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In the memory of our beloved friend, Siegfried Schaible

Abstract. In this paper, we study surjective maps φ : E+ → F+ between
positive cones of two ordered Banach spaces E and F , which preserve norm of
sums, i.e.,

∥φ(x) + φ(y)∥ = ∥x+ y∥, ∀x, y ∈ E+.

In the case when E,F are strictly convex smooth Banach lattices, as well as
Lp(µ) spaces (1 < p ≤ +∞), we show that φ can be extended to a real linear
map/isometry from E onto F . A counter example for the case when p = 1 is
presented.

1. Introduction

Let φ : E → F be a surjective map between two Banach spaces. The classical
Mazur-Ulam theorem [6] states that φ is an affine map when it preserves norm of
differences, i.e.,

∥φ(x)− φ(y)∥ = ∥x− y∥, ∀x, y ∈ E.

One might ask what happens if φ preserves norm of sums instead, i.e.,

∥φ(x) + φ(y)∥ = ∥x+ y∥, ∀x, y ∈ E.

But this is indeed a trivial question. In fact, putting y = 0,±x into the above
condition, we have φ(0) = 0, as well as ∥φ(x)∥ = ∥x∥ and φ(−x) = −φ(x) for all x
in E. Consequently,

∥φ(x)− φ(y)∥ = ∥φ(x) + φ(−y)∥ = ∥x+ (−y)∥ = ∥x− y∥, ∀x, y ∈ E.

The Mazur-Ulam theorem ensures that φ is a real linear isometry.
To formulate a meaningful problem of norm of positive sum preservers, motivated

by several well-known Banach-Stone and Lamperti type theorems (see, e.g., [2, 3])
and recent development of various preserver problems (see, e.g., [7]), we propose
the following

Problem 1.1. Let E,F be ordered Banach spaces with positive cones E+, F+. Let
φ : E+ → F+ be a surjective map preserving norm of sums, i.e.,

∥φ(x) + φ(y)∥ = ∥x+ y∥, ∀x, y ∈ E+.

Can we extend φ to a positive linear map from E onto F?
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There are already some efforts appeared in the literature. For example, Nagy
[9, 10], and Kuo, Tsai, Wong and Zhang [5] have studied similar problems for
Schatten p-class operators. In this paper, we discuss norm of positive sum preservers
of smooth Banach lattices in Section 2. In particular, every such map of strictly
convex smooth Banach lattices extend to a linear map (Corollary 2.5). We answer
Problem 1.1 affirmatively for the case when E,F are Lp(µ) spaces (1 < p ≤ +∞)
in Section 3. A detail analysis on such preservers of the finite dimensional positive
cones ℓpn+ are given in Section 4. In particular, a counter example to Problem
1.1 for the case when p = 1 is presented. In a forthcoming paper [13], we will
answer Problem 1.1 for the case when E,F are noncommutative Lp(M), Lp(N)
spaces associated to von Neumann algebras M,N .

2. The case of smooth Banach lattices

In this paper, without loss of generality, we consider only real vector spaces.
Let E be a Banach space. We say that E is strictly convex if

∥x+ y∥ = ∥x∥+ ∥y∥ =⇒ x = δy for some δ > 0, ∀x ̸= 0, y ̸= 0.

We say that E is smooth if its norm is Gâteaux differentiable, namely, the limit

G(x)y := lim
t→0+

∥x+ ty∥ − ∥x∥
t

exists in R whenever x, y ∈ E with x ̸= 0.
Let E = (E,≤, ∥ · ∥) be a Banach lattice with a partial order ≤. Let E+ = {x ∈

E : x ≥ 0} be the positive cone of E. We say that E has a strictly monotone norm
if

x ≤ y and x ̸= y =⇒ ∥x∥ < ∥y∥, ∀x, y ∈ E+.

Two vectors x and y in a Banach lattice are said to be disjoint, denoted by

x⊥y, if |x| ∧ |y| = 0.

For the general theory of Banach lattices and positive operators, see, e.g., Alipran-
tis [1], Nieberg [11] and Hudzik [4]. In particular, we collect some well known facts
in the following lemma.

Lemma 2.1. Suppose that E is a smooth Banach lattice. We define

G(x)y = lim
t→0+

∥x+ ty∥ − ∥x∥
t

, ∀x, y ∈ E with x ̸= 0.

(1) G(x) : E → R is a linear operator.
(2) G(x)x = ∥x∥, ∥G(x)∥ = 1 and G(λx) = G(x), for every x ∈ E+ and λ > 0.
(3) G(x)y ≥ 0 for every x, y ∈ E+.
(4) If y1 ≥ y2 then G(x)y1 ≥ G(x)y2, for every x, y1, y2 ∈ E+.

The following result can be found in [12, Theorem 1]. We include the proof here
for completeness.

Lemma 2.2. Suppose that E is a smooth Banach lattice. We have

x⊥y =⇒ G(x)y = 0, ∀x, y ∈ E+.

The converse holds when E has a strictly monotone norm.
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Proof. Define f(t) = ∥x + ty∥ for any fixed x, y ∈ E+. Since f( t1+t2
2 ) ≤

(f(t1) + f(t2)) /2, we see that f is a convex function of R. Suppose x⊥y = 0
for x, y ∈ E+. We have

|x+ ty| = x+ ty ≥ x = |x|, for t ≥ 0,

|x+ ty| = (x+ ty)+ + (x+ ty)− = x− ty ≥ x = |x|, for t ≤ 0.

Hence ∥x+ ty∥ ≥ ∥x∥ for all t ∈ R, and f(t) attains its minimum at t = 0. Since E
is smooth, we have

G(x)y = lim
t→0+

∥x+ ty∥ − ∥x∥
t

= f ′+(0) = 0.

Assume now E is strictly monotone. Suppose G(x)y = 0 but x ∧ y = z ̸= 0.
It follows from Lemma 2.1(4) that 0 ≤ G(x)z ≤ G(x)y = 0. It forces G(x)z = 0.
Hence,

∥x∥ = G(x)x = G(x)(x− z) ≤ ∥G(x)∥∥x− z∥ ≤ ∥x− z∥.
Since 0 ≤ x − z ≤ x, and x − z ̸= x, the strict monotonicity of the norm implies
that ∥x− z∥ < ∥x∥. This contradiction tells us that z = x ∧ y = 0. □
Lemma 2.3. Suppose that E,F are Banach lattices and F is strictly convex. Let
φ : E+ 7→ F+ be a map preserving norm of sums, i.e.,

∥φ(x) + φ(y)∥ = ∥x+ y∥, ∀x, y ∈ E+.(2.1)

Then, φ is nonnegatively homogeneous, i.e.,

φ(λx) = λφ(x), ∀x ∈ E+, ∀λ ≥ 0,

and preserves norm of convex combinations, i.e.,

∥(1− t)x+ ty∥ = ∥(1− t)φ(x) + tφ(y)∥, ∀t ∈ [0, 1].

Proof. Taking x = y in equation (2.1), one has ∥x∥ = ∥φ(x)∥. For x in E+ and
λ > 0, we have

∥φ(x) + φ(λx)∥ = ∥x+ λx∥ = ∥x∥+ ∥λx∥ = ∥φ(x)∥+ ∥φ(λx)∥.
From the strict convexity of F , we have φ(λx) = δφ(x) for some δ > 0. Then

λ∥x∥ = ∥φ(λx)∥ = ∥δφ(x)∥ = δ∥x∥
ensures that λ = δ. Hence, φ(λx) = λφ(x), and thus

∥(1− t)φ(x) + tφ(y)∥ = ∥φ((1− t)x) + φ(ty)∥ = ∥(1− t)x+ ty∥, ∀t ∈ [0, 1].

□
Below are two answers to Problem 1.1 for the case of Banach lattices.

Theorem 2.4. Let E,F be smooth Banach lattices. Suppose that φ : E+ 7→ F+ is
a surjective map preserving norm of convex combinations, that is,

(2.2) ∥(1− t)φ(x) + tφ(y)∥ = ∥(1− t)x+ ty∥, ∀x, y ∈ E+, ∀t ∈ [0, 1].

(1) For all x, y in E+, we have

x⊥y =⇒ G(φ(x))(φ(y)) = 0.

(2) φ is nonnegative homogenous and additive; that is,
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(i) φ(λy) = λφ(y) for all λ ≥ 0 and y ∈ E+;
(ii) φ(y1 + y2) = φ(y1) + φ(y2), for all y1, y2 ∈ E+.

Consequently, φ has a unique positive surjective linear extension φ̂ : E 7→ F given
by the formula φ̂(x) = φ(x+)− φ(x−).

Proof. (1) Differentiating both side of (2.2) at t = 0+, we get

G(φ(x))(φ(y)− φ(x)) = G(x)(y − x).

Putting t = 0 in (2.2), we have ∥φ(x)∥ = ∥x∥. By Lemma 2.1(2), we have G(x)x =
G(φ(x))φ(x). Hence,

G(x)y = G(φ(x))φ(y), for all x, y ∈ E+.(2.3)

It follows from Lemma 2.2 that

x⊥y =⇒ G(x)y = 0 =⇒ G(φ(x))φ(y) = 0.

(2) For any x, y ∈ E+ and λ > 0, it follows from (2.3) that

λG(x)y = λG(φ(x))(φ(y)) = G(φ(x))(λφ(y)),

G(x)(λy) = G(φ(x))(φ(λy)).

Subtracting the two equations, we have

(2.4) G(φ(x))(λφ(y)− φ(λy)) = 0.

Since φ is surjective, we can choose x from E+ such that φ(x) = (λφ(y)−φ(λy))+.
It follows from part (1) and (2.4) that

G(φ(x))(λφ(y)− φ(λy))

= G((λφ(y)− φ(λy))+)((λφ(y)− φ(λy))+ − (λφ(y)− φ(λy))−)

= G((λφ(y)− φ(λy))+)(λφ(y)− φ(λy))+

= ∥(λφ(y)− φ(λy))+∥ = 0.

This forces that (λφ(y) − φ(λy))+ = 0. Similar argument shows that (λφ(y) −
φ(λy))− = 0. Hence, φ(λy) = λφ(y) for all λ > 0 and y ∈ E+.

With a similar argument we can show that φ(y1 + y2) = φ(y1) + φ(y2) for all
y1, y2 in E+. □

Corollary 2.5. Suppose that E,F be smooth Banach lattices and F is strictly
convex. Let φ : E+ → F+ be a surjective map preserving norm of sums, i.e.,

∥φ(x) + φ(y)∥ = ∥x+ y∥, ∀x, y ∈ E+.

Then φ can be extended to a positive linear map from E onto F .

Proof. The assertion follows from Lemma 2.3 and Theorem 2.4. □
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3. Norm of sums preservers of Lp
+(Ω,Σ, µ)

In this section, we consider norm of positive sum preservers between positive
cones Lp

+(Ω,Σ, µ) of Lp(Ω,Σ, µ) spaces. Note that Lp(Ω,Σ, µ) spaces are strictly
convex Banach lattices with smooth and strictly monotone norms, when 1 < p <∞.

Noting that the disjointness x⊥y here is equivalent to that xy = 0 (almost ev-
erywhere) on Ω, we have the following well-known fact.

Lemma 3.1. Let 1 < p <∞.

x⊥y =⇒ ∥x+ y∥p = ∥x∥p + ∥y∥p, ∀x, y ∈ Lp(Ω,Σ, µ).

The converse holds whenever x, y ∈ Lp
+(Ω,Σ, µ).

Definition 3.2. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two measure spaces. A bijec-
tive set-to-set map Ψ from Σ1 onto Σ2, defined modulo null sets, is called a regular
set isomorphism if

(i) Ψ(Ω1 \A) = Ψ(Ω1) \Ψ(A) for all A ∈ Σ1;
(ii) Ψ(

∪∞
n=1An) =

∪∞
n=1Ψ(An), for disjoint An ∈ Σ1;

(iii) µ2(Ψ(A)) = 0 if and only if µ1(A) = 0.

Every regular set isomorphism Ψ induces a unique bijective linear transformation
ψ sending Σ1-measurable functions to Σ2-measurable functions satisfying that

ψ(1A) = 1Ψ(A) for all A ∈ Σ1.

Here 1A denotes the indicator function of the measurable set A.

Theorem 3.3. Let φ : Lp
+(Ω1,Σ1, µ1) → Lp

+(Ω2,Σ2, µ2) be a bijective map, where
1 < p ≤ ∞. Suppose φ preserves norm of sums of positive functions, that is,

(3.1) ∥x+ y∥ = ∥φ(x) + φ(y)∥, x, y ∈ Lp
+(Ω1,Σ1, µ1).

Then φ extends to a surjective linear isometry from Lp(Ω1,Σ1, µ1) onto L
p(Ω2,Σ2, µ2).

More precisely, there exists a regular set isomorphism Ψ from Σ1 onto Σ2 inducing
a surjective positive linear map ψ : Lp(Ω1,Σ1, µ1) → Lp(Ω2,Σ2, µ2), and a locally
measurable function h on Ω2 such that

(3.2) φ(x) = h · ψ(x), ∀x ∈ Lp
+(Ω1,Σ1, µ1).

When 1 < p < +∞, we have∫
Ψ(A)

|h(t)|pdµ2 = µ1(A), for each σ-finite A ∈ Σ1.(3.3)

In other words, |h|p = d(µ1◦Ψ−1)
dµ2

is the Radon-Nikodym derivative of µ1 ◦Ψ−1 with

respect to µ2. When p = +∞, we have

h(y) = 1, locally almost everywhere on Ω2.(3.4)

The case p = +∞ of Theorem 3.3 can be derived from a current result of Molnár
[8, Theorem 2.7] which states that every surjective norm of sum preserver φ :M+ →
N+ between positive cones of von Neumann algebras M and N extends to a Jordan
isomorphism J :M → N . In the abelian case, J = hψ satisfies the conditions (3.2)
and (3.4).
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Proof of Theorem 3.3 when 1 < p < +∞. Since Lp(µ) spaces are strictly convex Ba-
nach lattice with smooth and strictly monotone norms, by Lemma 2.2 and Theorem
2.4 we have

(I) φ preserves disjointness, i.e., φ(x)⊥φ(y) if and only if x⊥y for all x, y ∈
Lp
+(Ω1,Σ1, µ1);

(II) φ(x+y) = φ(x)+φ(y) and φ(λx) = λφ(x) for all x, y ∈ Lp
+(Ω1,Σ1, µ1) and

λ ≥ 0.

We first assume that µ1(Ω1) < +∞. Set

Ψ(A) = suppφ(1A), ∀A ∈ Σ1,

where the support of any measurable function is the measurable set supp(x) = {t ∈
Ω : x(t) > 0}. We claim that Ψ defines a regular set isomorphism from Σ1 to Σ2.

(1) If A,B ∈ Σ1 are disjoint, then 1A · 1B = 0, and by (I), φ(1A) · φ(1B) = 0.
In other words, φ(1A) and φ(1B) have disjoint supports (modulo sets of measure
zero). It follows that Ψ(A ∪ B) = Ψ(A) ∪ Ψ(B) (modulo sets of measure zero). It
follows that Ψ(Ω \A) = Ψ(Ω) \Ψ(A).

(2) Let A =
∪∞

n=1An be a countable disjoint union of sets in Σ1. Setting B =
A \

∪n
i=1Ai, we have

φ(1A\B) + φ(1B) = φ(1A) and φ(1A\B) = φ(
n∑

i=1

1Ai) =
n∑

i=1

φ(1Ai).

Therefore

∥φ(1A)−
n∑

i=1

φ(1Ai)∥ = ∥φ(1A)− φ(1A\B)∥

= ∥φ(1B)∥ = ∥1B∥ → 0, as n→ +∞.

Hence, φ(1A) =
∑∞

n=1 φ(1An), and then Ψ(A) =
∪∞

n=1Ψ(An).
(3) Final, we observe that if µ2(Ψ(A)) = 0, then φ(1A) = 0 µ2-a.e., and so

µ1(A) = 0 because ∥1A∥ = ∥φ(1A)∥. Dealing with φ−1 we see that µ1(A) = 0
implies µ2(Ψ(A)) = 0.

We conclude from (1)-(3) that Ψ is a regular set isomorphism from Σ1 onto Σ2.
Observe

∥φ(1Ω1)∥ = ∥1Ω1∥ = µ1(Ω1) < +∞.

Therefore the support Ω2 of the p-integrable function φ(1Ω1) is σ-finite. Let h(t) =
φ(1Ω1). For any A ∈ Σ1, we have

h = φ(1A) + φ(1Ω1\A).

Since the functions on the right have disjoint supports, φ(1A)(t) agrees with h(t)
whenever φ(1A)(t) is not zero (µ2-a.e.). Therefore,

φ(1A)(t) = h(t)1Ψ(A)(t) = h(t)ψ(1A)(t) (µ2-a.e.).

By the positive linearity (II) of φ, the equality (3.2) holds for every nonnegative
simple function x on Ω1. Since φ is an isometry for all x ∈ Lp

+(Ω1,Σ1, µ1), we have
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for each A ∈ Σ1 that∫
Ψ(A)

|h(t)|pdµ2 = ∥φ(1A)∥p = ∥1A∥p = µ1(A).

Since |h|p = d(µ1◦Ψ−1)
dµ2

, the map 1A 7→ h1Ψ(A) extends to a surjective posi-

tive linear isometry from Lp(Ω1,Σ1, µ1) onto Lp(Ω2,Σ2, µ2) sending x to hψ(x).
Composing the inverse of this map with φ, we can assume φ : Lp

+(Ω1,Σ1, µ1) →
Lp
+(Ω1,Σ1, µ1) satisfying that

φ(y) = y, whenever y is a nonnegative simple function on Ω1.

In general, let x ∈ Lp
+(Ω1,Σ1, µ1). We have

∥φ(x)− y∥ = ∥φ(x)− φ(y)∥ = ∥x− y∥,

whenever y is a nonnegative simple function on Ω1. Since nonnegative simple func-
tions are norm dense in Lp

+(Ω1,Σ1, µ1), we have

∥φ(x)− y∥ = ∥x− y∥, ∀y ∈ Lp
+(Ω1,Σ1, µ1).

Putting y = x, we see that φ(x) = x for all x in Lp
+(Ω1,Σ1, µ1). Therefore, in the

original setting,

φ(x) = h(x)ψ(x), ∀x ∈ Lp
+(Ω1,Σ1, µ1).

In the σ-finite case, we write Ω1 =
∪

nΩ1,n as a countable union of disjoint mea-
surable sets of finite measure. For each n, let Ω2,n be the support of φ(1Ω1,n), which
is a σ-finite measurable set in Σ2. Clearly, Ω2 =

∪
nΩ2,n as a countable union of

disjoint σ-finite measurable sets. Let Σi,n be the σ-algebra of all measurable subsets
of Ωi,n and µi,n be the measure on Σi,n induced by µi for i = 1, 2 and n = 1, 2, . . ..
Then, φ induces a bijective map φn : Lp

+(Ω1,n,Σ1,n, µ1,n) → Lp
+(Ω2,n,Σ2,n, µ2,n)

preserving norm of sums for each n = 1, 2, . . ..
It follows from the finite case that for each n, we have a measurable function hn

on Ω2,n with |hn|p =
d(µ1,n◦Ψ−1

n )
dµ2,n

, and a regular set isomorphism Ψn : Σ1,n → Σ2,n,

such that φn(xn) = hnψn(xn). Here, xn = x1Ω1,n ∈ Lp
+(Ω1,n,Σ1,n, µ1,n) for any x

in Lp
+(Ω1,Σ1, µ1) and ψn : Lp(Ω1,n,Σ1,n, µ1,n) → Lp(Ω2,n,Σ2,n, µ2,n) is the linear

isomorphism induced by Ψn for n = 1, 2, . . .. Set Ψ(A) =
∪

nΨn(A ∩ Ω1,n) and
h(t) = hn(t) whenever t ∈ Ψ(Ω1,n), and h(t) = 0 whenever t ∈ Ω2 \Ψ(Ω1). In this
way, both (3.2) and (3.3) are satisfied.

Now, we deal with the general case. For any σ-finite set A in Σ1, arguing as
above we see that Ψ(A) is also σ-finite. We can thus obtain a pair (hA, ψA) of
measurable function hA on Ψ(A) and linear isomorphism ψA : Lp(ΩA,ΣA, µA) →
Lp(ΩΨ(A),ΣΨ(A), µΨ(A)) in a similar fashion. For any such two pairs (hA, ψA) and
(hB, ψB), if A ⊆ B then ψB(xA) = ψA(xA) for all x in Lp(Ω1,Σ1, µ1), with xA =
x1A and xB = x1B. Define a local measurable function h on Ω2 and a linear
isomorphism ψ : Lp(Ω1,Σ1, µ1) → Lp(Ω2,Σ2, µ2) by union. In other words, h is
determined by the condition

h1Ψ(A) = hA, for all σ-finite A in Σ1.
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On the other hand, for any x in Lp(Ω1,Σ1, µ1) the support of x is a σ-finite mea-
surable set A. Then

ψ(x) = ψA(x) = ψB(x), for all σ-finite µ1-measurable set B containing A

It is then routine to check the conditions (3.2) and (3.3). □
Remark 3.4. [(a)]

(1) When p = 1, we have a negative answer to Problem 1.1, against Theorem
2.4 for the case 1 < p ≤ +∞, as shown in Example 4.1(a).

(2) In proving Theorem 3.3 for the case 1 < p < +∞, we are motivated by the
approach of verifying the classical Lamperti theorem (see, e.g., [2, Theorem
3.2.5]). We choose to present all the details here due to the intension of
extending it to the case of noncommutative Lp(M) space associated to a
von Neumann algebra in [13].

4. A concrete example for finite dimensional ℓp spaces

In this section, we provide a counter example to Problem 1.1 of a norm of sum
preserver of the positive cone of the finite dimensional space ℓpn with p = 1.

Example 4.1. Suppose a surjective map φ : ℓpn+ 7→ ℓpn+ preserves norm of sums,
that is,

∥φ(x) + φ(y)∥ = ∥x+ y∥, ∀x,y ∈ ℓpn+.

(a) φ may not have any linear extension when p = 1. For example, define

φ(x) = Urx, whenever ∥x∥1 = r,

where Ur is an n×n permutation matrix associated to r ≥ 0. When Ur are
different for different r, we have a counter example to Problem 1.1.

(b) When 1 < p <∞, the permutation matrix Ur defining φ(x) = Urx whenever
∥x∥ = r must be the same for all r ≥ 0 by Theorem 3.3.

(1) When p = +∞, we have φ(x) = Ux for a fixed permutation matrix U .

Proof. We verify the case when p = ∞ only. The proof divides into three steps.
Step 1: Suppose x1 = (λ, 0, · · · , 0), x2 = (0, λ, · · · , 0), xn = (0, · · · , 0, λ), for

some λ > 0, and yi = φ(xi) = (yi1, yi2, · · · , yin).
We have 0 ≤ yik ≤ λ and max

1≤k≤n
{yik} = λ, because ∥φ(xi)∥∞ = ∥xi∥∞ = λ for

each i. Suppose that y1σ(1) = λ. Then yiσ(1) = 0 due to

λ = ∥x1 + xi∥∞ = ∥φ(x1) + φ(xi)∥∞, ∀i = 2, · · · , n.
We can then assume that y2σ(2) = λ. Argue similarly, we see that yiσ(2) = 0 for all
1 ≤ i ≤ n and i ̸= 2. By induction, we obtain a permutation σ on {1, 2, · · · , n}
such that φ(xi) = xσ(i).

Step 2: Suppose that x̃1 = (µ, 0, · · · , 0), x̃2 = (0, µ, · · · , 0), x̃n = (0, · · · , 0, µ),
for some µ > 0, and φ(x̃i) = x̃σ̃(i) for µ ̸= λ. It follows from ∥xi + x̃i∥∞ =
∥φ(xi) + φ(x̃i)∥∞ that σ = σ̃.

Step 3: Suppose that φ(xi) = xσ(i). Set arbitrary x0 = (x01, x02, · · · , x0n),
and y0 = φ(x0) = (y01, y02, · · · , y0n). Choose λ sufficiently large. It follows from
∥x0 + xi∥∞ = ∥φ(x0) + φ(xi)∥∞ that x0i + λ = y0σ(i) + λ. Hence, y0σ(i) = x0i.
Thus, the same permutation matrix U defines y = Ux. □
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