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Abstract. We study perturbations of a hybrid steepest descent method for locating common fixed points of

an arbitrary pool {Tλ} of nonexpansive mappings. The difficulty of handling a possibly uncountable family is

settled down to dealing with a countable family of auxiliary mappings {Sn} associated to {Tλ}, in the sense
that the approximate fixed points of {Sn} provide the common fixed points of {Tλ}. Algorithms with strong

convergence for solving the associated variational inequality problems are presented. Applications to convex

minimization problems and convex feasibility problems are provided, together with numerical examples for
comparisons of our algorithms with the existing ones.

1. Introduction

The convex minimization problem [3,16,18,26] of a differentiable convex function ψ subject to a closed convex
set C of a (real) Hilbert space H assumes the form:

find x∗ ∈ C such that ψ(x∗) = min{ψ(x) : x ∈ C}. (1.1)

It can be casted into the variational inequality problem:

find u ∈ C such that 〈∇ψ(u), z − u〉 ≥ 0 for all z ∈ C,

where ∇ψ : H → H is the gradient of ψ. In general, for a nonlinear mapping F : H → H, the variational
inequality problem (in short, VIP) over a nonempty closed convex subset C of H is:

find u ∈ C such that 〈F (u), z − u〉 ≥ 0 for all z ∈ C. (1.2)

The problem (1.2) is denoted by VIPC(F,H). VIP is a popular research subject recently. See, e.g., [30].

It is well known that if F is η-strongly monotone and L−Lipschitz continuous, then for µ ∈ (0, 2η/L2), the
mapping PC(I − µF ) is a contraction of H onto C, and hence VIPC(F,H) has a unique solution x∗ ∈ C, and
the projection gradient method :

xn+1 = PC(I − µF )xn, n ∈ N,
converges strongly to x∗ (see [42, Theorem 46.C]).

The computation of the metric projection PC of H onto C is not necessarily easy. To overcome this difficulty,
when C = Fix(T ) is the nonempty fixed point set of a nonexpansive mapping T : H → H, Yamada introduced
in [41, Theorem 3.3, p. 486] the following hybrid steepest descent method for solving VIPFix(T )(F,H):

xn+1 = (I − αnµF )Txn, n ∈ N, (1.3)

where {αn} is a sequence in (0, 1]. Yamada proved that the sequence {xn} defined by (1.3) converges strongly
to a unique solution of VIPFix(T )(F,H).
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In the case when

C =

N⋂
i=1

Fix(Ti) = Fix(T1T2 · · · TN ) = Fix(TNT1 · · · TN−1) = · · · = Fix(T2T3···TNT1)

for a finite family {T1, T2, · · ·, TN} of nonexpansive mappings, Yamada [41] studied the strong convergence of
the following algorithm:

xn+1 = (I − αnµF )T[n+1]xn, n ∈ N.
Here, T[r] = TrmodN for r ∈ N, and the sequence {αn} satisfies the conditions:

αn → 0,

∞∑
n=1

αn = +∞, and (αn − αn+1)/α2
n+1 → 0.

With a different set of assumptions, Xu and Kim established similar results in [40]. On the other hand, using
an idea of Kuhfittig [23], Atsushiba and Takahashi [35] introduced W -mappings for computing common fixed
points of a finite family of nonexpansive mappings. For other references and procedures for the finite case, one
can read [25,36].

The case when C =
⋂∞
n=1 Fix(Tn) is the nonempty common fixed point set of a countably infinite family

{Tn} of nonexpansive mappings is also interesting. Auxiliary mappings Sn are constructed, for example, as the
convex combinations of Tn and the identity mapping I of H. Such auxiliary mappings play important roles in
locating points in

⋂∞
n=1 Fix(Tn). See, e.g., [6,43]. A natural question aries for constructing such sequences {Sn}

of auxiliary mappings for a possibly uncountable family T = {Tλ : λ ∈ Λ}.
In this paper, we investigate an inexact hybrid steepest descent-like method for solving the following general

variational inequality problem:

find u ∈
⋂
λ∈Λ

Fix(Tλ) such that 〈F (u), z − u〉 ≥ 0 for all z ∈
⋂
t∈Λ

Fix(Tλ). (1.4)

Here all Tλ are nonexpansive mappings such that C =
⋂
λ∈Λ Fix(Tλ) is nonempty. Noticing that we might

not be able to write the constrained set C as a countable intersection of closed convex sets. For example, if
T = {Tt : t ∈ [0,+∞)} is a semigroup of nonexpansive mappings, then

⋂
t≥0 Fix(Tt) might not reduce to a

countable intersection. In many applications, the family T is even not necessarily a semigroup, e.g., the family
of resolvents of a maximal monotone operator (see [28, 29, 31]). To respond to these difficulties, we develop
a novel hybrid steepest descent-like method for computing the unique solution of the variational inequality
problem (1.4). To the best of our knowledge, it is among the first inexact algorithm to tackle the case where
the constrained set is not necessarily a countable intersection of fixed point sets of nonexpansive mappings.

Consider the quotient Banach space H(∞) := `∞(H)/c0(H). The Hilbert space H embeds into H(∞) as the
subspace arising from strong convergent sequences, i.e.,

H = {[hn] ∈ H(∞) : hn → h in norm for some h in H.}

By abusing notation, we write h = [hn] if {hn} converges to h strongly in H. We also write h ≈ [hn] (resp.
h ≈w [hn]) if there is a subsequence {hnk} converges to h strongly (resp. weakly). Any closed convex subset C
of H embeds into H(∞) as a closed convex subset C(∞) in a similar way.

For any nonexpansive mapping T : C → H, the power map T (∞) : C(∞) → H(∞) sends [hn] to [Thn].
In general, if {Sn} is a sequence of mappings from C into H such that {Snxn} is bounded whenever {xn} is
bounded, and ‖Snhn−Snkn‖ → 0 whenever ‖hn− kn‖ → 0, then the product map [Sn] : C(∞) → H(∞) sending
[hn] to [Snhn] is well-defined.

We will associate the family {Tλ} an auxiliary sequence {Sn} of mappings on C such that the product map
[Sn] : C(∞) → H(∞) is well-defined. Our proposed algorithms will produce a bounded sequence {xn} in C such
that ‖Snxn − xn‖ → 0. It amounts to saying that [Sn][xn] = [xn], i.e., [xn] is a fixed point of the product map
[Sn] in C(∞).
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Our first technical assumption, the so-called Property (A ) (see [28]), says that every fixed point of [Sn] is a

fixed point of the power map T
(∞)
λ for each λ. In other words,

Fix([Sn]) ⊆
⋂
λ

Fix(T
(∞)
λ ).

Since Tλ is continuous, any strong cluster point h of {hn} with ‖Tλhn − hn‖ → 0, will be a fixed point of Tλ.
Hence, Property (A ) ensures that

h ≈ [hn] ∈ Fix([Sn]) =⇒ h ∈
⋂
λ

Fix(Tλ).

In general, the bounded sequence {xn} will have weak sequential cluster points z instead. Our second technical
assumption, the so-called demiclosedness principle (see [2,9]), says that all maps I − Tλ are demiclosed at zero;
namely, if hn converges to h weakly and ‖Tλhn−hn‖ → 0, then Tλh = h. Together with Property (A ), we have

h ≈w [hn] ∈ Fix([Sn]) =⇒ h ∈
⋂
λ

Fix(Tλ).

We refer this as the demiclosedness of the family {I − Tλ} with respect to the sequence {I − Sn}.
There are several important applications we can verify that both Property (A ) and the demiclosedness

principle hold, and thus our algorithms apply. We will also implement some mild assumptions to ensure that
{xn} converges strongly to the unique solution we are looking for.

In Section 2, we summarize some known concepts and results. In Section 3, we present Property (A )
and the demiclosedness principle. In Section 4, a general hybrid steepest descent-like method generated by
nearly nonexpansive mappings is presented. We complete our task of locating common fixed points of a family
of arbitrary many mappings in Section 5. In particular, an analysis on the stability under perturbations of
our projection methods for solving convex feasibility problems is provided. Finally, applications to convex
optimization problems are presented in Section 6, together with several numerical examples, which compare the
convergent rates of our proposed algorithms with the established ones in literature.

2. Preliminaries

Throughout this paper, the underlying field is the real numbers R. Let C be a nonempty subset of a Banach
space X and T : C → X a mapping. Denote by

Fix(T ) = {x ∈ C : Tx = x}
the fixed point set of T . For a finite constant L ≥ 0, we call T an L-Lipschitz mapping if

‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C.
An L-Lipschitz mapping T is called nonexpansive if L = 1, and a contraction if L < 1. The fixed point set
Fix(T ) of a nonexpansive mapping T : C → C is closed and convex when C is a closed convex subset of a
strictly convex Banach space, and it is nonempty when C is a bounded closed convex subset of a uniformly
convex Banach space (see, e.g., [21, Lemma 3.4 and Theorem 7.2]).

Let H be a Hilbert space with inner product 〈·, ·〉 and identity operator I. Let C be a nonempty closed and
convex subset of H. We use PC to denote the metric projection from H onto C; namely, PC(x) is the unique
point in C such that

‖x− PC(x)‖ = d(x,C) := inf{‖x− z‖ : z ∈ C}.
See [1] for the properties of metric projections. We say that a nonlinear operator T : C → H is

(i) firmly nonexpansive if 〈Tx− Ty, x− y〉 ≥ ‖Tx− Ty‖2 for all x, y ∈ C;
(ii) α-averaged, for a constant α ∈ (0, 1), if there exists a nonexpansive mapping S : C → H such that

T = (1− α)I + αS;
(iii) η-strongly monotone, for a constant η > 0, if

〈Tx− Ty, x− y〉 ≥ η‖x− y‖2, ∀x, y ∈ C;
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(iv) β-inverse strongly monotone, for a constant β > 0, if

〈Tx− Ty, x− y〉 ≥ β‖Tx− Ty‖2, ∀x, y ∈ C.

Remark 2.1. Every firmly nonexpansive mapping is a 1/2-averaged mapping. For a mapping T : C → C, one
has

• T is η-strongly monotone if and only if T−1 is 1
η -inverse strongly monotone,

• T is nonexpansive if and only if I − T is 1
2 -inverse strongly monotone, and

• T is α-averaged if and only if I − T is 1
2α -inverse strongly monotone.

Moreover, if T is β-inverse strongly monotone and γ > 0, then γT is β
γ -inverse strongly monotone. On the other

hand, if T is L-Lipschitz and η-strongly monotone then T is η/L2-inverse strongly monotone. See, e.g., [39].

Lemma 2.2 (see [41]). Let H be a Hilbert space and F : H → H an η-strongly monotone and L−Lipschitz
continuous mapping. Then, for each λ ∈ (0, 1) and fixed µ ∈ (0, 2η/L2), the mapping I − λµF is a contraction

with Lipschitz constant 1− τλ, where τ =
√

1− µ(2η − µL2).

Lemma 2.3 (see [38, Proposition 6.1] and [4]). Let C be a nonempty closed convex subset of a strictly convex
Banach space X. Assume {wi} is a finite or a countable sequence of positive scalars summing up to 1, and
assume all Ti : C → C are nonexpansive mappings with nonempty common fixed point set

⋂
i Fix(Ti). Let

T =
∑
i wiTi. Then T is nonexpansive from C into itself, and Fix(T ) =

⋂
i Fix(Ti).

Lemma 2.4 (Bruck [5]). Let C be a nonempty closed convex bounded subset of a uniformly convex Banach
space X and T : C → C a nonexpansive mapping. Define

Tn =
1

n
(I + T + T 2 + · · ·+ Tn−1), n ∈ N. (2.1)

Then limn→∞(supx∈C ‖Tnx− TTnx‖) = 0.

Lemma 2.5 (see [32]). Let C be a nonempty closed convex bounded subset of a Hilbert space H and let S, T :
C → C be nonexpansive mappings such that ST = TS. For each n ∈ N, define

Rnx =
1

n(n+ 1)

n−1∑
k=0

∑
i+j=k

SiT jx, x ∈ C.

Then limn→∞(supx∈C ‖Rnx− TRnx‖) = 0 and limn→∞(supx∈C ‖Rnx− SRnx‖) = 0.

Lemma 2.6 (see [13, 27, 33]). Let C be a nonempty closed convex subset of a uniformly convex Banach space
X, and D a closed convex bounded subset of C. Let F = {Ts : s ∈ R+} be a strongly continuous semigroup of
nonexpansive mappings from C into itself with

⋂
s>0 Fix(Ts) 6= ∅. Define σh : C → C by

σh(x) :=
1

h

∫ h

0

Tsx ds, for all x ∈ C and h > 0. (2.2)

Then limt→+∞ supx∈D ‖σt(x)− Thσt(x)‖ = 0 for all h > 0.

Lemma 2.7 (see [34]). Let {xn} and {zn} be bounded sequences in a Banach space X and let {βn} be a sequence
in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Set

xn+1 = (1− βn)xn + βnzn, ∀n ∈ N.

Suppose lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Then limn→∞ ‖zn − xn‖ = 0.

Lemma 2.8 (see [24]). Let all an ≥ 0, cn ≥ 0, bn ∈ R, and αn ∈ (0, 1] such that
∑∞
n=1 cn < +∞. Suppose that

an+1 ≤ (1− αn)an + bn + cn, ∀n ∈ N.
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(a) If K := lim supn→∞(bn/αn) < +∞, then

an+1 ≤ δna1 + (1− δn)K +

n∑
j=1

cj , ∀n ∈ N,

where δn = Πn
j=1(1− αj), and hence {an} is bounded.

(b) If lim supn→∞(bn/αn) ≤ 0 and
∑∞
n=1 αn = +∞ then {an}∞n=1 converges to zero.

3. Property (A ) and demiclosedness principle

3.1. Powers of Banach spaces and mappings. Let X be a Banach space. Let

`∞(X) = {(xn) : xn ∈ X,n = 1, 2, . . . , with sup
n
‖xn‖ < +∞},

and

c0(X) = {(xn) : xn ∈ X,n = 1, 2, . . . , with lim
n→∞

‖xn‖ = 0}.

The power space of X is defined to be the Banach quotient space

X(∞) = `∞(X)/c0(X),

equipped with the norm ‖[xn]‖ = lim supn→∞ ‖xn‖.
Two elements [xn], [yn] in X(∞) coincide exactly when limn→∞ ‖xn − yn‖ = 0. Elements x in X can be

identified with any [xn] in X(∞) with limn→∞ ‖xn − x‖ = 0. In this setting, we write x = [xn]. In the case
when there is a subsequence {xnk} converges to some x strongly or weakly, we write x ≈ [xn] or x ≈w [xn]
accordingly.

If C is a nonempty subset of X, then we write C(∞) for the subset of X(∞) consisting of elements [xn] such that
all xn ∈ C. If T : C → X is a nonexpansive mapping, then we can define the power map T (∞) : C(∞) → X(∞)

of T by T (∞)([xn]) = [Txn] for all [xn] in X(∞).

Following [28], we say that a sequence {Tn} of mappings from C into X is nearly nonexpansive with respect
to a positive null sequence {an} if

‖Tnx− Tny‖ ≤ ‖x− y‖+ an, ∀x, y ∈ C,∀n ∈ N.

Suppose, in addition, there is a point z in C such that {Tnz} is bounded. Then {Tnxn} is bounded whenever
{xn} is bounded. Moreover,

‖Tnxn − Tnyn‖ ≤ ‖xn − yn‖+ an → 0, as n→∞,
whenever ‖xn − yn‖ → 0. In other words,

[xn] = [yn] in C(∞) =⇒ [Tnxn] = [Tnyn] in X(∞).

Therefore, we can define the product map [Tn] : C(∞) → X(∞) by [Tn]([xn]) = [Tnxn].

Let {xn} be a bounded approximate fixed point sequence of T in C, i.e., limn→∞ ‖Txn−xn‖ = 0. It amounts
to saying that [xn] is the fixed point of the power map T (∞) in C(∞). Similarly, if limn→∞ ‖Tnxn − xn‖ = 0,
then [Tn]([xn]) = [Tnxn] = [xn]; namely, [xn] is a fixed point of the product map [Tn] in C(∞). For the power
map T (∞) and all x, xn ∈ C, we also have

x ≈ [xn] ∈ Fix(T (∞)) =⇒ x ∈ Fix(T ).

Let C be a nonempty subset of a Banach space X. Let E be a nonempty subset of C and let S, T : C → X
be mappings. Following [30], we define the deviation between S and T on E by

DE(S, T ) = sup{‖Sx− Tx‖ : x ∈ E}.
In [37], the notions of boundedly uniform convergence and boundedly uniform sequential convergence of a
sequence of mappings on Banach spaces are introduced.
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Definition 3.1. Let T, Tn be mappings from a nonempty subset C into a Banach space X for n ∈ N. We say
that

(i) {Tn} boundedly uniformly converges to T if limn→∞DB(Tn, T ) = 0 for each bounded subset B of C,
(ii) {Tn} boundedly uniformly sequentially converges to T if limn→∞ ‖Tnxn − Txn‖ = 0 for each bounded

sequence {xn} in C.

Proposition 3.2. Let C be a nonempty subset of a Banach space X. Let T, Tn : C → X be mappings for
n ∈ N. The following are equivalent to each other.

(a) {Tn} boundedly uniformly converges to T .
(b) {Tn} boundedly uniformly sequentially converges to T .

If, in addition, the power map T (∞) and the product map [Tn] are both well-defined from C(∞) into X(∞), then
they are also equivalent to

(c) T (∞) = [Tn].

Proof. The implications (a) =⇒ (b) ⇐⇒ (c) are plain. Suppose now that {Tn} boundedly uniformly sequen-
tially converges to T , but {Tn} does not uniformly converges to T on some bounded subset B of C. Therefore,
there is an ε > 0, an increasing sequence 1 ≤ n1 < n2 < · · · < nk < · · · of indices, and a sequence {xk} from
the bounded set B such that ‖Tnkxk − Txk‖ > ε. Fix any x0 in C and construct a bounded sequence {yn}
from C by setting ynk = xnk for k = 1, 2, . . . and ym = x0 elsewhere. Therefore, T (∞)([yn]) 6= [Tn]([yn]) as
‖Tnyn − Tyn‖ does not converge to zero. �

3.2. Property (A ). Property (A ) plays a key role in the study of common fixed points of a family of mappings
(see [14,28,29,31]).

Definition 3.3 (see [28]). Let C be a nonempty subset of a Banach space X. Let T = {Tλ : λ ∈ Λ} be a family
of mappings from C into X and let {Sn} be a sequence of mappings from C into X. We say that the family T
has property (A ) with respect to the sequence {Sn} if the following holds: for any bounded sequence {xn} in C
we have

lim
n→∞

‖xn − Snxn‖ = 0 =⇒ lim
n→∞

‖xn − Tλxn‖ = 0, ∀λ ∈ Λ. (3.1)

In Definition 3.3, if the power maps T
(∞)
λ and the product map [Sn] are all well-defined from C(∞) into X(∞),

then condition (3.1) can be restated as

Fix([Sn]) ⊆
⋂
λ∈Λ

Fix(T
(∞)
λ ). (3.2)

Example 3.4. (a) In Lemma 2.4, T and all Tn are nonexpansive, and have a common fixed point. The conclusion
can be stated as

T (∞)[Tn] = [Tn].

It follows that

Fix([Tn]) ⊆ Fix(T (∞)).

Thus every nonexpansive mapping T : C → C has property (A ) with respect to the sequence {Tn} defined
by (2.1).

(b) In Lemma 2.5, S, T and all Rn are nonexpansive, and have a common fixed point. The conclusions read

S(∞)[Rn] = [Rn] and T (∞)[Rn] = [Rn].

Therefore,

Fix([Rn]) ⊆ Fix(S(∞)) and Fix([Rn]) ⊆ Fix(T (∞)).

Consequently, the commuting family {S, T} of nonexpansive mappings has property (A ) with respect to
the sequence {Rn}.
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We provide here some more examples.

Definition 3.5 (see [31]). Let C be a nonempty subset of a Banach space X. Let S denote an unbounded
subset of R+ := [0,+∞). Let T = {Ts : s ∈ S} be a family of mappings from C into itself. The family T is
said to be uniformly asymptotically regular on C if

lim
s∈S,s→+∞

(sup
x∈C̃
‖Tsx− ThTsx‖) = 0 for all h ∈ S and all bounded subset C̃ of C.

Example 3.6. Let C be a nonempty subset of a Banach space X. Let T = {Tt : t ∈ R+} be a uniformly
asymptotically regular nonexpansive semigroup on C with a common fixed point. Let {tn} be a sequence in
(0,+∞) such that limn→∞ tn = +∞. Then T has property (A ) with respect to the sequence {Ttn}.

Proof. With Proposition 3.2 we see that

T
(∞)
t [Ttn ] = [Ttn ], ∀t ∈ R+.

It follows that
Fix([Ttn ]) ⊆ Fix(T

(∞)
t ), ∀t ∈ R+.

The assertion follows. �

Example 3.7. Let C be a nonempty closed convex subset of a uniformly convex Banach space X and F = {Ts :
s ∈ R+} a strongly continuous semigroup of nonexpansive mappings from C into itself with

⋂
s>0 Fix(Ts) 6= ∅.

For h > 0, define σh : C → C by (2.2) and let {tn} be a sequence in (0,+∞) such that limn→∞ tn = +∞. Then
the semigroup F has property (A ) with respect to the sequence {σtn}.

Proof. From Lemma 2.6, we have

T
(∞)
t [σtn ] = [σtn ],

and thus
Fix([σtn ]) ⊆ Fix(T

(∞)
t ), ∀t > 0.

The assertion follows. �

3.3. Demiclosedness principle. We write xn → x and xn ⇀ x to indicate the strong and the weak conver-
gence of a sequence {xn} to x in a Banach space, respectively. Let C be a nonempty weakly closed subset of a
Banach space X with the identity operator I. A mapping T : C → X is called demiclosed at 0 if

Txn → 0 and xn ⇀ x =⇒ Tx = 0. (3.3)

Lemma 3.8 (see [21, Theorem 10.4]). Let C be a nonempty closed convex subset of a uniformly convex Banach
space X. If T : C → X is a nonexpansive mapping, then I − T is demiclosed at 0.

Recall that a Banach space X is said to have the Opial condition if for any weak convergent sequence xn ⇀ x
in X, we have

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y 6= x.

We underline that lim sup in this definition can be replaced by lim inf, and also that every Hilbert space satisfies
the Opial condition, see, e.g., [1]. Note that the uniform convexity and the Opial condition are independent
(see, e.g., [21, p. 107]). The following supplements Lemma 3.8. For a proof, see, e.g., [21, Theorem 10.3].

Lemma 3.9. Let X be a Banach space satisfying the Opial condition, let C be a nonempty weakly closed subset
of X, and let T : C → X a nonexpansive mapping. Then I − T is demiclosed at 0.

We note that both Lemmas 3.8 and 3.9 ensure that Tx = x if x is only a weak sequential cluster point of
{xn} in condition (3.3). Thus we have

x ≈w [xn] ∈ Fix(T (∞)) =⇒ x ∈ Fix(T ). (3.4)

Motivated by Cegielski [9], and Aoyama, Kimura, and Kohsaka [2], we present the following relative demi-
closedness for two families of mappings.
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Definition 3.10. Let C be a nonempty weakly closed subset of a Banach space X. Let {Tλ : λ ∈ Λ} and
{Sn : n ∈ N} be two families of mappings from C into X. We say that {I − Tλ} is demiclosed at zero with
respect to {I − Sn} if

(I − Sn)xn → 0 and for some subsequence xnk ⇀ x =⇒ (I − Tλ)x = 0 for all λ ∈ Λ. (3.5)

Proposition 3.11. Let C be a nonempty weakly closed subset of a Banach space X. Let T = {Tλ : λ ∈ Λ} and
{Sn : n ∈ N} be two families of mappings from C into X. Assume that

• T has property (A ) with respect to {Sn}, and
• I − Tλ is demiclosed at 0 for each λ ∈ Λ.

Then the family {I − Tλ} is demiclosed at zero with respect to {I − Sn}.

Proof. Suppose that {xn} is a sequence in C such that ‖xn − Snxn‖ → 0. Assume a subsequence xnk ⇀ x for
some x ∈ X. By the property (A ) assumption, we have limn→∞ ‖xn − Tλxn‖ = 0, and thus limk→∞ ‖xnk −
Tλxnk‖ = 0 for all λ ∈ Λ. Then the demiclosedness assumption on I−Tλ ensures that (I−Tλ)x = 0. Therefore,
x ∈ Fix(T ). �

Again, if the product map [Sn] is well-defined on C(∞), then the condition (3.5) in Definition 3.10 can be
stated as

x ≈w [xn] ∈ Fix([Sn]) =⇒ x ∈
⋂
λ∈Λ

Fix(Tλ). (3.6)

It is then plain that Proposition 3.11 follows from (3.2) and (3.4).

Combining Example 3.7 and Lemma 3.8, we obtain

Proposition 3.12. Let C be a nonempty closed convex subset of a uniformly convex Banach space X. Let
F = {Ts : s ∈ R+} be a strongly continuous semigroup of nonexpansive mappings from C into itself with⋂
s>0 Fix(Ts) 6= ∅. For h > 0, define σh : C → C by (2.2) and let {tn} be a sequence in (0,+∞) such that

limn→∞ tn = +∞. Then the family {I − Ts : s ∈ R+} is demiclosed at zero with respect to {I − σtn}.

Proposition 3.13. Let X be a strictly convex Banach space satisfying the Opial condition. Let C be a nonempty
closed convex subset of X and {Ti}Ni=1 a finite family of nonexpansive mappings from C into itself such that⋂N
i= Fix(Ti) 6= ∅. For i ∈ {1, 2, · · · , N}, let wi ∈ (0, 1) such that

∑N
i=1 wi = 1 and let {S̃n,i} be a sequence of

mappings from C into itself satisfying the following assumption:

(A0) limn→∞ ‖S̃n,i(zn)− Ti(zn)‖ = 0 for every bounded sequence {zn} in C.

Define S̃n =
∑N
i=1 wiS̃n,i for all n ∈ N. Then the family {I − Ti}Ni=1 is demiclosed at zero with respect to

{I − S̃n}.

Proof. Define S =
∑N
i=1 wiTi. Note that S is nonexpansive and Fix(S) =

⋂N
i=1 Fix(Ti) by Lemma 2.3. Suppose

that {zn} is a sequence in C such that zn − S̃n(zn)→ 0. One can see, from the assumption (A0), that

‖S̃n(zn)− S(zn)‖ ≤
N∑
i=1

wi‖S̃n,i(zn)− Ti(zn)‖ → 0 as n→∞.

Hence ‖zn − S(zn)‖ → 0 as n→∞. It follows from Lemma 3.9 that I − S is demiclosed at 0. Consequently,

z ∈ Fix(S) =

N⋂
i=1

Fix(Ti)

for every weak sequential cluster point z of {zn}. �

The following technical result will be used when we discuss the convergence of our algorithms.
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Theorem 3.14. Let C be a nonempty closed convex subset of a strictly convex Banach X. Let {wn} be a
summable sequence in (0,+∞) with w =

∑∞
n=1 wn. Let {Tn} be a sequence of nonexpansive mappings from C

into itself with
⋂∞
n=1 Fix(Tn) 6= ∅. Define Sn : C → C by

Sn =
1

w1 + w2 + · · ·+ wn
(w1T1 + w2T2 + · · ·+ wnTn), n ∈ N. (3.7)

Then the following hold.

(a)
⋂∞
n=1 Fix(Sn) =

⋂∞
n=1 Fix(Tn).

(b) For each x ∈ C, and p ∈
⋂∞
n=1 Fix(Tn), we have

‖Sn+1(x)− Sn(x)‖ ≤ 2
wn+1

w1
(‖x− p‖+ ‖p‖), (3.8)

and thus {Sn(x)} converges strongly to

S(x) := lim
n→∞

Sn(x) =
1

w

∞∑
i=1

wiTi(x). (3.9)

(c) The mapping S : C → C is a nonexpansive mapping with Fix(S) =
⋂∞
n=1 Fix(Sn).

(d) {Sn} boundedly uniformly converges to S; namely, [Sn] = S(∞) on C(∞).

Proof. (a) Clearly, we have
⋂∞
n=1 Fix(Tn) ⊆

⋂∞
n=1 Fix(Sn). By Lemma 2.3, we have Fix(Sn) =

⋂n
k=1 Fix(Tk) for all n ∈

N. Thus,
⋂∞
n=1 Fix(Sn) ⊆

⋂∞
n=1 Fix(Tn).

(b) Let x ∈ C and p ∈
⋂∞
n=1 Fix(Tn). Consider the partial sums tn =

∑n
i=1 wi. We have∥∥∥∥∥

n∑
i=1

wiTi(x)

∥∥∥∥∥ =

n∑
i=1

wi ‖Ti(x)− p+ p‖ ≤ tn(‖x− p‖+ ‖p‖)

and
‖Tn+1(x)‖ ≤ ‖Tn+1(x)− p‖+ ‖p‖ ≤ ‖x− p‖+ ‖p‖ .

Hence

‖Sn+1(x)− Sn(x)‖ =

∥∥∥∥∥ 1

tn+1

(
n∑
i=1

wiTi(x) + wn+1Tn+1(x)

)
− 1

tn

n∑
i=1

wiTi(x)

∥∥∥∥∥
≤

∣∣∣∣ 1

tn+1
− 1

tn

∣∣∣∣
∥∥∥∥∥
n∑
i=1

wiTi(x)

∥∥∥∥∥+
wn+1

tn+1
‖Tn+1(x)‖

≤
∣∣∣∣ 1

tn+1
− 1

tn

∣∣∣∣ tn(‖x− p‖+ ‖p‖) +
wn+1

tn+1
(‖x− p‖+ ‖p‖)

= 2
wn+1

w1
(‖x− p‖+ ‖p‖).

It follows that
∑∞
n=1 ‖Sn+1x − Snx‖ < +∞. Therefore, Sn(x) converges strongly to an element S(x) in C.

Clearly, S(x) = 1
w

∑∞
i=1 wiTi(x), x ∈ C.

(c) The assertion follows from Lemma 2.3.

(d) Let B be a bounded set in C. Then, for x ∈ B, we have

‖Sn(x)− S(x)‖ =

∥∥∥∥∥
(

1

tn
− 1

w

) n∑
i=1

wiTix−
∞∑

i=n+1

wi
w
Tix

∥∥∥∥∥
≤

(
1

tn
− 1

w

) n∑
i=1

wi‖Tix‖+
1

w

∞∑
i=n+1

wi‖Tix‖

≤
(

1

tn
− 1

w

) n∑
i=1

wiR+
1

w

∞∑
i=n+1

wiR = 2
w − tn
w

R
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for some constant R > 0. Thus, limn→∞DB(Sn, S) = 0. �

Proposition 3.15. Let X be a strictly convex Banach space satisfying the Opial condition. Let C be a nonempty
closed convex subset of X and {Tn} a sequence of nonexpansive mappings from C into itself with

⋂∞
n=1 Fix(Tn)

6= ∅. Let {wn} be a summable sequence in (0,+∞). Let {Sn} be a sequence of mappings from C into itself as

defined by (3.7). Let {S̃n} be a sequence of mappings from C into itself such that the following assumption
holds:

(A0
′
) limn→∞ ‖S̃n(zn)− Sn(zn)‖ = 0 for all bounded sequence {zn} in C.

Then the family {I − Tm} is demiclosed at zero with respect to {I − S̃n}.

Proof. Let tn :=
∑n
i=1 wi → w :=

∑∞
n=1 wn < +∞. Suppose that {zn} is a bounded sequence in C such that

zn − S̃n(zn) → 0 and znk ⇀ z ∈ C for a subsequence {znk}. Define S by (3.9). Note that S is nonexpansive
and Fix(S) =

⋂∞
m=1 Fix(Tm) by Theorem 3.14(c). We now show that z ∈ Fix(S). Theorem 3.14(d) shows that

{Sn} boundedly uniformly converges to S. Thus, from the assumption (A0
′
), we have

‖S̃n(zn)− S(zn)‖ ≤ ‖S̃n(zn)− Sn(zn)‖+ ‖Sn(zn)− S(zn)‖ → 0 as n→∞.

Since zn − S̃n(zn) → 0, which implies that ‖zn − S(zn)‖ → 0 as n → ∞. Therefore, from Lemma 3.9, we see
that z ∈ Fix(S). �

4. A hybrid steepest descent-like method and its properties

Let D be a nonempty closed convex subset of a real Hilbert H and let F : H → H be an η-strongly
monotone and L-Lipschitz continuous operator. It follows from [42, Theorem 46.C] that the variational inequality
problem VIPD(F,H) has a unique solution x∗ ∈ D. In the following, we assume that µ ∈ (0, 2η/L2) and τ is a
constant given in Lemma 2.2. We introduce a general hybrid steepest descent-like method involving a nearly

nonexpansive sequence {S̃n} with respect to a positive null sequence {an} for locating the unique solution
x∗ ∈ D of VIPD(F,H).

Algorithm 4.1 (Hybrid steepest descent-like method).

Initialization: Select an arbitrary starting points x1 ∈ H.
Iterative step: Given the current iterate xn, calculate the next iterate as follows:{

yn = θnxn + (1− θn)S̃n(xn),
xn+1 = (I − αnµF )yn for all n ∈ N;

(4.1)

where {αn} and {θn} are sequences in (0, 1].

Note that the constrained set D is arbitrary and the mappings S̃n involved in Algorithm 4.1 are not necessarily
continuous. Therefore, many iterative algorithms can be derived from Algorithm 4.1 due to its generality. We
consider the following assumptions:

(A1) limn→∞ αn = 0 and
∑∞
n=1 αn = +∞;

(A2) 0 < a ≤ θn ≤ b < 1 for all n ∈ N;

(A3∗) limn→∞
‖S̃n(x∗)−x∗‖+an

αn
= 0, and thus ‖S̃n(x∗)−x∗‖+an

αn
≤ K

for some constant K > 0 and for all n ∈ N.

Some basic properties of iterates of Algorithm 4.1 are presented below.

Proposition 4.2. Let {xn} be generated by (4.1). Assume (A1), (A2) and (A3 ∗) hold.

(a) {xn} is bounded with the following estimate:

‖xn+1 − x∗‖ ≤ max{‖x1 − x∗‖, (µ‖F (x∗)‖+K)/τ} for all n ∈ N. (4.2)
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In particular, {xn} is in the closed ball Br[x
∗] := {x ∈ H : ‖x− x∗‖ ≤ r} and {yn} is in the closed ball

Br+K [x∗], where

max{‖x1 − x∗‖, (µ‖F (x∗)‖+K)/τ} ≤ r < +∞.
(b) Suppose, in addition, that

(A4) ‖S̃n+1(xn)− S̃n(xn)‖ → 0.

Then ‖xn+1 − xn‖ → 0 and ‖xn − S̃n(xn)‖ → 0 as n→∞.

Proof. (a) Observe that

‖yn − x∗‖ ≤ θn‖xn − x∗‖+ (1− θn)‖S̃n(xn)− x∗‖
≤ θn‖xn − x∗‖+ (1− θn)(‖S̃n(xn)− S̃n(x∗)‖+ ‖S̃n(x∗)− x∗‖)
≤ ‖xn − x∗‖+ ‖S̃n(x∗)− x∗‖+ an. (4.3)

From Lemma 2.2 and (4.3), we have

‖xn+1 − x∗‖ = ‖yn − αnµF (yn)− [x∗ − αnµF (x∗)] + [x∗ − αnµF (x∗)]− x∗‖
≤ (1− αnτ)‖yn − x∗‖+ αnµ‖F (x∗)‖
≤ (1− αnτ)(‖xn − x∗‖+ ‖S̃n(x∗)− x∗‖+ an) + αnµ‖F (x∗)‖
≤ (1− αnτ)‖xn − x∗‖+ ‖S̃n(x∗)− x∗‖+ αnµ‖F (x∗)‖+ an

≤ (1− αnτ)‖xn − x∗‖+ αnτ

(
µ

τ
‖F (x∗)‖+

‖S̃n(x∗)− x∗‖+ an
αnτ

)
≤ max {‖xn − x∗‖, (µ‖F (x∗)‖+K)/τ}
≤ max {‖x1 − x∗‖, (µ‖F (x∗)‖+K)/τ} ≤ r.

From (4.3), we also have

‖yn − x∗‖ ≤ ‖xn − x∗‖+ αnK ≤ r +K for all n ∈ N.

(b) Set

zn = S̃n(xn)− 1

1− θn
αnµF (yn).

From (4.1), we have

xn+1 = θnxn + (1− θn)zn.

Note that

zn+1 − zn = S̃n+1(xn+1)− S̃n(xn) +
αn

1− θn
µF (yn)− αn+1

1− θn+1
µF (yn+1)

= S̃n+1(xn+1)− S̃n+1(xn) + S̃n+1(xn)− S̃n(xn)

+
αn

1− θn
µF (yn)− αn+1

1− θn+1
µF (yn+1).

Hence

‖zn+1 − zn‖ ≤ ‖S̃n+1(xn+1)− S̃n+1(xn)‖+ ‖S̃n+1(xn)− S̃n(xn)‖

+
αn

1− θn
µ‖F (yn)‖+

αn+1

1− θn+1
‖µF (yn+1)‖

≤ ‖xn+1 − xn‖+ ‖S̃n+1(xn)− S̃n(xn)‖+ an+1

+
αn

1− θn
µ‖F (yn)‖+

αn+1

1− θn+1
‖µF (yn+1)‖.
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Since αn → 0, {yn} is bounded, F is Lipschitz continuous, and ‖S̃n+1(xn)− S̃n(xn)‖ → 0, we obtain from (A2)
that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

From Lemma 2.7, it follows that

lim
n→∞

‖xn − zn‖ = 0. (4.4)

From (4.1) and (4.4), we have

‖xn+1 − yn‖ = αnµ‖F (yn)‖ → 0

and

‖xn+1 − xn‖ = (1− θn)‖zn − xn‖ → 0, as n→∞.

It follows that limn→∞ ‖xn − yn‖ = 0. Therefore,

(1− b)‖xn − S̃n(xn)‖ ≤ (1− θn)‖xn − S̃n(xn)‖ = ‖xn − yn‖ → 0 as n→∞.
�

Under the stated assumptions, Proposition 4.2 shows that the orbit {xn} in H generated by x1 and defined

by (4.1) is an approximating fixed point sequence of the nearly nonexpansive sequence {S̃n}; namely,

[S̃n][xn] = [xn] in D(∞).

5. Convergence of the Algorithm

Theorem 5.1. Let T = {Tλ : λ ∈ Λ} be a family of mappings from H into itself such that Fix(T ) is nonempty,
closed and convex. Let F : H → H be an η-strongly monotone and L-Lipschitz continuous operator such that

VIPFix(T )(F,H) has a unique solution x∗. Let {S̃n} be a nearly nonexpansive sequence of mappings from H
into itself with respect to a positive null sequence {an}. Let {xn} be the orbit in H generated by x1 ∈ H and
defined by (4.1). Assume that (A1), (A2) together with the following assumption (A3) hold.

(A3) limn→∞
‖S̃n(z)−z‖+an

αn
= 0; and thus ‖S̃n(z)−z‖+an

αn
≤ K

for some constant K ≥ 0, and for all z ∈ Fix(T ) and n ∈ N.

Then the following hold.

(a) {xn} is bounded with the estimate given by (4.2).

(b) If {I − Tλ : λ ∈ Λ} is demiclosed at zero with respect to {I − S̃n} and the assumption (A4) holds, then
{xn} converges strongly to x∗ with the following error estimate:

‖xn+1 − x∗‖2 ≤ (1− αnτ)‖xn − x∗‖2 + µ2α2
n‖F (x∗)‖2 + 2rLµ2α2

n ‖F (x∗)‖
+2µαn〈F (x∗), x∗ − yn〉 for all n ∈ N, (5.1)

where max
{
‖x1 − x∗‖, µτ ‖F (x∗)‖+ K

τ

}
≤ r < +∞.

Proof. (a) It follows from Proposition 4.2(a).

(b) From the assumption (A4) and Proposition 4.2(b), we have ‖xn − S̃n(xn)‖ → 0. Below, we show that
xn → x∗ as n→∞.

Assume that there exists a subsequence {ynk}∞k=1 of {yn}∞n=1 such that

lim sup
n→∞

〈F (x∗), x∗ − yn〉 = lim
k→∞

〈F (x∗), x∗ − ynk〉.

Since {xn} is bounded, without loss of generality, we can assume that {xnk} converges weakly to z ∈ H. Since

{I − Tλ : λ ∈ Λ} is demiclosed at zero with respect to {I − S̃n}, by (3.6) we have z ∈ Fix(T ). Observe that
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x∗ ∈ Fix(T ) is the unique solution of the variational inequality problem VIPFix(T )(F,H) and ‖xn − yn‖ → 0.
Hence

lim sup
n→∞

〈F (x∗), x∗ − yn〉 = 〈F (x∗), x∗ − z〉 ≤ 0. (5.2)

From (4.3) and the assumption (A3), we obtain

‖yn − x∗‖2 ≤ (‖xn − x∗‖+ ‖S̃n(x∗)− x∗‖+ an)2

≤ ‖xn − x∗‖2 + 2(‖S̃n(x∗)− x∗‖+ an)‖xn − x∗‖+ (‖S̃n(x∗)− x∗‖+ an)2

≤ ‖xn − x∗‖2 + 2r(‖S̃n(x∗)− x∗‖+ an) + αnK(‖S̃n(x∗)− x∗‖+ an)

≤ ‖xn − x∗‖2 + (2r +K)(‖S̃n(x∗)− x∗‖+ an).

As in Proposition 4.2(a), we see that ‖yn − x∗‖ ≤ r +K. Since F is L-Lipschitz,

‖F (yn)− F (x∗)‖ ≤ L‖yn − x∗‖ ≤ L(r +K).

In virtue of (4.1) and Lemma 2.2, we have

‖xn+1 − x∗‖2 = ‖(I − αnµF)(yn)− (I − αnµF )(x∗)− αnµF (x∗)‖2

= ‖(I − αnµF)(yn)− (I − αnµF )(x∗)‖2 + α2
nµ

2‖F (x∗)‖2

+2αnµ〈F (x∗), (I − αnµF)(x∗)− (I − αnµF)(yn)〉
≤ (1− αnτ)‖yn − x∗‖2 + α2

nµ
2‖F (x∗)‖2

+2µαn〈F (x∗), x∗ − yn〉+ 2µ2α2
n‖F (yn)− F (x∗)‖ ‖F (x∗)‖

≤ (1− αnτ)(‖xn − x∗‖2 + (2r +K)(‖S̃n(x∗)− x∗‖+ an)) + α2
nµ

2‖F (x∗)‖2

+2µαn〈F (x∗), x∗ − yn〉+ 2µ2α2
n‖F (yn)− F (x∗)‖ ‖F (x∗)‖

≤ (1− αnτ)‖xn − x∗‖2 + (2r +K)(‖S̃n(x∗)− x∗‖+ an)

+α2
nµ

2‖F (x∗)‖2 + 2L(r +K)µ2α2
n ‖F (x∗)‖+ 2αnµ〈F (x∗), x∗ − yn〉.

Note that ‖S̃n(x∗)−x∗‖+an
αn

→ 0. Hence, by (5.2) and Lemma 2.8, we conclude that xn → x∗ as n→∞. �

Theorem 5.1 is a general result in nature. Many significant real-world problems are modeled as a general
convex feasibility problem:

find a point x∗ ∈
⋂
λ∈Λ

Cλ,

where {Ct : λ ∈ Λ} is a collection of nonempty closed convex subsets of a real Hilbert space H. Projection
methods are effective iterative techniques for solving the general convex feasibility problem (see [3,8,12,15,19]).
In [17], Combettes studied the weak convergence of the approximate parallel projection method (APPM):

xn+1 = (1− λn)xn + λn(w1Sn,1 + w2Sn,2 + · · ·+ wNSn,N )(xn) for all n ∈ N, (5.3)

where Sn,i(x) = PCi(x) + en,i. We note that en,i stands for the error made in computing the metric projection
PCi at the nth iteration. Later, Dan et. al. [7] studied the convergence of the following projection method for
solving a convex feasibility problem in Rd:

xn+1 = (1− λn)xn + λn

N∑
i=1

wiPCi(xn + βnvn) for all n ∈ N.

In fact, this is just a special case of the amalgamated projection method studied in [7]. They proved that the
algorithms converge to solutions of a consistent convex feasibility problem, and that their convergence is stable
under summable perturbations. On the other hand, Flam [20] studied the weak convergence of the following
algorithm:

xn+1 ∈ Tnxn + βnB1[0] for all n ∈ N, (5.4)
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where all Tn are nonexpansive self-mappings on H having a common fixed point, and the (nonnegative) error
bounds βn are summable.

Theorem 5.2. Let T = {Ti}Ni=1 be a finite family of nonexpansive mappings from H into itself such that

Fix(T ) =
⋂N
i=1 Fix(Ti) 6= ∅. Let F : H → H be an η-strongly monotone and L-Lipschitz continuous operator

such that VIPFix(T )(F,H) has a unique solution x∗. For i ∈ {1, 2, · · ·, N}, let wi ∈ (0, 1) such that
∑N
i=1 wi = 1,

and let {S̃n,i} be a sequence of mappings from H into itself such that {S̃n,i} is nearly nonexpansive with respect
to a positive null sequence {an,i}, and the assumption (A0) holds. Let {xn} be the orbit in H generated by
x1 ∈ H and defined by{

yn = θnxn + (1− θn)(w1S̃n,1 + w2S̃n,2 + · · ·+ wN S̃n,N )(xn),
xn+1 = (I − αnµF )yn, for all n ∈ N,

where {αn} and {θn} are sequences in (0, 1] satisfying (A1), (A2) and

(A3′) limn→∞
‖S̃n,i(z)−z‖+an,i

αn
= 0; and thus

‖S̃n,i(z)−z‖+an,i
αn

≤ K

for some constant K ≥ 0, and for all z ∈
⋂N
j=1 Fix(Tj), i ∈ {1, 2, · · · , N}, and n ∈ N.

Then the following hold.

(a) {xn} is bounded with the estimate given by (4.2).
(b) {xn} converges strongly to x∗ with the error estimate (5.1).

Proof. (a) Define S̃n = w1S̃n,1 + w2S̃n,2 + · · · + wN S̃n,N . Then {S̃n} is nearly nonexpansive with respect to

{an}, where an =
∑N
i=1 an,iwi. For z ∈

⋂N
i=1 Fix(Ti), we have

1

αn
(‖S̃n(z)− z‖+ an) ≤ 1

αn

N∑
i=1

wi(‖S̃n,i(z)− z‖+ an,i) ≤ K.

Hence, from the assumption (A3′), we have 1
αn

(‖S̃n(z)−z‖+an)→ 0. Thus, assumption (A3) holds. Therefore,

part (a) follows from Proposition 4.2(a).

(b) In order to apply Theorem 5.1(b), we show that

(i) the assumption (A4) holds,

(ii) the family {I − Ti}Ni=1 is demiclosed at zero with respect to {I − S̃n}.

From the assumption (A0), we have

‖S̃n+1,i(xn)− S̃n,i(xn)‖ ≤ ‖S̃n+1,i(xn)− Ti(xn)‖+ ‖Ti(xn)− S̃n,i(xn)‖ → 0 as n→∞

for all i ∈ {1, 2, · · ·, N}. Hence,

‖S̃n+1(xn)− S̃n(xn)‖ ≤
N∑
i=1

wi‖S̃n+1,i(xn)− S̃n,i(xn)‖ → 0 as n→∞.

Thus, the assumption (A4) holds.

Since the Hilbert space H is strictly convex and satisfies the Opial condition, Proposition 3.13 implies that

the finite family {I − Ti}Ni=1 is demiclosed at zero with respect to {I − S̃n}. Therefore, the assertion follows
from Theorem 5.1(b). �

Theorem 5.3. Let T = {Tn} be a sequence of nonexpansive mappings from a Hilbert space H into itself such
that Fix(T ) 6= ∅. Let F : H → H be an η-strongly monotone and L−Lipschitz continuous operator such that
VIPFix(T )(F,H)) has a unique solution x∗. Let {wn} be a summable sequence in (0,+∞). Let {Sn} be a

sequence of mappings from H into itself defined by (3.7). Let {S̃n} be a sequence of mappings from H into itself

such that {S̃n} is nearly nonexpansive with respect to a positive null sequence {an} and the assumption (A0′)
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holds. Let {xn} be the orbit in H generated by x1 ∈ H defined by (4.1). Assume that the assumptions (A1),
(A2) and (A3) hold. Then we have

(a) {xn} is bounded with the estimate given by (4.2);
(b) {xn} converges strongly to x∗ with the error estimate (5.1).

Proof. Part (a) follows from Proposition 4.2(a).

For part (b), from (3.8) we have

‖S̃n+1(xn)− S̃n(xn)‖ ≤ ‖S̃n+1(xn)− Sn+1(xn)‖+ ‖Sn+1(xn)− Sn(xn)‖+ ‖Sn(xn)− S̃n(xn)‖

≤ ‖S̃n+1(xn)− Sn+1(xn)‖+ 2
wn+1

w1
(‖xn − x∗‖+ ‖x∗‖) + ‖Sn(xn)− S̃n(xn)‖.

Since wn → 0, it follows from the assumption (A0
′
) that ‖S̃n+1(xn)− S̃n(xn)‖ → 0. Thus, the assumption (A4)

holds.

Finally, since the Hilbert space H is strictly convex and satisfies the Opial condition, Proposition 3.15 shows

that the finite family {I − Tn} is demiclosed at zero with respect to {I − S̃n}. Therefore, the assertion follows
from Theorem 5.1(b). �

Corollary 5.4. Let T : H → H be a nonexpansive mapping such that Fix(T ) 6= ∅ and let F : H → H be
an η-strongly monotone and L-Lipschitz continuous operator such that VIPFix(T )(F,H) has a unique solution

x∗. Let {S̃n} be a sequence of nonexpansive mappings from H into itself such that {S̃n} boundedly uniformly
sequentially converges to T . Let {xn} be the orbit in H generated by x1 ∈ H and defined by{

yn = θnxn + (1− θn)S̃n(xn),
xn+1 = (I − αnµF )yn, for all n ∈ N, (5.5)

where {αn} and {θn} are sequences in (0, 1] satisfying the assumptions (A1), (A2) and

(A3′′) limn→∞
‖S̃n(z)−z‖

αn
= 0; and thus ‖S̃n(z)−z‖

αn
≤ K

for some constant K ≥ 0, and for all z ∈ Fix(T ) and n ∈ N.

Then the following hold:

(a) {xn} is bounded with the estimate given by (4.2).
(b) {xn} converges strongly to x∗ with the error estimate (5.1).

The proof of the following proposition is straightforward.

Proposition 5.5. Let T : H → H be a nonexpansive mapping such that Fix(T ) 6= ∅. Let {βn} be a sequence in
R+ with

∑∞
n=1 βn < +∞ and {vn} a bounded sequence in H with ‖vn‖ ≤M < +∞ for all n ∈ N. Define

S̃n(x) = T (x+ βnvn), ∀x ∈ H,∀n ∈ N. (5.6)

Then the following hold:

(a) All S̃n are nonexpansive mappings.
(b) For x ∈ H, we have

‖S̃nx− Tx‖ = ‖T (x+ βnvn)− Tx‖ ≤Mβn, for all n ∈ N.

(c) {S̃n} uniformly converges to T on H.

Theorem 5.6. Let T : H → H be a nonexpansive mapping such that Fix(T ) 6= ∅, and let F : H → H be an
η-strongly monotone and L-Lipschitz continuous operator such that VIPFix(T )(F,H) has a unique solution x∗.
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Let {βn} be a sequence in (0,+∞) and {vn} a bounded sequence in H with ‖vn‖ ≤M < +∞ for all n ∈ N. Let
{xn} be the orbit in H generated by x1 ∈ H and defined by{

yn = θnxn + (1− θn)T (xn + βnvn),

xn+1 = (I − αnµF )yn, for all n ∈ N,

where {αn} and {θn} are sequences in (0, 1] satisfying the assumptions (A1) and (A2). Assume that limn→∞
βn
αn

=

0, and thus βn
αn
M ≤ K for some constant K > 0 and all n ∈ N. Then the following hold.

(a) {xn} is bounded with the estimate given by (4.2).
(b) {xn} converges strongly to x∗ with the error estimate (5.1).

Proof. Let {S̃n} be a sequence of nonexpansive mappings from H into itself defined by (5.6). For z ∈ Fix(T ),
from Proposition 5.5(b), we have

‖S̃nz − z‖
αn

≤ βn
αn

M, for all n ∈ N.

Hence, limn→∞
‖S̃n(z)−z‖

αn
= 0. Thus, the condition (A3′′) of Corollary 5.4 holds, and the assertions follow. �

Remark 5.7. (i) Our perturbation technique in Theorem 5.6 is slightly different from Lopez, Martin and Xu [22].

(ii) In Corollary 5.4, if the sequence {S̃n} is defined by S̃n(x) = Tx + un, where {un} is a sequence in H,

then the condition (A3′′) reduces to limn→∞
‖un‖
αn

= 0 and the iteration process (5.5) reduces to

xn+1 = (I − αnµF )(Txn + un) for all n ∈ N.

Corollary 5.8. Let T be an α-averaged nonexpansive mapping from H into itself such that Fix(T ) 6= ∅. Let
F : H → H be an η-strongly monotone and L-Lipschitz continuous operator such that VIPFix(T )(F,H) has a
unique solution x∗. Let {xn} be the orbit in H generated by x1 ∈ H and defined by

xn+1 = (I − αnµF )T (xn) for all n ∈ N,

where {αn} is a sequence in (0, 1] satisfying the assumption (A1). Then the following hold:

(a) {xn} is bounded with the following estimate:

‖xn+1 − x∗‖ ≤ r := max{‖x1 − x∗‖,
µ

τ
‖F (x∗)‖} for all n ∈ N. (5.7)

(b) {xn} converges strongly to x∗ with the following error estimate:

‖xn+1 − x∗‖2 ≤ (1− αnτ)‖xn − x∗‖2 + µ2α2
n‖F (x∗)‖2 + 2rLµ2α2

n ‖F (x∗)‖
+2µαn〈F (x∗), x∗ − yn〉 for all n ∈ N. (5.8)

Buong and Duong [6] introduced the following explicit iterative algorithm for solving (1.4) when T = {Ti}Ni=1:

xn+1 = (I − β0
n)xn + β0

n(I − αnµF )TnNT
n
N−1 · · · Tn1 (xn), for all n ∈ N, (5.9)

where Tni = (1−βin)I+βinTi, β
i
n ∈ (α, β) ⊂ (0, 1) for i ∈ {1, 2, · · ·, N}, and {αn} is a sequence in (0, 1) satisfying

the conditions:

αn → 0,

∞∑
n=1

αn = +∞ and |βin − βin+1| → 0, ∀i = 1, 2, . . . , N.

Later, Zhou and Wang [43] proved a strong convergence theorem for an explicit iterative method seemingly
simpler than (5.9), defined by

xn+1 = (I − αnµF )TnNT
n
N−1 · · · Tn1 (xn), for all n ∈ N. (5.10)

An immediate consequence of Theorem 5.2 is the following:
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Corollary 5.9. Let T = {Ti}Ni=1 be a finite family of nonexpansive mappings from H into itself such that

Fix(T ) =
⋂N
i=1 Fix(Ti) 6= ∅. Let F : H → H be an η-strongly monotone and L-Lipschitz continuous operator

such that VIPFix(T )(F,H) has a unique solution x∗. Let wi ∈ (0, 1) such that
∑N
i=1 wi = 1. Let {en,i} be a

sequence in H and let {Sn,i} be a sequence of mappings from H into itself defined by Sn,i(x) = Tix+en,i, x ∈ H,
for i = 1, 2, . . . , N . Let {xn} be the orbit in H generated by x1 ∈ H and defined by{

yn = (1− θn)xn + θn
∑N
i=1 wiSn,i(xn),

xn+1 = (I − αnµF )yn, ∀n ∈ N,
where {αn} and {θn} are sequences in (0, 1] satisfying the assumptions (A1) and (A2), and that limn→∞ ‖en,i‖/αn =
0 for i = 1, 2, . . . , N . Then {xn} converges strongly to x∗.

Theorem 5.10. Let T = {Ti}Ni=1 be a finite family of firmly nonexpansive mappings from H into itself such that

Fix(T ) =
⋂N
i=1 Fix(Ti) 6= ∅. Let F : H → H be an η-strongly monotone and L-Lipschitz continuous operator

such that VIPFix(T )(F,H) has a unique solution x∗. Let wi ∈ (0, 1) such that
∑N
i=1 wi = 1. Let {xn} be the

orbit in H generated by x1 ∈ H and defined by

xn+1 = (I − αnµF )

N∑
i=1

wiTi(xn) for all n ∈ N, (5.11)

where {αn} is a sequence in (0, 1] satisfying the assumption (A1). Then the following hold:

(a) {xn} is bounded with the estimate given by (5.7).
(b) {xn} converges strongly to x∗ with the error estimate (5.8).

Proof. Note that each Ti is firmly nonexpansive. By Remark 2.1, there exists a nonexpansive mapping Gi :
H → H such that Ti = 1

2 (I + Gi), and hence Fix(Ti) = Fix(Gi) for i ∈ {1, 2, · · ·, N}. For x ∈ H, we have∑N
i=1 wiTi(x) = 1

2x+ 1
2

∑N
i=1 wiGi(x). Hence (5.11) reduces to{

yn = 1
2xn + 1

2

∑N
i=1 wiS̃n,i(xn),

xn+1 = (I − αnµF )yn for all n ∈ N,

where S̃n,i = Gi. Observe that (A0) and (A3′) holds. Hence the assertion follows from Theorem 5.2. �

Theorem 5.11. Let T = {Tn} be a sequence of firmly nonexpansive mappings from H into itself such that
Fix(T ) 6= ∅. Let F : H → H be an η-strongly monotone and L−Lipschitz continuous operator such that
VIPFix(T )(F,H) has a unique solution x∗. Let {wn} be a summable sequence in (0,+∞). Let {Sn} be a
sequence of mappings from H into itself defined by (3.7). Let {xn} be the orbit in H generated by x1 ∈ H and
defined by

xn+1 = (I − αnµF )Sn(xn), for all n ∈ N, (5.12)

where {αn} is a sequence in (0, 1] satisfying the assumption (A1). Then the following hold:

(a) {xn} is bounded with the following estimate:

‖xn+1 − x∗‖ ≤ r := max{‖x1 − x∗‖,
µ

τ
‖F (x∗)‖} for all n ∈ N.

(b) {xn} converges strongly to x∗ with the following error estimate:

‖xn+1 − x∗‖2 ≤ (1− αnτ)‖xn − x∗‖2 + µ2α2
n‖F (x∗)‖2 + 2rLµ2α2

n ‖F (x∗)‖
+2µαn〈F (x∗), x∗ − yn〉 for all n ∈ N.

Proof. As in Theorem 5.10, there exists a nonexpansive mapping Gn : H → H such that Tn = 1
2 (I + Gn) for

each n ∈ N. Hence Sn(x) = 1
2x+ 1

2

∑n
i=1 wiGi(x) for x ∈ H and n ∈ N. Thus, (5.12) reduces to{

yn = 1
2xn + 1

2

∑n
i=1 wiGi(xn),

xn+1 = (I − αnµF )yn, for all n ∈ N.
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The assertion follows from Theorem 5.3. �

Remark 5.12. (i) Our algorithms (5.11) and (5.12) are based on the simple convex combinations.
(ii) Algorithm (5.11) has strong convergence in an infinite dimensional Hilbert space, while the realistic approx-
imate parallel projection method (5.3) has weak convergence for PCi ’s under some different assumptions.

(iii) Theorem 5.11 guarantees the strong convergence of (5.12) to a common fixed point of the family T =
{Tn} of firmly nonexpansive mappings, while Flam’s method (5.4) has weak convergence under some different
assumptions.

6. Applications and numerical examples

To demonstrate the effectiveness, performance, and convergence of algorithms (5.11) and (5.12), we discuss
convex feasibly problems and multi-set split feasibility problems.

6.1. Convex feasibly problems.

Problem 6.1. Consider the following optimization problem:

find x∗ ∈ C =
⋂
λ∈Λ

Cλ such that ψ(x∗) = min{ψ(x) : x ∈ C}, (6.1)

where ψ : Rd → R is a differentiable convex function and Cλ is a nonempty closed convex set in Rd for each
λ ∈ Λ.

Problem 6.1 can be casted into the variational inequality problem over C =
⋂
λ∈Λ Cλ :

find u ∈ C such that 〈∇ψ(u), z − u〉 ≥ 0 for all z ∈ C,

where ∇ψ : Rd → Rd is the gradient of ψ. If ψ is strongly convex, then our algorithms can be applied by setting
Tλ = PCλ for all λ ∈ Λ. For Λ = {1, 2..., N}, starting from x1 ∈ Rd, Algorithm (5.11) reads{

yn = (w1PC1
+ w2PC2

+ · · ·+ wNPCN )(xn),

xn+1 = (I − αnµF )yn, ∀n ∈ N.
(6.2)

Example 6.2. Consider d = 2,

C1 = {(u, v) : −3 ≤ u ≤ 3;−1 ≤ v ≤ 1},
C2 = {(u, v) : −1 ≤ u ≤ 1;−2 ≤ v ≤ 2}, and

C = C1 ∩ C2 = {(u, v) : −1 ≤ u, v ≤ 1}.

Consider the map F (x) = ψ′(x), where ψ(x) = ‖x‖2/2. One can see that F is 1-Lipschitz continuous and 1-
strongly monotone. Algorithm (5.11) requires us to choose µ ∈ (0, 2). Theorem 5.10 guarantees that Algorithm
(6.2) with an initial point x1 ∈ Rd converges to the solution of Problem 6.1 with Λ = {1, 2}. Set w1 = w2 = 1/2
and αn := 1/(n+ 1)a, where a ∈ (0, 1].

(1) For the initial point x1 = (1,−3) and a = 1, Figure 1 shows that ψ(xn) for n = 1, 2, . . . , 10000 given
in Algorithm (6.2) has faster convergence when µ = 1.8 than the case when µ = 0.6, 0.75, or 1.2. We
observe that Algorithm (6.2) has faster convergence to the minimum value 0 when µ = 0.75, a = 0.8
than the case when µ = 0.75, a = 0.2, 0.4, or 0.6.
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Figure 1. Plots of the values of the objective function ψ(xn) (n = 1, 2, . . . , 10000) in Example 6.2
when µ = 0.6, 0.75, 1.2, 1.8, a = 1.

(2) Comparison of the convergence rates among Algorithm (5.9) of Buong and Duong [6], Algorithm (5.10)
of Zhou and Wang [43] and our Algorithm (6.2) are shown in Figure 2, where we plot ψ(xn) for
n = 1, 2, . . . , 1000, µ = 0.75 and a = 1.
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ψ(x
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Figure 2. Plots of ψ(xn) (n = 1, 2, . . . , 100) given by Algorithm (5.9) of Buong and Duong [6],
Algorithm (5.10) of Zhou and Wang [43], and our Algorithm (6.2) in Example 6.2.

(3) With different choices of the initial point x1, Figure 3 plots the values of ψ(xn) for n = 1, 2, . . . , 1000,
generated in Algorithms (5.9), (5.10) and (6.2), when µ = 0.75. It shows that Algorithm (6.2) is more
stable than the other two for different choices of x1.
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Figure 3. The stability of Algorithm (5.9) of Buong and Duong [6], Algorithm (5.10) of Zhou and
Wang [43], and our Algorithm (6.2), with respect to the initial value x1 in Example 6.2.

We consider next the mathematical programming problem (1.1) with Λ = N. Starting from x1 ∈ Rd,
Algorithm 5.12 takes the form:

{
yn = 1

tn
(w1PC1

+ w2PC2
+ · · ·+ wnPCn)(xn),

xn+1 = (I − αnµF )yn, for all n ∈ N.
(6.3)

Example 6.3. We consider the case d = 2,

Ci = B1[ai] with ai = (1 + 1/i, 0) ∈ R2, i ∈ N.

Consider the objective function ψ : R2 → R defined by

ψ(x) = (u− 1)2 + (v − 2)2, ∀x = (u, v) ∈ R2.

Here, F (x) = (2u− 2, 2v − 4) ∈ R2 for x = (u, v) ∈ R2.

One can see that F is 2-Lipschitz continuous and 2-strongly monotone. Therefore, for µ ∈ (0, 1), Theorem
5.11 guarantees that Algorithm (6.3) with an initial point x1 ∈ Rd converges to the solution of Problem 6.1.
Set wi := 1/2i for i ∈ N and αn := 1/(n + 2). With the starting point x1 = (3, 3), the computational
results of Algorithm (6.3) are presented in Figure 4, which plots the value of ψ(xn) (n = 1, 2, ..., 3000) when
µ = 1/10, 1/30, 1/60, respectively.
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Figure 4. Plots of ψ(xn) (n = 1, 2, ..., 3000) in Example 6.3 when αn = 1/(n + 2) and µ =
1/10, 1/30, 1/60.

Example 6.4. We consider the case d = 64. Consider the map

F (x) = ψ′(x), where ψ(x) = ‖x‖2/2.
The mapping F is 1-Lipschitz continuous and 1-strongly monotone. Let

C1 = B1[0] and C2 = {x ∈ R64 : ‖x− (1, 1, 0 . . . , 0)‖ ≤ 1}.
To perform the exact computation of PC1∩C2

is not easy, and hence the implementation of (1.3) with T = PC1∩C2

is not easy. However, for µ ∈ (0, 2), the parallel Algorithm (6.2) can be applied for finding the solution of problem
(1.1). We take

w1 = w2 = 1/2, µ = 1/100 and αn = 1/(n+ 1)a for some a ∈ (0, 1].

With the starting point x1 = (−0.5,−0.5, · · · ,−0.5) ∈ R64, the computational results of Algorithm (6.2) are
presented in Figure 5. It plots the values of ψ(xn) (n = 1, 2, ..., 10000) when a = 1/1000, 1/100, 1/10 and
1, respectively. We note that, as shown in Figure 5, the values of ψ(xn) (n = 1, 2, ..., 10000) coincide when
a = 1/100 and a = 1/1000.
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Figure 5. Plots of ψ(xn) (n = 1, 2, ..., 10000) in Example 6.4 when a = 1/1000, 1/100, 1/10 and 1.
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6.2. Multiple-set split feasibility problems. The multiple-set spilt feasibility problem (MSFP) [11] can be
expressed as follows. Let H1 and H2 be real Hilbert spaces and let p and q be two natural numbers. For each
i ∈ Λp := {1, 2, · · · , p}, let Ci be a nonempty closed convex subset of H1. For each j ∈ Λq := {1, 2, · · · , q},
let Qj be a nonempty closed convex subset of H2, and let Aj : H1 → H2 be a bounded linear operator. The
multiple-set split feasibility problem MSSFP(Λp,Λq) is

find x∗ ∈ H1 such that x∗ ∈ C :=
⋂
i∈Λp

Ci and Ajx
∗ ∈ Qj , ∀j ∈ Λq.

The MSSFP(Λ1,Λ1) reduces to the split feasibility problem discussed in [10].

For i ∈ Λp, let wi ∈ (0, 1) such that
∑p
i=1 wi = 1, and for j ∈ Λq, let sj ∈ (0,+∞). Let B : H1 → H1 be the

gradient ∇f of the convex and continuously differentiable function f : H1 → R defined by

f(x) =

q∑
j=1

sjfj(x), ∀x ∈ H1, (6.4)

where

fj(x) :=
1

2
‖Ajx− PQjAjx‖2, ∀x ∈ H1,

with

∇fj = A∗j (I − PQj )Aj .
Hence

B =

q∑
j=1

sj∇fj .

For γ ∈ (0,+∞), define

Ti = PCi(I − γB).

Observe that

x∗ ∈
p⋂
i=1

Fix(PCi(I − γB)) ⇐⇒ x∗ = PCi(I − γB)x∗ for all i ∈ Λp

⇐⇒ x∗ ∈
p⋂
i=1

Ci and 0 = A∗j (I − PQj )Aj(x∗) for all j ∈ Λq.

⇐⇒ x∗ ∈
p⋂
i=1

Ci and Ajx
∗ ∈ Qj for all j ∈ Λq.

Being the gradient of a convex and continuously differentiable real function, B is 1-strongly monotone.
Moreover, B is also L-Lipschitz, where L =

∑q
j=1 sj‖Aj‖2. It follows that B is 1

L−inverse strongly monotone.

Hence, for γ ∈ (0,+∞), the mapping γB is 1
γL -inverse strongly monotone. If 1

γL ∈ (1/2,+∞), then I − γB
is γL

2 -averaged and hence Ti is (2 + Lγ)/4-averaged. This shows that, for γ ∈ (0, 2/L), the map
∑p
i=1 wiTi is

(2+Lγ)/4-averaged. Thus, MSSFP(Λp,Λq) is the common fixed point problem of the finite family {Ti : i ∈ Λp}
of (2 + Lγ)/4-averaged mappings.

Problem 6.5. Let H1 = Rd1 and H2 = Rd2 . Consider the following optimization problem:

find x∗ ∈
⋂
i∈Λp

Fix(Ti) such that ψ(x∗) = min{ψ(x) : x ∈
⋂
i∈Λp

Fix(Ti)}, (6.5)

where ψ : Rd1 → R is a differentiable convex function and Ti := PCi(I − γB), ∀i ∈ Λp.

We now consider MSSFP(Λp,Λq) by employing our parallel iterative technique. One can derive different
exact and inexact algorithms from Section 5 for solving MSSFP(Λp,Λq) and MSSFP(N,N). For illustration,
from Corollary 5.8, we have



PERTURBED ITERATIVE METHODS 23

Theorem 6.6. Assume that the solution set Γp,q of MSSFP(Λp,Λq) is nonempty. Let F : H1 → H1 be an
η-strongly monotone and L-Lipschitz continuous operator such that VIPΓp,q (F,H1) has a unique solution x∗.
Assume that γ ∈ (0, 2/L). Let {xn} be the orbit in H1 generated by x1 ∈ H1 and defined by

xn+1 = (I − αnµF )

p∑
i=1

wiTi(xn) for all n ∈ N, (6.6)

where {αn} is a sequences in (0, 1] satisfying the assumption (A1) and Ti := PCi(I − γB).

(a) {xn} converges strongly to x∗.
(b) {xn} is in the closed ball Br[x

∗] provided that max
{
‖x1 − x∗‖, µτ ‖F (x∗)‖

}
≤ r < +∞.

If ψ is strongly convex in Problem 6.5, then Algorithm (6.6) can be applied.

Example 6.7. We consider d1 = 64, d2 = 75, p = 30 and q = 50. Let

e1
1 = [1, 1, · · · , 1]T ∈ R64 and e2

1 = [1, 1, · · · , 1]T ∈ R75.

For i ∈ Λ30, let Ci = Bri [ai] be a closed ball in R64, where the center ai is randomly chosen from the 64-
dimensional order box [−15e1

1, 15e1
1] and the radius ri is randomly chosen from the scalar interval [50, 70]. For

j ∈ Λ50, let Qj = {y ∈ R75 : Lj ≤ y ≤ Uj}, where Lj is a vector in R75 randomly chosen from the 75-dimensional
box [−20e2

1, 20e2
1], and Uj is another vector in R75 randomly chosen from the 75-dimensional box [40e2

1, 90e2
1].

Consider the map F (x) = ψ′(x), where ψ(x) = ‖x‖2/2.
Since F is 1-Lipschitz continuous and 1-strongly monotone, for µ ∈ (0, 1), Corollary 5.8 guarantees that

Algorithm (6.6) with an initial point x1 ∈ R64 converges to the solution of Problem 6.5. Here the objective
functional f is defined by (6.4). With the starting point x1 = 1000e1

1 ∈ R64, the computational results of
Algorithm (6.6) with µ = 0.75 are presented in Figure 6, which plots the values of f(xn) (n = 1, 2, . . . , 1000)

among the four cases in which all 0 < si < 100, 0 < si < 1, si = 1, and si ∈ (0, 1) with
∑50
j=1 sj = 1, respectively.

We observe that Algorithm (6.6) has better performance when {s1, · · · , s50} ⊂ (0, 1) with
∑50
j=1 sj = 1.
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Figure 6. The plots of f(xn) (n = 1, 2, . . . , 1000) in Example 6.7 when {s1, · · · , s50} ⊂ (0, 100),

{s1, · · · , s50} ⊂ (0, 1), {s1, s2, . . . , s50} = {1, 1 . . . , 1}, and {s1, . . . , s50} ⊂ (0, 1) with
∑50
j=1 sj = 1.
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