NORM OF POSITIVE SUM PRESERVERS OF NONCOMMUTATIVE $L^{p}(\mathcal{M})$ SPACES

JUN ZHANG, MING-CHENG TSAI, AND NGAI-CHING WONG

Abstract

Let $1<p<+\infty$. Let $L^{p}(\mathcal{M})$ and $L^{p}(\mathcal{N})$ be the noncommutative L^{p}-spaces associated to von Neumann algebras \mathcal{M} and \mathcal{N}, respectively. Let $\varphi: L_{+}^{p}(\mathcal{M}) \rightarrow L_{+}^{p}(\mathcal{N})$ be a surjective map between positive elements preserving the norm of sum, i.e., $$
\|\varphi(x)+\varphi(y)\|_{p}=\|x+y\|_{p}, \quad x, y \in L_{+}^{p}(\mathcal{M})
$$

We show that there is a Jordan $*$-isomorphism $J: \mathcal{M} \rightarrow \mathcal{N}$, and φ can be extended uniquely to a surjective real linear positive isometry from $L_{\mathrm{sa}}^{p}(\mathcal{M})$ onto $L_{\mathrm{sa}}^{p}(\mathcal{N})$. When \mathcal{M} is approximately semifinite, especially semifinite or hyperfinite, $\varphi(R)=\Theta_{*}\left(R^{p}\right)^{1 / p}$ for every $R \in L_{+}^{p}(\mathcal{M})$, where $\Theta=J^{-1}$ and $\Theta_{*}: L^{1}(\mathcal{M})\left(\cong M_{*}\right) \rightarrow L^{1}(\mathcal{N})\left(\cong N_{*}\right)$ is its predual map. In the case when \mathcal{M} has a normal faithful semifinite trace $\tau_{\mathcal{M}}$ (and so does \mathcal{N}), $\varphi(x)=h J(x)$ for every $x \in L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap M_{+}$, where $h^{p}=d\left(\tau_{\mathcal{M}} \circ \Theta\right) / d \tau_{\mathcal{N}}$ is the non-commutative Radon-Nikodym derivative of $\tau_{\mathcal{M}} \circ \Theta$ with respect to $\tau_{\mathcal{N}}$. We also provide a similar result when $p=+\infty$, and counter examples for the case $p=1$.

1. Introduction

The celebrated Mazur-Ulam theorem [9] states that every surjective map T : $E \rightarrow F$ between normed spaces, preserving the norm of differences and fixing zero, extends to a real linear isometry from E onto F. One may ask what happens if T preserves the norm of sums instead of differences, i.e., if

$$
\|T x+T y\|=\|x+y\|, \quad \forall x, y \in E
$$

It turns out to be easy, by noting that we have $T 0=0$ and $T(-x)=-T x$ automatically, and the Mazur-Ulam theorem applies.

It then arises the question when the domain and range of T are not the whole linear spaces; see, e.g., $[1,4,5,11,15]$. In [17], we propose the following open problem.

Problem 1.1. Let E, F be ordered Banach spaces with positive cones E_{+}, F_{+}, respectively. Let $T: E_{+} \rightarrow F_{+}$be a surjective map preserving the norm of sums. Can T be extended to a positive real linear isometry from E onto F ?

[^0]We answer Problem 1.1 affirmatively for the case when E, F are smooth Banach lattices, and L_{p} spaces when $p \in(1, \infty]$, while we also provide a counterexample for the case $p=1$ in [17]. There are also positive answers for $C(X)$ spaces in [1], for von Neumann algebras in [10], and for general unital C^{*}-algebras in [2]. The same is true if one considers bijective maps between positive definite cones in unital C^{*}-algebras but equipped with a sort of Schatten p-norm [4] for $p \in(1, \infty]$.

In this paper, we give a positive answer for non-commutative $L_{p}(\mathcal{M})$-spaces in Theorem 3.4; see also Theorems 1.4 and 1.5 below. Note that a noncommutative $L^{p}(\mathcal{M})$ space is not a Banach lattice unless \mathcal{M} is abelian. This prevents us from directly applying the technique developed in the abelian case in [17]. Anyway, let us recall our result for commutative L^{p}-spaces.

Theorem 1.2 ([17, Theorem 3.3]). Let $\varphi: L_{+}^{p}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right) \rightarrow L_{+}^{p}\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ be a bijective map, where $1<p \leq \infty$. Suppose

$$
\|x+y\|_{p}=\|\varphi(x)+\varphi(y)\|_{p}, \quad \forall x, y \in L_{+}^{p}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)
$$

Then φ extends to a surjective positive linear isometry from $L^{p}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ onto $L^{p}\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$. More precisely, there exists a regular set isomorphism Ψ from Σ_{1} onto Σ_{2} inducing a bijective positive linear map $\psi: L^{p}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right) \rightarrow L^{p}\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$, and a locally measurable function h on Ω_{2} such that

$$
\begin{equation*}
\varphi(x)=h \cdot \psi(x), \quad \forall x \in L_{+}^{p}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right) . \tag{1.1}
\end{equation*}
$$

When $1<p<+\infty$, we have

$$
\int_{\Psi(A)}|h(t)|^{p} d \mu_{2}=\mu_{1}(A), \quad \text { for each } \sigma \text {-finite } A \in \Sigma_{1} .
$$

In other words, $|h|^{p}=\frac{d\left(\mu_{1} \circ \Psi^{-1}\right)}{d \mu_{2}}$ is the Radon-Nikodym derivative of $\mu_{1} \circ \Psi^{-1}$ with respect to μ_{2}. When $p=+\infty$, we have

$$
h(y)=1, \quad \text { locally almost everywhere on } \Omega_{2} .
$$

When the underlying measure spaces are localizable, $\mathcal{M}=L^{\infty}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\mathcal{N}=L^{\infty}\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ are commutative von Neumann algebras with predual spaces $L^{1}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $L^{1}\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$, respectively. In this case, the regular set isomorphism Ψ defining ψ in (1.1) can be thought of an orthomorphism between the projection lattices of \mathcal{M} and \mathcal{N}. By Dye's Theorem [3], Ψ extends uniquely to a Jordan $*$-isomorphism $J: \mathcal{M} \rightarrow \mathcal{N}$. We simply have $\psi=J$ when $p=+\infty$. When $1<p<+\infty$, let $\Theta=J^{-1}$ with the predual map $\Theta_{*}: L^{1}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right) \rightarrow$ $L^{1}\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$. Then we have $\psi(f)=\Theta_{*}\left(f^{p}\right)^{1 / p}$ for all f in $L_{+}^{p}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$.

We are going to provide a noncommutative version of Theorem 1.2. To this end, we need the following counter part result about norm of difference preservers recently developed in [8]. Set

$$
L_{+}^{p}(\mathcal{M})_{\alpha}^{\beta}=\left\{S \in L_{+}^{p}(\mathcal{M}): \alpha \leq\|S\|_{p} \leq \beta\right\}, \quad 0 \leq \alpha<\beta<+\infty .
$$

Theorem 1.3 ([8, Theorem 1.3]). Let $p \in[1, \infty]$, and \mathcal{M} and \mathcal{N} be two von Neumann algebras. Assume there is a metric preserving bijection $\Phi: L_{+}^{p}(\mathcal{M})_{\alpha}^{\beta} \rightarrow$
$L_{+}^{p}(\mathcal{N})_{\alpha}^{\beta}$, i.e.,

$$
\|\Phi(x)-\Phi(y)\|_{p}=\|x-y\|_{p}, \quad \forall x, y \in L_{+}^{p}(\mathcal{M})_{\alpha}^{\beta} .
$$

(a) \mathcal{M} and \mathcal{N} are $*$-isomorphic.
(b) If $\mathcal{M} \nsubseteq \mathbb{C}$ and \mathcal{M} is approximately semifinite, then there is a unique Jordan *-isomorphism $\Theta: \mathcal{N} \rightarrow \mathcal{M}$ satisfying $\Phi(R)=\Theta_{*}\left(R^{p}\right)^{1 / p}$ for any $R \in$ $L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)_{\alpha}^{\beta}$.

Here is the main result in this paper.
Theorem 1.4. Let $p \in(1,+\infty]$, and \mathcal{M} and \mathcal{N} be two von Neumann algebras. Assume there is a surjective map $\varphi: L_{+}^{p}(\mathcal{M}) \rightarrow L_{+}^{p}(\mathcal{N})$ such that

$$
\|\varphi(x)+\varphi(y)\|_{p}=\|x+y\|_{p}, \quad \forall x, y \in L_{+}^{p}(\mathcal{M}) .
$$

(a) \mathcal{M} and \mathcal{N} are $*$-isomorphic, and φ extends uniquely to a positive surjective real linear isometry $\theta: L_{\mathrm{sa}}^{p}(\mathcal{M}) \rightarrow L_{\mathrm{sa}}^{p}(\mathcal{N})$.
(b) If $p=+\infty$ then φ extends uniquely to a Jordan $*$-isomorphism $J: \mathcal{M} \rightarrow \mathcal{N}$.
(c) If $1<p<+\infty$ and \mathcal{M} is approximately semifinite, then there is a unique Jordan *-isomorphism $\Theta: \mathcal{N} \rightarrow \mathcal{M}$ satisfying $\varphi(R)=\Theta_{*}\left(R^{p}\right)^{1 / p}$ for any $R \in L_{+}^{p}(\mathcal{M})$.

In the abelian case, every function in $L_{+}^{p}(\mu)$ can be approximated in norm by functions from $L_{+}^{\infty}(\mu)$. However, one of the difficulties in studying noncommutative $L^{p}(\mathcal{M})$ space arises from the fact that $L^{p}(\mathcal{M}) \cap \mathcal{M}=\{0\}$ when \mathcal{M} is not semifinite. If \mathcal{M} has a faithful semifinite trace $\tau_{\mathcal{M}}$, nevertheless, there is a weak* dense twosided self-adjoint ideal $S_{\mathcal{M}}$ of \mathcal{M} embedded into the noncommutative $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ space. In other words, the intersection $L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$is reasonably big to represent \mathcal{M}, as well as $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$. This motivates us to include the following result in this paper. We note that any one of \mathcal{M} and \mathcal{N} being semifinite suffices to ensure its conclusion due to Theorem 1.4(a).

Theorem 1.5. Let $1<p \leq+\infty$. Let \mathcal{M} and \mathcal{N} be two semifinite von Neumann algebras with traces $\tau_{\mathcal{M}}$ and $\tau_{\mathcal{N}}$, respectively. Suppose that $\varphi: L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+} \rightarrow$ $L^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right) \cap \mathcal{N}_{+}$is a surjective map satisfying that

$$
\|x+y\|_{p}=\|\varphi(x)+\varphi(y)\|_{p}, \quad \forall x, y \in L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}
$$

Then there exists uniquely a Jordan $*$-isomorphism $J: \mathcal{M} \rightarrow \mathcal{N}$ such that

$$
\varphi(x)=J(x) h=h J(x), \quad x \in L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+} .
$$

Here, $h^{p}=\frac{d \tau_{\mathcal{M}} \circ J^{-1}}{d \tau_{N}}$ is the noncommutative Radon-Nikodym derivative of $\tau_{\mathcal{M}} \circ$ J^{-1} with respect to τ_{N} when $1<p<+\infty$; and $h=1$ if $p=+\infty$.

In Section 2, we will give a brief description of the construction of noncommutative L^{p}-spaces. The proofs of Theorems 1.4 and 1.5 are given in Section 3. We note that, however, neither of Theorems 1.4 nor 1.5 holds when $p=1$, as shown by counter examples. In Section 4, we will provide two concrete examples to demonstrate the case when $p=+\infty$.

2. Preliminaries

Let \mathcal{M} be a von Neumann algebra, that is, a self-adjoint algebra of operators on a Hilbert space H that is closed in the weak operator topology. A trace on \mathcal{M} is a nonnegative extended real-valued function τ defined on the positive part \mathcal{M}_{+}of \mathcal{M} which satisfies
(1) $\tau(x+y)=\tau(x)+\tau(y)$ for all $x, y \in \mathcal{M}_{+}$;
(2) $\tau(\lambda x)=\lambda \tau(x)$ for all $\lambda \geq 0$ and $x \in \mathcal{M}_{+}$;
(3) $\tau\left(x x^{*}\right)=\tau\left(x^{*} x\right)$ for all $x \in \mathcal{M}$.

If τ satisfies conditions (1) and (2) but not necessarily (3), then we call it a weight. We say that τ is normal if $\sup \tau\left(x_{\alpha}\right)=\tau\left(\sup x_{\alpha}\right)$ for any bounded increasing net $\left\{x_{\alpha}\right\}$ in \mathcal{M}_{+}, semifinite if for any nonzero $x \in \mathcal{M}_{+}$there is a nonzero $y \in \mathcal{M}_{+}$such that $y \leq x$ and $\tau(y)<+\infty$, and faithful if $\tau(x)=0$ implies $x=0$ for any $x \in \mathcal{M}_{+}$. If $\tau(1)<+\infty$, we say that τ is finite. A von Neumann algebra \mathcal{M} is said to be finite (resp. semifinite) if it admits a normal finite (resp. semifinite) faithful trace.

Definition 2.1. A von Neumann algebra \mathcal{M} is said to be approximately semifinite [14] if

- there is an increasing family $\left\{\mathcal{M}_{i}\right\}_{i \in \mathfrak{I}}$ of semifinite von Neumann subalgebras of \mathcal{M} such that $\bigcup_{i \in \mathfrak{I}} \mathcal{M}_{i}$ is $\sigma\left(\mathcal{M}, \mathcal{M}_{*}\right)$-dense in \mathcal{M}, and
- there is a normal conditional expectation $E_{i}: \mathcal{M} \rightarrow \mathcal{M}_{i}$ with $E_{i}(1)$ being the identity of \mathcal{M}_{i} such that $E_{i} \circ E_{j}=E_{i}$ whenever $i \leq j$ in \mathfrak{I}.

The class of approximately semifinite von Neumann algebras includes, in particular, all semifinite algebras, all hyperfinite algebras, and all type II_{0}-factors with separable preduals. See also [8] for more details.

We follow the construction of noncommutative L^{p}-spaces demonstrated in [13] and [16]. Let \mathcal{M} denote a semifinite von Neumann algebra on a Hilbert space H with a given normal semifinite faithful trace $\tau_{\mathcal{M}}$. Let $S_{\mathcal{M}}$ be the subset of \mathcal{M} of elements x of finite traces, i.e., $\tau_{\mathcal{M}}(|x|)<+\infty$, where $|x|$ denotes the operator $\left(x^{*} x\right)^{1 / 2}$. The set $S_{\mathcal{M}}$ is quite big, as it is a self-adjoint two sided ideal of \mathcal{M} and dense in \mathcal{M} in the strong operator topology. Moreover, it is closed under taking p powers, i.e., $|x|^{p} \in S_{\mathcal{M}}$ whenever $x \in S_{\mathcal{M}}$ and $0<p<+\infty$.

For $x \in \mathcal{M}$ and $1 \leq p<+\infty$, let

$$
\|x\|_{p}=\tau_{\mathcal{M}}\left(|x|^{p}\right)^{1 / p}
$$

Then $\|\cdot\|_{p}$ defines a norm on $S_{\mathcal{M}}$. We call the norm completion of $S_{\mathcal{M}}$ the noncommutative $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ space.

We can identify $L^{\infty}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ with \mathcal{M} and $L^{1}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ with the predual \mathcal{M}_{*} of \mathcal{M}. The positive cone $L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ of $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ is the completion of $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$ under the norm $\|\cdot\|_{p}$. We will write $L^{p}(\mathcal{M})$ if the trace $\tau_{\mathcal{M}}$ is understood.

The situation when \mathcal{M} is not semifinite is far more complicated. Let \mathcal{M} be a general von Neumann algebra on a Hilbert space H, but not necessarily semifinite. We note that every von Neumann algebra has a normal faithful semifinite weight.

Fix a normal semifinite faithful weight ϕ on \mathcal{M}. Consider the modular automorphism group α corresponding to ϕ. There exists a normal faithful semifinite trace τ on the von Neumann algebra crossed product $\check{\mathcal{M}}:=\mathcal{M} \bar{\rtimes}_{\alpha} \mathbb{R}$ satisfying some compatibility condition with ϕ. Denote by $L^{0}(\check{\mathcal{M}}, \tau)$ the completion of \mathcal{M} under the vector topology defined by a neighborhood basis at 0 of the form

$$
U(\epsilon, \delta):=\{x \in \check{\mathcal{M}}:\|x p\| \leq \epsilon \text { and } \tau(1-p) \leq \delta, \text { for a projection } p \in \check{\mathcal{M}}\} .
$$

Then the ${ }^{*}$-algebra structure of $\check{\mathcal{M}}$ extends to a ${ }^{*}$-algebra structure of $L^{0}(\check{\mathcal{M}}, \tau)$.
Elements in $L^{0}(\check{\mathcal{M}}, \tau)$ can be regarded as closed densely defined operators on $L^{2}(\mathbb{R} ; H)$. More precisely, let T be a densely defined closed operator on $L^{2}(\mathbb{R} ; H)$ affiliated with $\dot{\mathcal{M}}$, and $|T|$ be its absolute value with spectral projection-valued measure $E_{|T|}$. Then T corresponds uniquely to an element in $L^{0}(\check{\mathcal{M}}, \tau)$ if and only if $\tau\left(1-E_{|T|}([0, \lambda])\right)<\infty$ when λ is large. Conversely, every element in $L^{0}(\check{\mathcal{M}}, \tau)$ arises from a closed operator in this way. Under this identification, the *-operation on $L^{0}(\mathscr{\mathcal { M }}, \tau)$ coincides with the adjoint. The addition and the multiplication on $L^{0}(\check{\mathcal{M}}, \tau)$ are the closures of the corresponding operations for closed operators. Denote by $L_{+}^{0}(\mathcal{M}, \tau)$ the set of all positive self-adjoint operators in $L^{0}(\mathcal{M}, \tau)$. For x, y in $L^{0}(\check{\mathcal{M}}, \tau)$, we write $x \perp y$ if $|x||y|=0$, i.e., the positive operators have orthogonal support projections.

The dual action $\hat{\alpha}: \mathbb{R} \rightarrow \operatorname{Aut}(\check{\mathcal{M}})$ extends to an action on $L^{0}(\check{\mathcal{M}}, \tau)$. For any $p \in[1, \infty]$, we set

$$
L^{p}(\mathcal{M}):=\left\{T \in L^{0}(\check{\mathcal{M}}, \tau): \hat{\alpha}_{s}(T)=e^{-s / p} T \text { for all } s \in \mathbb{R}\right\}
$$

(where, by convention, $e^{-s / \infty}=1$). Then $L^{\infty}(\mathcal{M})$ coincides with the subalgebra \mathcal{M} of $\check{\mathcal{M}} \subseteq L^{0}(\check{\mathcal{M}}, \tau)$. Moreover, if $T \in L^{0}(\check{\mathcal{M}}, \tau)$ and $T=u|T|$ is the polar decomposition, then $T \in L^{p}(\mathcal{M})$ if and only if $|T| \in L^{p}(\mathcal{M})$. The product of an element in $L^{\infty}(\mathcal{M})$ with an element in $L^{p}(\mathcal{M})$ (in whatever order) is again in $L^{p}(\mathcal{M})$. Hence, $L^{p}(\mathcal{M})$ is canonically an \mathcal{M}-bimodule. Let $L_{\mathrm{sa}}^{p}(\mathcal{M})$ denote the set of all self-adjoint operators in $L^{p}(\mathcal{M})$ and put $L_{+}^{p}(\mathcal{M}):=L^{p}(\mathcal{M}) \cap L_{+}^{0}(\check{\mathcal{M}}, \tau)$.

When $p \in(0, \infty)$, the Mazur map

$$
S \mapsto S^{\frac{1}{p}} \quad\left(S \in L_{+}^{0}(\check{\mathcal{M}}, \tau)\right)
$$

restricts to a bijection from $L_{+}^{1}(\mathcal{M})$ onto $L_{+}^{p}(\mathcal{M})$. Elements in $L_{+}^{p}(\mathcal{M})$ are identified with $S^{\frac{1}{p}}$ for a unique element $S \in L_{+}^{1}(M)$. When $p \in(1, \infty)$, the function

$$
\|T\|_{p}:=\left\||T|^{p}\right\|_{1}^{1 / p}
$$

is a norm on $L^{p}(\mathcal{M})$, and $\left(L^{p}(\mathcal{M}), L_{+}^{p}(\mathcal{M})\right)$ becomes an ordered Banach space.
It is known that $\left(L^{p}(\mathcal{M}), L_{+}^{p}(\mathcal{M})\right)$ is independent of the choice of the faithful semifinite weight ϕ up to an isometric order isomorphism (see, e.g., Theorem 37 and Corollary 38 in Chapter II of [16]). If \mathcal{M} is semifinite with a faithful normal semifinite trace $\phi=\tau_{\mathcal{M}}$, then the above two constructions of noncommutative $L^{p}(\mathcal{M})$ space will be isometrically and order isomorphic to each other. In this paper, we usually write $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ even when \mathcal{M} is not semifinite; in this case, we refer to the Haagerup trace norm $\tau_{\mathcal{M}}(\cdot)=\|\cdot\|_{1}$ instead.

3. Norm of positive sum preservers

All noncommutative $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ spaces are uniformly convex and uniformly smooth with dual space $L^{q}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ for $p, q \in(1, \infty)$ with $1 / p+1 / q=1$. In particular, the following result holds for general von Neumann algebra \mathcal{M}.

Lemma 3.1 ([7, Lemma 3.1]). If $t \in \mathbb{R} \mapsto h(t) \in L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right), 1<p<+\infty$, is differentiable (with respect to the L_{p}-norm) at $t=\alpha$ and $h(\alpha) \neq 0$, then $t \in \mathbb{R} \mapsto$ $\tau_{\mathcal{M}}\left(h(t)^{p}\right) \in \mathbb{R}_{+}$is differentiable at α and its derivative is

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=\alpha} \tau_{\mathcal{M}}\left(h(t)^{p}\right)=p \tau_{\mathcal{M}}\left(\left.h(\alpha)^{p-1} \frac{d}{d t}\right|_{t=\alpha} h(t)\right) . \tag{3.1}
\end{equation*}
$$

While it always holds that

$$
\|x \pm y\|_{p}^{p}=\|x\|_{p}^{p}+\|y\|_{p}^{p} \quad \text { whenever } \quad x, y \in L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \text { such that } x \perp y
$$

we also have a converse.
Lemma 3.2 ([7, Corollary 6.5]; see also [13, Proposition A.2]). Let \mathcal{M} be a von Neumann algebra and $1<p<+\infty$. For any $x, y \in L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$, we have

$$
\|x+y\|_{p}^{p}=\|x\|_{p}^{p}+\|y\|_{p}^{p} \quad \text { if and only if } \quad x y=0
$$

Lemma 3.3. Let \mathcal{M} and \mathcal{N} be two von Neumann algebras and $1<p<+\infty$. Suppose that $\varphi: L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \rightarrow L_{+}^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)$ is a surjective map satisfying that

$$
\begin{equation*}
\|x+y\|_{p}=\|\varphi(x)+\varphi(y)\|_{p} \tag{3.2}
\end{equation*}
$$

Then we have
(1) φ preserves orthogonality, that is $x y=0$ if and only if $\varphi(x) \varphi(y)=0$.
(2) φ is additive and nonnegative homogeneous, i.e.
(i) $\varphi\left(y_{1}+y_{2}\right)=\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$ for all $y_{1}, y_{2} \in L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$;
(ii) $\varphi(\lambda y)=\lambda \varphi(y)$ for all $\lambda \geq 0$ and $y \in L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$.

Proof. (1) Taking $x=y$ in equation (3.2), one has $\|x\|_{p}=\|\varphi(x)\|_{p}$. Hence, from Lemma 3.2,

$$
\begin{aligned}
x y=0 & \Leftrightarrow\|x+y\|_{p}^{p}=\|x\|_{p}^{p}+\|y\|_{p}^{p} \\
& \Leftrightarrow\|\varphi(x)+\varphi(y)\|_{p}^{p}=\|\varphi(x)\|_{p}^{p}+\|\varphi(y)\|_{p}^{p} \\
& \Leftrightarrow \varphi(x) \varphi(y)=0 .
\end{aligned}
$$

(2) To see φ is nonnegative homogeneous, for $\lambda>0$ we observe that

$$
\|\varphi(x)+\varphi(\lambda x)\|_{p}=\|x+\lambda x\|_{p}=\|x\|_{p}+\|\lambda x\|_{p}=\|\varphi(x)\|_{p}+\|\varphi(\lambda x)\|_{p}
$$

From the strictly convexity of $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$, we have $\varphi(\lambda x)=\delta \varphi(x)$ for some $\delta>0$. Then $\lambda\|x\|_{p}=\|\varphi(\lambda x)\|_{p}=\|\delta \varphi(x)\|_{p}=\delta\|x\|_{p}$, we get $\delta=\lambda$, and thus $\varphi(\lambda x)=$ $\lambda \varphi(x)$ for all x in $L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ and for all $\lambda \geq 0$.

To see φ is additive, we observe again that $\|\varphi(x)+t \varphi(y)\|_{p}=\|\varphi(x)+\varphi(t y)\|_{p}=$ $\|x+t y\|_{p}$ for all $t \geq 0$. Using Lemma 3.1 and setting $h(t)=x+t y$, we have

$$
\left.\frac{d\|x+t y\|_{p}^{p}}{d t}\right|_{t=0^{+}}=\left.\frac{d \tau_{\mathcal{M}}\left(h(t)^{p}\right)}{d t}\right|_{t=0^{+}}=p \tau_{\mathcal{M}}\left(x^{p-1} y\right)
$$

Hence, differentiating both sides of $\|x+t y\|_{p}^{p}=\|\varphi(x)+t \varphi(y)\|_{p}^{p}$ with respect to t at 0 , we have

$$
\tau_{\mathcal{M}}\left(x^{p-1} y\right)=\tau_{\mathcal{N}}\left(\varphi(x)^{p-1} \varphi(y)\right) .
$$

It follows

$$
\begin{aligned}
& \tau_{\mathcal{N}}\left(\varphi(x)^{p-1}\left(\varphi\left(y_{1}+y_{2}\right)-\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)\right)\right) \\
= & \tau_{\mathcal{N}}\left(\varphi(x)^{p-1}\left(\varphi\left(y_{1}+y_{2}\right)\right)\right)-\tau_{\mathcal{N}}\left(\varphi(x)^{p-1} \varphi\left(y_{1}\right)\right)-\tau_{\mathcal{N}}\left(\varphi(x)^{p-1} \varphi\left(y_{2}\right)\right) \\
= & \tau_{\mathcal{M}}\left(x^{p-1}\left(y_{1}+y_{2}\right)\right)-\tau_{\mathcal{M}}\left(x^{p-1} y_{1}\right)-\tau_{\mathcal{M}}\left(x^{p-1} y_{2}\right)=0 .
\end{aligned}
$$

Since φ is surjective, choosing $\varphi(x)=\left[\varphi\left(y_{1}+y_{2}\right)-\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)\right]^{+}$, the positive part of $\varphi\left(y_{1}+y_{2}\right)-\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)$, we get $\left\|\left[\varphi\left(y_{1}+y_{2}\right)-\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)\right]^{+}\right\|_{p}^{p}=0$ since the positive part and the negative part of $\varphi\left(y_{1}+y_{2}\right)-\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)$ are orthogonal. Hence, the positive part of $\varphi\left(y_{1}+y_{2}\right)-\varphi\left(y_{1}\right)-\varphi\left(y_{2}\right)$ is 0 . Similarly, the negative part is also 0 , and therefore $\varphi\left(y_{1}+y_{2}\right)=\varphi\left(y_{1}\right)+\varphi\left(y_{2}\right)$.

Theorem 3.4. Let \mathcal{M} and \mathcal{N} be two von Neumann algebras and $1<p<+\infty$. Suppose that $\varphi: L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \rightarrow L_{+}^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)$ is a surjective map satisfying that

$$
\begin{equation*}
\|x+y\|_{p}=\|\varphi(x)+\varphi(y)\|_{p} . \tag{3.3}
\end{equation*}
$$

Then there exists a unique surjective complex linear map $\omega: L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \rightarrow L^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)$ extending φ. Moreover, its restriction defines a surjective positive real linear isometry $\theta: L_{\mathrm{sa}}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \rightarrow L_{\mathrm{sa}}^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)$.

Proof. Observe that for any $x, y \in L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$, we have $x-y=(x-y)^{+}-(x-y)^{-}$, and thus $(x-y)^{+}+y=(x-y)^{-}+x$. Since φ is additive by Lemma 3.3, we have $\varphi\left((x-y)^{+}\right)+\varphi(y)=\varphi\left((x-y)^{-}\right)+\varphi(x)$. This gives $\varphi(x)-\varphi(y)=\varphi\left((x-y)^{+}\right)-$ $\varphi\left((x-y)^{-}\right)$. Since $(x-y)^{+} \perp(x-y)^{-}$, we have $\varphi\left((x-y)^{+}\right) \perp \varphi\left((x-y)^{-}\right)$by Lemma 3.3 again. It follows that

$$
\begin{aligned}
\|\varphi(x)-\varphi(y)\|_{p}^{p} & =\left\|\varphi\left((x-y)^{+}\right)-\varphi\left((x-y)^{-}\right)\right\|_{p}^{p}=\left\|\varphi\left((x-y)^{+}\right)+\varphi\left((x-y)^{-}\right)\right\|_{p}^{p} \\
& =\left\|(x-y)^{+}+(x-y)^{-}\right\|_{p}^{p}=\|x-y\|_{p}^{p}, \quad \forall x, y \in L_{+}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) .
\end{aligned}
$$

That is, φ preserves norm of differences.
For $x \in L_{\mathrm{sa}}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$, we define

$$
\theta(x)=\varphi\left(x^{+}\right)-\varphi\left(x^{-}\right) .
$$

It follows from Lemma 3.3 that θ is well-defined and real linear. Moreover, $\theta(x) \perp \theta(y)$ if $x \perp y$. Furthermore,

$$
\|\theta(x)\|_{p}=\left\|\varphi\left(x^{+}\right)-\varphi\left(x^{-}\right)\right\|_{p}=\left\|x^{+}-x^{-}\right\|_{p}=\|x\|_{p} .
$$

Thus, θ is a positive real linear isometry from $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)_{\text {sa }}$ onto $L_{\text {sa }}^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)$ extending φ.

For any $x \in L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$, we write $x=\frac{x+x^{*}}{2}+i \frac{x-x^{*}}{2 i}:=x_{1}+i x_{2}$, where x_{1}, x_{2} are self-adjoint elements in $L_{\mathrm{sa}}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$. Define

$$
\omega\left(x_{1}+i x_{2}\right)=\theta\left(x_{1}\right)+i \theta\left(x_{2}\right) .
$$

It is easy to check that

$$
\omega(x+y)=\omega(x)+\omega(y), \quad \omega(\lambda x)=\lambda \omega(x),
$$

for all $x=x_{1}+i x_{2}, y=y_{1}+i y_{2}$ in $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ and $\lambda=a+i b$ in \mathbb{C}. The uniqueness of θ and ω is plain.

Note again that for any von Neumann algebra \mathcal{M}, we have $L^{\infty}(\mathcal{M}) \cong \mathcal{M}$ and $L^{1}(\mathcal{M}) \cong \mathcal{M}_{*}$.

Proof of Theorem 1.4. The case $p=+\infty$ can be derived from a result of Molnár [10, Theorem 2.7] which states that every surjective norm of sum preserver φ : $\mathcal{M}_{+} \rightarrow \mathcal{N}_{+}$extends uniquely to a Jordan $*$-isomorphism $J: \mathcal{M} \rightarrow \mathcal{N}$.

For the case $1<p<+\infty$, by Theorem 3.4 we see in particular that φ extends to a bijection from the positive unit ball $L_{+}^{1}(\mathcal{M})_{0}^{1}$ of $L_{+}^{1}(\mathcal{M})$ onto the positive unit ball $L_{+}^{1}(\mathcal{N})_{0}^{1}$ of $L_{+}^{1}(\mathcal{N})$ such that $\|\varphi(x)-\varphi(y)\|_{p}=\|x-y\|_{p}$ for all x, y in $L_{+}^{1}(\mathcal{M})_{0}^{1}$. If \mathcal{M} is not one-dimensional, then the assertions follow from Theorem 1.3.

Finally, when $\mathcal{M}=\mathcal{N}=\mathbb{C}$, we have

$$
L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)=L^{p}(\mathbb{C}, \mu) \quad \text { and } \quad L^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)=L^{p}(\mathbb{C}, \nu)
$$

for some positive measures μ and ν on \mathbb{C}. The assertions follow from our previous results for the abelian case, namely, Theorem 1.2, and the discussion after it.

When $p=1$, we have a counter example in [17, Example 4.1]. There we have a norm of positive sum preserver of the commutative $\ell_{n}^{1}=L^{1}\left(\ell_{n}^{\infty}\right)$ space associated to the n-dimensional abelian von Neumann algebra ℓ_{n}^{∞} with $n \geq 2$, which is neither affine nor continuous. See also Example 3.8 for a noncommutative counter example.

Proof of Theorem 1.5. Arguing as in Lemma 3.3 and noticing that all operations are done inside the domain $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$and range $L^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right) \cap \mathcal{N}_{+}$of φ, we have again the same conclusions there. More precisely, we have
(1) φ preserves orthogonality, that is, $x y=0$ if and only if $\varphi(x) \varphi(y)=0$;
(2) φ is additive and nonnegative homogeneous, that is,
(i) $\varphi(x+y)=\varphi(x)+\varphi(y)$;
(ii) $\varphi(\lambda y)=\lambda \varphi(y)$;
(3) φ preserves metric, that is, $\|\varphi(x)-\varphi(y)\|_{p}=\|x-y\|_{p}$;
where $x, y \in L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$and $\lambda \geq 0$.
We extend the domain of φ from $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$to $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{\text {sa }}$ by defining

$$
\theta(x)=\varphi\left(x^{+}\right)-\varphi\left(x^{-}\right), \quad \forall x \in L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{\mathrm{sa}} .
$$

It follows from the fact $\theta\left(x^{+}\right)=\theta(x)^{+}$that θ also preserves the metric, i.e.,

$$
\begin{aligned}
\|\theta(x)-\theta(y)\|_{p}^{p} & =\left\|\theta(x-y)^{+}-\theta(x-y)^{-}\right\|_{p}^{p}=\left\|\theta(x-y)^{+}\right\|_{p}^{p}+\left\|\theta(x-y)^{-}\right\|_{p}^{p} \\
& =\left\|(x-y)^{+}\right\|_{p}^{p}+\left\|(x-y)^{-}\right\|_{p}^{p}=\|x-y\|_{p}^{p},
\end{aligned}
$$

for all x, y in $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{\mathrm{sa}}$. In particular, φ can be extended to a surjective real linear isometry from $L_{\mathrm{sa}}^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right)$ onto $L_{\mathrm{sa}}^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)$, and thus provides a surjective metric preserving map between their positive unit balls. Then Theorem 1.4 applies.

In particular, there is a unique Jordan $*$-isomorphism $\Theta: \mathcal{N} \rightarrow \mathcal{M}$ satisfying that $\varphi(R)=\Theta_{*}\left(R^{p}\right)^{1 / p}$ for any $R \in L_{+}^{p}(\mathcal{M})$.

Let $J=\Theta^{-1}: \mathcal{M} \rightarrow \mathcal{N}$ and let $h=\left(\frac{d \tau_{\mathcal{M}} \circ \Theta}{d \tau_{N}}\right)^{1 / p}$ be the $1 / p$ th power of the non-commutative Radon-Nikodym derivative of $\tau_{\mathcal{M}} \circ \Theta$ with respect to $\tau_{\mathcal{N}}$ (see, e.g., [12, Theorem 5.12]). Note that the unbounded operator h is affiliated with \mathcal{N}, and commutes with all elements in \mathcal{N}. Then for all x in $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}+$ we have

$$
\tau_{\mathcal{N}}\left((J(x) h)^{p} y\right)=\tau_{\mathcal{M}}\left(x^{p} \Theta(y)\right)=\tau_{\mathcal{N}}\left(\Theta_{*}\left(x^{p}\right) y\right)=\tau_{\mathcal{N}}\left(\varphi(x)^{p} y\right),
$$

for all $y \in L^{\infty}\left(\mathcal{N}, \tau_{\mathcal{N}}\right)_{+}=\mathcal{N}_{+}$. Thus $\varphi(x)=J(x) h$ for all x in $L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$ as asserted.

Corollary 3.5. Assume \mathcal{M} is a factor and $1<p<+\infty$. Suppose $\varphi: L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap$ $\mathcal{M}_{+} \rightarrow L^{p}\left(\mathcal{N}, \tau_{\mathcal{N}}\right) \cap \mathcal{N}_{+}$is a surjective map satisfying that $\|x+y\|_{p}=\|\varphi(x)+\varphi(y)\|_{p}$ for all $x, y \in L^{p}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$. Then there is a $*$-algebra isomorphism or antiisomorphism J of \mathcal{M} onto \mathcal{N} and a positive scalar λ such that $\varphi=\lambda J$.

Proof. The assertion follows from Theorem 1.5 and well-known facts on Jordan *-isomorphisms (cf. [6]).

Corollary 3.6. Let \mathcal{M} be a finite factor with a normal faithful finite trace τ. Let φ be a transformation from $L^{p}(\mathcal{M}, \tau)$ onto itself satisfying that $\varphi\left(\mathcal{M}_{+}\right)=\mathcal{M}_{+}$and $\|x+y\|_{p}=\|\varphi(x)+\varphi(y)\|_{p}$ for all $x, y \in \mathcal{M}_{+}$. Then the restriction of φ to \mathcal{M} is either $a *$-algebra isomorphism or anti-isomorphism of \mathcal{M}.

Corollary 3.7. Let \mathcal{M} be a type I factor with the canonical trace τ, and let φ be a transformation from $L^{p}(\mathcal{M}, \tau)$ onto itself satisfying that $\varphi\left(L_{+}^{p}(\mathcal{M}, \tau)\right)=L_{+}^{p}(\mathcal{M}, \tau)$ and $\|x+y\|_{p}=\|\varphi(x)+\varphi(y)\|_{p}$ for all $x, y \in \mathcal{M}_{+}$. Then there exists a $*$-algebra isomorphism or anti-isomorphism Φ of \mathcal{M} such that $\varphi(x)=\Phi(x)$ for every $x \in$ $L^{p}(\mathcal{M}, \tau)$.

Example 3.8. For the case $p=1$, Theorem 1.5 may not hold. For example, let $\varphi: L^{1}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+} \rightarrow L^{1}\left(\mathcal{M}, \tau_{\mathcal{M}}\right) \cap \mathcal{M}_{+}$satisfy that $\varphi(x)=u_{r} x u_{r}^{*}$, where $\|x\|_{1}=r$ and u_{r} is a randomly chosen unitary element in \mathcal{M} associated with each $r \geq 0$. Clearly, φ is surjective. Moreover,

$$
\begin{aligned}
\|\varphi(x)+\varphi(y)\|_{1} & =\tau_{\mathcal{M}}(\varphi(x))+\tau_{\mathcal{M}}(\varphi(y))=\tau_{\mathcal{M}}\left(u_{\|x\|} x u_{\|x\|}^{*}\right)+\tau_{\mathcal{M}}\left(u_{\|y\|} y u_{\|y\|}^{*}\right) \\
& =\tau_{\mathcal{M}}(x)+\tau_{\mathcal{M}}(y)=\tau_{\mathcal{M}}(x+y)=\|x+y\|_{1} .
\end{aligned}
$$

However, φ does not carry the form stated in Theorem 1.5.

4. Two examples when $p=+\infty$

In this section, two examples of norm of positive sum preservers are provided for the case $p=+\infty$. We verify the details by direct arguments.

Example 4.1. Consider the two dimensional abelian von Neumann algebra $\mathcal{M}=$ $\mathcal{N}=\mathbb{C} \oplus_{\infty} \mathbb{C}$. Suppose $\varphi: \mathbb{R}_{+} \oplus_{\infty} \mathbb{R}_{+} \mapsto \mathbb{R}_{+} \oplus_{\infty} \mathbb{R}_{+}$is a map satisfying $\|x+y\|_{\infty}=$
$\|\varphi(x)+\varphi(y)\|_{\infty}$ for all x, y in $\mathbb{R}_{+} \oplus_{\infty} \mathbb{R}_{+}$. We show directly that $\varphi(x)=U x$ where U is a permutation; namely, φ assumes either the form

$$
\left(x_{1}, y_{1}\right) \mapsto\left(x_{1}, y_{1}\right) \quad \text { or } \quad\left(x_{1}, y_{1}\right) \mapsto\left(y_{1}, x_{1}\right) .
$$

Proof. It is easy to see that $\varphi((0,0))=(0,0)$ and $\|x\|_{\infty}=\|\varphi(x)\|_{\infty}$ for all x in $\mathbb{R}_{+} \oplus_{\infty} \mathbb{R}_{+}$.

Claim 1: Either the case $\varphi\left(\left(x_{1}, 0\right)\right)=\left(x_{1}, 0\right)$ and $\varphi\left(\left(0, x_{1}\right)\right)=\left(0, x_{1}\right)$, or the case $\varphi\left(\left(x_{1}, 0\right)\right)=\left(0, x_{1}\right)$ and $\varphi\left(\left(0, x_{1}\right)\right)=\left(x_{1}, 0\right)$ holds for all $x_{1} \geq 0$.

Suppose that $\varphi\left(\left(x_{1}, 0\right)\right)=\left(x_{1}^{\prime}, y_{1}^{\prime}\right)$ and $\varphi\left(\left(0, x_{1}\right)\right)=\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$. We have

$$
\max \left\{x_{1}^{\prime}, y_{1}^{\prime}\right\}=\max \left\{x_{2}^{\prime}, y_{2}^{\prime}\right\}=\max \left\{x_{1}^{\prime}+x_{2}^{\prime}, y_{1}^{\prime}+y_{2}^{\prime}\right\}=x_{1} .
$$

If $x_{1}^{\prime}=x_{1}$, then $x_{2}^{\prime}=0, y_{2}^{\prime}=x_{1}$ and $y_{1}^{\prime}=0$. The other case arises when $x_{2}^{\prime}=x_{1}$.
Claim 2: $\varphi\left(\left(x_{1}, x_{1}\right)\right)=\left(x_{1}, x_{1}\right)$ for all $x_{1} \geq 0$.
Suppose that $\varphi\left(\left(x_{1}, x_{1}\right)\right)=\left(x_{1}, y_{1}^{\prime}\right)$ in which $y_{1}^{\prime}<x_{1}$. If $\varphi\left(\left(x_{1}, 0\right)\right)=\left(x_{1}, 0\right)$ and $\varphi\left(\left(0, x_{1}\right)\right)=\left(0, x_{1}\right)$, one gets $\left\|\left(x_{1}, x_{1}\right)+(0,1)\right\|_{\infty}=\left\|\left(x_{1}, y_{1}^{\prime}\right)+(0,1)\right\|_{\infty}$. Thus, $x_{1}+1=y_{1}^{\prime}+1$, which is a contradiction. If $\varphi\left(\left(x_{1}, 0\right)\right)=\left(0, x_{1}\right)$ and $\varphi\left(\left(0, x_{1}\right)\right)=$ $\left(x_{1}, 0\right)$, one gets $\left\|\left(x_{1}, x_{1}\right)+(1,0)\right\|_{\infty}=\left\|\left(x_{1}, y_{1}^{\prime}\right)+(0,1)\right\|_{\infty}$. This gives again the contradiction $x_{1}+1=y_{1}^{\prime}+1$.

The same argument also removes the case $\varphi\left(\left(x_{1}, x_{1}\right)\right)=\left(x_{1}^{\prime}, x_{1}\right)$ such that $x_{1}^{\prime}<$ x_{1}. Since $\left\|\varphi\left(x_{1}, x_{1}\right)\right\|_{\infty}=x_{1}$, we verify the claim.

Set
$A=\left\{\left(x_{1}, y_{1}\right): x_{1}>0, y_{1}>0, x_{1}>y_{1}\right\}, \quad B=\left\{\left(x_{1}, y_{1}\right): x_{1}>0, y_{1}>0, x_{1}<y_{1}\right\}$.
Claim 3: Either $\varphi(A) \subseteq A, \varphi(B) \subseteq B$, or $\varphi(A) \subseteq B, \varphi(B) \subseteq A$.
We prove that $\varphi(A) \subseteq A, \varphi(B) \subseteq B$ when the case $\varphi\left(\left(x_{1}, 0\right)\right)=\left(x_{1}, 0\right)$ and $\varphi\left(\left(0, x_{1}\right)\right)=\left(0, x_{1}\right)$ ever happens. Suppose on the contrary $\varphi(A) \nsubseteq A$, that is to say $\varphi\left(\left(x_{2}, y_{2}\right)\right)=\left(x_{2}^{\prime}, y_{2}^{\prime}\right)$ for some $x_{2}>y_{2}>0$ and $0 \leq x_{2}^{\prime} \leq y_{2}^{\prime}$. Then one has $y_{2}^{\prime}=x_{2}$. It shows that $\left\|\left(x_{2}, y_{2}\right)+\left(0, x_{2}\right)\right\|_{\infty}=\left\|\left(x_{2}^{\prime}, x_{2}\right)+\left(0, x_{2}\right)\right\|_{\infty}$. Thus, $x_{2}+y_{2}=2 x_{2}$ which conflicts with $x_{2}>y_{2}$. Similarly, $\varphi(B) \subseteq B$ is satisfied under this condition.

Analogously, we have $\varphi(A) \subseteq B, \varphi(B) \subseteq A$ when the case $\varphi\left(\left(x_{1}, 0\right)\right)=\left(0, x_{1}\right)$ and $\varphi\left(\left(0, x_{1}\right)\right)=\left(x_{1}, 0\right)$ ever holds.

Claim 4: Either $\varphi\left(\left(x_{1}, y_{1}\right)\right)=\left(x_{1}, y_{1}\right)$ or $\varphi\left(\left(x_{1}, y_{1}\right)\right)=\left(y_{1}, x_{1}\right)$ for all $\left(x_{1}, y_{1}\right) \in$ $\mathbb{R}_{+} \oplus_{\infty} \mathbb{R}_{+}$.

In the case $\varphi(A) \subseteq A$, we can assume that $\varphi\left(\left(x_{1}, y_{1}\right)\right)=\left(x_{1}, y_{1}^{\prime}\right)$ where $x_{1}>$ $y_{1}, x_{1}>y_{1}^{\prime}$. It follows that $\left\|\left(x_{1}, y_{1}\right)+\left(0, x_{1}\right)\right\|_{\infty}=\left\|\left(x_{1}, y_{1}^{\prime}\right)+\left(0, x_{1}\right)\right\|_{\infty}$. Therefore, $y_{1}^{\prime}=y_{1}$. Same argument can be used for the case $\left(x_{1}, y_{1}\right) \in B$. This shows that $\varphi\left(\left(x_{1}, y_{1}\right)\right)=\left(x_{1}, y_{1}\right)$ for all $\left(x_{1}, y_{1}\right) \in \mathbb{R}_{+} \oplus_{\infty} \mathbb{R}_{+}$.

On the other-hand, if $\varphi(A) \subseteq B, \varphi(B) \subseteq A$, similar arguments produce the other desired conclusion.
Example 4.2. Consider the von Neumann algebra M_{2} of 2×2 complex matrices with positive cone P_{2}. Suppose that $\varphi: P_{2} \rightarrow P_{2}$ is a surjective map such that $\|A+B\|_{\infty}=\|\varphi(A)+\varphi(B)\|_{\infty}$ for any positive semidefinite matrices A, B in P_{2}.

We show directly that there exists a unitary matrix U such that φ assumes either the form

$$
A \mapsto U A U^{*} \quad \text { or } \quad A \mapsto U A^{t} U^{*} .
$$

Proof. Fix $\lambda \geq 0$. Let $A=\left(\begin{array}{cc}\lambda & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}0 & 0 \\ 0 & \lambda\end{array}\right)$. Assume that there are unitary matrices U, V such that

$$
\begin{aligned}
& \varphi(A)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=U\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) U^{*} \text { and } \\
& \varphi(B)=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=V\left(\begin{array}{cc}
\mu_{1} & 0 \\
0 & \mu_{2}
\end{array}\right) V^{*},
\end{aligned}
$$

where $a_{11}, a_{22}, b_{11}, b_{22} \geq 0$, and $a_{21}=\overline{a_{12}}$ and $b_{21}=\overline{b_{12}}$ are complex conjugates.
As $\|\varphi(A)\|_{\infty}=\|\varphi(B)\|_{\infty}=\|\varphi(A)+\varphi(B)\|_{\infty}=\lambda$, computing traces we have

$$
\lambda \leq a_{11}+a_{22} \leq 2 \lambda, \lambda \leq b_{11}+b_{22} \leq 2 \lambda, \quad \text { and } \quad \lambda \leq a_{11}+a_{22}+b_{11}+b_{22} \leq 2 \lambda
$$

Hence, $\lambda_{1}+\lambda_{2}=a_{11}+a_{22}=\lambda$ and $\mu_{1}+\mu_{2}=b_{11}+b_{22}=\lambda$.
Since $\max \left\{\lambda_{1}, \lambda_{2}\right\}=\max \left\{\mu_{1}, \mu_{2}\right\}=\lambda$, it can be assumed that $\lambda_{1}=\lambda$ and $\lambda_{2}=0$. Furthermore, set $\varphi(B)=U\left(\begin{array}{ll}c_{11} & c_{12} \\ c_{21} & c_{22}\end{array}\right) U^{*}$, where $c_{11}, c_{22} \geq 0$ and $c_{21}=\overline{c_{12}}$. Hence,

$$
\begin{aligned}
& \varphi(A)+\varphi(B)=U\left(\begin{array}{cc}
c_{11}+\lambda & c_{12} \\
c_{21} & c_{22}
\end{array}\right) U^{*} \text { with } \\
& \quad\|\varphi(A)+\varphi(B)\|_{\infty}=\frac{c_{11}+c_{22}+\lambda+\sqrt{\left(c_{11}+\lambda-c_{22}\right)^{2}+4 c_{12} c_{21}}}{2}=\lambda
\end{aligned}
$$

Since the trace of the matrix $\varphi(B)$ equals $c_{11}+c_{22}=\mu_{1}+\mu_{2}=\lambda$, we see that $c_{11}=c_{12}=c_{21}=0$ and $c_{22}=\lambda$. Thus, there exists a unitary matrix U_{λ} such that

$$
\varphi\left(\left(\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right)\right)=U_{\lambda}\left(\begin{array}{cc}
\lambda & 0 \\
0 & 0
\end{array}\right) U_{\lambda}^{*} \quad \text { and } \quad \varphi\left(\left(\begin{array}{ll}
0 & 0 \\
0 & \lambda
\end{array}\right)\right)=U_{\lambda}\left(\begin{array}{ll}
0 & 0 \\
0 & \lambda
\end{array}\right) U_{\lambda}^{*}
$$

Suppose that for another scalar $0 \leq \mu \leq \lambda$ and the matrix $D=\left(\begin{array}{cc}\mu & 0 \\ 0 & 0\end{array}\right)$, we have $\varphi(D)=U_{\lambda}\left(\begin{array}{ll}d_{11} & d_{12} \\ d_{21} & d_{22}\end{array}\right) U_{\lambda}^{*}$, where $d_{11}, d_{22} \geq 0$ and $d_{21}=\overline{d_{12}}$. Note that

$$
\|\varphi(D)\|_{\infty}=\mu=\left\|\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)\right\|_{\infty}
$$

and observe

$$
\lambda+\mu=\left\|\left(\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
\mu & 0 \\
0 & 0
\end{array}\right)\right\|_{\infty}=\left\|\left(\begin{array}{ll}
\lambda & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right)\right\|_{\infty} .
$$

The last sum of positive semi-definite matrices attains its norm $\lambda+\mu$ at the unit eigenvector $\binom{1}{0}$. Consequently, $d_{11}=\mu$ and $d_{12}=d_{21}=0$. Moreover, $0 \leq d_{22} \leq \mu$. On the other hand,

$$
\max \{\lambda, \mu\}=\left\|\left(\begin{array}{ll}
0 & 0 \\
0 & \lambda
\end{array}\right)+\left(\begin{array}{cc}
\mu & 0 \\
0 & 0
\end{array}\right)\right\|_{\infty}=\left\|\left(\begin{array}{cc}
0 & 0 \\
0 & \lambda
\end{array}\right)+\left(\begin{array}{cc}
\mu & 0 \\
0 & d_{22}
\end{array}\right)\right\|_{\infty}
$$

Hence $d_{22}=0$ since $\mu \leq \lambda$. Therefore,

$$
\varphi\left(\left(\begin{array}{cc}
\mu & 0 \\
0 & 0
\end{array}\right)\right)=U_{\lambda}\left(\begin{array}{cc}
\mu & 0 \\
0 & 0
\end{array}\right) U_{\lambda}^{*}, \quad \text { whenever } 0 \leq \mu \leq \lambda .
$$

Set $U=U_{\lambda}$ for a very large $\lambda>0$. Then $\varphi\left(\left(\begin{array}{ll}t & 0 \\ 0 & 0\end{array}\right)\right)=U\left(\begin{array}{ll}t & 0 \\ 0 & 0\end{array}\right) U^{*}$ for any $t \in[0, \lambda]$. For any 2×2 positive semi-definite matrix $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, let $\varphi(A)=$ $U\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ \overline{b^{\prime}} & c^{\prime}\end{array}\right) U^{*}$. Hence,

$$
\left\|\left(\begin{array}{ll}
t & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
\bar{b} & c
\end{array}\right)\right\|_{\infty}=\left\|\left(\begin{array}{cc}
t & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
a^{\prime} & b^{\prime} \\
\overline{b^{\prime}} & c^{\prime}
\end{array}\right)\right\|_{\infty}, \quad \forall t \in[0, \lambda] .
$$

It amounts to say that

$$
\begin{equation*}
t+a+c+\sqrt{(t+a-c)^{2}+4 b \bar{b}}=t+a^{\prime}+c^{\prime}+\sqrt{\left(t+a^{\prime}-c^{\prime}\right)^{2}+4 b^{\prime} \overline{b^{\prime}}} \tag{4.1}
\end{equation*}
$$

Differentiating (4.1) with respect to t, we get

$$
(t+a-c)^{2}\left(\left(t+a^{\prime}-c^{\prime}\right)^{2}+4 b^{\prime} \bar{b}^{\prime}\right)=\left(t+a^{\prime}-c^{\prime}\right)^{2}\left((t+a-c)^{2}+4 b \bar{b}\right),
$$

or

$$
b^{\prime} \overline{b^{\prime}}(t+a-c)^{2}=b \bar{b}\left(t+a^{\prime}-c^{\prime}\right)^{2} .
$$

Comparing the coefficient of t^{2}, we get $b \bar{b}=b^{\prime} \bar{b}^{\prime}$.
In the case when $b=0$, we have $b^{\prime}=0$. Put this into equation (4.1), we have $a=a^{\prime}$ when t is chosen sufficiently large. Using the equation

$$
\left\|\left(\begin{array}{ll}
0 & 0 \\
0 & t
\end{array}\right)+\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right)\right\|_{\infty}=\left\|\left(\begin{array}{ll}
0 & 0 \\
0 & t
\end{array}\right)+\left(\begin{array}{cc}
a & 0 \\
0 & c^{\prime}
\end{array}\right)\right\|_{\infty},
$$

we can also see $c=c^{\prime}$.
On the other hand, $a-c=a^{\prime}-c^{\prime}$ when $b \neq 0$. In this case, the equation (4.1) ensures that $a+c=a^{\prime}+c^{\prime}$, and thus $a=a^{\prime}$ and $c=c^{\prime}$. Let $b^{\prime}=e^{i \theta_{b}} b$ for some real scalar θ_{b}. It follows from the norm equality

$$
\left\|\left(\begin{array}{cc}
a & b_{1} \\
b_{1} & c
\end{array}\right)+\left(\begin{array}{cc}
a & b_{2} \\
b_{2} & c
\end{array}\right)\right\|_{\infty}=\left\|\left(\begin{array}{cc}
a & e^{i \theta_{b_{1}} b_{1}} \\
e^{-i \theta_{b_{1}} \overline{b_{1}}} & c
\end{array}\right)+\left(\begin{array}{cc}
a & e^{i \theta_{b_{2}}} b_{2} \\
e^{-i \theta_{b_{2}} \overline{b_{2}}} & c
\end{array}\right)\right\|_{\infty}
$$

that

$$
\begin{aligned}
& 2 a+2 c+\sqrt{4(a-c)^{2}+4\left(b_{1}+b_{2}\right)\left(\overline{b_{1}}+\overline{b_{2}}\right)} \\
= & 2 a+2 c+\sqrt{4(a-c)^{2}+4\left(e^{i \theta_{b_{1}}} b_{1}+e^{i \theta_{b_{2}}} b_{2}\right)\left(e^{-i \theta_{b_{1}} \overline{b_{1}}}+e^{-i \theta_{b_{2}} \overline{b_{2}}}\right)} .
\end{aligned}
$$

It forces both $b_{1} \overline{b_{2}}$ and $e^{i\left(\theta_{b_{1}}-\theta_{b_{2}}\right)} b_{1} \overline{b_{2}}$ have the same real parts.
Replacing U by the unitary $U\left(\begin{array}{cc}1 & 0 \\ 0 & e^{-i \theta_{1}}\end{array}\right)$, we can assume $e^{i \theta_{1}}=1$.

We discuss in two situations. The first case is for $e^{i \theta_{i}}=-1$, and we claim that $e^{i \theta_{b}} b=\bar{b}$ for all b in this situation. To this end, setting $\left(b_{1}, b_{2}\right)=(b, 1)$ and (b, i) respectively, we observe the real parts of complex numbers

$$
\operatorname{Re} b=\operatorname{Re} e^{i \theta_{b}} b \quad \text { and } \quad \operatorname{Re}(-i b)=\operatorname{Re}\left(-i e^{i\left(\theta_{b}-\pi\right)} b\right)=\operatorname{Re}\left(i e^{i \theta_{b}} b\right) .
$$

It follows that $e^{i \theta_{b}} b=\bar{b}$ as claimed.
The second case is for $e^{i \theta_{i}} \neq-1$, and we claim that $e^{i \theta_{b}}=1$ for all b in this situation. Setting $\left(b_{1}, b_{2}\right)=(b, 1)$ and (b, i) respectively, we observe the real parts of complex numbers

$$
\operatorname{Re} b=\operatorname{Re} e^{i \theta_{b}} b \quad \text { and } \quad \operatorname{Re}(-i b)=\operatorname{Re}\left(-i e^{i\left(\theta_{b}-\theta_{i}\right)} b\right) .
$$

If $e^{i \theta_{b}} \neq 1$ then $e^{i \theta_{b}} b=\bar{b}$, and thus $\operatorname{Re}(-i b)=\operatorname{Re}\left(-i e^{-i \theta_{i}} \bar{b}\right) \neq-\operatorname{Re}(-i \bar{b})$. This contradiction shows that $e^{i \theta_{b}}=1$ for all b as claimed.

Therefore, we have either

$$
\varphi\left(\left(\begin{array}{ll}
a & b \\
\bar{b} & c
\end{array}\right)\right)=U\left(\begin{array}{ll}
a & b \\
\bar{b} & c
\end{array}\right) U^{*} \quad \text { or } \quad U\left(\begin{array}{ll}
a & \bar{b} \\
b & c
\end{array}\right) U^{*}
$$

That is to say, for any three 2×2 positive semi-definite matrices A_{1}, A_{2}, A_{3}, we can choose a large enough λ (depending on A_{1}, A_{2}, A_{3}) such that either

$$
\varphi\left(A_{j}\right)=U_{\lambda} A_{j} U_{\lambda}^{*} \quad \text { or } \quad \varphi\left(A_{j}\right)=U_{\lambda} A_{j}^{\mathrm{t}} U_{\lambda}^{*}, \quad \forall j=1,2,3 .
$$

This implies that φ is affine and preserves squares on the positive semi-definite cone P_{2} of M_{2}. It then extends to a nonzero linear map from M_{2} into M_{2} sending projections to projections, and thus a Jordan homomorphism. The assertion then follows from known facts about Jordan $*$-homomorphisms of matrices.

References

[1] L. Chen, Y. Dong and B. Zheng, On norm-additive maps between the maximal groups of positive continuous functions, Results Math., 74 (2019), Art. 152, 7 pp.
[2] Y. Dong, L. Li, L. Molnár and N.-C. Wong, Transformations preserving the norm of means between positive cones in general and commutative C^{*}-algebras, preprint.
[3] H. A. Dye, On the geometry of projections in certain operator algebras, Ann. Math., 61(1955), 73-89.
[4] M. Gaál, Norm-additive maps on the positive definite cone of a C^{*}-algebra, Results Math., $\mathbf{7 3}$ (2018), Art. 151, 7 pp.
[5] M. Hosseini and J. J. Font, Real-linear isometries and jointly norm-additive maps on function algebras, Mediterr. J. Math., 13 (2016), 1933-1948.
[6] R. V. Kadison, Isometries of operator algebras, Annals Math., 54(2) (1951), 325-338.
[7] H. Kosaki, Applications of uniform convexity of noncommutative L^{p}-spaces, Trans. Amer. Math. Soc., 1984, 283(1), 265-282.
[8] C.-W. Leung, C.-K. Ng and N.-C. Wong, Metric preserving bijections between positive spherical shells of non-commutative L^{p}-spaces, J. Operator Theory, 80 (2018), 429-452.
[9] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris, 194 (1932), 946-948.
[10] L. Molnár, Spectral characterization of Jordan-Segal isomorphisms of quantum observables, J. Operator Theory, 83 (2020), 179-195.
[11] T. Oikhberg and A. M. Peralta, Automatic continuity of orthogonality preservers on a noncommutative $L_{p}(\tau)$ space, J. Funct. Anal., 264 (2013), 1848-1872.
[12] G. K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53-87.
[13] Y. Raynaud and Q. Xu, On subspaces of non-commutative L^{p}-spaces, J. Funct. Anal., 203(1) (2003), 149-196.
[14] D. Sherman, On the structure of isometries between noncommutative L^{p} spaces, Publ. RIMS Kyoto Univ., 42(2006), 45-82.
[15] T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 357 (2009), 45-53.
[16] M. Terp, L^{p}-spaces associated with von Neumann algebras, Notes Math. Institute, Copenhagen Univ., 1981.
[17] J. Zhang, M.-C. Tsai and N.-C. Wong, Norm of positive sum preservers of smooth Banach lattices and $L_{p}(\mu)$ spaces, J. Nonlinear Convex Anal., 20 (2019), 2613-2621.
(J. Zhang) School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China.

Email address: zhjun@mail.ccnu.edu.cn
(M.-C. Tsai) General Education Center, Taipei University of Technology 10608, TAIWAN.

Email address: mctsai2@mail.ntut.edu.tw
(N.-C. Wong) Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan and School of Mathematical Sciences, Tiangong University, Tianjin 300387, China.

Email address: wong@math.nsysu.edu.tw

[^0]: 2020 Mathematics Subject Classification. 46L10, 46L52, 47B49.
 Key words and phrases. norm preservers, noncommutative Lp spaces, von Neumann algebras.
 Corresponding author: Ming-Cheng Tsai, mctsai2@mail.ntut.edu.tw.
 This research is supported partially by Taiwan MOST grants 108-2115-M-027-003 (for Tsai) and 108-2115-M-110-004-MY2 (for Wong), respectively.

