary U such that φ(ρ) = UρU∗ for all ρ in

S+1 (H).

Example 4.3. Let H be a separable Hilbert space of infinite dimension, and {en : n =

1, 2, . . .} be a basis of H. Let S be the unilateral shift on H defined by Sen = en+1 for

n = 1, 2, . . .. Let φ be defined by φ(ρ) = SρS∗ for ρ in S+p (H). The map φ is not surjective,

as e1 ⊗ e1 is not in its range. It is easy to see that ‖tρ+ (1− t)σ‖p = ‖tφ(ρ) + (1− t)φ(σ)‖p
holds for all ρ, σ in S+p (H) and t in [0, 1]. However, φ is not implemented by a unitary or

anti-unitary.
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