
NORM OF POSITIVE SUM PRESERVERS OF

NONCOMMUTATIVE Lp(M) SPACES

JUN ZHANG, MING-CHENG TSAI, AND NGAI-CHING WONG

Abstract. Let 1 < p < +∞. Let Lp(M) and Lp(N ) be the noncommutative
Lp-spaces associated to von Neumann algebras M and N , respectively. Let
ϕ : Lp

+(M) → Lp
+(N ) be a surjective map between positive elements preserving

the norm of sum, i.e.,

‖ϕ(x) + ϕ(y)‖p = ‖x+ y‖p, x, y ∈ Lp
+(M).

We show that there is a Jordan ∗-isomorphism J : M → N , and ϕ can be
extended uniquely to a surjective real linear positive isometry from Lp

sa(M)
onto Lp

sa(N ). When M is approximately semifinite, especially semifinite or

hyperfinite, ϕ(R) = Θ∗(R
p)1/p for every R ∈ Lp

+(M), where Θ = J−1 and

Θ∗ : L1(M) (∼= M∗) → L1(N ) (∼= N∗) is its predual map. In the case when M
has a normal faithful semifinite trace τM (and so does N ), ϕ(x) = hJ(x) for ev-
ery x ∈ Lp

+(M, τM) ∩M+, where hp = d(τM ◦Θ)/dτN is the non-commutative
Radon-Nikodym derivative of τM ◦ Θ with respect to τN . We also provide a
similar result when p = +∞, and counter examples for the case p = 1.

1. Introduction

The celebrated Mazur-Ulam theorem [9] states that every surjective map T :
E → F between normed spaces, preserving the norm of differences and fixing zero,
extends to a real linear isometry from E onto F . One may ask what happens if T
preserves the norm of sums instead of differences, i.e., if

‖Tx+ Ty‖ = ‖x+ y‖, ∀x, y ∈ E.

It turns out to be easy, by noting that we have T0 = 0 and T (−x) = −Tx auto-
matically, and the Mazur-Ulam theorem applies.

It then arises the question when the domain and range of T are not the whole
linear spaces; see, e.g., [1,4,5,11,15]. In [17], we propose the following open problem.

Problem 1.1. Let E, F be ordered Banach spaces with positive cones E+, F+,
respectively. Let T : E+ → F+ be a surjective map preserving the norm of sums.
Can T be extended to a positive real linear isometry from E onto F?
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We answer Problem 1.1 affirmatively for the case when E,F are smooth Banach
lattices, and Lp spaces when p ∈ (1,∞], while we also provide a counterexample
for the case p = 1 in [17]. There are also positive answers for C(X) spaces in [1],
for von Neumann algebras in [10], and for general unital C∗-algebras in [2]. The
same is true if one considers bijective maps between positive definite cones in unital
C∗-algebras but equipped with a sort of Schatten p-norm [4] for p ∈ (1,∞].

In this paper, we give a positive answer for non-commutative Lp(M)-spaces in
Theorem 3.4; see also Theorems 1.4 and 1.5 below. Note that a noncommutative
Lp(M) space is not a Banach lattice unless M is abelian. This prevents us from
directly applying the technique developed in the abelian case in [17]. Anyway, let
us recall our result for commutative Lp-spaces.

Theorem 1.2 ([17, Theorem 3.3]). Let ϕ : Lp+(Ω1,Σ1, µ1) → Lp+(Ω2,Σ2, µ2) be a
bijective map, where 1 < p ≤ ∞. Suppose

‖x+ y‖p = ‖ϕ(x) + ϕ(y)‖p, ∀x, y ∈ Lp+(Ω1,Σ1, µ1).

Then ϕ extends to a surjective positive linear isometry from Lp(Ω1,Σ1, µ1) onto
Lp(Ω2,Σ2, µ2). More precisely, there exists a regular set isomorphism Ψ from Σ1

onto Σ2 inducing a bijective positive linear map ψ : Lp(Ω1,Σ1, µ1)→ Lp(Ω2,Σ2, µ2),
and a locally measurable function h on Ω2 such that

(1.1) ϕ(x) = h · ψ(x), ∀x ∈ Lp+(Ω1,Σ1, µ1).

When 1 < p < +∞, we have∫
Ψ(A)

|h(t)|pdµ2 = µ1(A), for each σ-finite A ∈ Σ1.

In other words, |h|p =
d(µ1 ◦Ψ−1)

dµ2
is the Radon-Nikodym derivative of µ1 ◦ Ψ−1

with respect to µ2. When p = +∞, we have

h(y) = 1, locally almost everywhere on Ω2.

When the underlying measure spaces are localizable, M = L∞(Ω1,Σ1, µ1) and
N = L∞(Ω2,Σ2, µ2) are commutative von Neumann algebras with predual spaces
L1(Ω1,Σ1, µ1) and L1(Ω2,Σ2, µ2), respectively. In this case, the regular set iso-
morphism Ψ defining ψ in (1.1) can be thought of an orthomorphism between the
projection lattices of M and N . By Dye’s Theorem [3], Ψ extends uniquely to
a Jordan ∗-isomorphism J : M → N . We simply have ψ = J when p = +∞.
When 1 < p < +∞, let Θ = J−1 with the predual map Θ∗ : L1(Ω1,Σ1, µ1) →
L1(Ω2,Σ2, µ2). Then we have ψ(f) = Θ∗(f

p)1/p for all f in Lp+(Ω1,Σ1, µ1).

We are going to provide a noncommutative version of Theorem 1.2. To this
end, we need the following counter part result about norm of difference preservers
recently developed in [8]. Set

Lp+(M)βα =
{
S ∈ Lp+(M) : α ≤ ‖S‖p ≤ β

}
, 0 ≤ α < β < +∞.

Theorem 1.3 ([8, Theorem 1.3]). Let p ∈ [1,∞], and M and N be two von Neu-

mann algebras. Assume there is a metric preserving bijection Φ : Lp+(M)βα →
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Lp+(N )βα, i.e.,

‖Φ(x)− Φ(y)‖p = ‖x− y‖p, ∀x, y ∈ Lp+(M)βα.

(a) M and N are ∗-isomorphic.
(b) If M � C and M is approximately semifinite, then there is a unique Jor-

dan ∗-isomorphism Θ : N → M satisfying Φ(R) = Θ∗(R
p)1/p for any R ∈

Lp+(M, τM)βα.

Here is the main result in this paper.

Theorem 1.4. Let p ∈ (1,+∞], and M and N be two von Neumann algebras.
Assume there is a surjective map ϕ : Lp+(M)→ Lp+(N ) such that

‖ϕ(x) + ϕ(y)‖p = ‖x+ y‖p, ∀x, y ∈ Lp+(M).

(a) M and N are ∗-isomorphic, and ϕ extends uniquely to a positive surjective real
linear isometry θ : Lpsa(M)→ Lpsa(N ).

(b) If p = +∞ then ϕ extends uniquely to a Jordan ∗-isomorphism J :M→N .
(c) If 1 < p < +∞ andM is approximately semifinite, then there is a unique Jordan

∗-isomorphism Θ : N →M satisfying ϕ(R) = Θ∗(R
p)1/p for any R ∈ Lp+(M).

In the abelian case, every function in Lp+(µ) can be approximated in norm by
functions from L∞+ (µ). However, one of the difficulties in studying noncommutative
Lp(M) space arises from the fact that Lp(M)∩M = {0} whenM is not semifinite.
If M has a faithful semifinite trace τM, nevertheless, there is a weak* dense two-
sided self-adjoint ideal SM of M embedded into the noncommutative Lp(M, τM)
space. In other words, the intersection Lp+(M, τM) ∩ M+ is reasonably big to
represent M, as well as Lp(M, τM). This motivates us to include the following
result in this paper. We note that any one of M and N being semifinite suffices to
ensure its conclusion due to Theorem 1.4(a).

Theorem 1.5. Let 1 < p ≤ +∞. Let M and N be two semifinite von Neumann
algebras with traces τM and τN , respectively. Suppose that ϕ : Lp(M, τM)∩M+ →
Lp(N , τN ) ∩N+ is a surjective map satisfying that

‖x+ y‖p = ‖ϕ(x) + ϕ(y)‖p, ∀x, y ∈ Lp(M, τM) ∩M+.

Then there exists uniquely a Jordan ∗-isomorphism J :M→N such that

ϕ(x) = J(x)h = hJ(x), x ∈ Lp(M, τM) ∩M+.

Here, hp =
dτM ◦ J−1

dτN
is the noncommutative Radon-Nikodym derivative of τM ◦

J−1 with respect to τN when 1 < p < +∞; and h = 1 if p = +∞.

In Section 2, we will give a brief description of the construction of noncommu-
tative Lp-spaces. The proofs of Theorems 1.4 and 1.5 are given in Section 3. We
note that, however, neither of Theorems 1.4 nor 1.5 holds when p = 1, as shown by
counter examples. In Section 4, we will provide two concrete examples to demon-
strate the case when p = +∞.
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2. Preliminaries

LetM be a von Neumann algebra, that is, a self-adjoint algebra of operators on
a Hilbert space H that is closed in the weak operator topology. A trace on M is
a nonnegative extended real-valued function τ defined on the positive part M+ of
M which satisfies

(1) τ(x+ y) = τ(x) + τ(y) for all x, y ∈M+;
(2) τ(λx) = λτ(x) for all λ ≥ 0 and x ∈M+;
(3) τ(xx∗) = τ(x∗x) for all x ∈M.

If τ satisfies conditions (1) and (2) but not necessarily (3), then we call it a weight.
We say that τ is normal if sup τ(xα) = τ(supxα) for any bounded increasing net
{xα} inM+, semifinite if for any nonzero x ∈M+ there is a nonzero y ∈M+ such
that y ≤ x and τ(y) < +∞, and faithful if τ(x) = 0 implies x = 0 for any x ∈M+.
If τ(1) < +∞, we say that τ is finite. A von Neumann algebra M is said to be
finite (resp. semifinite) if it admits a normal finite (resp. semifinite) faithful trace.

Definition 2.1. A von Neumann algebraM is said to be approximately semifinite
[14] if

• there is an increasing family {Mi}i∈I of semifinite von Neumann subalgebras
of M such that

⋃
i∈IMi is σ(M,M∗)-dense in M, and

• there is a normal conditional expectation Ei : M → Mi with Ei(1) being
the identity of Mi such that Ei ◦ Ej = Ei whenever i ≤ j in I.

The class of approximately semifinite von Neumann algebras includes, in partic-
ular, all semifinite algebras, all hyperfinite algebras, and all type III0-factors with
separable preduals. See also [8] for more details.

We follow the construction of noncommutative Lp-spaces demonstrated in [13]
and [16]. Let M denote a semifinite von Neumann algebra on a Hilbert space H
with a given normal semifinite faithful trace τM. Let SM be the subset of M of
elements x of finite traces, i.e., τM(|x|) < +∞, where |x| denotes the operator

(x∗x)1/2. The set SM is quite big, as it is a self-adjoint two sided ideal of M and
dense in M in the strong operator topology. Moreover, it is closed under taking p
powers, i.e., |x|p ∈ SM whenever x ∈ SM and 0 < p < +∞.

For x ∈M and 1 ≤ p < +∞, let

‖x‖p = τM(|x|p)1/p.

Then ‖ · ‖p defines a norm on SM. We call the norm completion of SM the non-
commutative Lp(M, τM) space.

We can identify L∞(M, τM) withM and L1(M, τM) with the predualM∗ ofM.
The positive cone Lp+(M, τM) of Lp(M, τM) is the completion of Lp(M, τM)∩M+

under the norm ‖ · ‖p. We will write Lp(M) if the trace τM is understood.

The situation when M is not semifinite is far more complicated. Let M be a
general von Neumann algebra on a Hilbert space H, but not necessarily semifinite.
We note that every von Neumann algebra has a normal faithful semifinite weight.
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Fix a normal semifinite faithful weight φ on M. Consider the modular automor-
phism group α corresponding to φ. There exists a normal faithful semifinite trace
τ on the von Neumann algebra crossed product M̌ :=MōαR satisfying some com-
patibility condition with φ. Denote by L0(M̌, τ) the completion of M̌ under the
vector topology defined by a neighborhood basis at 0 of the form

U(ε, δ) := {x ∈ M̌ : ‖xp‖ ≤ ε and τ(1− p) ≤ δ, for a projection p ∈ M̌}.

Then the ∗-algebra structure of M̌ extends to a ∗-algebra structure of L0(M̌, τ).

Elements in L0(M̌, τ) can be regarded as closed densely defined operators on
L2(R;H). More precisely, let T be a densely defined closed operator on L2(R;H)
affiliated with M̌, and |T | be its absolute value with spectral projection-valued
measure E|T |. Then T corresponds uniquely to an element in L0(M̌, τ) if and only

if τ
(
1 − E|T |([0, λ])

)
< ∞ when λ is large. Conversely, every element in L0(M̌, τ)

arises from a closed operator in this way. Under this identification, the ∗-operation
on L0(M̌, τ) coincides with the adjoint. The addition and the multiplication on
L0(M̌, τ) are the closures of the corresponding operations for closed operators. De-
note by L0

+(M̌, τ) the set of all positive self-adjoint operators in L0(M̌, τ). For x, y

in L0(M̌, τ), we write x⊥y if |x||y| = 0, i.e., the positive operators have orthogonal
support projections.

The dual action α̂ : R → Aut(M̌) extends to an action on L0(M̌, τ). For any
p ∈ [1,∞], we set

Lp(M) :=
{
T ∈ L0(M̌, τ) : α̂s(T ) = e−s/pT for all s ∈ R

}
(where, by convention, e−s/∞ = 1). Then L∞(M) coincides with the subalgebra
M of M̌ ⊆ L0(M̌, τ). Moreover, if T ∈ L0(M̌, τ) and T = u|T | is the polar
decomposition, then T ∈ Lp(M) if and only if |T | ∈ Lp(M). The product of
an element in L∞(M) with an element in Lp(M) (in whatever order) is again in
Lp(M). Hence, Lp(M) is canonically an M-bimodule. Let Lpsa(M) denote the set
of all self-adjoint operators in Lp(M) and put Lp+(M) := Lp(M) ∩ L0

+(M̌, τ).

When p ∈ (0,∞), the Mazur map

S 7→ S
1
p

(
S ∈ L0

+(M̌, τ)
)

restricts to a bijection from L1
+(M) onto Lp+(M). Elements in Lp+(M) are identified

with S
1
p for a unique element S ∈ L1

+(M). When p ∈ (1,∞), the function

‖T‖p :=
∥∥|T |p∥∥1/p

1

is a norm on Lp(M), and
(
Lp(M), Lp+(M)

)
becomes an ordered Banach space.

It is known that (Lp(M), Lp+(M)) is independent of the choice of the faithful
semifinite weight φ up to an isometric order isomorphism (see, e.g., Theorem 37
and Corollary 38 in Chapter II of [16]). If M is semifinite with a faithful normal
semifinite trace φ = τM, then the above two constructions of noncommutative
Lp(M) space will be isometrically and order isomorphic to each other. In this
paper, we usually write Lp(M, τM) even whenM is not semifinite; in this case, we
refer to the Haagerup trace norm τM(·) = ‖ · ‖1 instead.
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3. Norm of positive sum preservers

All noncommutative Lp(M, τM) spaces are uniformly convex and uniformly smooth
with dual space Lq(M, τM) for p, q ∈ (1,∞) with 1/p+ 1/q = 1. In particular, the
following result holds for general von Neumann algebra M.

Lemma 3.1 ([7, Lemma 3.1]). If t ∈ R 7→ h(t) ∈ Lp+(M, τM), 1 < p < +∞, is
differentiable (with respect to the Lp-norm) at t = α and h(α) 6= 0, then t ∈ R 7→
τM(h(t)p) ∈ R+ is differentiable at α and its derivative is

(3.1)
d

dt

∣∣∣
t=α

τM(h(t)p) = pτM

(
h(α)p−1 d

dt

∣∣∣
t=α

h(t)

)
.

While it always holds that

‖x± y‖pp = ‖x‖pp + ‖y‖pp whenever x, y ∈ Lp(M, τM) such that x⊥y,
we also have a converse.

Lemma 3.2 ([7, Corollary 6.5]; see also [13, Proposition A.2]). Let M be a von
Neumann algebra and 1 < p < +∞. For any x, y ∈ Lp+(M, τM), we have

‖x+ y‖pp = ‖x‖pp + ‖y‖pp if and only if xy = 0.

Lemma 3.3. Let M and N be two von Neumann algebras and 1 < p < +∞.
Suppose that ϕ : Lp+(M, τM)→ Lp+(N , τN ) is a surjective map satisfying that

(3.2) ‖x+ y‖p = ‖ϕ(x) + ϕ(y)‖p.
Then we have

(1) ϕ preserves orthogonality, that is xy = 0 if and only if ϕ(x)ϕ(y) = 0.
(2) ϕ is additive and nonnegative homogeneous, i.e.

(i) ϕ(y1 + y2) = ϕ(y1) + ϕ(y2) for all y1, y2 ∈ Lp+(M, τM);
(ii) ϕ(λy) = λϕ(y) for all λ ≥ 0 and y ∈ Lp+(M, τM).

Proof. (1) Taking x = y in equation (3.2), one has ‖x‖p = ‖ϕ(x)‖p. Hence, from
Lemma 3.2,

xy = 0 ⇔ ‖x+ y‖pp = ‖x‖pp + ‖y‖pp
⇔ ‖ϕ(x) + ϕ(y)‖pp = ‖ϕ(x)‖pp + ‖ϕ(y)‖pp
⇔ ϕ(x)ϕ(y) = 0.

(2) To see ϕ is nonnegative homogeneous, for λ > 0 we observe that

‖ϕ(x) + ϕ(λx)‖p = ‖x+ λx‖p = ‖x‖p + ‖λx‖p = ‖ϕ(x)‖p + ‖ϕ(λx)‖p.
From the strictly convexity of Lp(M, τM), we have ϕ(λx) = δϕ(x) for some δ > 0.
Then λ‖x‖p = ‖ϕ(λx)‖p = ‖δϕ(x)‖p = δ‖x‖p, we get δ = λ, and thus ϕ(λx) =
λϕ(x) for all x in Lp+(M, τM) and for all λ ≥ 0.

To see ϕ is additive, we observe again that ‖ϕ(x) + tϕ(y)‖p = ‖ϕ(x) +ϕ(ty)‖p =
‖x+ ty‖p for all t ≥ 0. Using Lemma 3.1 and setting h(t) = x+ ty, we have

d‖x+ ty‖pp
dt

∣∣∣
t=0+

=
dτM(h(t)p)

dt

∣∣∣
t=0+

= pτM(xp−1y).
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Hence, differentiating both sides of ‖x + ty‖pp = ‖ϕ(x) + tϕ(y)‖pp with respect to t
at 0, we have

τM(xp−1y) = τN (ϕ(x)p−1ϕ(y)).

It follows

τN (ϕ(x)p−1(ϕ(y1 + y2)− ϕ(y1)− ϕ(y2)))

= τN (ϕ(x)p−1(ϕ(y1 + y2)))− τN (ϕ(x)p−1ϕ(y1))− τN (ϕ(x)p−1ϕ(y2))

= τM(xp−1(y1 + y2))− τM(xp−1y1)− τM(xp−1y2) = 0.

Since ϕ is surjective, choosing ϕ(x) = [ϕ(y1 + y2) − ϕ(y1) − ϕ(y2)]+, the positive
part of ϕ(y1 +y2)−ϕ(y1)−ϕ(y2), we get ‖[ϕ(y1 +y2)−ϕ(y1)−ϕ(y2)]+‖pp = 0 since
the positive part and the negative part of ϕ(y1 +y2)−ϕ(y1)−ϕ(y2) are orthogonal.
Hence, the positive part of ϕ(y1 + y2)− ϕ(y1)− ϕ(y2) is 0. Similarly, the negative
part is also 0, and therefore ϕ(y1 + y2) = ϕ(y1) + ϕ(y2). �

Theorem 3.4. Let M and N be two von Neumann algebras and 1 < p < +∞.
Suppose that ϕ : Lp+(M, τM)→ Lp+(N , τN ) is a surjective map satisfying that

(3.3) ‖x+ y‖p = ‖ϕ(x) + ϕ(y)‖p.

Then there exists a unique surjective complex linear map ω : Lp(M, τM)→ Lp(N , τN )
extending ϕ. Moreover, its restriction defines a surjective positive real linear isom-
etry θ : Lpsa(M, τM)→ Lpsa(N , τN ).

Proof. Observe that for any x, y ∈ Lp+(M, τM), we have x−y = (x−y)+−(x−y)−,
and thus (x− y)+ + y = (x− y)− + x. Since ϕ is additive by Lemma 3.3, we have
ϕ((x− y)+) + ϕ(y) = ϕ((x− y)−) + ϕ(x). This gives ϕ(x)− ϕ(y) = ϕ((x− y)+)−
ϕ((x−y)−). Since (x−y)+⊥(x−y)−, we have ϕ((x−y)+)⊥ϕ((x−y)−) by Lemma
3.3 again. It follows that

‖ϕ(x)− ϕ(y)‖pp = ‖ϕ((x− y)+)− ϕ((x− y)−)‖pp = ‖ϕ((x− y)+) + ϕ((x− y)−)‖pp
= ‖(x− y)+ + (x− y)−‖pp = ‖x− y‖pp, ∀x, y ∈ Lp+(M, τM).

That is, ϕ preserves norm of differences.

For x ∈ Lpsa(M, τM), we define

θ(x) = ϕ(x+)− ϕ(x−).

It follows from Lemma 3.3 that θ is well-defined and real linear. Moreover, θ(x)⊥θ(y)
if x⊥y. Furthermore,

‖θ(x)‖p = ‖ϕ(x+)− ϕ(x−)‖p = ‖x+ − x−‖p = ‖x‖p.

Thus, θ is a positive real linear isometry from Lp(M, τM)sa onto Lpsa(N , τN ) ex-
tending ϕ.

For any x ∈ Lp(M, τM), we write x =
x+ x∗

2
+ i

x− x∗

2i
:= x1 + ix2, where x1, x2

are self-adjoint elements in Lpsa(M, τM). Define

ω(x1 + ix2) = θ(x1) + iθ(x2).
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It is easy to check that

ω(x+ y) = ω(x) + ω(y), ω(λx) = λω(x),

for all x = x1 + ix2, y = y1 + iy2 in Lp(M, τM) and λ = a+ ib in C. The uniqueness
of θ and ω is plain. �

Note again that for any von Neumann algebra M, we have L∞(M) ∼= M and
L1(M) ∼=M∗.

Proof of Theorem 1.4. The case p = +∞ can be derived from a result of Molnár
[10, Theorem 2.7] which states that every surjective norm of sum preserver ϕ :
M+ → N+ extends uniquely to a Jordan ∗-isomorphism J :M→N .

For the case 1 < p < +∞, by Theorem 3.4 we see in particular that ϕ extends
to a bijection from the positive unit ball L1

+(M)1
0 of L1

+(M) onto the positive unit
ball L1

+(N )1
0 of L1

+(N ) such that ‖ϕ(x)−ϕ(y)‖p = ‖x− y‖p for all x, y in L1
+(M)1

0.
If M is not one-dimensional, then the assertions follow from Theorem 1.3.

Finally, when M = N = C, we have

Lp(M, τM) = Lp(C, µ) and Lp(N , τN ) = Lp(C, ν)

for some positive measures µ and ν on C. The assertions follow from our previous
results for the abelian case, namely, Theorem 1.2, and the discussion after it. �

When p = 1, we have a counter example in [17, Example 4.1]. There we have a
norm of positive sum preserver of the commutative `1n = L1(`∞n ) space associated
to the n-dimensional abelian von Neumann algebra `∞n with n ≥ 2, which is neither
affine nor continuous. See also Example 3.8 for a noncommutative counter example.

Proof of Theorem 1.5. Arguing as in Lemma 3.3 and noticing that all operations
are done inside the domain Lp(M, τM) ∩M+ and range Lp(N , τN ) ∩ N+ of ϕ, we
have again the same conclusions there. More precisely, we have

(1) ϕ preserves orthogonality, that is, xy = 0 if and only if ϕ(x)ϕ(y) = 0;
(2) ϕ is additive and nonnegative homogeneous, that is,

(i) ϕ(x+ y) = ϕ(x) + ϕ(y);
(ii) ϕ(λy) = λϕ(y);

(3) ϕ preserves metric, that is, ‖ϕ(x)− ϕ(y)‖p = ‖x− y‖p;
where x, y ∈ Lp(M, τM) ∩M+ and λ ≥ 0.

We extend the domain of ϕ from Lp(M, τM) ∩ M+ to Lp(M, τM) ∩ Msa by
defining

θ(x) = ϕ(x+)− ϕ(x−), ∀x ∈ Lp(M, τM) ∩Msa.

It follows from the fact θ(x+) = θ(x)+ that θ also preserves the metric, i.e.,

‖θ(x)− θ(y)‖pp = ‖θ(x− y)+ − θ(x− y)−‖pp = ‖θ(x− y)+‖pp + ‖θ(x− y)−‖pp
= ‖(x− y)+‖pp + ‖(x− y)−‖pp = ‖x− y‖pp,

for all x, y in Lp(M, τM)∩Msa. In particular, ϕ can be extended to a surjective real
linear isometry from Lpsa(M, τM) onto Lpsa(N , τN ), and thus provides a surjective
metric preserving map between their positive unit balls. Then Theorem 1.4 applies.
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In particular, there is a unique Jordan ∗-isomorphism Θ : N →M satisfying that
ϕ(R) = Θ∗(R

p)1/p for any R ∈ Lp+(M).

Let J = Θ−1 : M → N and let h =

(
dτM ◦Θ

dτN

)1/p

be the 1/p th power of the

non-commutative Radon-Nikodym derivative of τM◦Θ with respect to τN (see, e.g.,
[12, Theorem 5.12]). Note that the unbounded operator h is affiliated with N , and
commutes with all elements in N . Then for all x in Lp(M, τM) ∩M+ we have

τN ((J(x)h)py) = τM(xpΘ(y)) = τN (Θ∗(x
p)y) = τN (ϕ(x)py),

for all y ∈ L∞(N , τN )+ = N+. Thus ϕ(x) = J(x)h for all x in Lp(M, τM) ∩M+

as asserted. �

Corollary 3.5. AssumeM is a factor and 1 < p < +∞. Suppose ϕ : Lp(M, τM)∩
M+ → Lp(N , τN )∩N+ is a surjective map satisfying that ‖x+y‖p = ‖ϕ(x)+ϕ(y)‖p
for all x, y ∈ Lp(M, τM) ∩M+. Then there is a ∗-algebra isomorphism or anti-
isomorphism J of M onto N and a positive scalar λ such that ϕ = λJ .

Proof. The assertion follows from Theorem 1.5 and well-known facts on Jordan
∗-isomorphisms (cf. [6]). �

Corollary 3.6. Let M be a finite factor with a normal faithful finite trace τ . Let
ϕ be a transformation from Lp(M, τ) onto itself satisfying that ϕ(M+) =M+ and
‖x + y‖p = ‖ϕ(x) + ϕ(y)‖p for all x, y ∈ M+. Then the restriction of ϕ to M is
either a ∗-algebra isomorphism or anti-isomorphism of M.

Corollary 3.7. Let M be a type I factor with the canonical trace τ , and let ϕ be a
transformation from Lp(M, τ) onto itself satisfying that ϕ(Lp+(M, τ)) = Lp+(M, τ)
and ‖x + y‖p = ‖ϕ(x) + ϕ(y)‖p for all x, y ∈ M+. Then there exists a ∗-algebra
isomorphism or anti-isomorphism Φ of M such that ϕ(x) = Φ(x) for every x ∈
Lp(M, τ).

Example 3.8. For the case p = 1, Theorem 1.5 may not hold. For example,
let ϕ : L1(M, τM) ∩M+ → L1(M, τM) ∩M+ satisfy that ϕ(x) = urxu

∗
r , where

‖x‖1 = r and ur is a randomly chosen unitary element in M associated with each
r ≥ 0. Clearly, ϕ is surjective. Moreover,

‖ϕ(x) + ϕ(y)‖1 = τM(ϕ(x)) + τM(ϕ(y)) = τM(u‖x‖xu
∗
‖x‖) + τM(u‖y‖yu

∗
‖y‖)

= τM(x) + τM(y) = τM(x+ y) = ‖x+ y‖1.

However, ϕ does not carry the form stated in Theorem 1.5.

4. Two examples when p = +∞

In this section, two examples of norm of positive sum preservers are provided for
the case p = +∞. We verify the details by direct arguments.

Example 4.1. Consider the two dimensional abelian von Neumann algebra M =
N = C⊕∞C. Suppose ϕ : R+⊕∞R+ 7→ R+⊕∞R+ is a map satisfying ‖x+y‖∞ =
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‖ϕ(x) +ϕ(y)‖∞ for all x, y in R+ ⊕∞ R+. We show directly that ϕ(x) = Ux where
U is a permutation; namely, ϕ assumes either the form

(x1, y1) 7→ (x1, y1) or (x1, y1) 7→ (y1, x1).

Proof. It is easy to see that ϕ((0, 0)) = (0, 0) and ‖x‖∞ = ‖ϕ(x)‖∞ for all x in
R+ ⊕∞ R+.

Claim 1: Either the case ϕ((x1, 0)) = (x1, 0) and ϕ((0, x1)) = (0, x1), or the case
ϕ((x1, 0)) = (0, x1) and ϕ((0, x1)) = (x1, 0) holds for all x1 ≥ 0.

Suppose that ϕ((x1, 0)) = (x′1, y
′
1) and ϕ((0, x1)) = (x′2, y

′
2). We have

max{x′1, y′1} = max{x′2, y′2} = max{x′1 + x′2, y
′
1 + y′2} = x1.

If x′1 = x1, then x′2 = 0, y′2 = x1 and y′1 = 0. The other case arises when x′2 = x1.

Claim 2: ϕ((x1, x1)) = (x1, x1) for all x1 ≥ 0.

Suppose that ϕ((x1, x1)) = (x1, y
′
1) in which y′1 < x1. If ϕ((x1, 0)) = (x1, 0)

and ϕ((0, x1)) = (0, x1), one gets ‖(x1, x1) + (0, 1)‖∞ = ‖(x1, y
′
1) + (0, 1)‖∞. Thus,

x1 + 1 = y′1 + 1, which is a contradiction. If ϕ((x1, 0)) = (0, x1) and ϕ((0, x1)) =
(x1, 0), one gets ‖(x1, x1) + (1, 0)‖∞ = ‖(x1, y

′
1) + (0, 1)‖∞. This gives again the

contradiction x1 + 1 = y′1 + 1.

The same argument also removes the case ϕ((x1, x1)) = (x′1, x1) such that x′1 <
x1. Since ‖ϕ(x1, x1)‖∞ = x1, we verify the claim.

Set

A = {(x1, y1) : x1 > 0, y1 > 0, x1 > y1}, B = {(x1, y1) : x1 > 0, y1 > 0, x1 < y1}.

Claim 3: Either ϕ(A) ⊆ A,ϕ(B) ⊆ B, or ϕ(A) ⊆ B,ϕ(B) ⊆ A.

We prove that ϕ(A) ⊆ A,ϕ(B) ⊆ B when the case ϕ((x1, 0)) = (x1, 0) and
ϕ((0, x1)) = (0, x1) ever happens. Suppose on the contrary ϕ(A) 6⊆ A, that is to say
ϕ((x2, y2)) = (x′2, y

′
2) for some x2 > y2 > 0 and 0 ≤ x′2 ≤ y′2. Then one has y′2 = x2.

It shows that ‖(x2, y2) + (0, x2)‖∞ = ‖(x′2, x2) + (0, x2)‖∞. Thus, x2 + y2 = 2x2

which conflicts with x2 > y2. Similarly, ϕ(B) ⊆ B is satisfied under this condition.

Analogously, we have ϕ(A) ⊆ B,ϕ(B) ⊆ A when the case ϕ((x1, 0)) = (0, x1)
and ϕ((0, x1)) = (x1, 0) ever holds.

Claim 4: Either ϕ((x1, y1)) = (x1, y1) or ϕ((x1, y1)) = (y1, x1) for all (x1, y1) ∈
R+ ⊕∞ R+.

In the case ϕ(A) ⊆ A, we can assume that ϕ((x1, y1)) = (x1, y
′
1) where x1 >

y1, x1 > y′1. It follows that ‖(x1, y1) + (0, x1)‖∞ = ‖(x1, y
′
1) + (0, x1)‖∞. Therefore,

y′1 = y1. Same argument can be used for the case (x1, y1) ∈ B. This shows that
ϕ((x1, y1)) = (x1, y1) for all (x1, y1) ∈ R+ ⊕∞ R+.

On the other-hand, if ϕ(A) ⊆ B,ϕ(B) ⊆ A, similar arguments produce the other
desired conclusion. �

Example 4.2. Consider the von Neumann algebra M2 of 2 × 2 complex matrices
with positive cone P2. Suppose that ϕ : P2 → P2 is a surjective map such that
‖A + B‖∞ = ‖ϕ(A) + ϕ(B)‖∞ for any positive semidefinite matrices A,B in P2.
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We show directly that there exists a unitary matrix U such that ϕ assumes either
the form

A 7→ UAU∗ or A 7→ UAtU∗.

Proof. Fix λ ≥ 0. Let A =

(
λ 0
0 0

)
and B =

(
0 0
0 λ

)
. Assume that there are

unitary matrices U, V such that

ϕ(A) =

(
a11 a12

a21 a22

)
= U

(
λ1 0
0 λ2

)
U∗ and

ϕ(B) =

(
b11 b12

b21 b22

)
= V

(
µ1 0
0 µ2

)
V ∗,

where a11, a22, b11, b22 ≥ 0, and a21 = a12 and b21 = b12 are complex conjugates.

As ‖ϕ(A)‖∞ = ‖ϕ(B)‖∞ = ‖ϕ(A) + ϕ(B)‖∞ = λ, computing traces we have

λ ≤ a11 + a22 ≤ 2λ, λ ≤ b11 + b22 ≤ 2λ, and λ ≤ a11 + a22 + b11 + b22 ≤ 2λ.

Hence, λ1 + λ2 = a11 + a22 = λ and µ1 + µ2 = b11 + b22 = λ.

Since max{λ1, λ2} = max{µ1, µ2} = λ, it can be assumed that λ1 = λ and λ2 = 0.

Furthermore, set ϕ(B) = U

(
c11 c12

c21 c22

)
U∗, where c11, c22 ≥ 0 and c21 = c12. Hence,

ϕ(A) + ϕ(B) = U

(
c11 + λ c12

c21 c22

)
U∗ with

‖ϕ(A) + ϕ(B)‖∞ =
c11 + c22 + λ+

√
(c11 + λ− c22)2 + 4c12c21

2
= λ.

Since the trace of the matrix ϕ(B) equals c11 + c22 = µ1 + µ2 = λ, we see that
c11 = c12 = c21 = 0 and c22 = λ. Thus, there exists a unitary matrix Uλ such that

ϕ(

(
λ 0
0 0

)
) = Uλ

(
λ 0
0 0

)
U∗λ and ϕ(

(
0 0
0 λ

)
) = Uλ

(
0 0
0 λ

)
U∗λ .

Suppose that for another scalar 0 ≤ µ ≤ λ and the matrix D =

(
µ 0
0 0

)
, we have

ϕ(D) = Uλ

(
d11 d12

d21 d22

)
U∗λ , where d11, d22 ≥ 0 and d21 = d12. Note that

‖ϕ(D)‖∞ = µ =

∥∥∥∥(d11 d12

d21 d22

)∥∥∥∥
∞
,

and observe

λ+ µ =

∥∥∥∥(λ 0
0 0

)
+

(
µ 0
0 0

)∥∥∥∥
∞

=

∥∥∥∥(λ 0
0 0

)
+

(
d11 d12

d21 d22

)∥∥∥∥
∞
.

The last sum of positive semi-definite matrices attains its norm λ + µ at the unit

eigenvector

(
1
0

)
. Consequently, d11 = µ and d12 = d21 = 0. Moreover, 0 ≤ d22 ≤ µ.

On the other hand,

max{λ, µ} =

∥∥∥∥(0 0
0 λ

)
+

(
µ 0
0 0

)∥∥∥∥
∞

=

∥∥∥∥(0 0
0 λ

)
+

(
µ 0
0 d22

)∥∥∥∥
∞
.
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Hence d22 = 0 since µ ≤ λ. Therefore,

ϕ(

(
µ 0
0 0

)
) = Uλ

(
µ 0
0 0

)
U∗λ , whenever 0 ≤ µ ≤ λ.

Set U = Uλ for a very large λ > 0. Then ϕ(

(
t 0
0 0

)
) = U

(
t 0
0 0

)
U∗ for any

t ∈ [0, λ]. For any 2 × 2 positive semi-definite matrix A =

(
a b
b̄ c

)
, let ϕ(A) =

U

(
a′ b′

b̄′ c′

)
U∗. Hence,∥∥∥∥(t 0
0 0

)
+

(
a b
b̄ c

)∥∥∥∥
∞

=

∥∥∥∥(t 0
0 0

)
+

(
a′ b′

b̄′ c′

)∥∥∥∥
∞
, ∀t ∈ [0, λ].

It amounts to say that

(4.1) t+ a+ c+
√

(t+ a− c)2 + 4bb̄ = t+ a′ + c′ +
√

(t+ a′ − c′)2 + 4b′b̄′.

Differentiating (4.1) with respect to t, we get

(t+ a− c)2((t+ a′ − c′)2 + 4b′b̄′) = (t+ a′ − c′)2((t+ a− c)2 + 4bb̄),

or

b′b̄′(t+ a− c)2 = bb̄(t+ a′ − c′)2.

Comparing the coefficient of t2, we get bb̄ = b′b̄′.

In the case when b = 0, we have b′ = 0. Put this into equation (4.1), we have
a = a′ when t is chosen sufficiently large. Using the equation∥∥∥∥(0 0

0 t

)
+

(
a 0
0 c

)∥∥∥∥
∞

=

∥∥∥∥(0 0
0 t

)
+

(
a 0
0 c′

)∥∥∥∥
∞
,

we can also see c = c′.

On the other hand, a − c = a′ − c′ when b 6= 0. In this case, the equation (4.1)
ensures that a+ c = a′ + c′, and thus a = a′ and c = c′. Let b′ = eiθbb for some real
scalar θb. It follows from the norm equality∥∥∥∥( a b1

b1 c

)
+

(
a b2
b2 c

)∥∥∥∥
∞

=

∥∥∥∥( a eiθb1 b1
e−iθb1 b1 c

)
+

(
a eiθb2 b2

e−iθb2 b2 c

)∥∥∥∥
∞

that

2a+ 2c+

√
4(a− c)2 + 4(b1 + b2)(b1 + b2)

= 2a+ 2c+

√
4(a− c)2 + 4(eiθb1 b1 + eiθb2 b2)(e−iθb1 b1 + e−iθb2 b2).

It forces both b1b2 and ei(θb1−θb2 )b1b2 have the same real parts.

Replacing U by the unitary U

(
1 0
0 e−iθ1

)
, we can assume eiθ1 = 1.
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We discuss in two situations. The first case is for eiθi = −1, and we claim that
eiθbb = b for all b in this situation. To this end, setting (b1, b2) = (b, 1) and (b, i)
respectively, we observe the real parts of complex numbers

Re b = Re eiθbb and Re(−ib) = Re(−iei(θb−π)b) = Re(ieiθbb).

It follows that eiθbb = b as claimed.

The second case is for eiθi 6= −1, and we claim that eiθb = 1 for all b in this
situation. Setting (b1, b2) = (b, 1) and (b, i) respectively, we observe the real parts
of complex numbers

Re b = Re eiθbb and Re(−ib) = Re(−iei(θb−θi)b).
If eiθb 6= 1 then eiθbb = b, and thus Re(−ib) = Re(−ie−iθi b̄) 6= −Re(−ib̄). This
contradiction shows that eiθb = 1 for all b as claimed.

Therefore, we have either

ϕ

((
a b
b̄ c

))
= U

(
a b
b̄ c

)
U∗ or U

(
a b̄
b c

)
U∗.

That is to say, for any three 2× 2 positive semi-definite matrices A1, A2, A3, we can
choose a large enough λ (depending on A1, A2, A3) such that either

ϕ(Aj) = UλAjU
∗
λ or ϕ(Aj) = UλA

t
jU
∗
λ , ∀j = 1, 2, 3.

This implies that ϕ is affine and preserves squares on the positive semi-definite
cone P2 of M2. It then extends to a nonzero linear map from M2 into M2 sending
projections to projections, and thus a Jordan homomorphism. The assertion then
follows from known facts about Jordan ∗-homomorphisms of matrices. �
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