NORM OF POSITIVE SUM PRESERVERS OF NONCOMMUTATIVE $L^p(\mathcal{M})$ SPACES

JUN ZHANG, MING-CHENG TSAI, AND NGAI-CHING WONG

ABSTRACT. Let $1 . Let <math>L^p(\mathcal{M})$ and $L^p(\mathcal{N})$ be the noncommutative L^p -spaces associated to von Neumann algebras \mathcal{M} and \mathcal{N} , respectively. Let $\varphi : L^p_+(\mathcal{M}) \to L^p_+(\mathcal{N})$ be a surjective map between positive elements preserving the norm of sum, i.e.,

$$\|\varphi(x) + \varphi(y)\|_p = \|x + y\|_p, \quad x, y \in L^p_+(\mathcal{M}).$$

We show that there is a Jordan *-isomorphism $J: \mathcal{M} \to \mathcal{N}$, and φ can be extended uniquely to a surjective real linear positive isometry from $L_{\rm sa}^p(\mathcal{M})$ onto $L_{\rm sa}^p(\mathcal{N})$. When \mathcal{M} is approximately semifinite, especially semifinite or hyperfinite, $\varphi(R) = \Theta_*(R^p)^{1/p}$ for every $R \in L_+^p(\mathcal{M})$, where $\Theta = J^{-1}$ and $\Theta_*: L^1(\mathcal{M}) (\cong M_*) \to L^1(\mathcal{N}) (\cong N_*)$ is its predual map. In the case when \mathcal{M} has a normal faithful semifinite trace $\tau_{\mathcal{M}}$ (and so does $\mathcal{N}), \varphi(x) = hJ(x)$ for every $x \in L_+^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap M_+$, where $h^p = d(\tau_{\mathcal{M}} \circ \Theta)/d\tau_{\mathcal{N}}$ is the non-commutative Radon-Nikodym derivative of $\tau_{\mathcal{M}} \circ \Theta$ with respect to $\tau_{\mathcal{N}}$. We also provide a similar result when $p = +\infty$, and counter examples for the case p = 1.

1. INTRODUCTION

The celebrated Mazur-Ulam theorem [9] states that every surjective map $T : E \to F$ between normed spaces, preserving the norm of differences and fixing zero, extends to a real linear isometry from E onto F. One may ask what happens if T preserves the norm of sums instead of differences, i.e., if

$$||Tx + Ty|| = ||x + y||, \quad \forall x, y \in E.$$

It turns out to be easy, by noting that we have T0 = 0 and T(-x) = -Tx automatically, and the Mazur-Ulam theorem applies.

It then arises the question when the domain and range of T are not the whole linear spaces; see, e.g., [1,4,5,11,15]. In [17], we propose the following open problem.

Problem 1.1. Let E, F be ordered Banach spaces with positive cones E_+, F_+ , respectively. Let $T: E_+ \to F_+$ be a surjective map preserving the norm of sums. Can T be extended to a positive real linear isometry from E onto F?

²⁰²⁰ Mathematics Subject Classification. 46L10, 46L52, 47B49.

Key words and phrases. norm preservers, noncommutative Lp spaces, von Neumann algebras. Corresponding author: Ming-Cheng Tsai, mctsai2@mail.ntut.edu.tw.

This research is supported partially by Taiwan MOST grants 108-2115-M-027-003 (for Tsai) and 108-2115-M-110-004-MY2 (for Wong), respectively.

We answer Problem 1.1 affirmatively for the case when E, F are smooth Banach lattices, and L_p spaces when $p \in (1, \infty]$, while we also provide a counterexample for the case p = 1 in [17]. There are also positive answers for C(X) spaces in [1], for von Neumann algebras in [10], and for general unital C^* -algebras in [2]. The same is true if one considers bijective maps between positive definite cones in unital C^* -algebras but equipped with a sort of Schatten p-norm [4] for $p \in (1, \infty]$.

In this paper, we give a positive answer for non-commutative $L_p(\mathcal{M})$ -spaces in Theorem 3.4; see also Theorems 1.4 and 1.5 below. Note that a noncommutative $L^p(\mathcal{M})$ space is not a Banach lattice unless \mathcal{M} is abelian. This prevents us from directly applying the technique developed in the abelian case in [17]. Anyway, let us recall our result for commutative L^p -spaces.

Theorem 1.2 ([17, Theorem 3.3]). Let $\varphi : L^p_+(\Omega_1, \Sigma_1, \mu_1) \to L^p_+(\Omega_2, \Sigma_2, \mu_2)$ be a bijective map, where 1 . Suppose

$$||x+y||_p = ||\varphi(x)+\varphi(y)||_p, \quad \forall x, y \in L^p_+(\Omega_1, \Sigma_1, \mu_1).$$

Then φ extends to a surjective positive linear isometry from $L^p(\Omega_1, \Sigma_1, \mu_1)$ onto $L^p(\Omega_2, \Sigma_2, \mu_2)$. More precisely, there exists a regular set isomorphism Ψ from Σ_1 onto Σ_2 inducing a bijective positive linear map $\psi : L^p(\Omega_1, \Sigma_1, \mu_1) \to L^p(\Omega_2, \Sigma_2, \mu_2)$, and a locally measurable function h on Ω_2 such that

(1.1)
$$\varphi(x) = h \cdot \psi(x), \quad \forall x \in L^p_+(\Omega_1, \Sigma_1, \mu_1).$$

When 1 , we have

$$\int_{\Psi(A)} |h(t)|^p d\mu_2 = \mu_1(A), \quad \text{for each } \sigma \text{-finite } A \in \Sigma_1.$$

In other words, $|h|^p = \frac{d(\mu_1 \circ \Psi^{-1})}{d\mu_2}$ is the Radon-Nikodym derivative of $\mu_1 \circ \Psi^{-1}$ with respect to μ_2 . When $p = +\infty$, we have

h(y) = 1, locally almost everywhere on Ω_2 .

When the underlying measure spaces are localizable, $\mathcal{M} = L^{\infty}(\Omega_1, \Sigma_1, \mu_1)$ and $\mathcal{N} = L^{\infty}(\Omega_2, \Sigma_2, \mu_2)$ are commutative von Neumann algebras with predual spaces $L^1(\Omega_1, \Sigma_1, \mu_1)$ and $L^1(\Omega_2, \Sigma_2, \mu_2)$, respectively. In this case, the regular set isomorphism Ψ defining ψ in (1.1) can be thought of an orthomorphism between the projection lattices of \mathcal{M} and \mathcal{N} . By Dye's Theorem [3], Ψ extends uniquely to a Jordan *-isomorphism $J : \mathcal{M} \to \mathcal{N}$. We simply have $\psi = J$ when $p = +\infty$. When $1 , let <math>\Theta = J^{-1}$ with the predual map $\Theta_* : L^1(\Omega_1, \Sigma_1, \mu_1) \to L^1(\Omega_2, \Sigma_2, \mu_2)$. Then we have $\psi(f) = \Theta_*(f^p)^{1/p}$ for all f in $L^p_+(\Omega_1, \Sigma_1, \mu_1)$.

We are going to provide a noncommutative version of Theorem 1.2. To this end, we need the following counter part result about norm of difference preservers recently developed in [8]. Set

$$L^p_+(\mathcal{M})^\beta_\alpha = \left\{ S \in L^p_+(\mathcal{M}) : \alpha \le \|S\|_p \le \beta \right\}, \quad 0 \le \alpha < \beta < +\infty.$$

Theorem 1.3 ([8, Theorem 1.3]). Let $p \in [1, \infty]$, and \mathcal{M} and \mathcal{N} be two von Neumann algebras. Assume there is a metric preserving bijection $\Phi : L^p_+(\mathcal{M})^\beta_\alpha \to$

 $L^p_+(\mathcal{N})^\beta_{\alpha}, i.e.,$

$$\|\Phi(x) - \Phi(y)\|_p = \|x - y\|_p, \quad \forall x, y \in L^p_+(\mathcal{M})^\beta_\alpha.$$

- (a) \mathcal{M} and \mathcal{N} are *-isomorphic.
- (b) If $\mathcal{M} \ncong \mathbb{C}$ and \mathcal{M} is approximately semifinite, then there is a unique Jordan *-isomorphism $\Theta : \mathcal{N} \to \mathcal{M}$ satisfying $\Phi(R) = \Theta_*(R^p)^{1/p}$ for any $R \in L^p_+(\mathcal{M}, \tau_{\mathcal{M}})^{\beta}_{\alpha}$.

Here is the main result in this paper.

Theorem 1.4. Let $p \in (1, +\infty]$, and \mathcal{M} and \mathcal{N} be two von Neumann algebras. Assume there is a surjective map $\varphi : L^p_+(\mathcal{M}) \to L^p_+(\mathcal{N})$ such that

$$\|\varphi(x) + \varphi(y)\|_p = \|x + y\|_p, \quad \forall x, y \in L^p_+(\mathcal{M}).$$

- (a) \mathcal{M} and \mathcal{N} are *-isomorphic, and φ extends uniquely to a positive surjective real linear isometry $\theta: L^p_{\mathrm{sa}}(\mathcal{M}) \to L^p_{\mathrm{sa}}(\mathcal{N}).$
- (b) If $p = +\infty$ then φ extends uniquely to a Jordan *-isomorphism $J : \mathcal{M} \to \mathcal{N}$.
- (c) If $1 and <math>\mathcal{M}$ is approximately semifinite, then there is a unique Jordan *-isomorphism $\Theta : \mathcal{N} \to \mathcal{M}$ satisfying $\varphi(R) = \Theta_*(R^p)^{1/p}$ for any $R \in L^p_+(\mathcal{M})$.

In the abelian case, every function in $L^p_+(\mu)$ can be approximated in norm by functions from $L^\infty_+(\mu)$. However, one of the difficulties in studying noncommutative $L^p(\mathcal{M})$ space arises from the fact that $L^p(\mathcal{M}) \cap \mathcal{M} = \{0\}$ when \mathcal{M} is not semifinite. If \mathcal{M} has a faithful semifinite trace $\tau_{\mathcal{M}}$, nevertheless, there is a weak^{*} dense twosided self-adjoint ideal $S_{\mathcal{M}}$ of \mathcal{M} embedded into the noncommutative $L^p(\mathcal{M}, \tau_{\mathcal{M}})$ space. In other words, the intersection $L^p_+(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+$ is reasonably big to represent \mathcal{M} , as well as $L^p(\mathcal{M}, \tau_{\mathcal{M}})$. This motivates us to include the following result in this paper. We note that any one of \mathcal{M} and \mathcal{N} being semifinite suffices to ensure its conclusion due to Theorem 1.4(a).

Theorem 1.5. Let $1 . Let <math>\mathcal{M}$ and \mathcal{N} be two semifinite von Neumann algebras with traces $\tau_{\mathcal{M}}$ and $\tau_{\mathcal{N}}$, respectively. Suppose that $\varphi : L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+ \to L^p(\mathcal{N}, \tau_{\mathcal{N}}) \cap \mathcal{N}_+$ is a surjective map satisfying that

$$\|x+y\|_p = \|\varphi(x)+\varphi(y)\|_p, \quad \forall x, y \in L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+.$$

Then there exists uniquely a Jordan *-isomorphism $J: \mathcal{M} \to \mathcal{N}$ such that

$$\varphi(x) = J(x)h = hJ(x), \quad x \in L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+.$$

Here, $h^p = \frac{d\tau_{\mathcal{M}} \circ J^{-1}}{d\tau_N}$ is the noncommutative Radon-Nikodym derivative of $\tau_{\mathcal{M}} \circ J^{-1}$ with respect to τ_N when 1 ; and <math>h = 1 if $p = +\infty$.

In Section 2, we will give a brief description of the construction of noncommutative L^p -spaces. The proofs of Theorems 1.4 and 1.5 are given in Section 3. We note that, however, neither of Theorems 1.4 nor 1.5 holds when p = 1, as shown by counter examples. In Section 4, we will provide two concrete examples to demonstrate the case when $p = +\infty$.

2. Preliminaries

Let \mathcal{M} be a von Neumann algebra, that is, a self-adjoint algebra of operators on a Hilbert space H that is closed in the weak operator topology. A *trace* on \mathcal{M} is a nonnegative extended real-valued function τ defined on the positive part \mathcal{M}_+ of \mathcal{M} which satisfies

- (1) $\tau(x+y) = \tau(x) + \tau(y)$ for all $x, y \in \mathcal{M}_+$;
- (2) $\tau(\lambda x) = \lambda \tau(x)$ for all $\lambda \ge 0$ and $x \in \mathcal{M}_+$;
- (3) $\tau(xx^*) = \tau(x^*x)$ for all $x \in \mathcal{M}$.

If τ satisfies conditions (1) and (2) but not necessarily (3), then we call it a *weight*. We say that τ is normal if $\sup \tau(x_{\alpha}) = \tau(\sup x_{\alpha})$ for any bounded increasing net $\{x_{\alpha}\}$ in \mathcal{M}_+ , semifinite if for any nonzero $x \in \mathcal{M}_+$ there is a nonzero $y \in \mathcal{M}_+$ such that $y \leq x$ and $\tau(y) < +\infty$, and faithful if $\tau(x) = 0$ implies x = 0 for any $x \in \mathcal{M}_+$. If $\tau(1) < +\infty$, we say that τ is finite. A von Neumann algebra \mathcal{M} is said to be finite (resp. semifinite) if it admits a normal finite (resp. semifinite) faithful trace.

Definition 2.1. A von Neumann algebra \mathcal{M} is said to be *approximately semifinite* [14] if

- there is an increasing family $\{\mathcal{M}_i\}_{i\in\mathfrak{I}}$ of semifinite von Neumann subalgebras of \mathcal{M} such that $\bigcup_{i\in\mathfrak{I}}\mathcal{M}_i$ is $\sigma(\mathcal{M},\mathcal{M}_*)$ -dense in \mathcal{M} , and
- there is a normal conditional expectation $E_i : \mathcal{M} \to \mathcal{M}_i$ with $E_i(1)$ being the identity of \mathcal{M}_i such that $E_i \circ E_j = E_i$ whenever $i \leq j$ in \mathfrak{I} .

The class of approximately semifinite von Neumann algebras includes, in particular, all semifinite algebras, all hyperfinite algebras, and all type III_0 -factors with separable preduals. See also [8] for more details.

We follow the construction of noncommutative L^p -spaces demonstrated in [13] and [16]. Let \mathcal{M} denote a semifinite von Neumann algebra on a Hilbert space Hwith a given normal semifinite faithful trace $\tau_{\mathcal{M}}$. Let $S_{\mathcal{M}}$ be the subset of \mathcal{M} of elements x of finite traces, i.e., $\tau_{\mathcal{M}}(|x|) < +\infty$, where |x| denotes the operator $(x^*x)^{1/2}$. The set $S_{\mathcal{M}}$ is quite big, as it is a self-adjoint two sided ideal of \mathcal{M} and dense in \mathcal{M} in the strong operator topology. Moreover, it is closed under taking ppowers, i.e., $|x|^p \in S_{\mathcal{M}}$ whenever $x \in S_{\mathcal{M}}$ and 0 .

For $x \in \mathcal{M}$ and $1 \leq p < +\infty$, let

$$||x||_p = \tau_{\mathcal{M}}(|x|^p)^{1/p}$$

Then $\|\cdot\|_p$ defines a norm on $S_{\mathcal{M}}$. We call the norm completion of $S_{\mathcal{M}}$ the noncommutative $L^p(\mathcal{M}, \tau_{\mathcal{M}})$ space.

We can identify $L^{\infty}(\mathcal{M}, \tau_{\mathcal{M}})$ with \mathcal{M} and $L^{1}(\mathcal{M}, \tau_{\mathcal{M}})$ with the predual \mathcal{M}_{*} of \mathcal{M} . The positive cone $L^{p}_{+}(\mathcal{M}, \tau_{\mathcal{M}})$ of $L^{p}(\mathcal{M}, \tau_{\mathcal{M}})$ is the completion of $L^{p}(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_{+}$ under the norm $\|\cdot\|_{p}$. We will write $L^{p}(\mathcal{M})$ if the trace $\tau_{\mathcal{M}}$ is understood.

The situation when \mathcal{M} is not semifinite is far more complicated. Let \mathcal{M} be a general von Neumann algebra on a Hilbert space H, but not necessarily semifinite. We note that every von Neumann algebra has a normal faithful semifinite weight.

4

Fix a normal semifinite faithful weight ϕ on \mathcal{M} . Consider the modular automorphism group α corresponding to ϕ . There exists a normal faithful semifinite trace τ on the von Neumann algebra crossed product $\check{\mathcal{M}} := \mathcal{M} \bar{\rtimes}_{\alpha} \mathbb{R}$ satisfying some compatibility condition with ϕ . Denote by $L^0(\check{\mathcal{M}}, \tau)$ the completion of $\check{\mathcal{M}}$ under the vector topology defined by a neighborhood basis at 0 of the form

$$U(\epsilon, \delta) := \{ x \in \mathcal{M} : \|xp\| \le \epsilon \text{ and } \tau(1-p) \le \delta, \text{ for a projection } p \in \mathcal{M} \}.$$

Then the *-algebra structure of \mathcal{M} extends to a *-algebra structure of $L^0(\mathcal{M}, \tau)$.

Elements in $L^0(\check{\mathcal{M}},\tau)$ can be regarded as closed densely defined operators on $L^2(\mathbb{R};H)$. More precisely, let T be a densely defined closed operator on $L^2(\mathbb{R};H)$ affiliated with $\check{\mathcal{M}}$, and |T| be its absolute value with spectral projection-valued measure $E_{|T|}$. Then T corresponds uniquely to an element in $L^0(\check{\mathcal{M}},\tau)$ if and only if $\tau(1-E_{|T|}([0,\lambda])) < \infty$ when λ is large. Conversely, every element in $L^0(\check{\mathcal{M}},\tau)$ arises from a closed operator in this way. Under this identification, the *-operation on $L^0(\check{\mathcal{M}},\tau)$ coincides with the adjoint. The addition and the multiplication on $L^0(\check{\mathcal{M}},\tau)$ are the closures of the corresponding operators for closed operators. Denote by $L^0_+(\check{\mathcal{M}},\tau)$ the set of all positive self-adjoint operators in $L^0(\check{\mathcal{M}},\tau)$. For x, y in $L^0(\check{\mathcal{M}},\tau)$, we write $x \perp y$ if |x||y| = 0, i.e., the positive operators have orthogonal support projections.

The dual action $\hat{\alpha} : \mathbb{R} \to \operatorname{Aut}(\check{\mathcal{M}})$ extends to an action on $L^0(\check{\mathcal{M}}, \tau)$. For any $p \in [1, \infty]$, we set

$$L^{p}(\mathcal{M}) := \left\{ T \in L^{0}(\check{\mathcal{M}}, \tau) : \hat{\alpha}_{s}(T) = e^{-s/p}T \text{ for all } s \in \mathbb{R} \right\}$$

(where, by convention, $e^{-s/\infty} = 1$). Then $L^{\infty}(\mathcal{M})$ coincides with the subalgebra \mathcal{M} of $\check{\mathcal{M}} \subseteq L^0(\check{\mathcal{M}}, \tau)$. Moreover, if $T \in L^0(\check{\mathcal{M}}, \tau)$ and T = u|T| is the polar decomposition, then $T \in L^p(\mathcal{M})$ if and only if $|T| \in L^p(\mathcal{M})$. The product of an element in $L^{\infty}(\mathcal{M})$ with an element in $L^p(\mathcal{M})$ (in whatever order) is again in $L^p(\mathcal{M})$. Hence, $L^p(\mathcal{M})$ is canonically an \mathcal{M} -bimodule. Let $L^p_{sa}(\mathcal{M})$ denote the set of all self-adjoint operators in $L^p(\mathcal{M})$ and put $L^p_+(\mathcal{M}) := L^p(\mathcal{M}) \cap L^0_+(\check{\mathcal{M}}, \tau)$.

When $p \in (0, \infty)$, the Mazur map

$$S \mapsto S^{\frac{1}{p}} \qquad \left(S \in L^0_+(\check{\mathcal{M}}, \tau)\right)$$

restricts to a bijection from $L^1_+(\mathcal{M})$ onto $L^p_+(\mathcal{M})$. Elements in $L^p_+(\mathcal{M})$ are identified with $S^{\frac{1}{p}}$ for a unique element $S \in L^1_+(\mathcal{M})$. When $p \in (1, \infty)$, the function

$$||T||_p := ||T|^p ||_1^{1/p}$$

is a norm on $L^p(\mathcal{M})$, and $(L^p(\mathcal{M}), L^p_+(\mathcal{M}))$ becomes an ordered Banach space.

It is known that $(L^p(\mathcal{M}), L^p_+(\mathcal{M}))$ is independent of the choice of the faithful semifinite weight ϕ up to an isometric order isomorphism (see, e.g., Theorem 37 and Corollary 38 in Chapter II of [16]). If \mathcal{M} is semifinite with a faithful normal semifinite trace $\phi = \tau_{\mathcal{M}}$, then the above two constructions of noncommutative $L^p(\mathcal{M})$ space will be isometrically and order isomorphic to each other. In this paper, we usually write $L^p(\mathcal{M}, \tau_{\mathcal{M}})$ even when \mathcal{M} is not semifinite; in this case, we refer to the Haagerup trace norm $\tau_{\mathcal{M}}(\cdot) = \|\cdot\|_1$ instead.

3. Norm of positive sum preservers

All noncommutative $L^p(\mathcal{M}, \tau_{\mathcal{M}})$ spaces are uniformly convex and uniformly smooth with dual space $L^q(\mathcal{M}, \tau_{\mathcal{M}})$ for $p, q \in (1, \infty)$ with 1/p + 1/q = 1. In particular, the following result holds for general von Neumann algebra \mathcal{M} .

Lemma 3.1 ([7, Lemma 3.1]). If $t \in \mathbb{R} \mapsto h(t) \in L^p_+(\mathcal{M}, \tau_{\mathcal{M}}), 1 , is$ $differentiable (with respect to the <math>L_p$ -norm) at $t = \alpha$ and $h(\alpha) \neq 0$, then $t \in \mathbb{R} \mapsto \tau_{\mathcal{M}}(h(t)^p) \in \mathbb{R}_+$ is differentiable at α and its derivative is

(3.1)
$$\frac{d}{dt}\Big|_{t=\alpha}\tau_{\mathcal{M}}(h(t)^p) = p\tau_{\mathcal{M}}\left(h(\alpha)^{p-1}\frac{d}{dt}\Big|_{t=\alpha}h(t)\right).$$

While it always holds that

 $\|x \pm y\|_p^p = \|x\|_p^p + \|y\|_p^p \quad \text{whenever} \quad x, y \in L^p(\mathcal{M}, \tau_{\mathcal{M}}) \text{ such that } x \perp y,$

we also have a converse.

Lemma 3.2 ([7, Corollary 6.5]; see also [13, Proposition A.2]). Let \mathcal{M} be a von Neumann algebra and $1 . For any <math>x, y \in L^p_+(\mathcal{M}, \tau_{\mathcal{M}})$, we have

$$||x+y||_p^p = ||x||_p^p + ||y||_p^p$$
 if and only if $xy = 0$.

Lemma 3.3. Let \mathcal{M} and \mathcal{N} be two von Neumann algebras and 1 . $Suppose that <math>\varphi: L^p_+(\mathcal{M}, \tau_{\mathcal{M}}) \to L^p_+(\mathcal{N}, \tau_{\mathcal{N}})$ is a surjective map satisfying that

(3.2)
$$||x + y||_p = ||\varphi(x) + \varphi(y)||_p$$

Then we have

- (1) φ preserves orthogonality, that is xy = 0 if and only if $\varphi(x)\varphi(y) = 0$.
- (2) φ is additive and nonnegative homogeneous, i.e.
 - (i) $\varphi(y_1 + y_2) = \varphi(y_1) + \varphi(y_2)$ for all $y_1, y_2 \in L^p_+(\mathcal{M}, \tau_{\mathcal{M}})$;
 - (ii) $\varphi(\lambda y) = \lambda \varphi(y)$ for all $\lambda \ge 0$ and $y \in L^p_+(\mathcal{M}, \tau_{\mathcal{M}})$.

Proof. (1) Taking x = y in equation (3.2), one has $||x||_p = ||\varphi(x)||_p$. Hence, from Lemma 3.2,

$$\begin{aligned} xy &= 0 \quad \Leftrightarrow \quad \|x + y\|_p^p = \|x\|_p^p + \|y\|_p^p \\ &\Leftrightarrow \quad \|\varphi(x) + \varphi(y)\|_p^p = \|\varphi(x)\|_p^p + \|\varphi(y)\|_p^p \\ &\Leftrightarrow \quad \varphi(x)\varphi(y) = 0. \end{aligned}$$

(2) To see φ is nonnegative homogeneous, for $\lambda > 0$ we observe that

$$\|\varphi(x) + \varphi(\lambda x)\|_{p} = \|x + \lambda x\|_{p} = \|x\|_{p} + \|\lambda x\|_{p} = \|\varphi(x)\|_{p} + \|\varphi(\lambda x)\|_{p}.$$

From the strictly convexity of $L^p(\mathcal{M}, \tau_{\mathcal{M}})$, we have $\varphi(\lambda x) = \delta\varphi(x)$ for some $\delta > 0$. Then $\lambda \|x\|_p = \|\varphi(\lambda x)\|_p = \|\delta\varphi(x)\|_p = \delta \|x\|_p$, we get $\delta = \lambda$, and thus $\varphi(\lambda x) = \lambda\varphi(x)$ for all x in $L^p_+(\mathcal{M}, \tau_{\mathcal{M}})$ and for all $\lambda \ge 0$.

To see φ is additive, we observe again that $\|\varphi(x) + t\varphi(y)\|_p = \|\varphi(x) + \varphi(ty)\|_p = \|x + ty\|_p$ for all $t \ge 0$. Using Lemma 3.1 and setting h(t) = x + ty, we have

$$\frac{d\|x+ty\|_p^p}{dt}\Big|_{t=0^+} = \frac{d\tau_{\mathcal{M}}(h(t)^p)}{dt}\Big|_{t=0^+} = p\tau_{\mathcal{M}}(x^{p-1}y).$$

Hence, differentiating both sides of $||x + ty||_p^p = ||\varphi(x) + t\varphi(y)||_p^p$ with respect to t at 0, we have

$$\tau_{\mathcal{M}}(x^{p-1}y) = \tau_{\mathcal{N}}(\varphi(x)^{p-1}\varphi(y)).$$

It follows

$$\tau_{\mathcal{N}}(\varphi(x)^{p-1}(\varphi(y_1+y_2)-\varphi(y_1)-\varphi(y_2))) = \tau_{\mathcal{N}}(\varphi(x)^{p-1}(\varphi(y_1+y_2))) - \tau_{\mathcal{N}}(\varphi(x)^{p-1}\varphi(y_1)) - \tau_{\mathcal{N}}(\varphi(x)^{p-1}\varphi(y_2)) = \tau_{\mathcal{M}}(x^{p-1}(y_1+y_2)) - \tau_{\mathcal{M}}(x^{p-1}y_1) - \tau_{\mathcal{M}}(x^{p-1}y_2) = 0.$$

Since φ is surjective, choosing $\varphi(x) = [\varphi(y_1 + y_2) - \varphi(y_1) - \varphi(y_2)]^+$, the positive part of $\varphi(y_1 + y_2) - \varphi(y_1) - \varphi(y_2)$, we get $\|[\varphi(y_1 + y_2) - \varphi(y_1) - \varphi(y_2)]^+\|_p^p = 0$ since the positive part and the negative part of $\varphi(y_1 + y_2) - \varphi(y_1) - \varphi(y_2)$ are orthogonal. Hence, the positive part of $\varphi(y_1 + y_2) - \varphi(y_1) - \varphi(y_2)$ is 0. Similarly, the negative part is also 0, and therefore $\varphi(y_1 + y_2) = \varphi(y_1) + \varphi(y_2)$.

Theorem 3.4. Let \mathcal{M} and \mathcal{N} be two von Neumann algebras and 1 . $Suppose that <math>\varphi: L^p_+(\mathcal{M}, \tau_{\mathcal{M}}) \to L^p_+(\mathcal{N}, \tau_{\mathcal{N}})$ is a surjective map satisfying that

(3.3)
$$||x+y||_p = ||\varphi(x) + \varphi(y)||_p.$$

Then there exists a unique surjective complex linear map $\omega : L^p(\mathcal{M}, \tau_{\mathcal{M}}) \to L^p(\mathcal{N}, \tau_{\mathcal{N}})$ extending φ . Moreover, its restriction defines a surjective positive real linear isometry $\theta : L^p_{sa}(\mathcal{M}, \tau_{\mathcal{M}}) \to L^p_{sa}(\mathcal{N}, \tau_{\mathcal{N}}).$

Proof. Observe that for any $x, y \in L^p_+(\mathcal{M}, \tau_{\mathcal{M}})$, we have $x - y = (x - y)^+ - (x - y)^-$, and thus $(x - y)^+ + y = (x - y)^- + x$. Since φ is additive by Lemma 3.3, we have $\varphi((x - y)^+) + \varphi(y) = \varphi((x - y)^-) + \varphi(x)$. This gives $\varphi(x) - \varphi(y) = \varphi((x - y)^+) - \varphi((x - y)^-)$. Since $(x - y)^+ \perp (x - y)^-$, we have $\varphi((x - y)^+) \perp \varphi((x - y)^-)$ by Lemma 3.3 again. It follows that

$$\begin{aligned} \|\varphi(x) - \varphi(y)\|_p^p &= \|\varphi((x-y)^+) - \varphi((x-y)^-)\|_p^p = \|\varphi((x-y)^+) + \varphi((x-y)^-)\|_p^p \\ &= \|(x-y)^+ + (x-y)^-\|_p^p = \|x-y\|_p^p, \quad \forall x, y \in L^p_+(\mathcal{M}, \tau_{\mathcal{M}}). \end{aligned}$$

That is, φ preserves norm of differences.

For $x \in L^p_{\mathrm{sa}}(\mathcal{M}, \tau_{\mathcal{M}})$, we define

$$\theta(x) = \varphi(x^+) - \varphi(x^-).$$

It follows from Lemma 3.3 that θ is well-defined and real linear. Moreover, $\theta(x) \perp \theta(y)$ if $x \perp y$. Furthermore,

$$\|\theta(x)\|_p = \|\varphi(x^+) - \varphi(x^-)\|_p = \|x^+ - x^-\|_p = \|x\|_p.$$

Thus, θ is a positive real linear isometry from $L^p(\mathcal{M}, \tau_{\mathcal{M}})_{sa}$ onto $L^p_{sa}(\mathcal{N}, \tau_{\mathcal{N}})$ extending φ .

For any $x \in L^p(\mathcal{M}, \tau_{\mathcal{M}})$, we write $x = \frac{x + x^*}{2} + i\frac{x - x^*}{2i} := x_1 + ix_2$, where x_1, x_2 are self-adjoint elements in $L^p_{sa}(\mathcal{M}, \tau_{\mathcal{M}})$. Define

$$\omega(x_1 + ix_2) = \theta(x_1) + i\theta(x_2).$$

It is easy to check that

 $\omega(x+y) = \omega(x) + \omega(y), \quad \omega(\lambda x) = \lambda \omega(x),$

for all $x = x_1 + ix_2$, $y = y_1 + iy_2$ in $L^p(\mathcal{M}, \tau_{\mathcal{M}})$ and $\lambda = a + ib$ in \mathbb{C} . The uniqueness of θ and ω is plain.

Note again that for any von Neumann algebra \mathcal{M} , we have $L^{\infty}(\mathcal{M}) \cong \mathcal{M}$ and $L^{1}(\mathcal{M}) \cong \mathcal{M}_{*}$.

Proof of Theorem 1.4. The case $p = +\infty$ can be derived from a result of Molnár [10, Theorem 2.7] which states that every surjective norm of sum preserver φ : $\mathcal{M}_+ \to \mathcal{N}_+$ extends uniquely to a Jordan *-isomorphism $J : \mathcal{M} \to \mathcal{N}$.

For the case $1 , by Theorem 3.4 we see in particular that <math>\varphi$ extends to a bijection from the positive unit ball $L^1_+(\mathcal{M})^1_0$ of $L^1_+(\mathcal{M})$ onto the positive unit ball $L^1_+(\mathcal{N})^1_0$ of $L^1_+(\mathcal{N})$ such that $\|\varphi(x) - \varphi(y)\|_p = \|x - y\|_p$ for all x, y in $L^1_+(\mathcal{M})^1_0$. If \mathcal{M} is not one-dimensional, then the assertions follow from Theorem 1.3.

Finally, when $\mathcal{M} = \mathcal{N} = \mathbb{C}$, we have

$$L^{p}(\mathcal{M}, \tau_{\mathcal{M}}) = L^{p}(\mathbb{C}, \mu) \text{ and } L^{p}(\mathcal{N}, \tau_{\mathcal{N}}) = L^{p}(\mathbb{C}, \nu)$$

for some positive measures μ and ν on \mathbb{C} . The assertions follow from our previous results for the abelian case, namely, Theorem 1.2, and the discussion after it. \Box

When p = 1, we have a counter example in [17, Example 4.1]. There we have a norm of positive sum preserver of the commutative $\ell_n^1 = L^1(\ell_n^\infty)$ space associated to the *n*-dimensional abelian von Neumann algebra ℓ_n^∞ with $n \ge 2$, which is neither affine nor continuous. See also Example 3.8 for a noncommutative counter example.

Proof of Theorem 1.5. Arguing as in Lemma 3.3 and noticing that all operations are done inside the domain $L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+$ and range $L^p(\mathcal{N}, \tau_{\mathcal{N}}) \cap \mathcal{N}_+$ of φ , we have again the same conclusions there. More precisely, we have

- (1) φ preserves orthogonality, that is, xy = 0 if and only if $\varphi(x)\varphi(y) = 0$;
- (2) φ is additive and nonnegative homogeneous, that is,
 - (i) $\varphi(x+y) = \varphi(x) + \varphi(y);$
 - (ii) $\varphi(\lambda y) = \lambda \varphi(y);$
- (3) φ preserves metric, that is, $\|\varphi(x) \varphi(y)\|_p = \|x y\|_p$;

where $x, y \in L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+$ and $\lambda \ge 0$.

We extend the domain of φ from $L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+$ to $L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_{sa}$ by defining

 $\theta(x) = \varphi(x^+) - \varphi(x^-), \quad \forall x \in L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_{\mathrm{sa}}.$

It follows from the fact $\theta(x^+) = \theta(x)^+$ that θ also preserves the metric, i.e.,

$$\begin{aligned} \|\theta(x) - \theta(y)\|_p^p &= \|\theta(x - y)^+ - \theta(x - y)^-\|_p^p = \|\theta(x - y)^+\|_p^p + \|\theta(x - y)^-\|_p^p \\ &= \|(x - y)^+\|_p^p + \|(x - y)^-\|_p^p = \|x - y\|_p^p, \end{aligned}$$

for all x, y in $L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_{sa}$. In particular, φ can be extended to a surjective real linear isometry from $L^p_{sa}(\mathcal{M}, \tau_{\mathcal{M}})$ onto $L^p_{sa}(\mathcal{N}, \tau_{\mathcal{N}})$, and thus provides a surjective metric preserving map between their positive unit balls. Then Theorem 1.4 applies.

In particular, there is a unique Jordan *-isomorphism $\Theta : \mathcal{N} \to \mathcal{M}$ satisfying that $\varphi(R) = \Theta_*(R^p)^{1/p}$ for any $R \in L^p_+(\mathcal{M})$.

Let $J = \Theta^{-1} : \mathcal{M} \to \mathcal{N}$ and let $h = \left(\frac{d\tau_{\mathcal{M}} \circ \Theta}{d\tau_{N}}\right)^{1/p}$ be the 1/p th power of the non-commutative Radon-Nikodym derivative of $\tau_{\mathcal{M}} \circ \Theta$ with respect to $\tau_{\mathcal{N}}$ (see, e.g., [12, Theorem 5.12]). Note that the unbounded operator h is affiliated with \mathcal{N} , and commutes with all elements in \mathcal{N} . Then for all x in $L^{p}(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_{+}$ we have

$$\tau_{\mathcal{N}}((J(x)h)^p y) = \tau_{\mathcal{M}}(x^p \Theta(y)) = \tau_{\mathcal{N}}(\Theta_*(x^p)y) = \tau_{\mathcal{N}}(\varphi(x)^p y),$$

for all $y \in L^{\infty}(\mathcal{N}, \tau_{\mathcal{N}})_{+} = \mathcal{N}_{+}$. Thus $\varphi(x) = J(x)h$ for all x in $L^{p}(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_{+}$ as asserted.

Corollary 3.5. Assume \mathcal{M} is a factor and $1 . Suppose <math>\varphi : L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+ \to L^p(\mathcal{N}, \tau_{\mathcal{N}}) \cap \mathcal{N}_+$ is a surjective map satisfying that $||x+y||_p = ||\varphi(x)+\varphi(y)||_p$ for all $x, y \in L^p(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+$. Then there is a *-algebra isomorphism or antiisomorphism J of \mathcal{M} onto \mathcal{N} and a positive scalar λ such that $\varphi = \lambda J$.

Proof. The assertion follows from Theorem 1.5 and well-known facts on Jordan *-isomorphisms (cf. [6]).

Corollary 3.6. Let \mathcal{M} be a finite factor with a normal faithful finite trace τ . Let φ be a transformation from $L^p(\mathcal{M}, \tau)$ onto itself satisfying that $\varphi(\mathcal{M}_+) = \mathcal{M}_+$ and $||x + y||_p = ||\varphi(x) + \varphi(y)||_p$ for all $x, y \in \mathcal{M}_+$. Then the restriction of φ to \mathcal{M} is either a *-algebra isomorphism or anti-isomorphism of \mathcal{M} .

Corollary 3.7. Let \mathcal{M} be a type I factor with the canonical trace τ , and let φ be a transformation from $L^p(\mathcal{M},\tau)$ onto itself satisfying that $\varphi(L^p_+(\mathcal{M},\tau)) = L^p_+(\mathcal{M},\tau)$ and $||x + y||_p = ||\varphi(x) + \varphi(y)||_p$ for all $x, y \in \mathcal{M}_+$. Then there exists a *-algebra isomorphism or anti-isomorphism Φ of \mathcal{M} such that $\varphi(x) = \Phi(x)$ for every $x \in L^p(\mathcal{M},\tau)$.

Example 3.8. For the case p = 1, Theorem 1.5 may not hold. For example, let $\varphi : L^1(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+ \to L^1(\mathcal{M}, \tau_{\mathcal{M}}) \cap \mathcal{M}_+$ satisfy that $\varphi(x) = u_r x u_r^*$, where $||x||_1 = r$ and u_r is a randomly chosen unitary element in \mathcal{M} associated with each $r \geq 0$. Clearly, φ is surjective. Moreover,

$$\begin{aligned} \|\varphi(x) + \varphi(y)\|_{1} &= \tau_{\mathcal{M}}(\varphi(x)) + \tau_{\mathcal{M}}(\varphi(y)) = \tau_{\mathcal{M}}(u_{\|x\|}xu_{\|x\|}^{*}) + \tau_{\mathcal{M}}(u_{\|y\|}yu_{\|y\|}^{*}) \\ &= \tau_{\mathcal{M}}(x) + \tau_{\mathcal{M}}(y) = \tau_{\mathcal{M}}(x+y) = \|x+y\|_{1}. \end{aligned}$$

However, φ does not carry the form stated in Theorem 1.5.

4. Two examples when $p = +\infty$

In this section, two examples of norm of positive sum preservers are provided for the case $p = +\infty$. We verify the details by direct arguments.

Example 4.1. Consider the two dimensional abelian von Neumann algebra $\mathcal{M} = \mathcal{N} = \mathbb{C} \oplus_{\infty} \mathbb{C}$. Suppose $\varphi : \mathbb{R}_+ \oplus_{\infty} \mathbb{R}_+ \mapsto \mathbb{R}_+ \oplus_{\infty} \mathbb{R}_+$ is a map satisfying $||x+y||_{\infty} =$

 $\|\varphi(x) + \varphi(y)\|_{\infty}$ for all x, y in $\mathbb{R}_+ \oplus_{\infty} \mathbb{R}_+$. We show directly that $\varphi(x) = Ux$ where U is a permutation; namely, φ assumes either the form

 $(x_1, y_1) \mapsto (x_1, y_1)$ or $(x_1, y_1) \mapsto (y_1, x_1)$.

Proof. It is easy to see that $\varphi((0,0)) = (0,0)$ and $||x||_{\infty} = ||\varphi(x)||_{\infty}$ for all x in $\mathbb{R}_+ \oplus_{\infty} \mathbb{R}_+$.

Claim 1: Either the case $\varphi((x_1, 0)) = (x_1, 0)$ and $\varphi((0, x_1)) = (0, x_1)$, or the case $\varphi((x_1, 0)) = (0, x_1)$ and $\varphi((0, x_1)) = (x_1, 0)$ holds for all $x_1 \ge 0$.

Suppose that $\varphi((x_1, 0)) = (x'_1, y'_1)$ and $\varphi((0, x_1)) = (x'_2, y'_2)$. We have

 $\max\{x_1', y_1'\} = \max\{x_2', y_2'\} = \max\{x_1' + x_2', y_1' + y_2'\} = x_1.$

If $x'_1 = x_1$, then $x'_2 = 0$, $y'_2 = x_1$ and $y'_1 = 0$. The other case arises when $x'_2 = x_1$.

Claim 2: $\varphi((x_1, x_1)) = (x_1, x_1)$ for all $x_1 \ge 0$.

Suppose that $\varphi((x_1, x_1)) = (x_1, y'_1)$ in which $y'_1 < x_1$. If $\varphi((x_1, 0)) = (x_1, 0)$ and $\varphi((0, x_1)) = (0, x_1)$, one gets $||(x_1, x_1) + (0, 1)||_{\infty} = ||(x_1, y'_1) + (0, 1)||_{\infty}$. Thus, $x_1 + 1 = y'_1 + 1$, which is a contradiction. If $\varphi((x_1, 0)) = (0, x_1)$ and $\varphi((0, x_1)) = (x_1, 0)$, one gets $||(x_1, x_1) + (1, 0)||_{\infty} = ||(x_1, y'_1) + (0, 1)||_{\infty}$. This gives again the contradiction $x_1 + 1 = y'_1 + 1$.

The same argument also removes the case $\varphi((x_1, x_1)) = (x'_1, x_1)$ such that $x'_1 < x_1$. Since $\|\varphi(x_1, x_1)\|_{\infty} = x_1$, we verify the claim.

 Set

$$A = \{(x_1, y_1) : x_1 > 0, y_1 > 0, x_1 > y_1\}, \quad B = \{(x_1, y_1) : x_1 > 0, y_1 > 0, x_1 < y_1\}.$$

Claim 3: Either $\varphi(A) \subseteq A, \varphi(B) \subseteq B$, or $\varphi(A) \subseteq B, \varphi(B) \subseteq A$.

We prove that $\varphi(A) \subseteq A, \varphi(B) \subseteq B$ when the case $\varphi((x_1, 0)) = (x_1, 0)$ and $\varphi((0, x_1)) = (0, x_1)$ ever happens. Suppose on the contrary $\varphi(A) \not\subseteq A$, that is to say $\varphi((x_2, y_2)) = (x'_2, y'_2)$ for some $x_2 > y_2 > 0$ and $0 \le x'_2 \le y'_2$. Then one has $y'_2 = x_2$. It shows that $||(x_2, y_2) + (0, x_2)||_{\infty} = ||(x'_2, x_2) + (0, x_2)||_{\infty}$. Thus, $x_2 + y_2 = 2x_2$ which conflicts with $x_2 > y_2$. Similarly, $\varphi(B) \subseteq B$ is satisfied under this condition.

Analogously, we have $\varphi(A) \subseteq B, \varphi(B) \subseteq A$ when the case $\varphi((x_1, 0)) = (0, x_1)$ and $\varphi((0, x_1)) = (x_1, 0)$ ever holds.

Claim 4: Either $\varphi((x_1, y_1)) = (x_1, y_1)$ or $\varphi((x_1, y_1)) = (y_1, x_1)$ for all $(x_1, y_1) \in \mathbb{R}_+ \oplus_{\infty} \mathbb{R}_+$.

In the case $\varphi(A) \subseteq A$, we can assume that $\varphi((x_1, y_1)) = (x_1, y'_1)$ where $x_1 > y_1, x_1 > y'_1$. It follows that $||(x_1, y_1) + (0, x_1)||_{\infty} = ||(x_1, y'_1) + (0, x_1)||_{\infty}$. Therefore, $y'_1 = y_1$. Same argument can be used for the case $(x_1, y_1) \in B$. This shows that $\varphi((x_1, y_1)) = (x_1, y_1)$ for all $(x_1, y_1) \in \mathbb{R}_+ \oplus_{\infty} \mathbb{R}_+$.

On the other-hand, if $\varphi(A) \subseteq B, \varphi(B) \subseteq A$, similar arguments produce the other desired conclusion.

Example 4.2. Consider the von Neumann algebra M_2 of 2×2 complex matrices with positive cone P_2 . Suppose that $\varphi : P_2 \to P_2$ is a surjective map such that $||A + B||_{\infty} = ||\varphi(A) + \varphi(B)||_{\infty}$ for any positive semidefinite matrices A, B in P_2 . We show directly that there exists a unitary matrix U such that φ assumes either the form

$$A \mapsto UAU^*$$
 or $A \mapsto UA^{\mathrm{t}}U^*$.

Proof. Fix $\lambda \ge 0$. Let $A = \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix}$. Assume that there are unitary matrices U, V such that

$$\varphi(A) = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = U \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} U^* \text{ and}$$
$$\varphi(B) = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = V \begin{pmatrix} \mu_1 & 0 \\ 0 & \mu_2 \end{pmatrix} V^*,$$

where $a_{11}, a_{22}, b_{11}, b_{22} \ge 0$, and $a_{21} = \overline{a_{12}}$ and $b_{21} = \overline{b_{12}}$ are complex conjugates.

As
$$\|\varphi(A)\|_{\infty} = \|\varphi(B)\|_{\infty} = \|\varphi(A) + \varphi(B)\|_{\infty} = \lambda$$
, computing traces we have

 $\lambda \le a_{11} + a_{22} \le 2\lambda, \ \lambda \le b_{11} + b_{22} \le 2\lambda, \text{ and } \lambda \le a_{11} + a_{22} + b_{11} + b_{22} \le 2\lambda.$ Hence, $\lambda_1 + \lambda_2 = a_{11} + a_{22} = \lambda$ and $\mu_1 + \mu_2 = b_{11} + b_{22} = \lambda.$

Since $\max\{\lambda_1, \lambda_2\} = \max\{\mu_1, \mu_2\} = \lambda$, it can be assumed that $\lambda_1 = \lambda$ and $\lambda_2 = 0$. Furthermore, set $\varphi(B) = U \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} U^*$, where $c_{11}, c_{22} \ge 0$ and $c_{21} = \overline{c_{12}}$. Hence, $\varphi(A) + \varphi(B) = U \begin{pmatrix} c_{11} + \lambda & c_{12} \\ c_{21} & c_{22} \end{pmatrix} U^*$ with $\|\varphi(A) + \varphi(B)\|_{\infty} = \frac{c_{11} + c_{22} + \lambda + \sqrt{(c_{11} + \lambda - c_{22})^2 + 4c_{12}c_{21}}}{2} = \lambda.$

Since the trace of the matrix $\varphi(B)$ equals $c_{11} + c_{22} = \mu_1 + \mu_2 = \lambda$, we see that $c_{11} = c_{12} = c_{21} = 0$ and $c_{22} = \lambda$. Thus, there exists a unitary matrix U_{λ} such that

$$\varphi\begin{pmatrix} \lambda & 0\\ 0 & 0 \end{pmatrix} = U_{\lambda} \begin{pmatrix} \lambda & 0\\ 0 & 0 \end{pmatrix} U_{\lambda}^* \quad \text{and} \quad \varphi\begin{pmatrix} 0 & 0\\ 0 & \lambda \end{pmatrix} = U_{\lambda} \begin{pmatrix} 0 & 0\\ 0 & \lambda \end{pmatrix} U_{\lambda}^*.$$

Suppose that for another scalar $0 \le \mu \le \lambda$ and the matrix $D = \begin{pmatrix} \mu & 0 \\ 0 & 0 \end{pmatrix}$, we have $\varphi(D) = U_{\lambda} \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} U_{\lambda}^*$, where $d_{11}, d_{22} \ge 0$ and $d_{21} = \overline{d_{12}}$. Note that

$$\|\varphi(D)\|_{\infty} = \mu = \left\| \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} \right\|_{\infty},$$

and observe

$$\lambda + \mu = \left\| \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} \mu & 0 \\ 0 & 0 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} \lambda & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{pmatrix} \right\|_{\infty}$$

The last sum of positive semi-definite matrices attains its norm $\lambda + \mu$ at the unit eigenvector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Consequently, $d_{11} = \mu$ and $d_{12} = d_{21} = 0$. Moreover, $0 \le d_{22} \le \mu$. On the other hand,

$$\max\{\lambda,\mu\} = \left\| \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix} + \begin{pmatrix} \mu & 0 \\ 0 & 0 \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} 0 & 0 \\ 0 & \lambda \end{pmatrix} + \begin{pmatrix} \mu & 0 \\ 0 & d_{22} \end{pmatrix} \right\|_{\infty}$$

Hence $d_{22} = 0$ since $\mu \leq \lambda$. Therefore,

$$\varphi\begin{pmatrix} \mu & 0\\ 0 & 0 \end{pmatrix} = U_{\lambda} \begin{pmatrix} \mu & 0\\ 0 & 0 \end{pmatrix} U_{\lambda}^*, \text{ whenever } 0 \le \mu \le \lambda.$$

Set $U = U_{\lambda}$ for a very large $\lambda > 0$. Then $\varphi\begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix} = U\begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix} U^*$ for any $t \in [0, \lambda]$. For any 2×2 positive semi-definite matrix $A = \begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix}$, let $\varphi(A) = U\begin{pmatrix} a' & b' \\ \overline{b'} & c' \end{pmatrix} U^*$. Hence, $\left\| \begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a & b \\ \overline{b} & c \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} a' & b' \\ \overline{b'} & c' \end{pmatrix} \right\|_{\infty}, \quad \forall t \in [0, \lambda].$

It amounts to say that

(4.1)
$$t + a + c + \sqrt{(t + a - c)^2 + 4b\bar{b}} = t + a' + c' + \sqrt{(t + a' - c')^2 + 4b'\bar{b'}}.$$

Differentiating (4.1) with respect to t, we get

$$(t+a-c)^{2}((t+a'-c')^{2}+4b'\bar{b'}) = (t+a'-c')^{2}((t+a-c)^{2}+4b\bar{b}),$$

or

$$b'\bar{b}'(t+a-c)^2 = b\bar{b}(t+a'-c')^2.$$

Comparing the coefficient of t^2 , we get $b\bar{b} = b'\bar{b'}$.

In the case when b = 0, we have b' = 0. Put this into equation (4.1), we have a = a' when t is chosen sufficiently large. Using the equation

$$\left\| \begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} 0 & 0 \\ 0 & t \end{pmatrix} + \begin{pmatrix} a & 0 \\ 0 & c' \end{pmatrix} \right\|_{\infty}$$

we can also see c = c'.

On the other hand, a - c = a' - c' when $b \neq 0$. In this case, the equation (4.1) ensures that a + c = a' + c', and thus a = a' and c = c'. Let $b' = e^{i\theta_b}b$ for some real scalar θ_b . It follows from the norm equality

$$\left\| \begin{pmatrix} a & b_1 \\ \overline{b_1} & c \end{pmatrix} + \begin{pmatrix} a & b_2 \\ \overline{b_2} & c \end{pmatrix} \right\|_{\infty} = \left\| \begin{pmatrix} a & e^{i\theta_{b_1}}b_1 \\ e^{-i\theta_{b_1}}\overline{b_1} & c \end{pmatrix} + \begin{pmatrix} a & e^{i\theta_{b_2}}b_2 \\ e^{-i\theta_{b_2}}\overline{b_2} & c \end{pmatrix} \right\|_{\infty}$$

that

$$2a + 2c + \sqrt{4(a-c)^2 + 4(b_1 + b_2)(\overline{b_1} + \overline{b_2})}$$

= $2a + 2c + \sqrt{4(a-c)^2 + 4(e^{i\theta_{b_1}}b_1 + e^{i\theta_{b_2}}b_2)(e^{-i\theta_{b_1}}\overline{b_1} + e^{-i\theta_{b_2}}\overline{b_2})}$

It forces both $b_1\overline{b_2}$ and $e^{i(\theta_{b_1}-\theta_{b_2})}b_1\overline{b_2}$ have the same real parts.

Replacing U by the unitary
$$U\begin{pmatrix} 1 & 0\\ 0 & e^{-i\theta_1} \end{pmatrix}$$
, we can assume $e^{i\theta_1} = 1$.

We discuss in two situations. The first case is for $e^{i\theta_i} = -1$, and we claim that $e^{i\theta_b}b = \bar{b}$ for all b in this situation. To this end, setting $(b_1, b_2) = (b, 1)$ and (b, i) respectively, we observe the real parts of complex numbers

 $\operatorname{Re} b = \operatorname{Re} e^{i\theta_b}b$ and $\operatorname{Re}(-ib) = \operatorname{Re}(-ie^{i(\theta_b - \pi)}b) = \operatorname{Re}(ie^{i\theta_b}b).$

It follows that $e^{i\theta_b}b = \overline{b}$ as claimed.

The second case is for $e^{i\theta_i} \neq -1$, and we claim that $e^{i\theta_b} = 1$ for all b in this situation. Setting $(b_1, b_2) = (b, 1)$ and (b, i) respectively, we observe the real parts of complex numbers

$$\operatorname{Re} b = \operatorname{Re} e^{i\theta_b}b$$
 and $\operatorname{Re}(-ib) = \operatorname{Re}(-ie^{i(\theta_b - \theta_i)}b)$

If $e^{i\theta_b} \neq 1$ then $e^{i\theta_b}b = \overline{b}$, and thus $\operatorname{Re}(-ib) = \operatorname{Re}(-ie^{-i\theta_i}\overline{b}) \neq -\operatorname{Re}(-i\overline{b})$. This contradiction shows that $e^{i\theta_b} = 1$ for all b as claimed.

Therefore, we have either

$$\varphi\left(\begin{pmatrix}a&b\\\bar{b}&c\end{pmatrix}\right) = U\begin{pmatrix}a&b\\\bar{b}&c\end{pmatrix}U^* \text{ or } U\begin{pmatrix}a&\bar{b}\\b&c\end{pmatrix}U^*.$$

That is to say, for any three 2×2 positive semi-definite matrices A_1, A_2, A_3 , we can choose a large enough λ (depending on A_1, A_2, A_3) such that either

$$\varphi(A_j) = U_{\lambda}A_jU_{\lambda}^* \quad \text{or} \quad \varphi(A_j) = U_{\lambda}A_j^{\mathrm{t}}U_{\lambda}^*, \quad \forall j = 1, 2, 3.$$

This implies that φ is affine and preserves squares on the positive semi-definite cone P_2 of M_2 . It then extends to a nonzero linear map from M_2 into M_2 sending projections to projections, and thus a Jordan homomorphism. The assertion then follows from known facts about Jordan *-homomorphisms of matrices.

References

- L. Chen, Y. Dong and B. Zheng, On norm-additive maps between the maximal groups of positive continuous functions, *Results Math.*, 74 (2019), Art. 152, 7 pp.
- [2] Y. Dong, L. Li, L. Molnár and N.-C. Wong, Transformations preserving the norm of means between positive cones in general and commutative C^{*}-algebras, preprint.
- [3] H. A. DYE, On the geometry of projections in certain operator algebras, Ann. Math., 61(1955), 73–89.
- [4] M. Gaál, Norm-additive maps on the positive definite cone of a C*-algebra, Results Math., 73 (2018), Art. 151, 7 pp.
- [5] M. Hosseini and J. J. Font, Real-linear isometries and jointly norm-additive maps on function algebras, *Mediterr. J. Math.*, 13 (2016), 1933–1948.
- [6] R. V. Kadison, Isometries of operator algebras, Annals Math., 54(2) (1951), 325–338.
- [7] H. Kosaki, Applications of uniform convexity of noncommutative L^p-spaces, Trans. Amer. Math. Soc., 1984, 283(1), 265–282.
- [8] C.-W. Leung, C.-K. Ng and N.-C. Wong, Metric preserving bijections between positive spherical shells of non-commutative L^p-spaces, J. Operator Theory, 80 (2018), 429–452.
- [9] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris, 194 (1932), 946–948.
- [10] L. Molnár, Spectral characterization of Jordan-Segal isomorphisms of quantum observables, J. Operator Theory, 83 (2020), 179–195.
- [11] T. Oikhberg and A. M. Peralta, Automatic continuity of orthogonality preservers on a noncommutative $L_p(\tau)$ space, J. Funct. Anal., **264** (2013), 1848–1872.
- [12] G. K. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53–87.

- [13] Y. Raynaud and Q. Xu, On subspaces of non-commutative L^p-spaces, J. Funct. Anal., 203(1) (2003), 149–196.
- [14] D. Sherman, On the structure of isometries between noncommutative L^p spaces, Publ. RIMS Kyoto Univ., 42(2006), 45–82.
- [15] T. Tonev and R. Yates, Norm-linear and norm-additive operators between uniform algebras, J. Math. Anal. Appl., 357 (2009), 45–53.
- [16] M. Terp, L^p-spaces associated with von Neumann algebras, Notes Math. Institute, Copenhagen Univ., 1981.
- [17] J. Zhang, M.-C. Tsai and N.-C. Wong, Norm of positive sum preservers of smooth Banach lattices and $L_p(\mu)$ spaces, J. Nonlinear Convex Anal., **20** (2019), 2613–2621.

(J. Zhang) School of Mathematics and Statistics, Central China Normal University, Wuhan, Hubei 430079, China.

Email address: zhjun@mail.ccnu.edu.cn

(M.-C. Tsai) General Education Center, Taipei University of Technology 10608, Taiwan.

Email address: mctsai2@mail.ntut.edu.tw

(N.-C. Wong) DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KAOHSIUNG 80424, TAIWAN AND SCHOOL OF MATHEMATICAL SCIENCES, TIANGONG UNIVERSITY, TIANJIN 300387, CHINA.

Email address: wong@math.nsysu.edu.tw