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ABSTRACT. Let Mm,n be the space of m× n real or complex rectangular ma-
trices. Two matrices A, B ∈ Mm,n are disjoint if A∗B = 0n and AB∗ = 0m. In
this paper, a characterization is given for linear maps Φ : Mm,n → Mr,s send-
ing disjoint matrix pairs to disjoint matrix pairs, i.e., A, B ∈ Mm,n are disjoint
ensures that Φ(A), Φ(B) ∈ Mr,s are disjoint. More precisely, it is shown that
Φ preserves disjointness if and only if Φ is of the form

Φ(A) = U

A⊗Q1 0 0
0 At ⊗Q2 0
0 0 0

V

for some unitary matrices U ∈ Mr,r and V ∈ Ms,s, and positive diagonal ma-
trices Q1, Q2, where Q1 or Q2 may be vacuous. The result is used to char-
acterize nonsurjective linear maps that preserve the JB∗-triple product, or
just the zero triple product, on rectangular matrices, defined by {A, B, C} =
1
2 (AB∗C + CB∗A). The result is also applied to characterize linear maps be-
tween rectangular matrix spaces of different sizes preserving the Schatten p-
norms or the Ky Fan k-norms.

KEYWORDS: orthogonality preservers; matrix spaces; norm preservers; Ky Fan k-
norms; Schatten p-norms; JB*-triples.

MSC (2010): 15A04, 15A60, 47B49

1. Introduction

The fruitful history of linear preserver problems starts with a rather surpris-
ing result of Frobenius. He showed in [15] that a linear map Φ : Mn(C)→ Mn(C)
of n × n complex matrices preserving determinant, i.e., det(A) = det(Φ(A)),
must be of the form A 7→ MAN or A 7→ MAtN for some matrices M, N ∈ Mn(C)
with det(MN) = 1. Another seminal work is due to Kadison. In [19], Kadison



102 C.-K. LI, M.-C. TSAI, Y.-S. WANG, AND N.-C. WONG

showed that a unital surjective isometry between two C∗-algebras A and B must
be a C∗-isomorphism; in particular, a linear map Φ : Mn(C) → Mn(C) leaving
the operator norm invariant must be of the form A 7→ UAV or A 7→ UAtV for
some unitary matrices U, V ∈ Mn(C).

Researchers have developed many results and techniques in the study of
linear preserver problems; see, e.g., [2, 22, 26]. Many of the results have been
extended in different directions and applied to other topics such as geometri-
cal structure of Banach spaces, and quantum mechanics; see, e.g., [13, 14, 30]. In
spite of these advances, there are some intriguing basic linear preserver problems
which remain open. In particular, characterizing linear preservers between dif-
ferent matrix or operator spaces without the surjectivity assumption is very chal-
lenging and sometimes intractable; see, for example, [3, 7, 23, 24, 32–34]. Even for
finite dimensional spaces, the problem is highly non-trivial. For instance, there is
no easy description of a linear norm preserver Φ : Mn → Mr if n 6= r; see [8].

In this paper, we study nonsurjective linear maps between rectangular ma-
trix spaces preserving disjointness, the Schatten p-norms, or the Ky-Fan k-norms.
The result is used to characterize linear maps that preserve the JB∗-triple product,
or just the zero triple product. Note that there are interesting results on disjoint-
ness preserving maps on different kinds of products over general operator spaces
or algebras, see, e.g., [16, 17, 21, 27, 28]. However, the basic problem on disjoint-
ness preservers from a rectangular matrix space to another rectangular matrix
space is unknown, and the existing results do not cover this case. It is our hope
that our study will lead to some general techniques for the study of disjointness
preservers in a more general context, say, for general JB∗-triples, to supplement
those established in the few literature, e.g., [1].

To better describe the questions addressed in this paper, we introduce some
notation. Let Mm,n be the set of m× n real or complex rectangular matrices, and
let Mn = Mn,n. A pair of matrices A, B ∈ Mm,n are disjoint, denoted by

A ⊥ B, if A∗B = 0n and AB∗ = 0m.

Here the adjoint A∗ of a rectangular matrix A is its conjugate transpose At. If
A is a real matrix, then A∗ reduces to At, the transpose of A. Clearly, A and
B are disjoint if and only if they have orthogonal ranges and initial spaces. A
rectangular matrix A is called a partial isometry if AA∗A = A. In this case, A∗A
is the range projection and AA∗ is the initial projection of A. Two partial isometries
are disjoint if and only if they have orthogonal range and initial projections.

We will characterize linear maps Φ : Mm,n → Mr,s that preserve disjoint-
ness, i.e., Φ(A) ⊥ Φ(B) whenever A ⊥ B, and apply the result to some related
topics. In particular, we show in Section 2 that such a map has the form

Φ(A) = U

A⊗Q1 0 0
0 At ⊗Q2 0
0 0 0

V
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for some unitary (orthogonal in the real case) matrices U ∈ Mr, V ∈ Ms and
diagonal (square) matrices Q1, Q2 with positive diagonal entries, where Q1 or Q2
may be vacuous.

In Section 3, we regard the space of rectangular matrices as JB*-triples carry-
ing the Jordan triple product {A, B, C} = 1

2 (AB∗C +CB∗A), and use our result in
Section 2 to study JB*-triple homomorphisms on rectangular matrices, i.e., linear
maps Φ : Mm,n → Mr,s satisfying

Φ(AB∗C + CB∗A) = Φ(A)Φ(B)∗Φ(C) + Φ(C)Φ(B)∗Φ(A), ∀A, B, C ∈ Mm,n,

and also linear maps preserving matrix triples with zero Jordan triple product.
We also apply our result in Section 2 to study linear maps Φ : Mm,n → Mr,s

preserving the Schatten p-norms and the Ky Fan k-norms in Section 4. Open
problems and future research possibilities are mentioned in Section 5.

Throughout the paper, we will always assume that m, n, r, s are positive in-
tegers, and use the following notation.

Mm,n = Mm,n(F): the vector space of m× n matrices over F = R
or C.

Mn = Mn(F): the set of n× n matrices over F = R or C.
Un = Un(F) = {A ∈ Mn : A∗A = In}: the set of real orthogonal

or complex unitary matrices depending on F = R or C.
Hn = Hn(F) = {A ∈ Mn : A = A∗}: the set of real symmetric or

complex Hermitian matrices depending on F = R or C.

2. Nonsurjective preservers of disjointness

In this section, we will prove the following.

THEOREM 2.1. A linear map Φ : Mm,n → Mr,s preserves disjointness, i.e.,

AB∗ = 0m and A∗B = 0n

=⇒ Φ(A)Φ(B)∗ = 0r and Φ(A)∗Φ(B) = 0s, ∀A, B ∈ Mm,n,

if and only if there exist U ∈ Ur, V ∈ Us and diagonal matrices Q1, Q2 with positive
diagonal entries such that

(2.1) Φ(A) = U

A⊗Q1 0 0
0 At ⊗Q2 0
0 0 0

V for all A ∈ Mm,n.

Here Q1 or Q2, may be vacuous.

Several remarks are in order concerning Theorem 2.1. (i) Observing the
symmetry and avoiding the triviality, we can assume that 2 ≤ m ≤ n.

(ii) AB∗ = 0m and A∗B = 0n mean that A and B have orthogonal ranges
and orthogonal initial spaces. This amounts to saying that we can obtain their
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singular value decompositions, UAV = ∑k
j=1 ajEjj and UBV = ∑

p
j=k+1 bjEjj, for

some positive scalars a1, .., ak, bk+1, ..., bp, and unitary matrices U ∈ Um and V ∈
Un.

(iii) In view of the singular value decompositions, (2.1) in Theorem 2.1 holds
if the condition

Φ(E)⊥Φ(F) whenever E⊥ F
is verified just for rank one disjoint partial isometries E, F in Mm,n.

(iv) In Theorem 2.1, unless r ≥ m and s ≥ n, or s ≥ m and r ≥ n, Φ will be
the zero map. If (m, n) = (r, s) (resp. (s, r)) and m 6= n, then Φ will be the zero
map or of the form A 7→ UAV (resp. A 7→ UAtV) with U ∈ Ur, V ∈ Us.

(v) By relaxing the terminology, the rectangular matrix A⊗ Q1 is permuta-
tionally similar to q1 A⊕ · · · ⊕ qr A if Q1 = diag (q1, . . . , qr). Similarly At ⊗ Q2 is
permutationally similar to a direct sum of positive multiples of At. So, the theo-
rem asserts that up to a fixed unitary equivalence Φ(A) is a direct sum of positive
multiples of A and At.

(vi) In addition to real and complex rectangular matrices, the conclusions in
Theorem 2.1 is also valid with the same proof for a real linear map Φ : Hn → Mr,s
preserving disjointness. We can further assume that the co-domain is Hr, i.e.,
Φ : Hn → Hr. In this case, the disjointness assumption on Φ reduces to that
AB = 0 implies Φ(A)Φ(B) = 0. Adjusting the proof of Theorem 2.1, we can
achieve the equality U = V∗, at the expenses that the diagonal matrices Q1, Q2
may have negative entries.

(vii) If the domain is the set Mn(C) of n × n complex matrices or the set
Hn(C) of n× n complex Hermitian matrices, our results can be deduced from the
abstract theorems on C∗-algebras; e.g., see [4,20,21,28], and also [6,27]. However,
the proofs there do not seem to work for rectangular matrix spaces, or real square
matrix spaces.

(viii) Our proof is computational and long. It would be nice to have some
short and conceptual proofs.

The rest of the section is devoted to the proof of Theorem 2.1. We describe
our proof strategy. Let {E11, E12, . . . , Emn} be the standard basis for Mm,n. We will
show that one can apply a series of replacements of Φ by mappings of the form
X 7→ ŨΦ(X)Ṽ for some Ũ ∈ Ur, Ṽ ∈ Us so that the resulting map satisfies

Eij 7→

Eij ⊗Q1 0 0
0 Eji ⊗Q2 0
0 0 0

 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The result will then follow. We carry out the above scheme with an inductive
argument, and divide the proofs into several lemmas.

Note that in this section only the linearity and the disjointness structure
of the rectangular matrices are concerned. As will be shown below, the (real
or complex) matrix space M2 = span{E11, E12, E21, E22} and the matrix space
span{Eij, Eik, El j, Elk} can be considered as the same object during our discussion.
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LEMMA 2.2. Let i 6= l and j 6= k. The bijective linear map

Ψ : M2 → span{Eij, Eik, El j, Elk},

sending E11, E12, E21, E22 to Eij, Eik, El j, Elk ∈ Mm,n respectively, preserves the disjoint-
ness in two directions, i.e.,

A⊥ B ⇐⇒ Ψ(A)⊥Ψ(B) for all A, B ∈ M2.

Proof. The assertion follows from the fact that Ψ(A) = UAV, where U =
Ei1 + El2 ∈ Mm,2 and V = E1j + E2k ∈ M2,n are partial isometries such that
U∗U = VV∗ = I2, the 2× 2 identity matrix.

The technical lemma below will be used heavily in the subsequent proofs.
Although the statement is stated and proved for the case when the domain is
M2, it is indeed valid for all the rectangular matrix space span{Eij, Eik, El j, Elk}
due to Lemma 2.2. In the future application, the lemma ensures that if Φ(Eij)
and Φ(Elk) have some nice structure for a disjointness preserving linear map Φ :
Mm,n → Mr,s, then much can be said about Φ(Eik + El j) and Φ(Eik− El j). One can
then compose Φ with some unitaries so that all Φ(Eij), Φ(Eik), Φ(El j) and Φ(Elk)
have simple structure.

LEMMA 2.3. Let Φ : M2 → Mr,s be a nonzero linear map preserving disjointness
such that

Φ(E11) =

D1 0 0
0 0` 0
0 0 0r−k−`,s−k−`

 and Φ(E22) =

0k 0 0
0 D2 0
0 0 0r−k−`,s−k−`

 ,

where D1 ∈ Mk, D2 ∈ M` are diagonal matrices with positive diagonal entries arranged
in descending order, and D1 = α1 Iu1 ⊕ · · · ⊕ αv Iuv with α1 > · · · > αv > 0 and
u1 + · · ·+ uv = k.

(a) We have D1 = D2. Moreover,

Φ(E12 + E21) =

 0k B12 0
B∗12 0k 0
0 0 0r−2k,s−2k

 and

Φ(E12 − E21) =

 0k Ĉ12 0
−Ĉ∗12 0k 0

0 0 0r−2k,s−2k

 ,

where B12 = α1W1 ⊕ · · · ⊕ αvWv and Ĉ12 = α1W1V1 ⊕ · · · ⊕ αvWvVv with Wj, Vj ∈
Uuj .

(b) There are unitaries R1, R2 ∈ Uk and a permutation P ∈ Mk such that the map

X 7→ (P∗R∗2 R∗1 ⊕ P∗R∗2 ⊕ Ir−2k)Φ(X)(R1R2P⊕ R2P⊕ Is−2k)
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satisfies

E11 7→

Q1 ⊕Q2 0k 0
0k 0k 0
0 0 0

 , E12 7→

 0k Q1 ⊕ 0k2 0
0k1 ⊕Q2 0k 0

0 0 0

 ,

E21 7→

 0k 0k1 ⊕Q2 0
Q1 ⊕ 0k2 0k 0

0 0 0

 , E22 7→

0k 0k 0
0k Q1 ⊕Q2 0
0 0 0

 ,

where Q1 ∈ Mk1 , Q2 ∈ Mk2 , k1 + k2 = k, are diagonal matrices with positive diagonal
entries from {α1, . . . , αv} arranged in descending order.

Proof. (a) Suppose Φ : M2 → Mr,s satisfies the assumption. Let

Φ(E12 + E21) =

B11 B12 B13
B21 B22 B23
B31 B32 B33

 ,

where B11 ∈ Mk, B22 ∈ M`. For every nonzero γ ∈ R, the pair of the matrices

Z1 =

(
γ 1
1 1

γ

)
and Z2 =

(
1
γ −1
−1 γ

)
are disjoint, and so are the pair T1 = Φ(Z1) and T2 = Φ(Z2). Considering the
(1, 1), (1, 2), (2, 1), (2, 2), (3, 3) blocks of the matrix T∗1 T2, we get the following:

0k = D2
1 +

1
γ

B∗11D1 − γD1B11 − B∗11B11 − B∗21B21 − B∗31B31,

0k,` = γ(B∗21D2 − D1B12)− B∗11B12 − B∗21B22 − B∗31B32,

0`,k =
1
γ
(B∗12D1 − D2B21)− B∗12B11 − B∗22B21 − B∗32B31,

0` = D2
2 −

1
γ

D2B22 + γB∗22D2 − B∗22B22 − B∗12B12 − B∗32B32,

0s−k−` = −B∗13B13 − B∗23B23 − B∗33B33.

Considering the (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) blocks of the matrix T1T∗2 , we get
the following:

0k = D2
1 +

1
γ

B11D1 − γD1B∗11 − B11B∗11 − B12B∗12 − B13B∗13,

0k,` = γ(B12D2 − D1B∗21)− B11B∗21 − B12B∗22 − B13B∗23,

0`,k =
1
γ
(B21D1 − D2B∗12)− B21B∗11 − B22B∗12 − B23B∗13,

0` = D2
2 −

1
γ

D2B∗22 + γB22D2 − B21B∗21 − B22B∗22 − B23B∗23,

0r−k−` = −B31B∗31 − B32B∗32 − B33B∗33.

In view of the (3, 3) blocks of T∗1 T2 and T1T∗2 being zero blocks, we see that
B13, B23, B33, B31, B32 are zero blocks. Since 0 6= γ is arbitrary and D1, D2 are
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invertible, we see that

B11 = 0k, B22 = 0`,

B12B∗12 = B∗21B21 = D2
1 ∈ Mk, B∗12B12 = B21B∗21 = D2

2 ∈ M`,(2.2)

D1B12 = B∗21D2, and B12D2 = D1B∗21.(2.3)

Note that B12B∗12 and B∗12B12 have the same nonzero eigenvalues (counting multi-
plicities). Because D1, D2 have positive diagonal entries arranged in descending
order, it follows from (2.2) that k = ` and D1 = D2.

We can now assume that D1 = D2 = α1 Iu1 ⊕ · · · ⊕ αv Iuv with α1 > · · · >
αv > 0 and u1 + · · ·+ uv = k. Furthermore, from (2.2) the matrices B12, B∗12, B21
and B∗21 have orthogonal columns with Euclidean norms equal to the diagonal
entries of D1. By (2.3), we see that

B12 = B∗21 = α1W1 ⊕ · · · ⊕ αvWv

for some W1 ∈ Uu1 , . . . , Wv ∈ Uuv .
Let R1 = W1 ⊕ · · · ⊕Wv. Replace Φ by X 7→ (R∗1 ⊕ Ir−k)Φ(X)(R1 ⊕ Is−k).

We may assume that B12 = B∗21 = D1. Let

Φ(E12 − E21) =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 ,

where C11 ∈ Mk, C22 ∈ M`.
Now, the pair of matrices

Z3 =

(
γ −1
1 − 1

γ

)
and Z4 =

(
1
γ 1
−1 −γ

)
are disjoint, and so are the pair of matrices T3 = Φ(Z3) and T4 = Φ(Z4). Consider
the (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) blocks of the matrix T∗3 T4. By the fact that k = `
and D1 = D2, we get the following:

0k = D2
1 −

1
γ

C∗11D1 + γD1C11 − C∗11C11 − C∗21C21 − C∗31C31,

0k = γ(D1C12 + C∗21D2)− C∗11C12 − C∗21C22 − C∗31C32,

0k = − 1
γ
(C∗12D1 + D2C21)− C∗12C11 − C∗22C21 − C∗32C31,

0k = D2
2 −

1
γ

D2C22 + γC∗22D2 − C∗22C22 − C∗12C12 − C∗32C32,

0s−2k = −C∗13C13 − C∗23C23 − C∗33C33.

Consider the (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) blocks of the matrix T3T∗4 . We get the
following:

0k = D2
1 −

1
γ

C11D1 + γD1C∗11 − C11C∗11 − C12C∗12 − C13C∗13,

0k = γ(D1C∗21 + C12D2)− C11C∗21 − C12C∗22 − C13C∗23,
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0k = − 1
γ
(C21D1 + D2C∗12)− C21C∗11 − C22C∗12 − C23C∗13,

0k = D2
2 −

1
γ

D2C∗22 + γC22D2 − C21C∗21 − C22C∗22 − C23C∗23,

0r−2k = −C31C∗31 − C32C∗32 − C33C∗33.

By a similar argument for the pair (T1, T2), we conclude that C11, C22, C13, C23,
C33, C31 and C32 are zero blocks. Furthermore,

C∗21C21 = C12C∗12 = C21C∗21 = C∗12C12 = D2
1,

D1C12 = −C∗21D1, C12D1 = −D1C∗21.

Now, C21, C∗12, C∗21, C12 have orthogonal columns with Euclidean norms equal to
the diagonal entries of D1, and together with the fact that D1C12 = −C∗21D1, and
C12D1 = −D1C∗21, we see that

C12 = −C∗21 = α1V1 ⊕ · · · ⊕ αvVv ∈ Mu1 ⊕ · · · ⊕Muv ,

where V = D−1
1 C12 = V1 ⊕ · · · ⊕ Vv is unitary. Thus in its original form, we see

that
Ĉ12 = −Ĉ∗21 = α1W1V1 ⊕ · · · ⊕ αvWvVv.

(b) Continue the arguments in (a), and in particular assume that B12 =
B∗21 = D1 and C12 = −C∗21 = α1V1 ⊕ · · · ⊕ αvVv = D1V. There is a unitary
matrix R2 = U1 ⊕ · · · ⊕ Uv ∈ Uk with U1 ∈ Mu1 , . . . , Uv ∈ Muv such that
R∗2VR2 = diag (g1, . . . , gk) = G ∈ Uk. Now, we may replace Φ by the map
X 7→ (R∗2 ⊕ R∗2 ⊕ Ir−2k)Φ(X)(R2 ⊕ R2 ⊕ Is−2k) and assume that C12 = −C∗21 =
D1G. In particular,

Φ(E12 + E21) =

 0k D1 0
D1 0k 0
0 0 0r−2k,s−2k

 and

Φ(E12 − E21) =

 0k D1G 0
−D1G∗ 0k 0

0 0 0r−2k,s−2k

 .

We claim that G is permutationally similar to Ik1 ⊕−Ik2 with k1 + k2 = k.
To see this, consider the pair

Φ(E12) =

 0k
D1(Ik+G)

2 0
D1(Ik−G∗)

2 0k 0
0 0 0

 , Φ(E21) =

 0k
D1(Ik−G)

2 0
D1(Ik+G∗)

2 0k 0
0 0 0

 .

One readily checks that the pair are disjoint if and only if (Ik + G)(Ik − G∗) = 0k,
equivalently, G is a real diagonal unitary matrix. Thus, there is a permutation
matrix P ∈ Mk such that PtGP = Ik1 ⊕ −Ik2 with k1 + k2 = k. With a further
permutation, we can assume PtD1GP = Q1 ⊕ −Q2 ∈ Mk so that Q1, Q2 are
diagonal matrices with descending positive diagonal entries.
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We may replace Φ by a map

X 7→ (Pt ⊕ Pt ⊕ Ir−2k)Φ(X)(P⊕ P⊕ Is−2k)

so that

Φ(E11) =

Q1 ⊕Q2 0k 0
0k 0k 0
0 0 0

 , Φ(E12 + E21) =

 0k Q1 ⊕Q2 0
Q1 ⊕Q2 0k 0

0 0 0

 ,

Φ(E22) =

0k 0k 0
0k Q1 ⊕Q2 0
0 0 0

 , Φ(E12 − E21) =

 0k Q1 ⊕−Q2 0
−Q1 ⊕Q2 0k 0

0 0 0

 .

Adding and subtracting the matrices Φ(E12 + E21) and Φ(E12 − E21), we get the
desired forms of Φ(E12) and Φ(E21). The result follows.

LEMMA 2.4. Theorem 2.1 holds if m = n ≥ 2.

Proof. We prove the result by induction on m = n ≥ 2. Suppose m = n = 2.
We may choose V1 ∈ Ur, V2 ∈ Us such that

Y1 = V1Φ(E11)V2 =

D1 0 0
0 0` 0
0 0 0

 and Y2 = V1Φ(E22)V2 =

0k 0 0
0 D2 0
0 0 0

 ,

where D1 ∈ Mk, D2 ∈ M` are diagonal matrices with positive diagonal entries
arranged in descending order. We may replace Φ by the map X 7→ V1Φ(X)V2 so
that the resulting map will preserve disjointness and send Ejj to Yj for j = 1, 2. By
Lemma 2.3, we can modify V1 and V2 so that the resulting map satisfies

Φ(E11) =

Q1 ⊕Q2 0k 0
0k 0k 0
0 0 0

 , Φ(E12) =

 0k Q1 ⊕ 0k2 0
0k1 ⊕Q2 0k 0

0 0 0

 ,

Φ(E21) =

 0k 0k1 ⊕Q2 0
Q1 ⊕ 0k2 0k 0

0 0 0

 , Φ(E22) =

0k 0k 0
0k Q1 ⊕Q2 0
0 0 0

 ,

for some diagonal matrices Q1, Q2 with descending positive diagonal entries.
Now, we can find a permutation matrix P̂ ∈ M2k satisfying

[X1|X2|X3|X4]P̂ = [X1|X3|X2|X4]

whenever X1, X3 ∈ M2k,k1 , X2, X4 ∈ M2k,k2 . Then the map

X 7→ (P̂⊕ Ir−2k)
tΦ(X)(P̂⊕ Is−2k)

will satisfy

Eij 7→

Eij ⊗Q1 02k1,2k2 02k1,s−2k
02k2,2k1 Eji ⊗Q2 02k2,s−2k

0r−2k,2k1 0r−2k,2k2 0r−2k,s−2k

 for 1 ≤ i, j ≤ 2.
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This establishes the assertion for the case when m = n = 2.
Now, suppose the result holds for square matrices of size smaller than n

with n > 2. Then the restriction of Φ on matrices A ∈ Mn with the last row
and last column equal to zero verifies the conclusion. So, there exist U ∈ Ur and
V ∈ Us such that

UΦ(Eij)V =

 Êij ⊗Q1 0(n−1)k1,(n−1)k2
0

0(n−1)k2,(n−1)k1
Êji ⊗Q2 0

0 0 0r−(n−1)k,s−(n−1)k


for 1 ≤ i, j < n. Here, {Eij : 1 ≤ i, j ≤ n} is the standard basis for Mn, and
{Êij : 1 ≤ i, j ≤ n− 1} is the standard basis for Mn−1, Q1 ∈ Mk1 , Q2 ∈ Mk2 are
diagonal matrices with positive diagonal entries, and k = k1 + k2.

Note that Enn and Eij are disjoint for all 1 ≤ i, j < n. So, we may assume
that

Φ(Enn) =

(
0(n−1)k 0

0 Y

)
for some matrix Y ∈ Mr−(n−1)k,s−(n−1)k. There exist

U1 ∈ Ur−(n−1)k and V1 ∈ Us−(n−1)k

such that

U1YV1 =

(
D 0
0 0

)
,

where D is a diagonal matrix with positive diagonal entries arranged in descend-
ing order. We may replace Φ by the map

X 7→ (I(n−1)k ⊕U1)Φ(X)(I(n−1)k ⊕V1)

and assume that U1 = Ir−(n−1)k and V1 = Is−(n−1)k.
Consider the restriction of the map on the span{E11, E1n, En1, Enn}. Apply-

ing the proof of Lemma 2.3 to the restriction map, we see that there is a permuta-
tion matrix P such that D = Pt(Q1 ⊕Q2)P. Now, replace Φ by the map

X 7→ ((In−1 ⊗ Pt)⊕ Ir−(n−1)k)Φ(X)((In−1 ⊗ P)⊕ Is−(n−1)k).

After a further permutation, we can replace Êij with Eij for 1 ≤ i, j < n, and the
resulting map Φ satisfies

(2.4) Ejj 7→
(

Ejj ⊗ D 0
0 0

)
, j = 1, . . . , n,

Eij + Eji 7→
(
(Eij + Eji)⊗ D 0

0 0r−(n−1)k,s−(n−1)k

)
, 1 ≤ i ≤ j < n,

Eij − Eji 7→
(
(Eij − Eji)⊗ D̂ 0

0 0r−(n−1)k,s−(n−1)k

)
, 1 ≤ i < j < n,

where D̂ = Pt(Q1 ⊕−Q2)P.
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For j = 1, 2, . . . , n − 1, apply Lemma 2.3(a) to the restriction map on the
rectangular matrix space span{Ejj, Ejn, Enj, Enn}. We see that

Φ(Ejn + Enj) =

(
Ejn ⊗ Bjn + Enj ⊗ B∗jn 0

0 0

)
,

Φ(Ejn − Enj) =

(
Ejn ⊗ Cjn − Enj ⊗ C∗jn 0

0 0

)
.

Here, Bjn, Cjn ∈ Mk, and D−1Bjn, D−1Cjn ∈ Uk commute with D.
Because every matrix in the range of the map Φ has its last r − nk rows

and last s − nk columns equal to zero, we will assume that r = nk and s = nk
for simplicity (by removing the last r − nk rows and s− nk columns from every
matrix in the range space). Let {e1, . . . , en} be the standard basis for Cn. For
j = 2, . . . , n− 1, consider the disjoint pair

X1 = (e1 + ej + en)(e1 + ej + en)
t and X2 = (2e1 − ej − en)(2e1 − ej − en)

t.

Then Φ(X1) and Φ(X2) are disjoint. If we partition Φ(X1), Φ(X2) as n× n block
matrices Z = (Zij)1≤i,j≤n such that each block is in Mk, then all the blocks are
zero except for the (p, q) blocks with p, q ∈ {1, j, n}. Deleting all the zero blocks,
we get the following two 3× 3 block matrices.

Z1 =

 D D B1n
D D Bjn

B∗1n B∗jn D

 and Z2 =

 4D −2D −2B1n
−2D D Bjn
−2B∗1n B∗jn D

 .

Both the (1, 1) and (1, 2) blocks of Z1Z∗2 equal 0k, i.e.,

0k = 2D2 − 2B1nB∗1n = −D2 + B1nB∗jn.

We see that B1nB∗1n = D2 = B1nB∗jn. Since B1n is the product of D and a unitary
matrix, it is invertible. So, B1n = Bjn for j = 2, . . . , n− 1.

Similarly, we can consider the disjoint pair

X3 = (e1 + ej + en)(−e1 − ej + en)
t and X4 = (e1 + ej − 2en)(e1 + ej + 2en)

t.

Then removing the zero blocks of Φ(X3) and Φ(X4), we get

Z3 =

 −D −D C1n
−D −D Cjn
−C∗1n −C∗jn D

 and Z4 =

 D D 2C1n
D D 2Cjn
−2C∗1n −2C∗jn −4D

 .

Both the (1, 1) and (1, 2) blocks of Z3Z∗4 equal 0k, i.e.,

0k = −2D2 + 2C1nC∗1n = −2D2 + 2C1nC∗jn.

We see that C1nC∗1n = D2 = C1nC∗jn. Since C1n is the product of D and a unitary
(real orthogonal) matrix, it is invertible. Thus, C1n = Cjn for j = 2, . . . , n− 1.
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Let W be the unitary matrix D−1B1n ∈ Mn. Replace Φ by the map X 7→
(I(n−1)k ⊕W)Φ(X)(I(n−1)k ⊕W∗). Then with Ĉ = CjnW∗ for j = 1, . . . , n− 1, we
have

Φ(Eij + Eji) = (Eij + Eji)⊗ D, 1 ≤ i ≤ j ≤ n,

Φ(Eij − Eji) = (Eij − Eji)⊗ D̂, 1 ≤ i < j ≤ n− 1,

Φ(Ejn − Enj) = Ejn ⊗ Ĉ− Enj ⊗ Ĉ∗, j = 1, . . . , n− 1.

Recall that P is a permutation matrix such that D = Pt(Q1 ⊕Q2)P. Now replace
Φ by X 7→ (In ⊗ P)Φ(X)(In ⊗ Pt). Then

Φ(Eij + Eji) = (Eij + Eji)⊗ (Q1 ⊕Q2), 1 ≤ i ≤ j ≤ n,

Φ(Eij − Eji) = (Eij − Eji)⊗ (Q1 ⊕−Q2), 1 ≤ i < j ≤ n− 1,

Φ(Ejn − Enj) = Ejn ⊗ G− Enj ⊗ G∗, j = 1, . . . , n− 1,

where G = PĈPt.
It remains to show that G = Q1 ⊕−Q2 so that Ejn ⊗ G− Enj ⊗ G∗ = (Ejn −

Enj) ⊗ (Q1 ⊕ −Q2). To this end, consider the disjoint pair X5 = E22 + Enn −
E2n − En2 and X6 = E12 + E1n − E21 − En1. Then Z5 = Φ(X5) and Z6 = Φ(X6)
are disjoint. If we partition Φ(X5), Φ(X6) as n× n block matrices Z = (Zij)1≤i,j≤n
such that each block is in Mk, then all the blocks are zero except for the (p, q)
blocks with p, q ∈ {1, 2, n}. Let Q = Q1 ⊕ Q2 and C12 = Q1 ⊕−Q2. Deleting all
the zero blocks, we get the following two matrices.

Z5 =

0k 0k 0k
0k Q −Q
0k −Q Q

 and Z6 =

 0k C12 G
−C∗12 0k 0k
−G∗ 0k 0k

 .

Now, the (1, 2) block of Z6Z∗5 is zero, i.e., C12Q = GQ. It follows that G = C12 =
Q1 ⊕−Q2. Thus, the desired result follows.

To prove the theorem when the domain is Mm,n with m < n, we can apply
the result for the restriction of Φ to the subspace spanned by {Eij : 1 ≤ i, j ≤ m}
and assume the restriction map has nice structure. Then we have to show that
Φ(Eil) also has a nice form for l > m. To do that we need another technical lemma
showing that if Φ(Eij) and Φ(Ekj) have nice forms, then Φ(Eil) and Φ(Ekl) also
have nice forms. We state and prove the results for a special case in the following,
in view of Lemma 2.2.

LEMMA 2.5. Let Q1 ∈ Mk1 , Q2 ∈ Mk2 with k1 + k2 = k be diagonal matrices
with positive diagonal entries arranged in descending order. Let Φ : M2 → Mr,s be a
nonzero linear map preserving disjointness.
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(a) Assume

Φ(E11) =


Q1 0 0 0
0 0k1,k2 0 0
0 Q2 0k2 0
0 0 0 0r1,s1

 , Φ(E21) =


0k1 0 0 0
Q1 0k1,k2 0 0
0 0k2 Q2 0
0 0 0 0r1,s1

 ,

where (r1, s1) = (r− 2k1 − k2, s− k1 − 2k2). Then there exist R = R1 ⊕ R2 ∈ Uk1 ⊕
Uk2 , U ∈ Ur−k, V ∈ Us−k such that

R∗1Q1R1 = Q1, R∗2Q2R2 = Q2,

U
(

Q1
0r−k−k1,k1

)
R1 =

(
Q1

0r−k−k1,k1

)
,

and

R∗2(Q2 | 0k2,s−k−k2)V = (Q2 | 0k2,s−k−k2);

moreover, if U =

(
U11 U12
U21 U22

)
with U11 ∈ Mk1 , then the modified map Ψ defined by

X 7→


R∗1 0 0 0
0 U11 0 U12
0 0 R∗2 0
0 U21 0 U22

Φ(X)

R1 0 0
0 R2 0
0 0 V


satisfies

Ψ(E11) = Φ(E11), Ψ(E21) = Φ(E21),

Ψ(E12) =


0k1 0 0 Q1 0
0 0k1,k2 0 0 0
0 0 0k2 0 0
0 Q2 0 0 0
0 0 0 0 0r−2k,s−2k

 ,

Ψ(E22) =


0k1 0 0 0 0
0 0k1,k2 0 Q1 0
0 0 0k2 0 0
0 0 Q2 0 0
0 0 0 0 0r−2k,s−2k

 .

Consequently, before the modification we have

Φ(E12) =


0k1 0 0 Ŷ1
0 0k1,k2 0 0
0 0 0k2 0
0 Ŷ2 0 0r1,s1

 , Φ(E22) =


0k1 0 0 0
0 0k1,k2 0 Ẑ1
0 0 0k2 0
0 0 Ẑ2 0r1,s1

 ,
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where Ŷ1, Ẑ1 have singular values equal to the diagonal entries of Q1, and Ŷ2, Ẑ2 have
singular values equal to the diagonal entries of Q2.

(b) Suppose

(2.5) Φ(Eij) =

Eij ⊗Q1 0 0
0 Eji ⊗Q2 0
0 0 0r2,s2

 for (i, j) ∈ {(1, 1), (2, 1), (2, 2)},

and (r2, s2) = (r− 2k, s− 2k). Then Φ(E12) also satisfies (2.5).

Proof. (a) By Lemma 2.3, we know that the disjoint matrices Φ(E22) and
Φ(E11) have the same rank. So, r, s ≥ 2k. Let P1 ∈ M2k be a permutation ma-
trix such that [X1|X2|X3|X4]P1 = [X1|X3|X2|X4] whenever X1, X2 ∈ M2k,k1 and
X3, X4 ∈ M2k,k2 . Then the map Φ̂ defined by Φ̂(X) = (Pt

1 ⊕ Ir−2k)Φ(X) will still
preserve disjointness such that Φ̂(E11) and Φ̂(E21) equal

Φ̂(E11) =


Q1 0 0 0
0 Q2 0 0
0 0 0k1,k2 0
0 0 0 0r1,s1

 and Φ̂(E21) =


0k1 0 0 0
0 0k2 Q2 0

Q1 0 0k1,k2 0
0 0 0 0r1,s1

 .

Suppose P2 ∈ Mk is a permutation matrix such that D1 = Pt
2(Q1 ⊕ Q2)P2 has

diagonal entries arranged in descending order. We can then find U1 ∈ Ur−k and
V1 ∈ Us−k such that

(Pt
2 ⊕U1)Φ̂(E22)(P2 ⊕V1) =

0k 0 0
0 D2 0
0 0 0

 ,

where D2 is a diagonal matrix with positive diagonal entries arranged in descend-
ing order.

Applying Lemma 2.3, we can find S2 ∈ Uk, U2 ∈ Ur−k, V2 ∈ Us−k such that
the map Ψ1 defined by

X 7→ (S∗2 ⊕U2)(Pt
2 ⊕U1)Φ̂(X)(P2 ⊕V1)(S2 ⊕V2)

satisfies

Eij 7→ (Eij ⊗ (Q̂1 ⊕ 0`2) + Eji ⊗ (0`1 ⊕ Q̂2)), 1 ≤ i, j ≤ 2,

where Q̂1 ∈ M`1 and Q̂2 ∈ M`2 are diagonal matrices with positive diagonal
entries arranged in descending order. Let Ψ be defined by Ψ(X) = Ψ1(X)(Ik ⊕
P3⊕ Is−2k), where P3 ∈ Mk is a permutation matrix such that [X1|X2]P3 = [X2|X1]
whenever X1 ∈ Mk,k1 and X2 ∈ Mk,k2 . Then the map Ψ satisfies

Eij 7→ (Eij ⊗ (Q̂1 ⊕ 0`2) + Eji ⊗ (0`1 ⊕ Q̂2))(Ik ⊕ P3 ⊕ Is−2k), 1 ≤ i, j ≤ 2.

Let R = P2S2 ∈ Mk, V = V1V2(P3 ⊕ Is−2k) ∈ Ms−k, and U = U2U1 ∈ Mr−k. Then

Ψ(X) = (R∗ ⊕U)Φ̂(X)(R⊕V) for all X ∈ M2.



NONSURJECTIVE MAPS PRESERVING DISJOINTNESS, TRIPLE PRODUCTS, OR NORMS 115

If we partition Ψ(X) into a 2× 2 block matrix such that the (1, 1) block lies in Mk,
then the diagonal entries of Q̂1 are the singular values of the (2, 1) block of Φ̂(E21)
(using the same partition). So, Q̂1 = Q1 and Q̂2 = Q2. Hence, Φ̂(E21) = Ψ(E21).
It follows that
(2.6)

R∗
(

0k1,k2 0k1,s1
Q2 0k2,s1

)
V =

(
0k1,k2 0k1,s1
Q2 0k2,s1

)
, U

(
Q1 0k1,k2

0r1,k1 0r1,k2

)
R =

(
Q1 0k1,k2

0r1,k1 0r1,k2

)
.

As a result,

R∗
(

0k1 0
0 Q2

2

)
R =

(
0k1 0
0 Q2

2

)
and R∗

(
Q2

1 0
0 0k2

)
R =

(
Q2

1 0
0 0k2

)
.

Thus, R = R1 ⊕ R2 with R1 ∈ Mk1 , R2 ∈ Mk2 . Since Q1 and Q2 are diagonal
matrices with positive diagonal entries, we see that R∗1Q1R1 = Q1 and R∗2Q2R2 =
Q2. Moreover, by (2.6) we have

U
(

Q1
0r−k−k1,k1

)
R1 =

(
Q1

0r−k−k1,k1

)
and R∗2(Q2 | 0k2,s−k−k2)V = (Q2 | 0k2,s−k−k2).

One can then check that the modified map Ψ̂(X) = (Pt
1 ⊕ Ir−2k)Ψ(X) has the

desired property.
Now, we turn to Φ(E12) and Φ(E21). If U = (Uij)1≤i,j≤3 ∈ Mr−k with

U11 ∈ Mk1 , U22 ∈ Mk2 , and V = (Vij)1≤i,j≤3 ∈ Ms−k with V11 ∈ Mk2 , V22 ∈ Mk1 ,
then

Φ̂(E12) = (R⊕U∗)Ψ(E12)(R∗ ⊕V∗) =
(

0k F12
F21 0r−k,s−k

)
,

where

F12 = R
(

0 Q1 0
0k2 0k2,k1 0k2,s−2k

)
V∗ =

(
R1Q1V∗12 R1Q1V∗22 R1Q1V∗32

0k2 0k2,k1 0k2,s−2k

)
,

F21 = U∗

0k1 0
0 Q2
0 0

 R∗ =

 0k1 U∗21Q2R∗2
0k2,k1 U∗22Q2R∗2

0r−2k,k1 U∗23Q2R∗2

 .

Note that Φ̂(E12) and Φ̂(E21) are disjoint. So, U∗21Q2R∗2 , R1Q1V∗12 ∈ Mk1,k2 are
zero blocks. Since R1Q1 and Q2R∗2 are invertible, we see that

(2.7) U∗21 = 0k1,k2 and V∗12 = 0k1,k2 .

As a result, Φ(E12) = (P1 ⊕ Ir−2k)Φ̂(E12) has the asserted form with

Ŷ1 = (R1Q1V∗22 | R1Q1V∗32) and Ŷ2 =

(
U∗22Q2R∗2
U∗23Q2R∗2

)
.
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Also, Φ̂(E22) =

(
0k 0
0 G

)
with

G = U∗

 0 Q1 0
Q2 0 0
0 0 0r−2k,s−2k

V∗

= U∗

 0 Q1 0
0k2 0 0
0 0 0r−2k,s−2k

V∗ + U∗

 0 0k1 0
Q2 0 0
0 0 0r−2k,s−2k

V∗

= U∗

 0 Q1
0k2 0
0 0

 R
′∗R′

(
V∗11 V∗21 V∗31
V∗12 V∗22 V∗32

)

+

U∗11 U∗21
U∗12 U∗22
U∗13 U∗23

 R∗R
(

0 0k1 0
Q2 0 0

)
V∗

=

 0 Q1
0k2 0
0 0

 R′
(

V∗11 V∗21 V∗31
V∗12 V∗22 V∗32

)
+

U∗11 U∗21
U∗12 U∗22
U∗13 U∗23

 R∗
(

0k1,k2 0 0
Q2 0 0

)

by (2.6), where R′ = R2 ⊕ R1. Thus, by (2.7), we have

G =

Q1R1V∗12 + U∗21R∗2Q2 Q1R1V∗22 Q1R1V∗32
U∗22R∗2Q2 0 0
U∗23R∗2Q2 0 0


=

 0k1,k2 Q1R1V∗22 Q1R1V∗32
U∗22R∗2Q2 0 0
U∗23R∗2Q2 0 0

 .

As a result, Φ(E22) = (P1 ⊕ Ir−2k)Φ̂(E22) has the asserted form with

Ẑ1 = (Q1R1V∗22 | Q1R1V∗32) and Ẑ2 =

(
U∗22R∗2Q2
U∗23R∗2Q2

)
.

(b) Applying a block permutation, we may assume that Φ(E11), Φ(E21),
Φ(E22) equalQ1 ⊕Q2 0k 0

0k 0k 0
0 0 0r̂,ŝ

 ,

 0k 0k1 ⊕Q2 0
Q1 ⊕ 0k2 0k 0

0 0 0r̂,ŝ

 ,

0k 0k 0
0k Q1 ⊕Q2 0
0 0 0r̂,ŝ

 ,

respectively. We need to show that

Φ(E12) =

 0k Q1 ⊕ 0k2 0
0k1 ⊕Q2 0k 0

0 0 0r̂,ŝ

 .
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Suppose P̂ ∈ Mk is a permutation matrix such that D̂ = P̂t(Q1 ⊕ Q2)P̂ is
a diagonal matrix with entries in descending order. Applying Lemma 2.3 to the
map

X 7→ (P̂t ⊕ P̂t ⊕ Ir−2k)Φ(X)(P̂⊕ P̂⊕ Is−2k),

we conclude that there exist a permutation P ∈ Mk and W1, W2 ∈ Uk commuting
with D̂ such that for W = P̂W1W2P⊕ P̂W2P ∈ M2k, the map Ψ defined by X 7→
(W∗ ⊕ Ir−2k)Φ(X)(W ⊕ Is−2k) has the form

Eij 7→ Eij ⊗ (Q̂1 ⊕ 0`2) + Eji ⊗ (0`1 ⊕ Q̂2), 1 ≤ i, j ≤ 2,

where Q̂1 ∈ M`1 and Q̂2 ∈ M`2 are diagonal matrices with positive diagonal
entries arranged in descending order. Note that the diagonal entries of Q̂1 are
the singular values of the (1, 2) block of Φ(E12). So, Q̂1 = Q1 and Q̂2 = Q2.
Consequently,

Φ(X) = (W ⊕ Ir−2k)Ψ(X)(W∗ ⊕ Is−2k)

has the asserted form.

Proof of Theorem 2.1. Without loss of generality, we assume 2 ≤ m ≤ n. We
prove the result by induction on n − m. If n − m = 0, the result follows from
Lemma 2.4. Suppose n − m = ` ≥ 1 and the result holds for the cases when
n−m < `.

By the induction assumption on the restriction map of Φ on the span of Cn =
{Eij : 1 ≤ i ≤ m, 1 ≤ j < n}, there are diagonal matrices Q1 ∈ Mk1 , Q2 ∈ Mk2
with positive entries arranged in descending order, and U1 ∈ Ur, V1 ∈ Us such
that the map U1Φ(X)V1 satisfies

(2.8) Eij 7→

Êij ⊗Q1 0 0
0 Êji ⊗Q2 0
0 0 0r̂,ŝ

 for all Eij ∈ Cn,

where {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is the standard basis for Mm,n, {Êij : 1 ≤
i ≤ m, 1 ≤ j < n} is the standard basis for Mm,n−1, and (r̂, ŝ) = (r − mk1 −
(n− 1)k2, s− (n− 1)k1 − mk2). For notational simplicity, we assume that U1 =
Ir, V1 = Is.

Consider the restriction of Φ on span{Eij, Ein, Emj, Emn} for all 1 ≤ i <
m, 1 ≤ j < n. By Lemma 2.5 (a), we see that

(2.9) Φ(Emn) =

0mk1,(n−1)k1
0 Z1

0 0(n−1)k2,mk2
0

0 Z2 0r̂,ŝ

 ,

where only the last k1 rows of Z1 can be nonzero, and only the last k2 columns of
Z2 can be nonzero.
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Similarly,

(2.10) Φ(E1n) =

0mk1,(n−1)k1
0 Y1

0 0(n−1)k2,mk1
0

0 Y2 0r̂,ŝ


where only the first k1 rows of Y1 can be nonzero, and only the first k2 columns of
Y2 can be nonzero.

Now, consider the restriction of Φ on span{E11, E1n, Em1, Emn}. By Lemma
2.5 (a), there exist R = R1 ⊕ R2 ∈ Uk1 ⊕Uk2 , U ∈ Ur̂ and V ∈ Uŝ such that

R∗1Q1R1 = Q1, R∗2Q2R2 = Q2,

U
(

Q1
0r̂−k1,k1

)
R1 =

(
Q1

0r̂−k1,k1

)
, and R∗2(Q2 | 0k2,ŝ−k2)V = (Q2 | 0k2,ŝ−k2);

moreover, if U =

(
U11 U12
U21 U22

)
with U11 ∈ Mk1 , then

R∗1 0 0 0
0 U11 0 U12
0 0 R∗2 0
0 U21 0 U22


02k1,k1 02k1,2k2 Z1

0 0k2,2k2 0
0 Z2 0r̂,ŝ

R1 0 0
0 R2 0
0 0 V



=


0k1 0 0 0 0
0 0k1,k2 0 Q1 0
0 0 0k2 0 0
0 0 Q2 0k2,k1 0
0 0 0 0 0r1,s1 ,

 ,

where (r1, s1) = (r̂− 2k1, ŝ− 2k2). Consequently, the modified map Ψ defined by

X 7→


Im−1 ⊗ R∗1 0 0 0

0 U11 0 U12
0 0 In−1 ⊗ R∗2 0
0 U21 0 U22

Φ(X)

In−1 ⊗ R1 0 0
0 Im−1 ⊗ R2 0
0 0 V


satisfies Ψ(Eij) = Φ(Eij) for all 1 ≤ i ≤ m, 1 ≤ j < n − 1, and Ψ(Emn) has the
form (2.9) with

Z1 =

(
0 0

Q1 0

)
and Z2 =

(
0 Q2
0 0

)
.

Let P̃ ∈ Ms be the permutation matrix satisfying

[X1|X2|X3|X4]P̃ = [X1|X3|X2|X4]

whenever X1 ∈ Mr,(n−1)k1
, X2 ∈ Mr,mk2 , X3 ∈ Mr,k1 , X4 ∈ Mr,ŝ−k1 . Then the map

Ψ̂ defined by X 7→ Ψ(X)P̃ satisfies

(2.11) Ψ̂(Eij) =

Eij ⊗Q1 0 0
0 Eji ⊗Q2 0
0 0 0r̂−k2,ŝ−k1
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for (i, j) ∈ {(u, v) : 1 ≤ u ≤ m, 1 ≤ v < n} ∪ {(m, n)}. For j = 2, . . . , n − 1,
consider the restriction of Ψ on span{Ejj, Ejn, Emj, Emn}. Thus, Ψ̂(Ejj), Ψ̂(Emj)

and Ψ̂(Emn) have the form (2.11), and so must Ψ̂(Ejn) by Lemma 2.5 (b). As a
result, Ψ̂(Eij) has the form in (2.11) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

3. Nonsurjective (zero) Triple Product Preservers and JB*-homomorphisms on rectangular matrices

Notice that the set Mn(C) of complex square matrices is a C∗-algebra. Let
T : A → B be a bounded linear map between C∗-algebras. In [31, Theorem 3.2],
it was shown that T is a triple homomorphism with respect to the Jordan triple
product,

{a, b, c} = 1
2
(ab∗c + cb∗a) for all a, b, c ∈ A,

if and only if T preserves disjointness and T∗∗(1) is a partial isometry in B∗∗. In
the case that T is surjective, the condition on T∗∗(1) can be dropped as shown
in [20, Theorem 2.2], see also [27]. In [4], on the other hand, it is obtained a
characterization of linear maps from C∗-algebras into JB*-triples that preserve
disjointness with some conditions.

In the following, we consider the Jordan triple product

{A, B, C} = 1
2
(AB∗C + CB∗A)

of real or complex matrices A, B, C ∈ Mm,n. A (real or complex) linear map Ψ :
Mm,n → Mr,s between rectangular matrices is called a JB*-triple homomorphism if
(3.1)
Ψ(AB∗C + CB∗A) = Ψ(A)Ψ(B)∗Ψ(C) + Ψ(C)Ψ(B)∗Ψ(A), ∀A, B, C ∈ Mm,n.

We have the polarization identity

2{A, B, C} = {A + C, B, A + C} − {A, B, A} − {C, B, C}, ∀A, B, C ∈ Mm,n.

In the complex case, letting the cube A(3) = AA∗A, we have

4{A, B, A} = (B + A)(3) + (B− A)(3) − (B + iA)(3) − (B− iA)(3), ∀A, B ∈ Mm,n.

Therefore, a linear map Φ between rectangular matrices is a JB*-triple homomor-
phism exactly when Φ(AB∗A) = Φ(A)Φ(B)∗Φ(A), and in the complex case ex-
actly when Φ(AA∗A) = Φ(A)Φ(A)∗Φ(A), for all A, B ∈ Mm,n.

We say that the matrix triple (A, B, C) in Mm,n has zero triple product if

{A, B, C} = 0m,n.

A linear map Φ : Mm,n → Mr,s preserves zero triple products if

{A, B, C} = 0m,n =⇒ {Φ(A), Φ(B), Φ(C)} = 0r,s for all A, B, C ∈ Mm,n.

For more information of JB*-triples, see, e.g., [9].
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We have the following result concerning the zero triple product preservers
and JB*-triple homomorphisms on rectangular matrices.

THEOREM 3.1. Let Φ : Mm,n → Mr,s be a linear map.
(a) Φ preserves zero triple products if and only if there are U ∈ Ur, V ∈ Us, and

diagonal matrices Q1, Q2 with positive diagonal entries such that

(3.2) Φ(A) = U

A⊗Q1 0 0
0 At ⊗Q2 0
0 0 0

V.

Here Q1 or Q2, may be vacuous.
(b) Φ is a JB*-triple homomorphism if and only if there exist U ∈ Ur, V ∈ Us, and

nonnegative integers q1, q2 such that

(3.3) Φ(A) = U

A⊗ Iq1 0 0
0 At ⊗ Iq2 0
0 0 0

V,

where the size of the zero block at the bottom right corner is (r − (q1m + q2n)) ×
(s− (q1n + q2m)).

To prove the above theorem, we need the following lemma, which is valid
for both real and complex matrices. See [4, Lemma 1] for the complex case. Recall
that A∗ = At in the real case.

LEMMA 3.2. Let A, B ∈ Mm,n. The following conditions are equivalent to each
other.
(a) A∗B = 0n and AB∗ = 0m.
(b) AA∗B + BA∗A = 0m,n.

Proof. It suffices to prove (b) =⇒ (a). Observe that from (b) we have

0 ≤ (B∗A)(B∗A)∗ = B∗AA∗B = −(B∗B)(A∗A).

Taking adjoints of the Hermitian matrices, we have

(B∗B)(A∗A) = (A∗A)(B∗B).

Therefore, the positive semi-definite n× n matrices A∗A and B∗B commute. By
spectral theory, the product (B∗B)(A∗A) = −(B∗A)(B∗A)∗ is also positive semi-
definite, and thus B∗A = 0. Similarly, we have AB∗ = 0.

Proof of Theorem 3.1. (a) Suppose that Φ preserves zero triple products. By
Lemma 3.2, if A, B ∈ Mm,n are disjoint, then Φ(A), Φ(B) ∈ Mr,s are disjoint. So,
Φ has the asserted form by Theorem 2.1. The converse is clear.

(b) Suppose that Φ is a JB*-triple homomorphism. Then it will preserve zero
triple products, and thus by (a), be of the form (3.2). Since E(3)

11 = E11, we have
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Φ(E11)
(3) = Φ(E11). One gets the conclusions Q1 = Iq1 and Q2 = Iq2 as in (3.3).

The converse is clear.

Recall that a rectangular matrix A is called a partial isometry if AA∗A = A.
Equivalently, A has singular values from the set {1, 0}. We state our result using
the complex notation. Of course, in the real case, we have X∗ = Xt, and a unitary
matrix is a real orthogonal matrix. It turns out that JB*-triple homomorphisms are
closely related to linear preservers of (disjoint) partial isometries. Some assertions
in the following might be known to experts, at least in the complex case.

THEOREM 3.3. Suppose Φ : Mm,n → Mr,s is a linear map. The following condi-
tions are equivalent.

(a) Φ maps partial isometries in Mm,n to partial isometries in Mr,s.
(b) Φ sends disjoint (rank one) partial isometries to disjoint partial isometries.
(c) Φ preserves disjointness, and there is a nonzero partial isometry P ∈ Mm,n such that

Φ(P) is a partial isometry.
(d) Φ preserves matrix triples with zero JB*-triple product, and there is a nonzero partial

isometry P ∈ Mm,n such that Φ(P) is a partial isometry.
(e) Φ is a JB*-triple homomorphism and has the form (3.3).

Proof. The implication (e) =⇒ (a) is clear.
(a) =⇒ (b): Let A ∈ Mm,n be a rank one partial isometry, and Φ(A) =

U
(

Ik 0
0 0

)
V, where U ∈ Ur, V ∈ Us. Suppose B ∈ Mm,n is a rank one par-

tial isometry disjoint from A such that Φ(B) = U
(

Y11 Y12
Y21 Y22

)
V with Y11 ∈ Mk.

Because Φ(A)± Φ(B) are partial isometries, we see that the Euclidean norm of
each of the first k columns of Φ(A) + Φ(B) and Φ(A)− Φ(B) is not larger than
one. Thus, Y11, Y21 are zero matrices. Considering the norms of the first k rows
of Φ(A) + Φ(B), we see that Y12 is the zero matrix as well. Thus, Φ(A), Φ(B) are
disjoint partial isometries in Mr,s. In general, due to the singular value decom-
position, every rectangular matrix can be written as a linear sum of disjoint rank
one partial isometries. Thus Φ sends disjoint partial isometries to disjoint partial
isometries.

(b) =⇒ (c): Φ preserves disjointness of rank one partial isometries, and
hence preserves disjointness due to the singular value decomposition. Evidently,
it sends a nonzero partial isometry to a partial isometry.

(c) =⇒ (e): Because Φ preserves disjointness, Φ has the form described
in Theorem 2.1. By the fact that Φ sends a nonzero partial isometry to a partial
isometry, we see that Q1, Q2 are identity matrices. So, conditions (a), (b), (c) and
(e) are equivalent.

By Lemma 3.2 we have (d) =⇒ (c). The implication (e) =⇒ (d) is also
clear.
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Several remarks are in order. Theorem 3.1 and Theorem 3.3 are also valid
for real linear maps Φ : Hn → Mr,s. Note that self-adjoint partial isometries are
exactly differences p − q of two orthogonal projections. Indeed, we can further
assume that the co-domain is Hr, i.e., Φ : Hn → Hr. Then we can arrange U = V∗

in (3.2) and (3.3), at the expenses that Q1, Q2 may have negative diagonal matrices
in (3.2), and (3.3) may look like

Φ(A) = U


A⊗ Iq+1

0 0 0 0
0 −A⊗ Iq−1

0 0 0
0 0 At ⊗ Iq+2

0 0
0 0 0 −At ⊗ Iq−2

0
0 0 0 0 0

U∗,

where q+1 , q−1 , q+2 , q−2 are nonnegative integers and the zero block matrix in the
bottom right corner has size (r − ((q+1 + q−1 )m + (q+2 + q−2 )n)) × (r − ((q+1 +

q−1 )n + (q+2 + q−2 )m)).
Theorem 3.1 (a) allows us to obtain the following general result on linear

preserver of functions of JB∗-triple product on matrices.

COROLLARY 3.4. Let ν1, ν2 be scalar functions on Mm,n and Mr,s such that

νj(A) = 0 if and only if A = 0

for all A in Mm,n or Mr,s, respectively. Suppose a linear map Φ : Mm,n → Mr,s satisfies

(3.4) ν1({A, B, C}) = ν2{Φ(A), Φ(B), Φ(C)}) for all A, B, C ∈ Mm,n.

Then Φ has the form (3.2).

This corollary can be used to determine the structure of linear preservers of
functions on triple product of matrices easily. We mention a few examples in the
following related to the study in [5, 10–12, 16, 17, 23] and their references.

Suppose a linear map Φ : Mm,n → Mr,s satisfies (3.4), where ν1, ν2 are norms
on matrices. Then Φ has the form (3.2). From this, one may easily deduce the con-
ditions on U, V, Q1, Q2, etc. to ensure the converse of the statement. For example,
if ν1, ν2 are the operator norms, then U, V can be any unitary matrices and the
operator norm of D1 ⊕ D2 has to be one.

Suppose (m, r) = (n, s), F = C, and ν1, ν2 are the numerical radius. Then
Φ : Mn → Mr satisfies (3.4) if and only if Φ has the form (3.2) with V = RU∗ for
a diagonal matrix R such that ((In ⊗Q1)⊕ (In ⊗Q2)⊕ 0)R has numerical radius
1. From this, one may further deduce that when (m, r) = (n, s), F = C, and ν1, ν2
are the numerical range, Φ : Mn → Mr satisfies (3.4) if and only if Φ has the form
(3.3) with V = U∗. Similarly, we can treat the linear preservers Φ : Mn → Mr
leaving invariant the pseudo spectral radius, pseudo spectrum, and other types
of scalar or non-scalar functions.
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4. Nonsurjective norm preservers

Denote the singular values of A ∈ Mm,n by s1(A) ≥ · · · ≥ sh(A) for h =
min{m, n}. For p > 0, let

Sp(A) =

(
h

∑
j=1

sj(A)p

)1/p

.

If p ≥ 1, then Sp(A) is known as the Schatten p-norm. In particular, S2(A) =

(∑h
j=1 sj(A))1/2 = (tr (A∗A))1/2, which is called the Frobenius norm, equips Mm,n

as a Hilbert space. For 1 ≤ p < +∞ but p 6= 2, a linear operator Ψ : Mm,n →
Mm,n satisfies Sp(Ψ(A)) = Sp(A) for all A ∈ Mm,n if and only if Ψ has the form
A 7→ UAV, or A 7→ UAtV in case m = n, for some U ∈ Um, V ∈ Un (see,
e.g., [5, 25]).

It is more difficult to characterize linear isometries from Mm,n to Mr,s for
(m, n) 6= (r, s). Only very few results are known; see, for example, [8, 23]. With
Theorem 2.1, we get the following result.

THEOREM 4.1. Suppose m, n ≥ 2, p ∈ (0, 2) ∪ (2,+∞), and Φ : Mm,n → Mr,s
is a linear map. The following conditions are equivalent.

(a) Sp(Φ(A)) = Sp(A) for all A ∈ Mm,n.
(b) Sp(Φ(A)) = Sp(A) for all A ∈ Mm,n with rank at most 2.
(c) There are U ∈ Ur, V ∈ Us, and diagonal matrices Q1 ∈ Mq1 , Q2 ∈ Mq2 with

positive diagonal entries such that Sp(Q1 ⊕Q2) = 1 and

Φ(A) = U

A⊗Q1 0 0
0 At ⊗Q2 0
0 0 0

V for all A ∈ Mm,n.

Here Q1 or Q2 may be vacuous.

Proof. The implications (c) =⇒ (a) =⇒ (b) are clear. For the implica-
tion (b) =⇒ (c), it follows from a result of McCarthy [29, Theorem 2.7] that
Φ preserves disjointness for rank one matrix pairs. By Theorem 2.1, we get the
form of Φ. Applying the fact that Sp(Φ(E11)) = Sp(E11), we easily deduce that
Sp(Q1 ⊕Q2) = 1 .

For 1 ≤ k ≤ min{m, n}, the Ky Fan k-norm of A is defined by

Fk(A) =
k

∑
j=1

sj(A).

Linear isometries for the Ky Fan k-norm have been studied. Seeing Theorem 4.1,
one may think that a similar extension for the Ky Fan k-norm can be obtained by
similar arguments. It turns out that this can only be done for the complex case
because there are real linear isometries for Ky Fan k-norms that do not preserve
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disjointness; see [18,25]. This reinforces the fact that proof techniques for complex
matrices may not apply to real matrices, and it is quite remarkable that a uniform
proof of Theorem 2.1 can be used for both real and complex matrices. In any
event, we have the following theorem supplementing [23, Theorem 1.1], in which
the linear map Φ : Mm,n(C)→ Mr,s(C) is assumed to satisfy that

Fk(Φ(A)) = Fk′(A), for all A ∈ Mm,n(C).

THEOREM 4.2. Suppose 2 ≤ k′ ≤ min{m, n} and 1 ≤ k ≤ min{r, s}. The
following conditions are equivalent for a linear map Φ : Mm,n(C)→ Mr,s(C).
(a) Fk(Φ(A)) = Fk′(A) for all A ∈ Mm,n(C) with rank at most 2.
(b) There are unitary matrices U ∈ Mr(C), V ∈ Ms(C) and positive-definite diagonal

matrices Q1, Q2 (maybe vacuous) of size q1, q2 such that k ≥ 2(q1 + q2), Q1 ⊕ Q2
has trace 1, and

Φ(A) = U

A⊗Q1 0 0
0 At ⊗Q2 0
0 0 0

V.(4.1)

Proof. The implication (b) =⇒ (a) is plain.
(a) =⇒ (b). By [23, Lemma 2.2], Φ preserves disjoint rank one pairs. By

Theorem 2.1, Φ carries the form (4.1). Consider Aε = E11 + εE22 for 0 ≤ ε < 1.
Using (4.1), we can assume

Φ(Aε) = λ1 Aε ⊕ λ2 Aε ⊕ · · · ⊕ λq Aε ⊕ 0

for some fixed scalars λ1 ≥ λ2 ≥ · · · ≥ λq > 0 with q = q1 + q2.
Suppose k ≤ q first. Since k′ ≥ 2, we have

1 + ε = Fk′(Aε) = Fk(λ1 Aε ⊕ λ2 Aε ⊕ · · · ⊕ λq Aε ⊕ 0)

= λ1 + λ2 + · · ·+ λk, when 0 ≤ ελ1 ≤ λk.

This yields a contradiction, because [0, λk/λ1] contains infinitely many points ε.
Suppose 0 < r = k− q < q. Then we have

1 + ε = Fk′(Aε) = Fk(λ1 Aε ⊕ λ2 Aε ⊕ · · · ⊕ λq Aε ⊕ 0)

=

{
λ1 + λ2 + · · ·+ λq, when ε = 0,
λ1 + λ2 + · · ·+ λq + ελ1 + · · ·+ ελr, when ελr+1 ≤ λq.

This implies λ1 + λ2 + · · · + λq = 1, and 1 + ε = 1 + ελ1 + · · · + ελr for all
0 < ε ≤ λq/λr+1. This gives us the contradiction that λr+1 = · · · = λq = 0.

Hence, k ≥ 2q. In this case, we have

1 + ε = Fk′(Aε) = Fk(λ1 Aε ⊕ λ2 Aε ⊕ · · · ⊕ λq Aε ⊕ 0)

= (1 + ε)(λ1 + λ2 + · · ·+ λq), when ε ∈ [0, 1).

This gives 1 = λ1 + λ2 + · · ·+ λq, which equals the trace of Q1 ⊕Q2.
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5. Final remarks and future research

It would be interesting to extend our results in Sections 2 and 3 to the (real
or complex) linear space B(H, K) of bounded linear operators between infinite
dimensional Banach spaces H and K, or to general JB*-triples. Our approach
depends on the singular value decomposition of matrices, which is a finite di-
mensional feature. New techniques will be needed to extend our results.

To conclude the paper, we list several comments and questions concerning
the results in Section 4.

(i) As pointed out in [8], the problem for the operator norm, i.e., Ky Fan
1-norm, is difficult.

(ii) Many real linear isometries for Ky Fan k-norms also preserve disjoint-
ness (although there are exceptions). It would be nice to investigate a
version of Theorem 4.2 such that the conclusion also hold for real matri-
ces.

(iii) For any linear isometry which preserves disjoint rank one pairs, we can
apply Theorem 2.1. It is interesting to characterize such norms other than
the Schatten p-norms and the Ky Fan k-norms. Suggested by the asserted
form (4.1), we should put emphasis on unitarily invariant norms.

(iv) We have similar results for real symmetric and complex Hermitian ma-
trices. Besides Sp(A) and Fk(A), can we do it for the k-numerical radius
on Hermitian matrices Hn defined by

wk(A) = max{tr (AR) : R∗ = R = R2, tr R = k}?
(v) In fact, one can also ask for characterizations of k-numerical radius pre-

servers Φ : Mn → Mr.
(vi) One may consider linear preservers or non-linear preservers for other

types of norms or functions on rectangular matrices, Hermitian, sym-
metric, or skew-symmetric matrix spaces that are related to disjointness
preserving maps.

Acknowledgment

Li is an affiliate member of the Institute for Quantum Computing, Uni-
versity of Waterloo. He is an honorary professor of Shanghai University. His
research was supported by USA NSF grant DMS 1331021, Simons Foundation
Grant 351047, and NNSF of China Grant 11571220. This research was started
when he visited Taiwan in 2018 supported by grants from Taiwan MOST. He
would like to express his gratitude to the hospitality of several institutions, in-
cluding the Academia Sinica, National Taipei University of Science and Technol-
ogy, National Chung Hsing University, and National Sun Yat-sen University. He
would also like to thank Dr. Daniel Puzzuoli for some helpful discussions.



126 C.-K. LI, M.-C. TSAI, Y.-S. WANG, AND N.-C. WONG

Tsai, Wang and Wong are supported by Taiwan MOST grants 105-2115-M-
027-002-MY2, 106-2115-M-005-001-MY2 and 106-2115-M-110-006-MY2.

REFERENCES

[1] M. Apazoglou and A. M. Peralta, Linear isometries between real JB*-triples and
C*-algebras, Quarterly J. Math., 65(2) (2014), 485–503.

[2] M. Brešar and P. Šemrl, Linear preservers on B(X), Banach Center Publ., 38 (1997),
49–58.

[3] L. B. Beasley, K.-T. Kang and S.-Z. Song, Linear preservers of Boolean rank be-
tween different matrix spaces, J. Korean Math. Soc., 52 (2015), 625–636.

[4] M. Burgos, F. J. Fernández-Polo, J. J. Garcés, J. M. Moreno and A. M. Peralta,
Orthogonality preservers in C∗-algebras, JB∗-algebras and JB∗-triples, J. Math.
Anal. Appl. 348 (2008), 220-233.

[5] J. T. Chan, C. K. Li and N. S. Sze, Isometries for unitarily invariant norms, Linear
Algebra Appl., 399 (2005), 53–70.

[6] M. A. Chebotar, W.-F. Ke, P.-H. Lee and N.-C. Wong, Mappings preserving zero
products, Studia Math., 155(1) (2003), 77–94.

[7] W. S. Cheung and C. K. Li, Linear maps transforming the unitary group, Bull.
Canad. Math. Soc., 46 (2003), 54–58.

[8] W. S. Cheung, C. K. Li, and Y. T. Poon, Isometries between matrix algebras, J.
Aust. Math. Soc., 77 (2004), 1–16.

[9] C.-H. Chu, Jordan structures in geometry and analysis, Cambridge University Press,
London, 2012.

[10] C.-H. Chu and M. Mackey, Isometries between JB*-triples, Math. Z., 251 (2005),
615–633.

[11] C.-H. Chu and N.-C. Wong, Isometries between C*-algebras, Revista Matematica
Iberoamericana, 20(1) (2004), 87–105.

[12] J. Cui, C.K. Li and Y.T. Poon, Pseudospectra of special operators and Pseudosec-
trum preservers, J. Math. Anal. Appl. 419 (2014), 1261-1273.

[13] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: function spaces, CRC
Monographs and Survey in Pure and Applied Math, vol. 129, Chapman & Hall,
2002.

[14] R. J. Fleming and J. E. Jamison, Isometries in Banach spaces: Vector-valued function
spaces and operator spaces, CRC Monographs and Survey in Pure and Applied
Math, vol. 138, Chapman & Hall, 2007.

[15] G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substi-
tutionen, S.-B. Preuss. Akad. Wiss. Berlin, (1897), 994–1015.

[16] J. Hou, C.-K. Li and N.-C. Wong, Jordan isomorphisms and maps preserving
spectra of certain operator products, Studia Math., 184 (2008), 31–47.



NONSURJECTIVE MAPS PRESERVING DISJOINTNESS, TRIPLE PRODUCTS, OR NORMS 127

[17] J. Hou, C.-K. Li and N.-C. Wong, Maps preserving the spectrum of generalized
Jordan product of operators, Linear Algebra Appl., 432 (2010), 1049–1069.

[18] C. R. Johnson, T. J. Laffey and C. K. Li, Linear transformations on Mn(R) that
preserve the Ky Fan k-norm and a remarkable special case when (n, k) = (4, 2),
Linear and Multilinear Algebra, 23 (1988), 285-298.

[19] R. Kadison, Isometries of operator algebras, Ann. Math., 54 (1951), 325–338.

[20] A. T.-M. Lau and N.-C. Wong, Orthogonality and disjointness preserving linear
maps between Fourier and Fourier-Stieltjes algebras of locally compact groups,
J. Funct. Anal., 265(4) (2013), 562–593.

[21] C.-W. Leung, C.-W. Tsai and N.-C. Wong, Linear disjointness preservers of W∗-
algebras, Math. Z., 270 (2012), 699–708.

[22] C.-K. Li and S. Pierce, Linear preserver problems, Amer. Math. Monthly, 108
(2001), 591–605.

[23] C. K. Li, Y. T. Poon and N. S. Sze, Isometries for Ky Fan norms between matrix
spaces, Proc. Amer. Math. Soc., 133(2) (2005), 369–377.

[24] C. K. Li, L. Rodman, and P. Semrl, Linear transformations between matrix spaces
that map one rank specific set into another, Linear Algebra Appl., 357 (2002), 197–
208.

[25] C. K. Li and N. K. Tsing, Linear operators preserving unitarily invariant norms
of matrices, Linear and Multilinear Algebra, 26 (1990), 119-132.

[26] C.-K. Li and N.-K. Tsing, Linear preserver problems: a brief introduction and
some special techniques, Linear Algebra Appl., 162–164 (1992), 217–235.

[27] J.-H. Liu, C.-Y. Chou, C.-J. Liao and N.-C. Wong, Linear disjointness preservers
of operator algebras and related structures, Acta Sci. Math. (Szeged), 84 (2018),
277—307.

[28] J.-H. Liu, C.-Y. Chou, C.-J. Liao and N.-C. Wong, Disjointness preservers of AW∗-
algebras, Linear Algebra Appl., 552 (2018), 71–84.

[29] Ch. A. McCarthy, Cp, Israel J. Math., 5 (1967), 249–271

[30] L. Molnár, Selected preserver problems on algebraic structures of linear operators and on
function spaces, Lecture Notes in Mathematics, vol. 1895, Springer-Verlag, 2007.

[31] N.-C. Wong, Triple homomorphisms of C∗-algebras, SEA Bull. Math., 29 (2005),
401–407.

[32] H. M. Yao, C. G. Cao and X. Zhang, Additive preservers of idempotence and
Jordan homorphisms between rings of square matrices, Acta Math. Sin. (Engl.
Ser.), 25 (2009), 639–648.

[33] X. Zhang and C. G. Cao, Linear k-power/k-potent preservers between matrix
spaces, Linear Algebra Appl., 412 (2006), 373–379.

[34] B. Zheng, J. Xu and A. Fos̆ner, Linear maps preserving rank of tensor products
of matrices, Linear and Multilinear Algebra, 63 (2015), 366-376.



128 C.-K. LI, M.-C. TSAI, Y.-S. WANG, AND N.-C. WONG

CHI-KWONG LI, DEPARTMENT OF MATHEMATICS, THE COLLEGE OF WILLIAM &
MARY, WILLIAMSBURG, VA 13185, USA.

E-mail address: ckli@math.wm.edu

MING-CHENG TSAI, GENERAL EDUCATION CENTER, TAIPEI UNIVERSITY OF TECH-
NOLOGY 10608, TAIWAN.

E-mail address: mctsai2@mail.ntut.edu.tw

YA-SHU WANG, DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHUNG

HSING UNIVERSITY, TAICHUNG 40227, TAIWAN.
E-mail address: yashu@nchu.edu.tw

NGAI-CHING WONG, DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN

YAT-SEN UNIVERSITY, KAOHSIUNG, 80424, TAIWAN.
E-mail address: wong@math.nsysu.edu.tw

Received Month dd, yyyy; revised Month dd, yyyy.


	1. Introduction
	2. Nonsurjective preservers of disjointness
	3. Nonsurjective (zero) Triple Product Preservers and JB*-homomorphisms on rectangular matrices
	4. Nonsurjective norm preservers
	5. Final remarks and future research
	Acknowledgment
	REFERENCES

