INNER PRODUCTS AND MODULE MAPS OF HILBERT C*-MODULES

MING-HSIU HSU AND NGAI-CHING WONG

ABSTRACT. Let E and F be two Hilbert C^*-modules over C^*-algebras A and B, respectively. Let T be a surjective linear isometry from E onto F and φ a map from A into B. We will prove in this paper that if the C^*-algebras A and B are commutative, then T preserves the inner products and T is a module map, i.e., there exists a $*$-isomorphism φ between the C^*-algebras such that $\langle Tx, Ty \rangle = \varphi(\langle x, y \rangle)$, and $T(ax) = T(x)\varphi(a)$.

In case A or B is noncommutative C^*-algebra, T may not satisfy the equations above in general. We will also give some condition such that T preserves the inner products and T is a module map.

1. Introduction

A (right) Hilbert C^*-module over a C^*-algebra A is a right A-module E equipped with A-valued inner product $\langle \cdot, \cdot \rangle$ which is conjugate A-linear in the first variable and A-linear in the second variable such that E is a Banach space with respect to the norm $\|x\| = \|\langle x, x \rangle\|^{1/2}$.

Let X be a locally compact Hausdorff space and H a Hilbert space, the Banach-Stone theorem states that every surjective linear isometry between $C_0(X, H_1)$ and $C_0(Y, H_2)$ is also of the form (1)

Let X and Y be two locally compact Hausdorff spaces, the Banach-Stone theorem states that every surjective linear isometry between $C_0(X)$ and $C_0(Y)$ is a weighted composition operator. More precisely, let T be a surjective linear isometry from $C_0(X)$ onto $C_0(Y)$, then there exists a continuous function $h \in C_0(Y)$ with $|h(y)| = 1$, for all y in Y, and a homeomorphism φ from Y onto X such that T is of the form:

(1) $Tf(y) = h(y)f(\varphi(y)), \forall f \in C_0(X), \forall y \in Y.$

Let H_1 and H_2 be two Hilbert spaces. In [7], Jerison characterizes surjective linear isometries between $C_0(X, H_1)$ and $C_0(Y, H_2)$, see also [12, 6]. It is said that every surjective linear isometry T from $C_0(X, H_1)$ onto $C_0(Y, H_2)$ is also of the form (1)

2000 Mathematics Subject Classification. 46L08, 46E40, 46B04.

Key words and phrases. Hilbert C^*-modules, TROs, complete isometries, triple products, Banach-Stone type theorems.

This work is jointly supported by a Taiwan NSC Grant ().
in which \(h(y) \) is a unitary operator from \(H_1 \) onto \(H_2 \) and \(h \) is continuous from \(Y \) into \((B(H_1, H_2), SOT) \), the space of all bounded linear operators with the strong operator topology. In this case, we can find a relationship of inner products of \(C_0(X, H_1) \) and \(C_0(Y, H_2) \) by a simple calculation:

\[
\langle Tf, Tg \rangle(y) = \langle Tf(y), Tg(y) \rangle = \langle h(y)(f(\varphi(y))), h(y)(f(\varphi(y))) \rangle = \langle f(\varphi(y)), f(\varphi(y)) \rangle = \langle f, g \rangle \circ \varphi(y).
\]

i.e.

\[
\langle Tf, Tg \rangle = \langle f, g \rangle \circ \varphi.
\]

Let \(R_\varphi : C_0(X) \to C_0(Y) \) be the \(*\)-isomorphism defined by \(R_\varphi(\phi) = \phi \circ \varphi \). Then \(T \) preserves the inner products with respect to \(R_\varphi \), i.e.,

\[
\langle Tf, Tg \rangle = R_\varphi(f, g).
\]

By (1), it is easy to see that \(T \) is a module map with respect to \(R_\varphi \) in the sense

\[
T(f \circ \phi) = T(f)R_\varphi(\phi), \text{ for all } f \in C_0(X, H_1) \text{ and } \phi \in C_0(X).
\]

It is natural to ask if these properties are true for surjective linear isometries between Hilbert \(C^* \)-modules over \(C^* \)-algebras. We will show in this paper that the answer is yes if the \(C^* \)-algebras are commutative. Unfortunately, if one of the \(C^* \)-algebras is noncommutative, the answer is more complicated. We will give an example (see Example 3) to explain this is not true in general. And we will give a condition on \(T \) (see Theorem 9) such that \(T \) is a module map and preserves the inner products.

2. Preliminaries

Let \(E \) be a Hilbert \(C^* \)-module over \(C^* \)-algebra \(A \). We set \(\langle E, E \rangle \) to be the linear span of elements of the form \(\langle x, y \rangle, x, y \in E \). \(E \) is said to be full if the closed two-sided ideal \(\overline{\langle E, E \rangle} \) equal \(A \).

A \(JB^* \)-triple is a complex vector space \(V \) with a continuous mapping \(V^3 \to V, (x, y, z) \to \{x, y, z\} \), called a Jordan triple product, which is symmetric and linear in \(x \) and conjugate linear in \(y \) such that for \(x, y, z, u, v \) in \(V \), we have

1. \(\{x, y, \{z, u, v\}\} = \{\{x, y, z\}, u, v\} - \{z, \{y, x, u\}, v\} + \{z, u, \{x, y, v\}\}; \)
2. the mapping \(z \to \{x, x, z\} \) is hermitian and has non-negative spectrum;
3. \(\|\{x, x, x\}\| = \|x\|^3. \)

In [5], J. M. Isidro shows that every Hilbert \(C^* \)-module is a \(JB^* \)-triple with the Jordan triple product

\[
\{x, y, z\} = \frac{1}{2}(x\langle y, z \rangle + z\langle y, x \rangle).
\]

A well-known theorem of Kaup [10] (see also [1]) states that every surjective linear isometry between \(JB^* \)-triples is a Jordan triple homomorphism, i.e., it preserves the Jordan triple product

\[
T\{x, y, z\} = \{Tx, Ty, Tz\}, \forall x, y, z \in E.
\]

Hence, if \(T \) is a surjective linear isometry between Hilbert \(C^* \)-modules, then

(2) \(T(x\langle y, z \rangle + z\langle y, x \rangle) = Tx\langle Ty, Tz \rangle + Tz\langle Ty, Tx \rangle, \forall x, y, z \in E. \)
The equation (2) holds if and only if
\[T(x\langle x, x \rangle) = Tx\langle Tx, Tx \rangle, \forall x \in E \]
by triple polarization
\[2\{x, y, z\} = \frac{1}{8} \sum_{\alpha^4=\beta^2=1} \alpha \beta \langle x + \alpha y + \beta z, x + \alpha y + \beta z \rangle (x + \alpha y + \beta z). \]

A ternary ring of operators (TRO) between two Hilbert spaces \(H \) and \(K \) is a linear subspace \(R \) of \(B(H, K) \), the space of all bounded linear operators from \(H \) into \(K \), satisfying \(AB^*C \in R \). Zettl shows in [17] that every Hilbert \(C^* \)-module is isomorphic to a norm closed TRO. In this case, Hilbert \(C^* \)-modules have another triple product, i.e.,
\[\{x, y, z\} := x\langle y, z \rangle. \]

A map between TROs is said to be a triple homomorphism if it preserves the triple products. In the case of Hilbert \(C^* \)-modules, a map \(T \) is a triple homomorphism if it satisfies
\[T(x\langle y, z \rangle) = Tx\langle Ty, Tz \rangle, \forall x, y, z. \]

We have known every surjective linear isometry is a Jordan triple homomorphism, but it could not be a triple homomorphism, see Example 3.

Let \(R \) be a TRO. Then \(M_n(R) \), the space of all \(n \times n \) matrices whose entries are in \(R \), has a TRO-structure. Let \(T \) be a map between TROs \(R_1 \) and \(R_2 \). For all positive integer \(n \), define maps \(T^{(n)} : M_n(R_1) \to M_n(R_2) \) by \(T^{(n)}((x_{ij})_{ij}) = (T(x_{ij}))_{ij} \). We call \(T \) an isometry if \(T^{(n)} \) is isometric and complete isometry if each \(T^{(n)} \) is isometric for all \(n \). It has been shown that a surjective linear isometry between TROs is a triple homomorphism if and only if it is completely isometric. More details about TROs mentioned above, we refer to [17], see also [14, 3]. In fact, Solel shows in [16] that every surjective 2-isometry between two full Hilbert \(C^* \)-modules is necessarily completely isometric.

3. Results

Note that in the case of a commutative \(C^* \)-algebra \(A = C_0(X) \), for some locally compact Hausdorff space \(X \), Hilbert \(C^* \)-modules over \(C_0(X) \) are the same as Hilbert bundles, or equivalently, continuous fields of Hilbert spaces, over \(X \).

We showed the following theorem in [4].

Theorem 1. Let \(E \) and \(F \) be two Hilbert \(C^* \)-modules over commutative \(C^* \)-algebras \(C_0(X) \) and \(C_0(Y) \), respectively. Then every surjective linear isometry from \(E \) onto \(F \) is a weighted composition operator
\[Tf(y) = h(y)(f(\varphi(y))), \forall f \in E, \forall y \in Y \]
Here, \(\varphi \) is a homeomorphism from \(Y \) onto \(X \), \(h(y) \) is a unitary operator between the corresponding fibers of \(E \) and \(F \), for all \(y \) in \(Y \).

By the similar argument discussed in the introduction, we have
Corollary 2. Every surjective linear isometry between Hilbert C^*-modules over commutative C^*-algebras preserves the inner products and is a module map.

Now we discuss the case of noncommutative C^*-algebras. From equation (4), it seems that a surjective linear isometry T indicates that T preserves inner products and that T is a module map. We explain this could be not true in general by an example.

Example 3. Given a positive integer n. The Hilbert column space H^n_c is the subspace of $M_n(\mathbb{C})$ consisting of all matrices whose non-zero entries are only in the first column. Similarly, the Hilbert row space is the subspace consisting of matrices whose non-zero entries are only in the first row. Clearly, H_c and H_r are right Hilbert C^*-modules over C^*-algebras \mathbb{C} and $M_n(\mathbb{C})$, respectively, with the inner product $\langle A, B \rangle := A^t B$. Define a surjective linear isometry $T : H^n_c \to H^n_r$ by $T(A) = A^t$, the transpose of A. Then $\langle T(A), T(B) \rangle = tr(A, B)$, the trace of $\langle A, B \rangle$, but T is not a module map with respect to the trace. For the surjective linear isometry $T : H^n_c \to H^n_r$, $T(A) = A^t$. Let $\varphi : \mathbb{C} \to M_n(\mathbb{C})$ be defined by $\varphi(\alpha) = \alpha I$. Then T is a module map with respect to φ, but the equation $\langle TA, TB \rangle = \varphi(\langle A, B \rangle)$ does not hold. It is clear that T does not satisfy the equation (4).

Remark 4. In fact, the corollary above says that there exists a \ast-isomorphism φ between the C^*-algebras such that

$$\langle Tx, Ty \rangle = \varphi(\langle x, y \rangle)$$

and

$$T(xa) = T(x)\varphi(a).$$

We have seen in the Example 3 that even if T is a module map or preserves the inner products, the map φ might be just a linear map.

In the following, E and F stand for two Hilbert C^*-modules over C^*-algebras A and B, respectively. T is a map from E into F and φ is a map from A into B. The following lemmas explain the relations of T, φ, when T preserves the inner products and when T is a module map, see also [8].

Lemma 5. If φ is linear, every map T from E into F which preserves the inner products with respect to φ is linear.

Proof. Since T preserves the inner products with respect to φ. Then for all x, y and z in E, α in \mathbb{C},

$$\langle T(\alpha x + y), Tz \rangle = \varphi(\langle \alpha x + y, z \rangle) = \alpha \varphi(\langle x, z \rangle) + \varphi(\langle y, z \rangle) = \langle \alpha Tx + Ty, Tz \rangle.$$

Similarly, we have

$$\langle Tx, T(\alpha y + z) \rangle = \langle Tx, \alpha Ty + Tz \rangle.$$

It is easy to show that

$$\langle T(\alpha x + y) - (\alpha Tx + Ty), T(\alpha x + y) - (\alpha Tx + Ty) \rangle = 0.$$

This proves $T(\alpha x + y) = \alpha Tx + Ty$ and hence T is linear.

Lemma 6 ([8]). Let T be a surjective linear map which preserves the inner products and is a module map w.r.t. φ. If F is full, then φ is a \ast-homomorphism.
Proof. Let a_1, a_2 in A and α in \mathbb{C}. It is easy to show that
\[
T(x)(\varphi(\alpha a_1 + a_2) - \alpha \varphi(a_1) - \varphi(a_2)) = T(x)\varphi(\alpha a_1 + a_2) - \alpha T(x)\varphi(a_1) - T(x)\varphi(a_2) = T(\alpha xa_1 + xa_2)\]
and
\[
T(x)(\varphi(a_1a_2) - \varphi(a_1)\varphi(a_2)) = T(x)\varphi(a_1a_2) - T(x)\varphi(a_1)\varphi(a_2) = T(xa_1a_2) - T(xa_1a_2) = 0.
\]
Since T is surjective and F is full, we have $\varphi(\alpha a_1 + a_2) = \alpha \varphi(a_1) + \varphi(a_2)$ and $\varphi(a_1a_2) = \varphi(a_1)\varphi(a_2)$.

Let x, y in A, we have
\[
\varphi((x, y)^*) = \varphi((y, x)) = (Ty, Tx) = (Tx, Ty)^* = \varphi((x, y))^*.
\]
For a in A,
\[
\langle T(x)(\varphi(a^*) - \varphi(a)^*), T(x)(\varphi(a^*) - \varphi(a)^*) \rangle = \varphi((x, y)^*)\varphi((x, y))\varphi(a) - \varphi(a)\varphi((x, y))\varphi(a^*) + \varphi(a)\varphi((x, y))\varphi(a^*) - \varphi((x, y)^*)\varphi((x, y))\varphi(a^*) - \varphi((x, y)^*)\varphi((x, y))^* + \varphi((x, y)^*)^* - \varphi((x, y)^*)^* = 0.
\]
Hence, $T(x)(\varphi(a^*) - \varphi(a)^*) = 0$ for all x in E. Since T is surjective and F is full, we have $\varphi(a^*) = \varphi(a)^*$.

Lemma 7. If φ is a $*$-homomorphism, then every map T which preserves the inner products w.r.t. φ is a module map w.r.t. φ.

Proof. Let x and y in E and a in A. Then
\[
\langle T(xa), Ty \rangle = \varphi((xa, y)) = (T(xa)\varphi(a), Ty) = (T(x)\varphi(a), Ty).
\]
Similarly, we have
\[
\langle T(x), Tya \rangle = (T(x), T(y)a) = \langle T(xa), T(y)\varphi(a) \rangle.
\]
It is easy to show that
\[
\langle T(xa) - T(x)\varphi(a), T(xa) - T(x)\varphi(a) \rangle = 0.
\]
Hence, $T(xa) = T(x)\varphi(a)$.

Lemma 8 ([13]). Let T be a surjective linear isometry and φ a $*$-isomorphism. If T is a module map w.r.t. φ, then T preserves the inner products with respect to φ.

Proof. It suffices to prove that $\langle Tx, Tx \rangle = \varphi((x, x))$ for all x in E. Note that $|a| := (a^*a)^{1/2}$. For all b in B, let $\varphi(a) = b$, then
\[
||Tx||^2 = ||T(x)b||^2 = ||\langle T(x)\varphi(a), T(x)\varphi(a) \rangle|| = ||\langle T(xa), T(xa) \rangle|| = ||\langle xa, xa \rangle|| = ||xa||^2 = ||\varphi(|x|)b||^2 = ||\varphi(|x|)|b|^2.
\]
By Lemma 3.5 in [11], we get $|Tx| = (\varphi(|x|)$ and hence $\langle Tx, Tx \rangle = \varphi((x, x))$. \qed
Theorem 9. Let T be a surjective linear 2-isometry from E onto F. Then there exists a $*$-isomorphism φ from $\langle E, E \rangle$ onto $\langle F, F \rangle$ such that, for all x, y in E, and a in A,

$$\langle Tx, Ty \rangle = \varphi(\langle x, y \rangle)$$

and

$$T(ax) = T(x)\varphi(a).$$

Proof. We can regard E and F as full modules over $\langle E, E \rangle$ and $\langle F, F \rangle$, respectively. In this case, as we mentioned above, T is completely isometric and hence it preserves the triple products

$$T(z\langle x, y \rangle) = Tz\langle Tx, Ty \rangle, \forall x, y, z \in E.$$

Define $\varphi : \langle E, E \rangle \to \langle F, F \rangle$ by

$$\varphi(\sum_{i=1}^{n} \alpha_i \langle x_i, y_i \rangle) := \sum_{i=1}^{n} \alpha_i \langle Tx_i, Ty_i \rangle, \quad x_i, y_i \in E, \quad \alpha_i \in \mathbb{C}, \quad i = 1, \cdots, n.$$

Let x_i, y_i and $z \in E$, $\alpha_i \in \mathbb{C}$, $i = 1, \cdots, n$. Then $\sum_{i=1}^{n} \alpha_i \langle x_i, y_i \rangle = 0$ if and only if $z(\sum_{i=1}^{n} \alpha_i \langle x_i, y_i \rangle) = 0$ for all z if and only if $T(z)(\sum_{i=1}^{n} \alpha_i \langle Tx_i, Ty_i \rangle) = \sum_{i=1}^{n} \alpha_i Tz\langle Tx_i, Ty_i \rangle = T(z)(\sum_{i=1}^{n} \alpha_i \langle x_i, y_i \rangle)$ if and only if $\sum_{i=1}^{n} \alpha_i \langle Tx_i, Ty_i \rangle = 0$. This shows that φ is well-defined and injective. From the definition of φ, since T is surjective, it is clear that φ is a surjective $*$-homomorphism and T preserves the inner products w.r.t. φ. By lemma 7, T is a module map w.r.t φ. \hfill \square

Corollary 10. Every surjective linear 2-isometry between two full Hilbert C^*-modules preserves the inner products and is a module map with respect to some $*$-isomorphism of underlying C^*-algebras.

References

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.

E-mail address, Ming-Hsiu Hsu: hsumh@math.nsysu.edu.tw

E-mail address, Ngai-Ching Wong: wong@math.nsysu.edu.tw