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ABSTRACT. Let 1 < p < 4o00. Let LP(M) and LP(N') be the noncommutative
LP-spaces associated to von Neumann algebras M and N, respectively. Let
@ : LB (M) — LT (N) be a surjective map between positive elements preserving
the norm of sum, i.e.,

o) + oWl = Iz +yllp, x,y € LE(M).

We show that there is a Jordan #-isomorphism J : M — A, and ¢ can be
extended uniquely to a surjective real linear positive isometry from LZ,(M)
onto LE,(N). When M is approximately semifinite, especially semifinite or
hyperfinite, @(R) = ©.(RP)Y/? for every R € LR (M), where ©® = J~! and
O, : L' (M) (2 M.) — L*(N) (2 N,) is its predual map. In the case when M
has a normal faithful semifinite trace 7o¢ (and so does N), p(x) = hJ(z) for ev-
ery x € L (M, 7m) N My, where h? = d(7pm 0 ©)/d7y is the non-commutative
Radon-Nikodym derivative of 7a4 0 © with respect to 7or. We also provide a
similar result when p = 400, and counter examples for the case p = 1.

1. INTRODUCTION

The celebrated Mazur-Ulam theorem [9] states that every surjective map T :
E — F between normed spaces, preserving the norm of differences and fixing zero,
extends to a real linear isometry from E onto F'. One may ask what happens if T’
preserves the norm of sums instead of differences, i.e., if

|72+ Ty| = | +yll, Va,ye<E.

It turns out to be easy, by noting that we have 70 = 0 and T'(—x) = —T'x auto-
matically, and the Mazur-Ulam theorem applies.

It then arises the question when the domain and range of T" are not the whole
linear spaces; see, e.g., [1,4,5,11,15]. In [17], we propose the following open problem.

Problem 1.1. Let E, F' be ordered Banach spaces with positive cones E, F,
respectively. Let T': F, — F, be a surjective map preserving the norm of sums.
Can T be extended to a positive real linear isometry from E onto F'?
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We answer Problem 1.1 affirmatively for the case when E, F' are smooth Banach
lattices, and L, spaces when p € (1,00], while we also provide a counterexample
for the case p = 1 in [17]. There are also positive answers for C'(X) spaces in [1],
for von Neumann algebras in [10], and for general unital C*-algebras in [2]. The
same is true if one considers bijective maps between positive definite cones in unital
C*-algebras but equipped with a sort of Schatten p-norm [4] for p € (1, o¢].

In this paper, we give a positive answer for non-commutative L,(M)-spaces in
Theorem 3.4; see also Theorems 1.4 and 1.5 below. Note that a noncommutative
LP(M) space is not a Banach lattice unless M is abelian. This prevents us from
directly applying the technique developed in the abelian case in [17]. Anyway, let
us recall our result for commutative LP-spaces.

Theorem 1.2 ([17, Theorem 3.3]). Let ¢ : LE (Q1, %1, 1) = LE (2,32, u2) be a
bijective map, where 1 < p < co. Suppose
1z +yllp = llo(@) + eW)llp, Yo,y € L (1, X1, ).

Then ¢ extends to a surjective positive linear isometry from LP(Qy,31, pu1) onto
LP(Q9,%9, u2). More precisely, there exists a reqular set isomorphism ¥ from 34
onto Xy inducing a bijective positive linear map v : LP(Q1, 31, pu1) — LP(Qa, 3o, p2),
and a locally measurable function h on Qo such that

(1'1) 90(35) :h-?b(ﬂi‘), vxELi(Qlazlvﬂ'l)'
When 1 < p < 400, we have
/ |h(t)[Pdpe = pi(A),  for each o-finite A € ¥5.
T(A)
d(p o)

dpiz
with respect to pa. When p = 400, we have

In other words, |h|P = is the Radon-Nikodym derivative of pp o U1

h(y) =1, locally almost everywhere on Qq.

When the underlying measure spaces are localizable, M = L>(Qq,%1, 1) and
N = L>®(Qs9, 39, uz) are commutative von Neumann algebras with predual spaces
LY (1,31, 1) and LY(Qg, X9, u2), respectively. In this case, the regular set iso-
morphism ¥ defining % in (1.1) can be thought of an orthomorphism between the
projection lattices of M and N. By Dye’s Theorem [3], ¥ extends uniquely to
a Jordan #-isomorphism J : M — N. We simply have ¢ = J when p = +oc.
When 1 < p < +o0o, let © = J~! with the predual map O, : L'(Q, %1, 1) —
L'(Q, 2, 12). Then we have 1(f) = ©,(fP)V/? for all f in L (Q1, %1, p1).

We are going to provide a noncommutative version of Theorem 1.2. To this

end, we need the following counter part result about norm of difference preservers
recently developed in [8]. Set

LM ={S eIl (M):a<||S], <8}, 0<a<p<to.

Theorem 1.3 ([8, Theorem 1.3]). Let p € [1,00], and M and N be two von Neu-

mann algebras. Assume there is a metric preserving bijection @ : Lﬁ(./\/l)g —
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L2(N)3, e,
1@(x) = @)l = & = yllp, Va,y € LEL(M)S.

(a) M and N are x-isomorphic.

(b) If M 22 C and M is approximately semifinite, then there is a unique Jor-
dan *-isomorphism © : N — M satisfying ®(R) = O,(RP)Y/? for any R €
Lﬁ(M,TM)Q.

Here is the main result in this paper.

Theorem 1.4. Let p € (1,400], and M and N be two von Neumann algebras.
Assume there is a surjective map ¢ : L (M) — L2 (N') such that

(@) + W)y = llz+yllp, Yo,y € L (M).

(a) M and N are x-isomorphic, and ¢ extends uniquely to a positive surjective real
linear isometry 0 : LE (M) — LE(N).

(b) If p = 400 then ¢ extends uniquely to a Jordan x-isomorphism J : M — N.

(c) If 1 < p < +o0 and M is approximately semifinite, then there is a unique Jordan
x-isomorphism © : N' — M satisfying p(R) = ©,(RP)'/? for any R € L% (M).

In the abelian case, every function in L’i(,u) can be approximated in norm by
functions from L (p). However, one of the difficulties in studying noncommutative
LP(M) space arises from the fact that LP(M)NM = {0} when M is not semifinite.
If M has a faithful semifinite trace 7y, nevertheless, there is a weak* dense two-
sided self-adjoint ideal Sxq of M embedded into the noncommutative LP(M, 7r)
space. In other words, the intersection LI_)F(M,TM> N M is reasonably big to
represent M, as well as LP(M, 7). This motivates us to include the following
result in this paper. We note that any one of M and N being semifinite suffices to
ensure its conclusion due to Theorem 1.4(a).

Theorem 1.5. Let 1 < p < +oo. Let M and N be two semifinite von Neumann
algebras with traces Ty and Tz, respectively. Suppose that ¢ : LP(M, 7)) "My —
LP(N,7ar) N Ny is a surjective map satisfying that

1z +yllp = @) +eW)llp,  Va,y € LP(M, 7)) N M.
Then there exists uniquely a Jordan x-isomorphism J : M — N such that
o(x) = J(x)h = hJ(x), x& LP(M,Tm)N M.
drapgoJ 1

N
J~1 with respect to Tn when 1 < p < +o00; and h =1 if p = +o00.

Here, h? = s the noncommutative Radon-Nikodym derivative of Taq o

In Section 2, we will give a brief description of the construction of noncommu-
tative LP-spaces. The proofs of Theorems 1.4 and 1.5 are given in Section 3. We
note that, however, neither of Theorems 1.4 nor 1.5 holds when p = 1, as shown by
counter examples. In Section 4, we will provide two concrete examples to demon-
strate the case when p = 4o00.
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2. PRELIMINARIES

Let M be a von Neumann algebra, that is, a self-adjoint algebra of operators on
a Hilbert space H that is closed in the weak operator topology. A trace on M is
a nonnegative extended real-valued function 7 defined on the positive part M of
M which satisfies

(1) 7(x+y) =7(x) +7(y) for all 2,y € My;
(2) (A )—)\T(:c)forall)\>0andx€/\/l+,
(3) 7(zz*) = 7(z*z) for all x € M.

If 7 satisfies conditions (1) and (2) but not necessarily (3), then we call it a weight.
We say that 7 is normal if sup 7(z,) = 7(sup x,) for any bounded increasing net
{za} in M, semifinite if for any nonzero x € M there is a nonzero y € M such
that y < z and 7(y) < 400, and faithful if 7(z) = 0 implies x = 0 for any x € M.
If 7(1) < 400, we say that 7 is finite. A von Neumann algebra M is said to be
finite (resp. semifinite) if it admits a normal finite (resp. semifinite) faithful trace.

Definition 2.1. A von Neumann algebra M is said to be approzimately semifinite
[14] if

e there is an increasing family { M, };c5 of semifinite von Neumann subalgebras
of M such that |J;c; M; is 0(M, M,)-dense in M, and

e there is a normal conditional expectation E; : M — M; with F;(1) being
the identity of M; such that F; o E; = E; whenever ¢ < j in J.

The class of approximately semifinite von Neumann algebras includes, in partic-
ular, all semifinite algebras, all hyperfinite algebras, and all type IIlp-factors with
separable preduals. See also [8] for more details.

We follow the construction of noncommutative LP-spaces demonstrated in [13]
and [16]. Let M denote a semifinite von Neumann algebra on a Hilbert space H
with a given normal semifinite faithful trace 7o¢. Let Sas be the subset of M of
elements = of finite traces, i.e., Ta(|z|) < 400, where |z| denotes the operator
(x*x)l/ 2. The set Sy is quite big, as it is a self-adjoint two sided ideal of M and
dense in M in the strong operator topology. Moreover, it is closed under taking p
powers, i.e., |z|P € Sy whenever x € Sy and 0 < p < +00.

For z € M and 1 < p < 400, let
Iz llp = Tae(|[?) 7.

Then || - ||, defines a norm on Spq. We call the norm completion of Sy the non-
commutative LP(M,Trq) space.

We can identify L>°(M, 1) with M and L'(M, 7o) with the predual M, of M.
The positive cone L (M, 7pq) of LP(M, Tr4) is the completion of LP(M, 7p¢) N My
under the norm || - ||,. We will write LP(M) if the trace 7o is understood.

The situation when M is not semifinite is far more complicated. Let M be a

general von Neumann algebra on a Hilbert space H, but not necessarily semifinite.
We note that every von Neumann algebra has a normal faithful semifinite weight.
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Fix a normal semifinite faithful weight ¢ on M. Consider the modular automor-
phism group « corresponding to ¢. There exists a normal faithful semifinite trace
7 on the von Neumann algebra crossed product M := M xR satisfying some com-
patibility condition with ¢. Denote by L°(M,7) the completion of M under the
vector topology defined by a neighborhood basis at 0 of the form

Ul(e,d) :={x € M :||zp| < e and 7(1 — p) < 6, for a projection p € M}.

Then the *-algebra structure of M extends to a *-algebra structure of L° (M, 7).

Elements in LO(M,7) can be regarded as closed densely defined operators on
L?*(R; H). More precisely, let T' be a densely defined closed operator on L?(R; H)
affiliated with M, and |T| be its absolute value with spectral projection-valued
measure Ejp|. Then T' corresponds uniquely to an element in LY(M, 1) if and only
if 7(1 — Ei([0,)])) < oo when X is large. Conversely, every element in LO(M,T)
arises from a closed operator in this way. Under this identification, the *-operation
on L°(M, ) coincides with the adjoint. The addition and the multiplication on
LY(M, 1) are the closures of the corresponding operations for closed operators. De-
note by LS)r (M, 7) the set of all positive self-adjoint operators in L%(M, ). For x,y
in LO(M, 1), we write z Ly if |z||y| = 0, i.e., the positive operators have orthogonal
support projections.

The dual action & : R — Aut(M) extends to an action on L°(M, 7). For any
p € [1,00], we set

LP(M) == {T € L' (M, 1) : 65(T) = e */PT for all s € R}

(where, by convention, e=*/*° = 1). Then L>(M) coincides with the subalgebra
M of M C LY(M,7). Moreover, if T € LO(M,7) and T = u|T| is the polar
decomposition, then 7' € LP(M) if and only if |T| € LP(M). The product of
an element in L>°(M) with an element in LP(M) (in whatever order) is again in
LP(M). Hence, LP(M) is canonically an M-bimodule. Let L%, (M) denote the set
of all self-adjoint operators in LP(M) and put LE (M) := LP(M) N Ly (M, 7).

When p € (0,00), the Mazur map

1 0/
S— Sr (SeLi(M,1))
restricts to a bijection from LY (M) onto LE (M). Elements in L (M) are identified
with S7 for a unique element S € L) (M). When p € (1,00), the function

1Tl = (1717

is a norm on LP(M), and (LP(M), LY (M)) becomes an ordered Banach space.

It is known that (LP(M), L (M)) is independent of the choice of the faithful
semifinite weight ¢ up to an isometric order isomorphism (see, e.g., Theorem 37
and Corollary 38 in Chapter II of [16]). If M is semifinite with a faithful normal
semifinite trace ¢ = 7T, then the above two constructions of noncommutative
LP(M) space will be isometrically and order isomorphic to each other. In this
paper, we usually write LP(M, 7y() even when M is not semifinite; in this case, we
refer to the Haagerup trace norm 7 (-) = || - ||1 instead.
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3. NORM OF POSITIVE SUM PRESERVERS

All noncommutative LP (M, 7x4) spaces are uniformly convex and uniformly smooth
with dual space LI(M,1p) for p,q € (1,00) with 1/p+ 1/¢ = 1. In particular, the
following result holds for general von Neumann algebra M.

Lemma 3.1 ([7, Lemma 3.1]). Ift € R — h(t) € LE(M,7rm),1 < p < +00, is
differentiable (with respect to the L,-norm) at t = a and h(a) # 0, then t € R —
Tm(h(t)P) € Ry is differentiable at o and its derivative is

d mamw%=me<MaV*d h@Q.

3.1 —
( ) dt t=a dt lt=a

While it always holds that
|z £ yllb = [l=||) + ¥l whenever x,y € LP(M,Tarq) such that x Ly,
we also have a converse.

Lemma 3.2 ([7, Corollary 6.5]; see also [13, Proposition A.2]). Let M be a von
Neumann algebra and 1 < p < +o00. For any x,y € Lﬁ(M,TM), we have

lz +ylly = llzlly + lyll;  if and only if xy =0.
Lemma 3.3. Let M and N be two von Neumann algebras and 1 < p < +oo.
Suppose that ¢ : L (M, Tp) — Lﬁ (N, Tn7) is a surjective map satisfying that
(3.2) 2+ yllp = lle() + e(W)llp-
Then we have

(1) ¢ preserves orthogonality, that is xy = 0 if and only if p(x)p(y) = 0.
(2) ¢ is additive and nonnegative homogeneous, i.e.

(1) ey +y2) = ©(y1) + w(y2) for all y1,y2 € LE (M, T);
(i) e(A\y) = Ap(y) for all A >0 and y € L (M, Trq).

Proof. (1) Taking = y in equation (3.2), one has ||z|, = ||¢(z)||,- Hence, from
Lemma 3.2,

ry=0 < |z+yl) =zl +ylb
< @) +e@)lb = lle@)5 + ey
= w(r)e(y) =0.

(2) To see ¢ is nonnegative homogeneous, for A > 0 we observe that

(@) + e(A)llp = [l + Azlly = llzll, + 1Azl = [le(@)lp + e (A2)lp-
From the strictly convexity of LP(M, Trq), we have o(Ax) = dp(x) for some § > 0.
Then Aljzfl, = [lp(Az)llp = llop(2)llp = dllzlly, we get & = A, and thus p(Az) =
Ap(z) for all z in LY (M, 7pq) and for all A > 0.
To see ¢ is additive, we observe again that |[¢(x) +te(y)|l, = |le(x) + e(ty) |, =
|z + ty||, for all ¢ > 0. Using Lemma 3.1 and setting h(t) = « + ty, we have
die iyl druP))
dt t=0+ dt t=0t
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Hence, differentiating both sides of ||z + ty||} = [|p(x) + te(y)||5 with respect to ¢
at 0, we have

Tm(aP ) = (@) e(y)).
It follows

A (@) ey + y2) — o(y1) — @(12)))
= a(p(@)P " (o(y1 + 12))) — ar(e(@)P T o(y1)) — Tar(p(2)P (1))
= 7@ (1 4 12)) — Mm@ ) — T (@) = 0.

Since ¢ is surjective, choosing ¢(z) = [p(y1 + y2) — ¢(y1) — p(y2)]T, the positive
part of p(y1 +y2) — p(y1) —¢(y2), we get [[[p(y1 +y2) — (Y1) —@(y2)] || = 0 since
the positive part and the negative part of ¢(y1 +y2) — ©(y1) — ¢(y2) are orthogonal.
Hence, the positive part of ¢(y1 + y2) — ¢(y1) — ¢(y2) is 0. Similarly, the negative
part is also 0, and therefore p(y1 + y2) = ©(y1) + ¢©(y2). O

Theorem 3.4. Let M and N be two von Neumann algebras and 1 < p < +oo.
Suppose that ¢ : LE (M, mrq) = LE (N, 7x) is a surjective map satisfying that

(3.3) Iz +yllp = lle@) + o) lp-

Then there exists a unique surjective complex linear map w : LP(M, 1pq) — LP(N, 7n)
extending p. Moreover, its restriction defines a surjective positive real linear isom-
etry 0 : LE,(M,7p1) — LEa(N, 7).

Proof. Observe that for any z,y € LY (M, 1), we have z —y = (z—y)t — (z—y) ™,
and thus (x —y)™ +y = (z —y)~ + x. Since ¢ is additive by Lemma 3.3, we have
e((z = y)") +¢(y) = p((z —y)7) + ¢(z). This gives p(z) — (y) = p((z —y)T) -
¢((x—y)7). Since (z—y)* L(z—y)~, we have p((z —y)*) Lp((x —y)~) by Lemma
3.3 again. It follows that

le(@) — ey = le((@ =) ™) — (@ =) I = lle(@ = 1)) + (@ —y) I}
=l@-y)"+ @y lp=lz-ylp Vr.yeLL(M mm)

That is, ¢ preserves norm of differences.
For x € LE, (M, Tr), we define

0(z) = p(z™) — p(z7).

It follows from Lemma 3.3 that 6 is well-defined and real linear. Moreover, 6(x)_L6(y)
if z1y. Furthermore,

10(2)]lp = le(a™) = e(@)llp = llo™ — 27 ||, = [l=[l,.

Thus, 0 is a positive real linear isometry from LP(M,Tp)sa onto LE (N, Tpr) ex-
tending ¢.

) z+z* x—2zx* .
For any x € LP(M,Tr), we write z = 5 +1 5 = x1+ixe, where x1, xo
i

are self-adjoint elements in L, (M, Tr¢). Define

w(zy + ize) = O0(x1) + i0(x2).
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It is easy to check that

w(z+y) =w@)+w(y), wrz)=2Iw(),
for all x = x1 +ixe,y = y1 +iy2 in LP(M,70q) and A = a+ib in C. The uniqueness
of 6 and w is plain. O

Note again that for any von Neumann algebra M, we have L>*°(M) =2 M and
LY (M) = M,.

Proof of Theorem 1.J. The case p = 400 can be derived from a result of Molnar
[10, Theorem 2.7] which states that every surjective norm of sum preserver ¢ :
M — N, extends uniquely to a Jordan *-isomorphism J : M — N,

For the case 1 < p < 400, by Theorem 3.4 we see in particular that ¢ extends
to a bijection from the positive unit ball L1 (M) of LL (M) onto the positive unit
ball L1 (NV)} of L1 (N) such that |[¢(z) — p(y)|l, = |z —yl|p for all z,y in Lt (M)].
If M is not one-dimensional, then the assertions follow from Theorem 1.3.

Finally, when M = N = C, we have
LP(M,7p) = LP(C,p) and LP(N,7n) = LP(C,v)

for some positive measures 1 and v on C. The assertions follow from our previous
results for the abelian case, namely, Theorem 1.2, and the discussion after it. [

When p = 1, we have a counter example in [17, Example 4.1]. There we have a
norm of positive sum preserver of the commutative £} = L(¢3°) space associated
to the n-dimensional abelian von Neumann algebra ¢;° with n > 2, which is neither
affine nor continuous. See also Example 3.8 for a noncommutative counter example.

Proof of Theorem 1.5. Arguing as in Lemma 3.3 and noticing that all operations
are done inside the domain LP(M,Tr() N M and range LP(N, 7ar) N N of ¢, we
have again the same conclusions there. More precisely, we have

(1) ¢ preserves orthogonality, that is, xy = 0 if and only if ¢(x)p(y) = 0;
(2) ¢ is additive and nonnegative homogeneous, that is,
(i) vz +y) = e(@) + ¢(y);
(i) ©(Ay) = Ao (y);
(3) ¢ preserves metric, that is, [l¢(z) — ¢(y)llp = |z — yllp;
where z,y € LP(M,7p) N M4 and A > 0.

We extend the domain of ¢ from LP(M,Trq) N M4 to LP(M,7p) N Mg by
defining
0(z) = p(a™) —p(a™), Vo€ LP(M,7m) N Msa.
It follows from the fact #(x*) = 6(z)* that 6 also preserves the metric, i.e.,
10(z) = 0)Ip = 110z — )" = 0z — )~ [I; = 10z — ») " II5 + 10(z — )" 5
=@ =y)"I5+ @ =) =llz -yl
for all z,y in LP(M, 7p) NMes,. In particular, ¢ can be extended to a surjective real

linear isometry from L&, (M, () onto LE,(N,7pr), and thus provides a surjective
metric preserving map between their positive unit balls. Then Theorem 1.4 applies.
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In particular, there is a unique Jordan *-isomorphism © : N' — M satisfying that
@(R) = O,(RP)Y/? for any R € LE(M).

dTMO@

1/p
Let J=07': M — N and let h = ( > be the 1/pth power of the

dTn
non-commutative Radon-Nikodym derivative of 7p(0© with respect to 7xr (see, e.g.,
[12, Theorem 5.12]). Note that the unbounded operator h is affiliated with A/, and
commutes with all elements in /. Then for all z in LP(M, 7() N M4 we have

N ((J(2)h)Py) = Trm(2PO(y)) = T (O (2P)y) = Tar(0(2)y),
for all y € L°(N,7x)+ = Ny. Thus ¢(x) = J(x)h for all z in LP(M, 1) N M4

as asserted. O

Corollary 3.5. Assume M is a factor and 1 < p < 4+00. Suppose ¢ : LP(M, Tr)N
My — LP(N, 7ar)NN7 is a surjective map satisfying that ||[x+yl, = |lo(z)+e(v)|lp
for all x,y € LP(M,70p) N M. Then there is a x-algebra isomorphism or anti-
isomorphism J of M onto N and a positive scalar \ such that ¢ = \J.

Proof. The assertion follows from Theorem 1.5 and well-known facts on Jordan
«-isomorphisms (cf. [6]). O

Corollary 3.6. Let M be a finite factor with a normal faithful finite trace . Let
@ be a transformation from LP(M,T) onto itself satisfying that o(My) = My and
|z +yll, = lle(z) + o), for all x,y € M4. Then the restriction of ¢ to M is
either a x-algebra isomorphism or anti-isomorphism of M.

Corollary 3.7. Let M be a type I factor with the canonical trace T, and let ¢ be a
transformation from LP(M,T) onto itself satisfying that (L% (M, 7)) = L (M, )
and ||z + yll, = |le(z) + @(y)|lp for all z,y € M4. Then there exists a *-algebra
isomorphism or anti-isomorphism ® of M such that p(z) = ®(x) for every z €

LP(M,T).

Example 3.8. For the case p = 1, Theorem 1.5 may not hold. For example,
let ¢ : LY(M, 7)) N My — LY (M, ) N My satisfy that ¢(x) = u,zu’, where
|z||1 = r and u, is a randomly chosen unitary element in M associated with each
r > 0. Clearly, ¢ is surjective. Moreover,
le(z) + o)l = Tmle(@)) + Ta(0(Y)) = Ty zujiyy) + Taa(uyy v,
=7m(@) + 7M@) = Tm(x +y) = |z + ylh-

However, ¢ does not carry the form stated in Theorem 1.5.

4. TWO EXAMPLES WHEN p = 400

In this section, two examples of norm of positive sum preservers are provided for
the case p = +00. We verify the details by direct arguments.

Example 4.1. Consider the two dimensional abelian von Neumann algebra M =
N = C®x C. Suppose ¢ : Ry @oo Ry — Ry @ Ry is a map satisfying ||2 4+ yl/eo =
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llo(x) + ©(y)||loo for all z,y in Ry @ Ry. We show directly that p(x) = Uz where
U is a permutation; namely, ¢ assumes either the form

(z1,71) = (z1,91) or (z1,y1) — (y1,21).

Proof. Tt is easy to see that ¢((0,0)) = (0,0) and ||z]cc = ||¢(x)|leo for all z in
R, ®o R,
Claim 1: Either the case ¢((z1,0)) = (21,0) and ¢((0,21)) = (0,x1), or the case
©((x1,0)) = (0,z1) and ¢((0, 1)) = (x1,0) holds for all z; > 0.
Suppose that p((x1,0)) = (z},9]) and ¢((0,21)) = (25, v5). We have
max{z},y)} = max{zh, 5} = max{x]| + 25, y] + 4} = x1.

If ) = x1, then 2}, = 0, y5, = 21 and y] = 0. The other case arises when z/, = 7.

Claim 2: ¢((z1,21)) = (z1, 1) for all z; > 0.

Suppose that ¢((z1,21)) = (z1,v}) in which v < z1. If ¢((21,0)) = (21,0)
and ¢((0,21)) = (0,21), one gets H(xlaxl) + (0, 1)”00 = ”(xlayll) + (0, 1)HOO Thus,
1+ 1 =y} + 1, which is a contradiction. If ¢((z1,0)) = (0,21) and ¢((0,21)) =
(21,0), one gets |[(z1,21) + (1,0)|lec = [[(z1,¥}) + (0,1)]|sc. This gives again the
contradiction z; +1 =1y} + 1.

The same argument also removes the case ¢((x1,21)) = (2}, 21) such that =} <
x1. Since ||¢(z1,21)||cc = x1, we verify the claim.

Set
A= {(xlayl) x> 07?/1 > 0,551 > 91}7 B = {(xhyl) x> 07y1 > 0,.731 < yl}

Claim 3: Either ¢(A) C A, p(B) C B, or p(A) C B,p(B) C A.

We prove that p(A) C A,p(B) € B when the case ¢((z1,0)) = (z1,0) and
©((0,z1)) = (0, 1) ever happens. Suppose on the contrary p(A) € A, that is to say
o((x2,y2)) = (2h,yh) for some x9 > ya > 0 and 0 < z}, < y5. Then one has y) = z3.
It shows that [|(z2,y2) + (0,22)|lcc = ||(xh, x2) + (0,22)|lcc. Thus, z2 + y2 = 229
which conflicts with xg > yo. Similarly, ¢(B) C B is satisfied under this condition.

Analogously, we have p(A) C B,¢o(B) C A when the case ¢((z1,0)) = (0,21)
and ¢((0,21)) = (21,0) ever holds.

Claim 4: Either ¢((z1,91)) = (z1,y1) or ¢((z1,y1)) = (y1,21) for all (z1,y1) €
R, ®oo Ry

In the case p(A) C A, we can assume that p((x1,y1)) = (21,y]) where z; >
y1,z1 > y;. It follows that ||(z1,11) + (0,21)]|ce = [|(z1,¥}) + (0,21)]|cc- Therefore,
Y] = y1. Same argument can be used for the case (z1,y1) € B. This shows that
¢((z1,91)) = (z1,91) for all (z1,51) € Ry Boo Ry

On the other-hand, if p(A) C B, ¢(B) C A, similar arguments produce the other
desired conclusion. g

Example 4.2. Consider the von Neumann algebra Ms of 2 x 2 complex matrices
with positive cone P,. Suppose that ¢ : Po» — P» is a surjective map such that
|A 4+ Blloo = |l(A) + ¢(B)|loc for any positive semidefinite matrices A, B in Ps.
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We show directly that there exists a unitary matrix U such that ¢ assumes either
the form
A—UAU* or A~ UA'U*.

Proof. Fix A > 0. Let A = <())\ 8) and B = <8 ?\) Assume that there are

unitary matrices U, V' such that
a1l ai12
A) = =
o(4) (am a22> (0 )\2)
b1 b1z
B) = =
#(B) <b21 baa
where a1, ass, bi1,bas > 0, and a1 = a2 and by = by are complex conjugates.
As [[p(A)llos = [[o(B)lloo = ll¢(A) + ¢(B)|lcc = A, computing traces we have
A< ar +age <2X, A <bip b2 <2X, and A <aip +ag + b1y + b < 2A

Hence, A1 + Ao = a11 +age = A and py + po = b1 + bag = A.
Since max{ A1, Ao} = max{u1, uo} = A, it can be assumed that A\; = X and Ay = 0.

Furthermore, set ¢(B) = U 211 ?2 U*, where c11, 99 > 0 and c91 = ¢13. Hence,
21 €22
c11+ A cio
¢(A) +¢(B) =U < 221 C;) U* with

c11 + oo + A+ /(c11 + A — ¢22)? + 4eraen
o) + o (B)loc = view

Since the trace of the matrix ¢(B) equals c11 + c22 = p1 + po = A, we see that
c11 = c12 = co1 = 0 and cg2 = A. Thus, there exists a unitary matrix Uy such that

Ay o=l o)us ana wt(y W=ma(g 9)ur

Suppose that for another scalar 0 < g < A\ and the matrix D = (M 0), we have

00
(D) = U, (2; Z;z) U, where dyy,dag > 0 and dy; = dy2. Note that

di1 di2
D 0o = =
ool =n= [ (32 42)|

(0 )+ (6 Ol =16 o)+ &),

The last sum of positive semi-definite matrices attains its norm A + p at the unit

=\

and observe

Adp=

eigenvector . Consequently, d1; = p and dy2 = do; = 0. Moreover, 0 < dzo < p.

1
0
On the other hand,

it =[8 )5 -6 )+ ).
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Hence doo = 0 since p < A. Therefore,

((g 8)):U)\<g g)Uj\‘, whenever 0 < p < .

Set U = U, for a very large A > 0. Then go((é 0)) U( ) U* for any

t € [0,\]. For any 2 x 2 positive semi-definite matrix A = < ) let p(A) =

!/ /
U <a, g,) U*. Hence,

t 0 a b t 0 a b
6 0)+ G =6 o)+ &) weon

It amounts to say that

(41)  t4+a+c+ \/(t+a—c)2+4b5:t+a'+c'+ \/(t+a’—c’)2+4b’5’.
Differentiating (4.1) with respect to t, we get
(t+a—c)* ((t+d —)?+4aV) = (t+d — ) ((t+a—c)* + 4bb),
or
WV (t+a—c)? =bb(t+ad — )2
Comparing the coefficient of 2, we get bb = V'D.

In the case when b = 0, we have ¥’ = 0. Put this into equation (4.1), we have
a = a’ when t is chosen sufficiently large. Using the equation

1G9+ G L1686 2

we can also see ¢ = ¢'.

On the other hand, a — ¢ = @’ — ¢ when b # 0. In this case, the equation (4.1)
ensures that a +¢ = a’ 4+ ¢, and thus @ = @/ and ¢ = ¢. Let ¥/ = €% for some real
scalar 0. It follows from the norm equality

a by a by a P by a s by
P e =1\ =iy, 7~ T\ =i, 7
by ¢ by ¢ ~ e Wh1hy c e bh2hy c ~

that
2a + 2c + \/4(a — )2+ 4(by + b2) (b1 + b2)

= 2a+2c+ \/ 4(a — ¢)2 4 4(e1by + e2by) (e 01Dy + e 2by).

It forces both biby and et(0b _sz)blg have the same real parts.

Replacing U by the unitary U ([1)

0 .
—if |» We can assume e =1,
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~We discuss in two situations. The first case is for e’ = —1, and we claim that

e®%b = b for all b in this situation. To this end, setting (by,be) = (b, 1) and (b,4)
respectively, we observe the real parts of complex numbers

Reb=Ree”b and Re(—ib) = Re(—ie'®~™p) = Re(ieb).
It follows that €®bh = b as claimed.

The second case is for e??i % —1, and we claim that e’ = 1 for all b in this
situation. Setting (b1,be) = (b,1) and (b, ) respectively, we observe the real parts
of complex numbers

Reb=Ree®b and Re(—ib) = Re(—ie®»0)p).

If ¢ £ 1 then e%b = 5,. and thus Re(—ib) = Re(—ie "b) # — Re(—ib). This
contradiction shows that ¢ =1 for all b as claimed.

Therefore, we have either

(G 2)=v( D)o o vfG v

That is to say, for any three 2 x 2 positive semi-definite matrices Ay, As, Ag, we can
choose a large enough A (depending on Aj, Ag, A3) such that either

p(Aj) = UA;US or o(Aj) = UrAGUR, Vj=1,2,3.

This implies that ¢ is affine and preserves squares on the positive semi-definite
cone P of Ms. It then extends to a nonzero linear map from Ms into My sending
projections to projections, and thus a Jordan homomorphism. The assertion then
follows from known facts about Jordan x-homomorphisms of matrices. O
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