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Abstract. Let Pw(nE; F ) be the space of all continuous n-homogeneous polynomials

from a Banach space E into another F , that are weakly continuous on bounded sets.

We give sufficient conditions for the weak sequential completeness of Pw(nE; F ). These

sufficient conditions are also necessary if both E∗ and F have the bounded compact

approximation property. We also show that the weak sequential completeness and the

reflexivity of Pw(nE; F ) are equivalent whenever both E and F are reflexive.

1. Introduction

For Banach spaces E and F , let P(nE;F ) be the space of all continuous n-homogeneous

polynomials from E into F . After the pioneer work of Ryan [26], several authors (e.g. see

[1, 2, 19, 24, 25]) have searched for necessary and sufficient conditions for the reflexivity

of P(nE;F ). Among them, Alencar [1] gave necessary and sufficient conditions for the

reflexivity of P(nE; C) under the hypothesis of the approximation property of E, and

Mujica [24] gave necessary and sufficient conditions for the reflexivity of P(nE;F ) under

the hypothesis of the compact approximation property of E.

A property closely related to the reflexivity is the weak sequential completeness. In

section 3 of this paper, we give sufficient conditions for the weak sequential completeness

of Pw(nE;F ), the subspace of all P in P(nE;F ) that are weakly continuous on bounded

sets. We show that these sufficient conditions are also necessary when both E∗ and F have

the bounded compact approximation property.

In section 4, we show that the weak sequential completeness and the reflexivity of

Pw(nE;F ) coincide whenever both E and F are reflexive. As a consequence, a result

of Mujica [24] about the reflexivity of P(nE;F ) is obtained.
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Mujica [23] showed that the (bounded) approximation property is inherited by the sym-

metric projective tensor products. In section 5, we show that the (bounded) compact ap-

proximation property is also inherited by the (symmetric) projective tensor products. How-

ever, we note that Aron and Schottenloher’s counter-example [7] shows that the (bounded)

compact approximation property is not inherited by the spaces of homogeneous polynomials

in general.

2. Preliminaries

Throughout the paper, E and F are Banach spaces over the real field R or the complex

field C. Denote by L(E;F ), K(E;F ), andW(E;F ), respectively, the spaces of all bounded,

all compact, and all weakly compact linear operators from E into F . For a bounded linear

operator T : E → F , let T [E] denote the image of T and let T ∗ : F ∗ → E∗ denote the

adjoint operator (i.e., the dual map) of T .

Let n be a positive integer. A map P : E → F is said to be a continuous n-homogeneous

polynomial if there is a continuous symmetric n-linear map T from E × · · · ×E (a product

of n copies of E) into F such that P (x) = T (x, . . . , x). Indeed, the symmetric n-linear

operator TP : E × · · · ×E → F associated to P can be given by the Polarization Formula:

TP (x1, . . . , xn) =
1

2nn!

∑
εi=±1

ε1 · · · εnP
( n∑
i=1

εixi
)
, ∀ x1, . . . , xn ∈ E.

Let P(nE;F ), Pw(nE;F ), and Pwsc(nE;F ), respectively, denote the space of all contin-

uous n-homogeneous polynomials from E into F , the subspace of all P in P(nE;F ) that

are weakly continuous on bounded sets, and the subspace of all P in P(nE;F ) that are

weakly sequentially continuous. In particular, if F = R or C, then P(nE;F ), Pw(nE;F ),

and Pwsc(nE;F ) are simply denoted by P(nE), Pw(nE), and Pwsc(nE), respectively. It is

known that

Pw(nE;F ) ⊆ Pwsc(nE;F ) ⊆ P(nE;F ) (2.1)

and that Pw(nE;F ) = Pwsc(nE;F ) for any n ∈ N if and only if E contains no copy of `1
(see [5, Prop. 2.12], also see [14, p.116, Prop. 2.36]).

Let ⊗nE denote the n-fold algebraic tensor product of E. For x1 ⊗ · · · ⊗ xn ∈ ⊗nE, let

x1 ⊗s · · · ⊗s xn denote its symmetrization, that is,

x1 ⊗s · · · ⊗s xn =
1
n!

∑
σ∈π(n)

xσ(1) ⊗ · · · ⊗ xσ(n),
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where π(n) is the group of permutations of {1, · · · , n}. Let ⊗n,sE denote the n-fold symmet-

ric algebraic tensor product of E, that is, the linear span of {x1⊗s · · ·⊗sxn : x1, . . . , xn ∈ E}
in ⊗nE. Let ⊗̂n,s,πE denote the n-fold symmetric projective tensor product of E, that is,

the completion of ⊗n,sE under the symmetric projective tensor norm on ⊗n,sE defined by

‖u‖ = inf

{
m∑
k=1

|λk| · ‖xk‖n : xk ∈ E, u =
m∑
k=1

λkxk ⊗ · · · ⊗ xk

}
, u ∈ ⊗n,sE.

Define θn : E → ⊗̂n,s,πE by θn(x) = x ⊗ · · · ⊗ x for every x ∈ E. Then θn ∈
P(nE; ⊗̂n,s,πE). For every P ∈ P(nE;F ), let AP ∈ L(⊗̂n,s,πE;F ) denote its lineariza-

tion, that is, P = AP ◦ θn. Then under the isometry: P → AP , the Banach space P(nE;F )

is isometrically isomorphic to L(⊗̂n,s,πE;F ). This implies that P(nE) = Pwsc(nE) if and

only if θn : E → ⊗̂n,s,πE is sequentially continuous with respect to the weak topology of E

and the weak topology of ⊗̂n,s,πE.

A polynomial P ∈ P(nE;F ) is called compact (resp. weakly compact) if P takes bounded

subsets in E into relatively (resp. weakly) compact subsets in F . Equivalently, P is compact

(resp. weakly compact) if and only if its linearization AP is compact (resp. weakly compact)

(see [26] or [23, Prop. 3.4]). Let PK(nE;F ) (resp. PwK(nE;F )) denote the space of all

compact (resp. weakly compact) n-homogeneous polynomials from E into F . Then through

the isometry: P → AP we have

PK(nE;F ) = K(⊗̂n,s,πE;F ), PwK(nE;F ) =W(⊗̂n,s,πE;F ). (2.2)

It follows from [6, Lemma 2.2 and Prop. 2.5] (also see [14, p.88, Prop. 2.6]) that

Pw(nE;F ) ⊆ PK(nE;F ) ⊆ PwK(nE;F ). (2.3)

Moreover, we have the following.

Lemma 2.1. Assume P(nE) = Pwsc(nE). Then for any Banach space F , we have

Pw(nE;F ) ⊆ PK(nE;F ) ⊆ Pwsc(nE;F ). (2.4)

Proof. Take any P ∈ PK(nE;F ). Then AP ∈ K(⊗̂n,s,πE;F ) and hence, AP is a completely

continuous linear operator. Since P(nE) = Pwsc(nE), it follows that θn : E → ⊗̂n,s,πE is

sequentially continuous with respect to the weak topology of E and the weak topology of

⊗̂n,s,πE. Note that P = AP ◦ θn. Thus P takes weakly convergent sequences in E into

norm convergent sequences in F , and so P ∈ Pwsc(nE;F ). �

For the basic knowledge about homogeneous polynomials and symmetric projective ten-

sor products, readers are referred to [14, 15, 22, 26].
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3. Weak Sequential Completeness

For every P ∈ P(nE), let P̃ ∈ P(nE∗∗) denote the Aron-Berner extension of P (see

[4, 13]). The following lemma is a special case of [17, Corollary 5].

Lemma 3.1[17]. Let Pk, P ∈ Pw(nE) for each k ∈ N. Then limk Pk = P weakly in Pw(nE)

if and only if limk P̃k(z) = P̃ (z) for every z ∈ E∗∗.

Next we will give sufficient conditions to ensure the weak sequential completeness of

P(nE).

Theorem 3.2. If E∗ is weakly sequentially complete and P(nE) = Pw(nE), then Pw(nE)

is weakly sequentially complete.

Proof. Take a weakly Cauchy sequence {Pk}∞1 in Pw(nE). Then {Pk(x)}∞1 is a scalar-

valued Cauchy sequence for every x ∈ E. Define a scalar-valued polynomial P on E by

P (x) = limk Pk(x) for every x ∈ E. Then P ∈ P(nE) = Pw(nE). It follows from the

Polarization Formula that for every x1, . . . , xn ∈ E, we have

lim
k
TPk

(x1, . . . , xn) = TP (x1, . . . , xn). (3.1)

Next we show that limk Pk = P weakly in Pw(nE). For every z, z1, . . . , zn ∈ E∗∗, by

Lemma 3.1, {P̃k(z)}∞1 is a scalar-valued Cauchy sequence, and then by the Polarization

Formula, {T
P̃k

(z1, . . . , zn)}∞k=1 is also a scalar-valued Cauchy sequence. For every fixed

x2, . . . , xn ∈ E, define φk(x) = T
P̃k

(x, x2, . . . , xn) for every x ∈ E. Then φk ∈ E∗ and

〈φk, z1〉 = T
P̃k

(z1, x2, . . . , xn) for every z1 ∈ E∗∗. Thus {φk}∞k=1 is a weakly Cauchy sequence

in E∗ and hence,

weak- lim
k
T
P̃k

(·, x2, . . . , xn) = weak- lim
k
φk exists in E∗. (3.2)

Note that T
P̃

(·, x2, . . . , xn) ∈ E∗ and (3.1) implies that

weak∗- lim
k
T
P̃k

(·, x2, . . . , xn) = T
P̃

(·, x2, . . . , xn). (3.3)

Combining (3.2) and (3.3) we have that for every z1 ∈ E∗∗ and every x2, . . . , xn ∈ E,

lim
k
T
P̃k

(z1, x2, . . . , xn) = T
P̃

(z1, x2, . . . , xn).

Inductively, we can verify that for every z1, z2, . . . , zn ∈ E∗∗,

lim
k
T
P̃k

(z1, z2, . . . , zn) = T
P̃

(z1, z2, . . . , zn).
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In particular, limk P̃k(z) = P̃ (z) for every z ∈ E∗∗. It follows from Lemma 3.1 that

limk Pk = P weakly in Pw(nE). �

The following lemma is straightforward from Eberlein-Šmulian’s Theorem and Rosen-

thal’s `1-Theorem.

Lemma 3.3. If X and Y are Banach spaces such that X contains no copy of `1 and Y is

weakly sequentially complete, then every continuous linear operator from X to Y is weakly

compact.

Lemma 3.4. If n > 2 and Pw(nE) is weakly sequentially complete, then E contains no

copy of `1.

Proof. Assume that E contains a copy of `1. In the proof of [14, p.116, Prop. 2.36], there

exist continuous linear operators U : E → L∞[0, 1] and j : L∞[0, 1] → `2 such that the

following diagram commutes:

`1

k

��

i // `2

E
U

// L∞[0, 1]

j

OO

where i is the inclusion of `1 into `2 and k is the inclusion of `1 into E.

Define P and Pk (k > 1) on `2 by

P
(
(xi)i

)
=
∞∑
i=1

xni and Pk
(
(xi)i

)
=

k∑
i=1

xni , ∀ (xi)i ∈ `2.

Then P ∈ P(n`2) and Pk ∈ Pw(n`2). Let Q := P ◦ j ◦ U and Qk := Pk ◦ j ◦ U . We

have Q ∈ P(nE) and Qk ∈ Pw(nE). Note that Q̃ = P ◦ j∗∗ ◦ U∗∗ ∈ P(nE∗∗) and Q̃k =

Pk ◦ j∗∗ ◦ U∗∗ ∈ P(nE∗∗). Also note that limk Pk
(
(xi)i

)
= P

(
(xi)i

)
for every (xi)i ∈ `2.

Thus limk Q̃k(z) = Q̃(z) for every z ∈ E∗∗. It follows that {Qk}∞1 is a weakly Cauchy

sequence in Pw(nE) and hence by Lemma 3.1, Q = weak- limkQk ∈ Pw(nE). However,

Dineen showed in the proof of [14, p.116, Prop. 2.36] that Q /∈ Pw(nE). This contradiction

shows that E can not contain a copy of `1. �

To ensure that the sufficient conditions for the weak sequential completeness of Pw(nE)

in Theorem 3.2 are also necessary, we need the bounded compact approximation property.

Recall that a Banach space X is said to have the compact approximation property (CAP in

short) (see [12, p. 308]) if for every compact subset C of X and for every ε > 0 there is

T ∈ K(X,X) such that ‖T (x)−x‖ 6 ε for all x ∈ C. A Banach space X is said to have the
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bounded compact approximation property (BCAP in short) (see [12, p. 308]) if there exists

λ > 1 so that for every compact subset C of X and for every ε > 0 there is T ∈ K(X,X)

such that ‖T‖ 6 λ and ‖T (x)−x‖ 6 ε for all x ∈ C. Clearly, the (bounded) approximation

property implies the (B)CAP, but the converse is not true (see [27] or see [12, p. 309]).

Theorem 3.5. If E∗ has the BCAP, then Pw(nE) is weakly sequentially complete if and

only if E∗ is weakly sequentially complete and Pw(nE) = P(nE).

Proof. Note that E∗ is isomorphic to a closed subspace of Pw(nE). By Theorem 3.2, we

only need to show the assertion

(*): the weak sequential completeness of Pw(nE) implies that Pw(nE) = P(nE).

It is trivial that the assertion (*) holds for n = 1. Using the induction, we assume that

the assertion (*) holds for n− 1 and we will show that the assertion (*) holds for n, where

n > 2. To do this, we suppose that Pw(nE) is weakly sequentially complete. By [7,

Prop. 5.3] or [8, Prop. 5], P(n−1E) is isomorphic to a (complemented) subspace of P(nE)

and hence, Pw(n−1E) is isomorphic to a (closed) subspace of Pw(nE), which implies that

Pw(n−1E) is also weakly sequentially complete. It follows from the induction hypothesis

that Pw(n−1E) = P(n−1E). Moreover, by Lemma 3.4, E contains no copy of `1 and hence,

Pw(iE) = Pwsc(iE) for all i ∈ N. Next we show that Pw(nE) = P(nE).

Take any P ∈ P(nE). To show that P ∈ Pw(nE) = Pwsc(nE), we only need to show

that limk P (tk) = P (t0) whenever t0, t1, t2, . . . are in E such that limk tk = t0 weakly in E.

Define LP : E → P(n−1E) by

LP (x)(y) = TP (x, y, . . . , y), ∀ x, y ∈ E. (3.4)

Then LP is a continuous linear operator. Since P(n−1E) = Pw(n−1E) is weakly se-

quentially complete, it follows from Lemma 3.3 that LP is weakly compact and hence,

L∗P : P(n−1E)∗ → E∗ is weakly compact. Thus the space L∗P [P(n−1E)∗] is weakly com-

pact generated. By [3, p.43], there is a norm one projection u of L∗P [P(n−1E)∗] onto

a closed separable subspace Y of L∗P [P(n−1E)∗] that contains the closed linear span of

{L∗P
(
θn−1(tk)

)
}∞k=0, where θn−1(tk) = tk ⊗ · · · ⊗ tk ∈ ⊗n−1,sE ⊆ P(n−1E)∗.

Let {yi}∞1 be a dense sequence in Y . Since E∗ has the BCAP, there exist λ > 1 and a

sequence {uk}∞1 of compact linear operators from E∗ to E∗ such that for each k ∈ N,

‖uk‖ 6 λ and ‖uk(yi)− yi‖ <
1
k
, i = 1, . . . , k.
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It follows that limk uk(yi) = yi in E∗ for each i ∈ N. Now for any y ∈ Y and any i, k ∈ N
with i < k,

‖uk(y)− y‖ 6 ‖uk(y)− uk(yi)‖+ ‖uk(yi)− yi‖+ ‖yi − y‖

6 ‖uk(yi)− yi‖+ (λ+ 1)‖yi − y‖,

which implies that

lim
k
uk(y) = y in E∗, ∀ y ∈ Y. (3.5)

Define T, Tk : E × · · · × E → R or C by

T (x1, . . . , xn) =
1
n

n∑
i=1

〈(u ◦ L∗P )
(
δ(xi)

)
, xi〉, ∀ x1, . . . , xn ∈ E

and

Tk(x1, . . . , xn) =
1
n

n∑
i=1

〈(uk ◦ u ◦ L∗P )
(
δ(xi)

)
, xi〉, ∀ x1, . . . , xn ∈ E

respectively, where

δ(xi) := x1 ⊗s · · · ⊗s xi−1 ⊗s xi+1 ⊗s · · · ⊗s xn ∈ ⊗n−1,sE ⊆ P(n−1E)∗.

(In particular, if x1 = · · · = xn = x then δ(x) = θn−1(x).) Then T and Tk are symmetric

n-linear operators and hence, there exist Q,Pk ∈ P(nE) such that

Q(x) = T (x, . . . , x) = 〈(u ◦ L∗P )
(
θn−1(x)

)
, x〉, ∀ x ∈ E (3.6)

and

Pk(x) = Tk(x, . . . , x) = 〈(uk ◦ u ◦ L∗P )
(
θn−1(x)

)
, x〉, ∀ x ∈ E. (3.7)

Next we show that Pk ∈ Pw(nE) for each k ∈ N.

Take x, xi ∈ E for each i ∈ N such that c = sup{‖xi‖ : i ∈ N} < ∞ and limi xi = x

weakly in E. Then for any k, i ∈ N, we have

|Pk(xi)− Pk(x)| = |〈(uk ◦ u ◦ L∗P )
(
θn−1(xi)

)
, xi〉 − 〈(uk ◦ u ◦ L∗P )

(
θn−1(x)

)
, x〉|

= |〈L∗P
(
θn−1(xi)

)
, (uk ◦ u)∗(xi)〉 − 〈L∗P

(
θn−1(x)

)
, (uk ◦ u)∗(x)〉|

= |〈L∗P
(
θn−1(xi)

)
, (uk ◦ u)∗(xi − x)〉

+ 〈L∗P
(
θn−1(xi)− θn−1(x)

)
, (uk ◦ u)∗(x)〉|

6 cn−1 · ‖L∗P ‖ ‖θn−1‖ ‖(uk ◦ u)∗(xi − x)‖

+ |〈θn−1(xi)− θn−1(x), L∗∗P ◦ (uk ◦ u)∗(x)〉|. (3.8)
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Note that (uk ◦ u)∗ is compact and hence, completely continuous. Thus for each k ∈ N, we

have

‖(uk ◦ u)∗(xi − x)‖ → 0, as i→∞. (3.9)

Note that P(n−1E) = Pw(n−1E) = Pwsc(n−1E). Thus θn−1 is sequentially continuous from

the weak topology in E to the weak topology in ⊗̂n−1,s,πE. Note that LP is weakly compact

implies that L∗∗P ◦ (uk ◦ u)∗(x) ∈ P(n−1E) = (⊗̂n−1,s,πE)∗. Thus for each k ∈ N, we have

〈θn−1(xi)− θn−1(x), L∗∗P ◦ (uk ◦ u)∗(x)〉 → 0 as i→∞. (3.10)

Combining (3.8) with (3.9) and (3.10) yields that limi Pk(xi) = Pk(x) and hence, Pk ∈
Pwsc(nE) = Pw(nE) for each k ∈ N.

Now for every z ∈ E∗∗, since θn−1(z) ∈ ⊗n−1,sE
∗∗ ⊆ P(n−1E)∗, it follows from (3.7) that

P̃k(z) = 〈(uk ◦ u ◦ L∗P )∗∗
(
θn−1(z)

)
, z〉 = 〈(uk ◦ u)∗∗ ◦ L∗∗∗P

(
θn−1(z)

)
, z〉

= 〈(uk ◦ u)∗∗ ◦ L∗P
(
θn−1(z)

)
, z〉 = 〈(uk ◦ u ◦ L∗P )

(
θn−1(z)

)
, z〉.

Similarly, it follows from (3.6) that

Q̃(z) = 〈(u ◦ L∗P )
(
θn−1(z)

)
, z〉.

Note that (u ◦ L∗P )
(
θn−1(z)

)
∈ Y . It follows from (3.5) that limk P̃k(z) = Q̃(z) and hence,

{Pk}∞1 is a weakly Cauchy sequence in Pw(nE) by Lemma 3.1. Thus Q = weak-limk Pk ∈
Pw(nE) = Pwsc(nE). Since limk tk = t0 weakly in E, it follows that limkQ(tk) = Q(t0).

By (3.4) and (3.6), for k = 0, 1, 2, . . . , we have

Q(tk) = 〈(u ◦ L∗P )
(
θn−1(tk)

)
, tk〉 = 〈L∗P

(
θn−1(tk)

)
, tk〉

= 〈θn−1(tk), LP (tk)〉 = LP (tk)(tk) = P (tk).

Therefore, limk P (tk) = limkQ(tk) = Q(t0) = P (t0). �

Next we will consider the weak sequential completeness of the space of vector-valued

homogeneous polynomials.

Theorem 3.6. Assume that both E∗ and F are weakly sequentially complete.

(i) If Pw(nE;F ) = PwK(nE;F ), then Pw(nE;F ) is weakly sequentially complete.

(ii) If both E∗ and F have the BCAP, then Pw(nE;F ) is weakly sequentially complete if

and only if Pw(nE;F ) = PwK(nE;F ).

Proof. (i) Suppose that Pw(nE;F ) = PwK(nE;F ). By (2.3) and then by (2.2),

K(⊗̂n,s,πE;F ) =W(⊗̂n,s,πE;F ).
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Moreover, Theorem 3.2 implies that (⊗̂n,s,πE)∗ = P(nE) is weakly sequentially complete.

It follows from [11, Theorem 2.2] that W(⊗̂n,s,πE;F ) is weakly sequentially complete and

then by (2.2), Pw(nE;F ) is weakly sequentially complete.

(ii) We only need to show that the weak sequential completeness of Pw(nE;F ) implies

that Pw(nE;F ) = PwK(nE;F ). In the case that n = 1, the assertion follows from [11,

Theorem 2.3]. Now assume that n > 2. It follows that Pw(nE) is also weakly sequentially

complete. By Lemma 3.4, E contains no copy of `1 and hence, Pw(nE;F ) = Pwsc(nE;F ).

Moreover, Theorem 3.5 implies that P(nE) = Pw(nE) and then Lemma 2.1 implies that

PK(nE;F ) ⊆ Pwsc(nE;F ). Thus we have the following:

Pwsc(nE;F ) = Pw(nE;F ) ⊆ PK(nE;F ) ⊆ Pwsc(nE;F ),

which implies that PK(nE;F ) = Pw(nE;F ) is weakly sequentially complete and hence,

K(⊗̂n,s,πE;F ) is weakly sequentially complete. It follows from [11, Theorem 2.3] that

W(⊗̂n,s,πE;F ) = K(⊗̂n,s,πE;F ) and hence, PwK(nE;F ) = PK(nE;F ) = Pw(nE;F ) as

well. �

Under the hypothesis of the BCAP, in the linear operator case, Theorem 2.3 in [11]

ensures that the weak sequential completeness of L(E;F ) implies that all T in W(E;F )

are in K(E;F ). It is much better in the polynomial case as we will see that the following

corollary ensures that the weak sequential completeness of P(nE;F ) implies that all P in

P(nE;F ) are in Pw(nE;F ).

Corollary 3.7. Assume that n > 2 and that both E∗ and F are weakly sequentially

complete. If both E∗ and F have the BCAP, then Pw(nE;F ) is weakly sequentially complete

if and only if Pw(nE;F ) = P(nE;F ).

Proof. By Theorem 3.6, we only need to show that the weak sequential completeness of

Pw(nE;F ) implies that P(nE;F ) ⊆ PwK(nE;F ). Assume that Pw(nE;F ) is weakly se-

quentially complete. Then Pw(nE) is weakly sequentially complete and by Lemma 3.4, E

contains no copy of `1. Moreover, Theorem 3.5 implies that Pw(nE) = P(nE). It follows

from [9, Corollary 3.9] that ⊗̂n,s,πE contains no copy of `1. Now take any P ∈ P(nE;F ).

By Lemma 3.3, AP ∈ W(⊗̂n,s,πE;F ) and hence, P ∈ PwK(nE;F ). �

Remark 3.8. It was proved in [11, Theorem 2.3] that if either E∗ or F has the BCAP

then the weak sequential completeness of W(E;F ) implies that W(E;F ) = K(E;F ). In

Theorem 3.6 and Corollary 3.7, we may not weaken the condition that both E∗ and F have

the BCAP to the condition that either E∗ or F has the BCAP. Indeed, in the proof of
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Theorem 3.6, we apply [11, Theorem 2.3] to the space W(⊗̂n,s,πE;F ). If F does not have

the BCAP, then we must assume that (⊗̂n,s,πE)∗ = P(nE) have the BCAP. However, the

BCAP is not inherited by P(nE) from E∗ in general. See Remark 5.6 in section 5 below.

4. Reflexivity

Before we present the main result of this section, we need the following lemma, which is

a special case of [17, Corollary 5].

Lemma 4.1[17]. Suppose that E and F are reflexive Banach spaces. Let Pk, P ∈ Pw(nE;F )

for each k ∈ N. Then limk Pk = P weakly in Pw(nE;F ) if and only if limk〈Pk(x), y∗〉 =

〈P (x), y∗〉 for every x ∈ E and every y∗ ∈ F ∗.

Theorem 4.2. If E and F are reflexive, then Pw(nE;F ) is weakly sequentially complete

if and only if Pw(nE;F ) is reflexive.

Proof. It follows from [11, Theorem 2.5] that the theorem holds for n = 1. Using the

induction, we assume that the theorem holds for n− 1 and we will show that the theorem

holds for n, where n > 2.

To do this, we suppose that Pw(nE;F ) is weakly sequentially complete. We want to show

that Pw(nE;F ) is reflexive. It follows from [8, Prop. 5] that P(n−1E;F ) is isomorphic to a

(complemented) subspace of P(nE;F ) and hence, Pw(n−1E;F ) is isomorphic to a subspace

of Pw(nE;F ). Thus Pw(n−1E;F ) is also weakly sequentially complete. By the induction

hypothesis, Pw(n−1E;F ) is reflexive.

To show that Pw(nE;F ) is reflexive, we only need to show that every bounded sequence

in Pw(nE;F ) has a weakly Cauchy subsequence. Take any bounded sequence {Pk}∞1 in

Pw(nE;F ). For each k ∈ N, define d̂n−1Pk : E → P(n−1E;F ), see [14, p.13], by

d̂n−1Pk(x)(y) = TPk
(x, y, . . . , y), ∀ x, y ∈ E.

Then d̂n−1Pk ∈ K(E;P(n−1E;F )) by [14, p.88, Prop. 2.6]. Since Pk ∈ Pw(nE;F ), it follows

that d̂n−1Pk(x) ∈ Pw(n−1E;F ) for every x ∈ E, and hence, d̂n−1Pk ∈ K(E;Pw(n−1E;F )).

Note that E and Pw(n−1E;F ) are reflexive and note that {d̂n−1Pk}∞1 is a bounded sequence

in K(E;Pw(n−1E;F )). It follows from [11, Lemma 2.4] that {d̂n−1Pk}∞1 has a weakly

Cauchy subsequence, without loss of generality, say {d̂n−1Pk}∞1 .

For every x ∈ E and every y∗ ∈ F ∗, define a linear functional φx,y∗ on Pw(n−1E;F )

by φx,y∗(P ) = 〈P (x), y∗〉 for every P ∈ Pw(n−1E;F ). Then φx,y∗ ∈ Pw(n−1E;F )∗.
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Since {d̂n−1Pk}∞1 is a weakly Cauchy sequence in K(E;Pw(n−1E;F )), it follows that the

scalar-valued sequence {〈d̂n−1Pk(x), φx,y∗〉}∞1 is Cauchy. Note that 〈d̂n−1Pk(x), φx,y∗〉 =

〈Pk(x), y∗〉. Thus {〈Pk(x), y∗〉}∞1 is a scalar-valued Cauchy sequence. By Lemma 4.1,

{Pk}∞1 is a weakly Cauchy sequence in Pw(nE;F ). �

Note that if a reflexive Banach space has the CAP then its dual space has the BCAP (see

[16, Corollary 1.6]). Thus Theorems 3.2, 3.5 and 4.2 yield the following corollary, which

was obtained by Mujica and Valdivia in [25].

Corollary 4.3. Assume that E is reflexive.

(i) If Pw(nE) = P(nE), then Pw(nE) is reflexive.

(ii) If E has the CAP, then Pw(nE) is reflexive if and only if Pw(nE) = P(nE).

In the scalar-valued case, Alencar [1] proved that if E is a reflexive Banach space with the

approximation property, then P(nE) is reflexive if and only if P(nE) = Pw(nE). Mujica

and Valdivia [25] improved this result by weakening the hypothesis of the approximation

property of E to the hypothesis of the compact approximation property of E. In the

vector-valued case, Alencar [2] proved that if E and F are reflexive Banach spaces with the

approximation property, then P(nE;F ) is reflexive if and only if P(nE;F ) = Pw(nE;F );

while Jaramillo and Moraes [19] obtained the same conclusion when only E is assumed to

have the approximation property. Moreover, Mujica [24] improved this result by weakening

the hypothesis of the approximation property of E to the hypothesis of the compact ap-

proximation property of E. As a consequence of Theorems 3.6 and 4.2, we rediscover the

Mujica’s result above as the following corollary.

Corollary 4.4. Assume that both E and F are reflexive. (i) If Pw(nE;F ) = P(nE;F ),

then Pw(nE;F ) is reflexive. (ii) If E has the CAP, then Pw(nE;F ) is reflexive if and only

if Pw(nE;F ) = P(nE;F ).

Proof. (i) follows from Theorem 3.6(i) and Theorem 4.2. To prove (ii), suppose that

Pw(nE;F ) is reflexive. By Corollary 4.3(ii), P(nE) = Pw(nE) and then by Proposition

5.5 in the section 5 below, (⊗̂n,s,πE)∗ = P(nE) has the BCAP. Note that in the proof of

Theorem 3.6(ii), we do not need the BCAP of F if (⊗̂n,s,πE)∗ has the BCAP (see Remark

3.8). Thus Theorem 3.6(ii) implies that Pw(nE;F ) = PwK(nE;F ) = P(nE;F ). �

At the end of this section, we give examples of spaces of homogeneous polynomials that

are weakly sequentially complete but not reflexive. It is well known that Pw(nc0) = P(nc0)

for all n ∈ N. By Theorem 3.2, we have one example that P(nc0) is weakly sequentially



12 QINGYING BU, DONGHAI JI, AND NGAI-CHING WONG

complete for all n ∈ N. Moreover, P(nc0) does not contain a copy of `∞. It follows from

[14, p.119, Prop. 2.38] that PK(nc0; `p) = P(nc0; `p) for all 1 6 p < ∞. By Lemma 2.1,

PK(nc0; `p) ⊆ Pwsc(nc0; `p) and hence, Pw(nc0; `p) = Pwsc(nc0; `p) = P(nc0; `p). Thus by

Theorem 3.6(i), we have another example that P(nc0; `p) is weakly sequentially complete

for all n ∈ N and all 1 6 p <∞.

5. BCAP and CAP for Projective Tensor Products

For Banach spaces X and Y , let BX denote the closed unit ball of X and X⊗̂πY denote

the projective tensor product of X and Y . For a subset C of X and a subset D of Y , let

C ⊗D := {x⊗ y : x ∈ C, y ∈ D}. It is easy to see that if C and D are relatively compact

subsets of X and Y respectively, then C ⊗D is a relatively compact subset of X⊗̂πY . The

converse is the following lemma due to Grothendieck [18].

Lemma 5.1. If A is a compact subset of X⊗̂πY , then there are a compact subset C of X

and a compact subset D of Y such that A ⊆ co(C ⊗D).

The following proposition was proved in [10]. We give a proof here for completeness.

Proposition 5.2. If X and Y have the CAP (resp. BCAP), then X⊗̂πY has the CAP

(resp. BCAP).

Proof. Take any compact subset A of X⊗̂πY and any ε > 0. By Lemma 5.1, there are a

compact subset C of X and a compact subset D of Y such that A ⊆ co(C ⊗D). Let

c1 = sup{‖x‖ : x ∈ C} and c2 = sup{‖y‖ : y ∈ D}.

Suppose X,Y have the CAP. Then there exist compact operators T : X → X and

S : Y → Y such that

‖T (x)− x‖ 6 ε

4c2
, ∀ x ∈ C,

and

‖S(y)− y‖ 6 ε

4‖T‖c1
, ∀ y ∈ D.

Thus for every x⊗ y ∈ C ⊗D, we have

‖(T ⊗ S)(x⊗ y)− (x⊗ y)‖ = ‖T (x)⊗ S(y)− x⊗ y‖

6 ‖T (x)⊗ (S(y)− y)‖+ ‖(T (x)− x)⊗ y‖

6 ‖T‖c1 ·
ε

4‖T‖c1
+ c2 ·

ε

4c2
=
ε

2
.
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Now for every u ∈ A ⊆ co(C ⊗D), there is v ∈ co(C ⊗D) such that

‖u− v‖ 6 ε

2(1 + ‖T‖‖S‖)
.

Write v =
∑n
i=1 ti(xi ⊗ yi), where xi ⊗ yi ∈ C ⊗D and

∑n
i=1 |ti| 6 1. Then

‖(T ⊗ S)(v)− v‖ 6
n∑
i=1

|ti| · ‖(T ⊗ S)(xi ⊗ yi)− (xi ⊗ yi)‖ 6
ε

2
,

which implies that

‖(T ⊗ S)(u)− u‖ 6 ‖(T ⊗ S)(u− v)‖+ ‖(T ⊗ S)(v)− v‖+ ‖v − u‖

6 (‖T‖ · ‖S‖+ 1) · ‖u− v‖+
ε

2
6 ε.

Clearly, T ⊗ S is compact with ‖T ⊗ S‖ 6 ‖T‖ · ‖S‖.
If both X,Y have the BCAP, then we can further assume that ‖T‖ 6 λ1, ‖S‖ 6 λ2, and

thus ‖T ⊗ S‖ 6 λ1λ2 for two universal constants λ1, λ2, independent of A, C, and D. The

proof is complete. �

For Banach spaces X1, X2, . . . , Xn, let X1⊗̂πX2⊗̂π · · · ⊗̂πXn denote the projective tensor

product of X1, X2, . . . , Xn. Note that X1⊗̂πX2⊗̂π · · · ⊗̂πXn = X1⊗̂π(X2⊗̂π · · · ⊗̂πXn). By

Proposition 5.2 and using the induction, we have the following proposition.

Proposition 5.3. If X1, . . . , Xn have the BCAP (resp. CAP), then X1⊗̂π · · · ⊗̂πXn has

the BCAP (resp. CAP).

In particular, if X1 = · · · = Xn = E, let ⊗̂n,πE := X1⊗̂π · · · ⊗̂πXn. Note that ⊗̂n,s,πE is

isomorphic to a complemented subspace of ⊗̂n,πE (see [14, p. 21]). Thus Proposition 5.3

yields the following proposition.

Proposition 5.4. If a Banach space E has the BCAP (resp. CAP), then both ⊗̂n,πE and

⊗̂n,s,πE have the BCAP (resp. CAP).

Proposition 5.5. If E is a reflexive Banach space with the CAP and if P(nE) = Pw(nE),

then P(nE) has the BCAP.

Proof. By Proposition 5.4, ⊗̂n,s,πE has the CAP. Since E is reflexive and P(nE) = Pw(nE),

Corollary 4.3 implies that P(nE) and hence, ⊗̂n,s,πE is reflexive. Note that if a reflexive

Banach space has the CAP then its dual space has the BCAP (see [16, Corollary 1.6]).

Thus P(nE) has the BCAP. �

Remark 5.6. (i) Note that in the proof of Proposition 5.2, if T : X → X and S : Y → Y

are finite rank operators, then T ⊗ S is also finite rank. Thus we have all same results
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of Propositions 5.2–5.5 for the approximation property and the bounded approximation

property. It is worthwhile to mention that Mujica in [23, Corollary 5.5 and Corollary 5.8]

proved that if a Banach space E has the (bounded) approximation property then ⊗̂n,s,πE
has the (bounded) approximation property.

(ii) Aron and Schottenloher in [7, Prop. 5.2] constructed a reflexive Banach space E with

a basis such that P(2E) does not have the approximation property. Actually, P(2E) does

not have the CAP, either. The explanation is as follows.

Johnson [20] constructed a Banach space C1 such that for every separable Banach space

Y , its dual space Y ∗ is isometric to a norm one complemented subspace of C∗1 (also see

[12, p. 280]). Note that each `p (1 6 p < 2) contains a closed subspace without the CAP

(see [21, p. 107]). Thus C∗1 does not have the CAP. Aron and Schottenloher in [7, Prop.

5.2] constructed a reflexive Banach space E with a basis such that C∗1 is a complemented

subspace of P(2E). Therefore, P(2E) does not have the CAP.

(iii) Aron and Schottenloher’s counter-example tells us that the BCAP (or CAP) is

not inherited by P(nE) in general. However, it is inherited by P(nE) in some special

circumstances (see Proposition 5.5). For instance, it is well known that Pw(nT ) = P(nT )

for all n ∈ N, where T is the original Tsirelson space. By Proposition 5.5, we have one

example that P(nT ) has the BCAP for every n ∈ N. We have another example that P(n`1)

has the BCAP for every n ∈ N since P(n`1) is isomorphic to `∞ by [7, Prop. 5.1].
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