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Abstract. This paper is concerned with the problem of finding common fixed points for a

family of Bregman relatively weak nonexpansive mappings. The motivation is due to our finding

of some gaps in a paper of K. S. Kim (Nonlinear Analysis, 73 (2010), 3413-3419), where the

author was developing a hybrid iterative scheme for locating common fixed points of a nonlinear

representation of a left reversible semigroup. After a brief discussion about the gaps and why

they are fatal, we present a new approach by using Bergman type nonexpansive mappings. A

correct version of Kim’s convergence theorem is given as a consequence of our new results, which

also improve and extend some recent results in the literature.

1. Introduction

Let S be a semigroup. Let C be a nonempty closed and convex subset of a (real) Banach space

E with dual space E∗. Let T := {T (s) : s ∈ S} be a representation of S as mappings from C into

C such that

T (st) = T (s)T (t), ∀s, t ∈ S.

Assume the set F (T ) of common fixed points of all T (s) in T is nonempty. The question is to

establish an algorithm to locate the elements in F (T ). Note that S can be uncountable, while an

“effective” algorithm is expected to finish in almost finite, i.e., countably, many steps.

A translation invariant subspace X of l∞(S) is called rich for T if X contains the constant func-

tions and all the “matrix entries” of the representation T , namely, the functions s 7→ ⟨T (s)x, x∗⟩
with x ∈ C and x∗ ∈ E∗. Assume also that every point x in C is weakly almost periodic for T ,

i.e., the set {T (s)x : s ∈ S} is relatively weakly compact in E. Then, as in [7], for each x in C

and each mean µ on X, there exists a unique point Tµx in E, called the barycenter of T (·)x with
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respect to µ, in the sense that

µ⟨T (·)x, x∗⟩ = ⟨Tµx, x
∗⟩, ∀x∗ ∈ E∗.

It follows from the strong separation theorem that Tµx is contained in the closure of the convex

hull of {T (s)x : s ∈ S} for each x in C. In particular, F (T ) ⊆ F (Tµ), the set of fixed points of

Tµ. Conversely, we consider an asymptotically left invariant sequence {µn} of means on X; i.e.,

lim
n
(µn(lsf)− µn(f)) = 0, ∀s ∈ S, f ∈ X.

Here, ls denotes the left translation by s defined by

ls(f)(x) = f(sx), ∀f ∈ X, x ∈ S.

It follows from [9, Lemma 3.5] (see also [13]) that

lim inf
n→∞

∥Tµnz − z∥ = 0 =⇒ z ∈ F (T ).(1.1)

This implies

F (T ) =
∩
n

F (Tµn)(1.2)

Consequently, the question of finding common fixed points of T reduces to that of finding those

z in C satisfying (1.1), or finding common fixed points of the sequence {Tµn}.

In 2010, K. S. Kim [9] provided the following plausible strong convergence theorem for a class

of representations for left reversible semigroups. Recall that a topological semigroup S with an

identity is left reversible if every two closed right ideals of S intersect, i.e., aS ∩ bS ̸= ∅ for all a, b

in S.

(False) Assertion 1.1 (Kim, [9, Theorem 4.1]). Let C be a nonempty, closed and convex subset

of a uniformly convex and uniformly smooth Banach space E. Let T = {T (s) : s ∈ S} be a

representation of a left reversible semigroup S as relatively nonexpansive maps from C into C

with F (T ) ̸= ∅.

Let X be a rich subspace of ℓ∞(S) for T , and let {µn}n∈N be an asymptotically left invariant

sequence of means on X. Let Tµn be the barycenter representation of T associated to each µn. Let

{αn}n∈N be a sequence in (0, 1) such that limn→∞ αn = 0. Let {xn}n∈N be a sequence generated

by the following algorithm

x0 = x ∈ C chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn = J−1[αnJx1 + (1− αn)JTµnxn)],

Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn)},

xn+1 = ΠCn+1x1 for n ∈ N.

(1.3)
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Here, J : E → E∗ is the normalized duality map and ΠD is the generalized projection from C

onto a nonempty closed convex subset D of C.

Then {xn}n∈N converges strongly to the fixed point ΠF (T )x1 of T .

Unfortunately, there are some gaps in the original proof of Assertion 1.1. For example, in

[9, line -11, p. 3416], the author derived that {xn}n∈N is a Cauchy sequence after he showed

limn→∞ ∥xn+m − xn∥ = 0 for all fixed m = 1, 2, . . .. It is not a tautology, however, as xn =∑n
k=1 1/k verifies.

After some preparations, we will provide in §2 a concrete counter example to demonstrate that

the original plan proving Assertion 1.1 in [9] does not work.

In §3, we collect some necessary definitions and preliminary results for introducing the recent

developed notions of Bregman type nonexpansive mappings. As an extension of nonexpansive

mappings, the class of Bregman type nonexpansive mappings appears in many applications. The

theory of fixed points involving Bregman distances and Bregman type nonexpansive mappings

are studied in, e.g., [1, 2, 17].

In §4, we present a correct version of Assertion 1.1. In a more general setting, we will study

the problem of finding common fixed points for an arbitrary family of Bregman relatively weak

nonexpansive mappings, and obtain strong convergence theorems by hybrid schemes of Halpern

types. The method of the present paper is different from the original one proposed by Kim in [9]

and our results improve and extend some recent results in the literature, for example, [14, 15].

Finally, we mention that the hybrid projection method was first introduced by Hangazeau in

[6]. In [8, 10, 25], the authors investigated hybrid projection method. As a generalization of the

hybrid projection method, the shrinking projection method was first introduced by Takahashi et

al. in [25]. Our approach in this paper follows this line.

2. A counter example

In the following, we let C be a nonempty, closed and convex subset of a smooth, strictly convex

and reflexive (real) Banach space E. We denote by xn → x and xn ⇀ x, respectively, the strong

and weak convergence of a sequence {xn}n∈N to x in E. For any x in E, the value of a bounded

linear functional x∗ in the Banach dual space E∗ of E at x is denoted by ⟨x, x∗⟩. When E∗ is

strictly convex, one can define a single-valued normalized duality map J : E → E∗ such that Jx

is the unique functional satisfying

⟨x, Jx⟩ = ∥x∥2 = ∥Jx∥2.

When E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded subsets of E.
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The generalized projection ΠC from E onto C is defined by

ΠC(x) = argminy∈C ϕ(y, x),

where

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2.

When E is a Hilbert space, we have ϕ(x, y) = ∥x− y∥2.

Let T : C → C be a map. The set of fixed points of T is denoted by

F (T ) = {x ∈ C : Tx = x}.

A point p ∈ C is said to be an asymptotic fixed point [19] of T if there exists a sequence xn ⇀ p

in C such that limn→∞ ∥xn − Txn∥ = 0. If we have xn → p instead, we call p a strong asymptotic

fixed point of T . The set of all asymptotic and strong asymptotic fixed points of T are denoted

by Fa(T ) and Fsa(T ), respectively. Clearly,

F (T ) ⊆ Fsa(T ) ⊆ Fa(T ).

Following Matsushita and Takahashi [14] and Kim [9], we call T a relatively nonexpansive (resp.

relatively weak nonexpansive) map if Fa(T ) = F (T ) ̸= ∅ (resp. Fsa(T ) = F (T ) ̸= ∅) and

ϕ(u, Tx) ≤ ϕ(u, x), ∀u ∈ F (T ), x ∈ C.

Let us return to the promised counterexample to Assertion 1.1, i.e., [9, Theorem 4.1]. In [9]

the proof of its Theorem 4.1 is divided into three parts.

Step 1. {xn}n∈N is well defined.

Step 2. limn→∞ ∥xn − Tµnxn∥ = 0, and based on this assertion, xn ∈ F (T ), ∀n = 1, 2, . . ..

Step 3. p = limn→∞ xn = ΠF (T )x1.

Unfortunately, we discovered gaps and errors there. Beside the false statement limn→∞ ∥xn+m −
xn∥ = 0, ∀m = 1, 2, . . ., implying that {xn} converged (to p) as mentioned before, we also find

that the conclusion in Step 2 does not hold either. More precisely, we do not see the validity of

using [9, Lemma 3.5], i.e. (1.1), to conclude xn ∈ F (T ). Indeed, xn /∈ F (T ) in the following

example.

Example 2.1. Let S be the left reversible additive semigroup of nonnegative integers in discrete

topology. Define Tn : R → R (so C = R here) by

Tn(x) = e−nx,

for n = 0, 1, 2, . . .. It is plain that T = {Tn}n∈S is a representation of the additive semigroup S as

relatively nonexpansive (indeed, contractive and linear) mappings with the common fixed point

set F = {0}.
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Let X ⊂ ℓ∞(S) be the Banach space of all convergent real sequences, and let µn be the point

evaluation at n = 1, 2, . . .. Then {µn} is an asymptotically left invariant sequence of means on

X, and Tµn = Tn is the barycenter representation of T associated to each µn. If {xn}n∈N is a

sequence defined by (1.3) above with x0 ̸= 0, then xn /∈
∩

s∈S F (Ts) = {0} for each n ≥ 0.

However, it follows from ∥xn−Tnxn∥ → 0 that (1− e−n)xn → 0 and hence xn → 0. Therefore,

the implication from the first part of Step 2 to Step 3 still holds. One shall see our new Theorem

4.3 below applies to this example. A numerical demonstration is given in §5.

3. Bregman distance and Bregman type nonexpansive mappings

Let E be a Banach space, and let g : E → (−∞,+∞] be a convex function. Denote by

dom g = {x ∈ E : g(x) < +∞} the domain of g. For any point x in the interior of dom g, the

right-hand derivative go(x, y) of g at x in the direction y is defined as

go(x, y) = lim
t↓0

g(x+ ty)− g(x)

t
.(3.1)

The function g is said to be Gâteaux differentiable at x if limt→0
g(x+ty)−g(x)

t exists for any y ̸= 0.

In this case, go(x, y) coincides with ⟨y,∇g(x)⟩. Here, the vector ∇g(x) in E∗ is the value of the

gradient ∇g of g at x. The function g is said to be Fréchet differentiable at x if the limit in (3.1)

is attained uniformly wherever ∥y∥ = 1. The function g is said to be Gâteaux differentiable or

Fréchet differentiable if it is Gâteaux differentiable or Fréchet differentiable everywhere. Finally, g

is said to be uniformly Fréchet differentiable on a subset X of E if the limit is attained uniformly

for all x in X and ∥y∥ = 1.

It is well known that if a continuous convex function g : E → R is Gâteaux differentiable, then

∇g is norm-to-weak∗ continuous (see, e.g., [4]). It is also known that if g is Fréchet differentiable,

then ∇g is norm-to-norm continuous (see, e.g., [12]).

Let SE = {z ∈ E : ∥z∥ = 1} and Br := {z ∈ E : ∥z∥ ≤ r} for all r > 0. Define the gauge

ρr : [0,+∞) → [0,+∞] of uniform convexity of g by

ρr(t) = inf
x,y∈Br,∥x−y∥=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(αx+ (1− α)y)

α(1− α)
, ∀t ≥ 0.

Define σr : [0,+∞) → [0,+∞] by

σr(t) = sup
x∈Br,y∈SE ,α∈(0,1)

αg(x+ (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
, ∀t ≥ 0.

We call the function g strongly coercive if

lim
∥xn∥→+∞

g(xn)

∥xn∥
= +∞.
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We call g bounded on bounded subsets of E if g(Br) is bounded for each r > 0. We call g uniformly

convex on bounded subsets of E ([27], pp. 203, 221) if ρr(t) > 0 for all r, t > 0. Finally, we call g

uniformly smooth on bounded subsets of E ([27], pp. 207, 221) if limt↓0
σr(t)
t = 0 for all r > 0.

Let E be a Banach space. Let g : E → R be a convex and Gâteaux differentiable function. The

Bregman distance [3] corresponding to g is the function Dg : E × E → R defined by

Dg(x, y) = g(x)− g(y)− ⟨x− y,∇g(y)⟩, ∀x, y ∈ E.

It is clear that Dg(x, y) ≥ 0 for all x, y ∈ E. When E is a smooth Banach space, setting

g(x) = ∥x∥2, we obtain that ∇g(x) = 2Jx and hence

D∥·∥2(x, y) = ϕ(x, y), ∀x, y ∈ E.

The following definition is slightly different from that in Butnariu and Iusem [4].

Definition 3.1 ([12]). Let E be a Banach space. The function g : E → R is said to be a Bregman

function if the following conditions are satisfied.

(1) g is continuous, strictly convex and Gâteaux differentiable;

(2) the set {y ∈ E : Dg(x, y) ≤ r} is bounded for all x in E and r > 0.

Let C be a nonempty and convex subset of E. It follows from [16] that for x in E and x0 in C

we have

Dg(x0, x) = min
y∈C

Dg(y, x) if and only if ⟨y − x0,∇g(x)−∇g(x0)⟩ ≤ 0, ∀y ∈ C.(3.2)

Furthermore, if C is a nonempty, closed and convex subset of a reflexive Banach space E and

g : E → R is a strongly coercive Bregman function, then for each x in E, there exists a unique x0
in C such that

Dg(x0, x) = min
y∈C

Dg(y, x).

In this case, the Bregman projection projgC from E onto C is defined by projgC(x) = x0. It is well

known that

Dg

(
y, projgCx

)
+Dg

(
projgCx, x

)
≤ Dg(y, x), ∀y ∈ C, x ∈ E.(3.3)

See [4] for more details.

Lemma 3.2 ([18]). Let E be a Banach space and g : E → R a Gâteaux differentiable func-

tion which is uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded

sequences in E. Then

lim
n→∞

Dg(xn, yn) = 0 ⇐⇒ lim
n→∞

∥xn − yn∥ = 0.
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Let E be a reflexive Banach space. For any proper, lower semicontinuous and convex function

g : E → (−∞,+∞], the conjugate function g∗ of g is defined by

g∗(x∗) = sup
x∈E

{⟨x, x∗⟩ − g(x)}, ∀x∗ ∈ E∗.

It is well known that

g(x) + g∗(x∗) ≥ ⟨x, x∗⟩, ∀(x, x∗) ∈ E × E∗,

and

(x, x∗) ∈ ∂g ⇐⇒ g(x) + g∗(x∗) = ⟨x, x∗⟩.

Here, ∂g is the subdifferential of g [22]. We also know that if g : E → (−∞,+∞] is a proper,

lower semicontinuous and convex function, then g∗ : E∗ → (−∞,+∞] is a proper, weak∗ lower

semicontinuous and convex function; see [24] for more details.

The following lemma follows from Butnariu and Iusem [4] and Zălinscu [27].

Lemma 3.3. Let E be a reflexive Banach space and g : E → R a strongly coercive Bregman

function. Then

(1) ∇g : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;

(2) ⟨x− y,∇g(x)−∇g(y)⟩ = 0 if and only if x = y;

(3) {x ∈ E : Dg(x, y) ≤ r} is bounded for all y ∈ E and r > 0;

(4) dom g∗ = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)−1.

The following result was first proved in [5] (see also [12]).

Lemma 3.4. Let E be a reflexive Banach space, g : E → R a strongly coercive Bregman function,

and V the function defined by

V (x, x∗) = g(x)− ⟨x, x∗⟩+ g∗(x∗), x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:

(1) Dg(x,∇g∗(x∗)) = V (x, x∗) for all x in E and x∗ ∈ E∗.

(2) V (x, x∗) + ⟨∇g∗(x∗)− x, y∗⟩ ≤ V (x, x∗ + y∗) for all x in E and x∗, y∗ ∈ E∗.

We know the following two results from [27].

Theorem 3.5. Let E be a reflexive Banach space and g : E → R a convex function which is

bounded on bounded subsets of E. Then the following assertions are equivalent:

(1) g is strongly coercive and uniformly convex on bounded subsets of E;

(2) dom g∗ = E∗, g∗ is bounded and uniformly smooth on bounded subsets of E∗;

(3) dom g∗ = E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous on

bounded subsets of E∗.
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Theorem 3.6. Let E be a reflexive Banach space and g : E → R a continuous convex function

which is strongly coercive. Then the following assertions are equivalent:

(1) g is bounded and uniformly smooth on bounded subsets of E;

(2) g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm continuous on bounded subsets

of E∗;

(3) dom g∗ = E∗, g∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Definition 3.7. Let C be a nonempty, closed and convex subset of a reflexive Banach space E.

Let g : E → (−∞,+∞] be a proper, lower semicontinuous and convex function. A mapping

T : C → C is said to be

(1) Bregman quasi-nonexpansive, if F (T ) ̸= ∅ and

Dg(p, Tx) ≤ Dg(p, x), ∀p ∈ F (T ), x ∈ C.

(2) Bregman relatively nonexpansive (resp. Bregman relatively weak nonexpansive) if

i. F (T ) is nonempty;

ii. Dg(p, Tx) ≤ Dg(p, x), ∀p ∈ F (T ), x ∈ C;

iii. Fa(T ) = F (T ) (resp. Fsa(T ) = F (T )).

It is clear that quasi-nonexpansive (resp. relatively nonexpansive, relatively weak nonexpansive)

maps are exactly Bregman quasi-nonexpansive (resp. Bregman relatively nonexpansive, Bregman

weakly quasi-nonexpansive) with respect to the Bregman distance Dg with g(x) = ∥x∥2. It is

also clear that every Bregman relatively nonexpansive mapping is Bregman weakly relatively

nonexpansive, and every Bregman relatively weak nonexpansive mapping is Bregman quasi-

nonexpansive. However, the converses are in general not true. For more details, we refer the

readers to [18].

We call T : C → C a closed map if we have Tx0 = y0 whenever xn → x0 in C with Txn → y0.

It is easy to verify that any Bregman quasi-nonexpansive closed map T : C → C is a Bregman

relatively weak nonexpansive mapping. To this end, let {xn}n∈N be a sequence in C such that

xn → x ∈ C and ∥xn − Txn∥ → 0 as n → ∞. This implies that Txn → x ∈ C as n → ∞.

From the closedness of T we conclude that x ∈ F (T ). In Example 3.8 below, we see that there

exists a Bregman relatively weak nonexpansive mapping which is neither a Bregman relatively

nonexpansive mapping nor a closed mapping.

Example 3.8. Let E = l2 be the infinite separable Hilbert space with the canonical orthonormal

basis {e1, e2, . . .}. Define

yn = e1 + en, ∀n = 1, 2, . . . .

Let k be an even number in N and let g : E → R be defined by

g(y) =
1

k
∥y∥k, y ∈ E.



LOCATING COMMON FIXED POINTS 9

It is easy to show that ∇g(y) = Jk(y) for all y ∈ E, where

Jk(y) =
{
y∗ ∈ E∗ : ⟨y, y∗⟩ = ∥y∥∥y∗∥, ∥y∗∥ = ∥y∥k−1

}
.

It is also obvious that

Jk(λy) = λk−1Jk(y), ∀y ∈ E, ∀λ ∈ R.

Let S = (0,+∞). For any s ∈ S, we define Ts : E → E by

Ts(y) =


n

n+ 1
y, if y = yn for any n = 1, 2, . . .,

−s

s+ 1
y, if x ̸= yn for all n = 1, 2, . . ..

It is clear that F (Ts) = {0} for all s in S.

Let s ∈ S. For any n in N, we have

Dg(0, Tsyn) = g(0)− g(Tsyn)− ⟨0− Tsyn,∇g(Tsyn)⟩
= − nk

(n+1)k
g(yn) +

nk

(n+1)k
⟨yn,∇g(yn)⟩

= nk

(n+1)k
[−g(yn) + ⟨yn,∇g(yn)⟩]

= nk

(n+1)k
[Dg(0, yn)]

≤ Dg(0, yn).

If y ̸= yn for all n ≥ 1, then

Dg(0, Tsy) = g(0)− g(Tsy)− ⟨0− Tsy,∇g(Tsy)⟩
= − sk

(s+1)k
g(y)− sk

(s+1)k
⟨y,−∇g(y)⟩

= sk

(s+1)k
[−g(y)− ⟨−y,∇g(y)⟩]

≤ Dg(0, y).

Therefore, Ts is a Bregman quasi-nonexpansive mapping.

We claim that Ts is a Bregman relatively weak nonexpansive mapping. Indeed, for any sequence

{zn}n∈N in E such that zn → z0 and ∥zn − Tszn∥ → 0 as n → ∞, by passing to a subsequence

we can assume that zn ̸= ym for any n,m = 1, 2, . . .. This implies that Tszn = − s
s+1zn for all n.

It follows from ∥zn − Tszn∥ = 2s+1
s+1 ∥zn∥ → 0 that zn → z0 = 0 ∈ F (Ts). Thus, Ts is a Bregman

relatively weak nonexpansive mapping.

However, Ts is not Bregman relatively nonexpansive. In fact, although yn ⇀ e1 and

∥yn − Tsyn∥ =

∥∥∥∥yn − n

n+ 1
yn

∥∥∥∥ =
1

n+ 1
∥yn∥ → 0, as n → ∞,

we have e1 /∈ F (Ts) for all s in S. Therefore, Fa(Ts) ̸= F (Ts) for all s in S.

Finally, we verify that Ts is not a closed map. Let un = (1 + 1
n)y2. Then un → y2 and

Tsun = −s
1+sun → −s

1+sy2 as n → ∞ (since un ̸= ym for all n,m in N). But Tsy2 =
2
3y2 ̸=

−s
1+sy2 for

all s in S.
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4. Strong convergence theorems

In this section, we prove strong convergence theorems in a reflexive Banach space. We start

with the following simple lemma which has been proved in [20].

Lemma 4.1. Let E be a reflexive Banach space and g : E → R a convex, continuous, strongly

coercive and Gâteaux differentiable function which is bounded and uniformly convex on bounded

subsets of E. Let C be a nonempty, closed and convex subset of E. Let T : C → C be a Bregman

quasi-nonexpansive mapping. Then F (T ) is closed and convex.

Theorem 4.2. Let E be a reflexive Banach space and g : E → R a strongly coercive Bregman

function which is bounded, uniformly convex and uniformly smooth on bounded subsets of E. Let

C be a nonempty, closed and convex subset of E. Let {Tn}n∈N be a family of Bregman relatively

weak nonexpansive mappings from C into C such that F :=
∩∞

n=1 F (Tn) ̸= ∅. Let {αn}n∈N be a

sequence in (0, 1) such that limn→∞ αn = 0.

Let {xn}n∈N be a sequence generated by

x0 = x ∈ C chosen arbitrarily,

C1 = C,

x1 = projgC1
x0

yn,k = ∇g∗[αn∇g(x1) + (1− αn)∇g(Tkxn)], k = 1, 2, . . . , n,

Cn+1 = {z ∈ Cn : max1≤k≤nDg(z, yn,k) ≤ αnDg(z, x1) + (1− αn)Dg(z, xn)},

xn+1 = projgCn+1
x1.

(4.1)

Then, all {xn}n∈N, {Tnxn}n∈N, and {yn,k}n∈N converge strongly to projgFx1, where k is any fixed

positive integer.

Proof. We divide the proof into several steps.

Step 1. We show that Cn is closed and convex for each n in N.

By assumption, C1 = C is closed and convex. Suppose that Cm is closed and convex for some

m in N. For z ∈ Cm+1, by definition, z ∈ Cm, and

Dg(z, ym,k) ≤ αmDg(z, x1) + (1− αm)Dg(z, xm), ∀k = 1, 2, . . . ,m.

This implies that

g(z)− g(ym,k)− ⟨z − ym,k,∇g(ym,k)⟩
≤ αm[g(z)− g(x1)− ⟨z − x1,∇g(x1)⟩]

+ (1− αm)[g(z)− g(xm)− ⟨z − xm,∇g(xm)⟩], ∀k = 1, 2, . . . ,m,
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which is equivalent to

⟨z − ym,k,−∇g(ym,k)⟩+ αm⟨z − x1,∇g(x1)⟩+ (1− αm)⟨z − xm,∇g(xm)⟩
≤ g(ym,k)− αmg(x1)− (1− αm)g(xm), ∀k = 1, 2, . . . ,m.

Now, it is plain that the closedness and convexity of Cm ensure those of Cm+1. By the principle

of induction, Cn is closed and convex for each n in N.

Step 2. We claim that F ⊂ Cn for all n in N.

Noticing that F ⊂ C1 = C, we assume F ⊂ Cm for some m in N. Owing to Lemma 3.4, for

any w ∈ F ⊂ Cm and k = 1, 2, . . . ,m we obtain

Dg(w, ym,k) = Dg(w,∇g∗[αm∇g(x1) + (1− αm)∇g(Tkxm)])

= V (w,αm∇g(x1) + (1− αm)∇g(Tkxm))

= g(w)− ⟨w,αm∇g(x1) + (1− αm)∇g(Tkxm)⟩
+g∗(αm∇g(x1) + (1− αm)∇g(Tkxm))

≤ αmg(w) + (1− αm)g(w)− αm⟨w,∇g(x1)⟩ − (1− αm)⟨w,∇g(Tkxm)⟩
+αmg∗(∇g(x1)) + (1− αm)g∗(∇g(Tkxm))

= αmV (w,∇g(x1)) + (1− αm)V (w,∇g(Tkxm))

= αmDg(w, x1) + (1− αm)Dg(w, Tkxm)

≤ αmDg(w, x1) + (1− αm)Dg(w, xm).

(4.2)

Thus we have w ∈ Cm+1. The assertion follows from induction.

Step 3. We shall show that {xn}n∈N, {Tkxn}n∈N and {yn,k}n∈N are bounded sequences in C.

Using (3.3), we get

Dg(xn, x1) = Dg

(
projgCn

x1, x1
)
≤ Dg(w, x1)−Dg(w, xn)

≤ Dg(w, x1), ∀w ∈ F ⊂ Cn, n ∈ N.

This entails the boundedness of the sequence {Dg(xn, x1)}n∈N and hence there exists M1 > 0 such

that

Dg(xn, x1) ≤ M1, ∀n ∈ N.(4.3)

In view of Lemma 3.3(3), we conclude that the sequence {xn}n∈N is bounded. Since Tk is Bregman

relatively weak nonexpansive, for any q in F one has

Dg(q, Tkxn) ≤ Dg(q, xn), ∀k, n ∈ N.

This, together with Definition 3.1(2) and the boundedness of {xn}n∈N implies that the sequence

{Tkxn}n∈N is bounded for any fixed k = 1, 2, . . .. Indeed, from the boundedness of {xn}n∈N we

conclude that {∇g(xn)}n∈N is bounded (see, e.g., [4]). Also {g(xn)}n∈N is bounded too by the

assumption. On the other hand, from the definition of Bregman distance, we know that

Dg(q, xn) = g(q)− g(xn)− ⟨q − xn,∇g(xn)⟩ ≤ |g(q)|+ |g(xn)|+ ∥g(q)∥∥∇g(xn)∥,

which ensures the boundedness of Dg(q, xn).
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It follows from Lemma 3.3 and (4.2) that the sequence {yn,k}n∈N is bounded.

Step 4. We show that xn → u for some u in F , and u = projgFx1.

By the construction of Cn, we conclude that Cm ⊂ Cn and xm = projgCm
x1 ∈ Cm ⊂ Cn for any

positive integer m ≥ n. This, together with (3.3), implies that

Dg(xm, xn) = Dg

(
xm, projgCn

x1

)
≤ Dg(xm, x1)−Dg

(
projgCn

x1, x1

)
= Dg(xm, x1)−Dg(xn, x1).(4.4)

In view of (3.3) again, we conclude that

Dg(xn, x1) ≤ Dg(xm, xn) +Dg(xn, x1) ≤ Dg(xm, x1), ∀m ≥ n.

This proves that {Dg(xn, x1)}n∈N is an increasing sequence in R and hence by (4.3) the limit

limn→∞Dg(xn, x1) exists. Letting m,n → ∞ in (4.4), we deduce that Dg(xm, xn) → 0. Since

{xn}n∈N is bounded, Lemma 3.2 ensures that ∥xm − xn∥ → 0 as m,n → ∞. In other words,

{xn}n∈N is a Cauchy sequence. Since C is complete, there exists u in C such that

lim
n→∞

∥xn − u∥ = 0.(4.5)

Let us show that u ∈ F . As xn+1 ∈ Cn+1, we are led to

Dg(xn+1, yn,k) ≤ αnDg(xn+1, x1) + (1− αn)Dg(xn+1, xn), ∀k = 1, 2, . . . , n.

It follows from (4.4) that

lim
n→∞

Dg(xn+1, xn) = 0.(4.6)

Hence,

lim
n→∞

Dg(xn+1, yn,k) = 0, ∀k = 1, 2, . . . .(4.7)

Employing Lemma 3.2 and (4.6)-(4.7), we deduce that

lim
n→∞

∥xn+1 − xn∥ = 0 and lim
n→∞

∥xn+1 − yn,k∥ = 0, ∀k = 1, 2, . . . .

Consequently, it turns out from (4.5) that for any fixed k = 1, 2, . . . we have

lim
n→∞

∥yn,k − u∥ = 0.

Also, in view of (4.1), for any fixed k = 1, 2, . . ., we have

∇g(yn,k)−∇g(Tkxn) = αn(∇g(x1)−∇g(Tkxn)).

Because {Tkxn} is bounded and αn → 0, we have

lim
n→∞

∥∇g(yn,k)−∇g(Tkxn)∥ = 0, ∀k = 1, 2, . . . .

Since ∇g∗ is uniformly norm-to-norm continuous on any bounded subset of E by Theorem 3.6,

we obtain form Lemma 3.3 that

lim
n→∞

∥yn,k − Tkxn∥ = 0, ∀k = 1, 2, . . . .
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Moreover, the triangle inequality

∥xn − Tkxn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn,k∥+ ∥yn,k − Tkxn∥

implies that

lim
n→∞

∥xn − Tkxn∥ = 0, ∀k = 1, 2, . . . .

Therefore, u is the strong limit of all sequences {xn}, {yn,k} and {Tkxn}, for all fixed k = 1, 2, . . ..

In particular, u is a strong asymptotic fixed point of the Bregman relatively weak nonexpansive

mapping Tk. Therefore, Tku = u, for all k = 1, 2, . . ., and thus u in F .

Finally, we show that u = projgFx1. From xn = projgCn
x1, we conclude that

⟨z − xn,∇g(xn)−∇g(x1)⟩ ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn, for each n in N, we have

⟨z − xn,∇g(xn)−∇g(x1)⟩ ≥ 0, ∀z ∈ F.(4.8)

Letting n → ∞ in (4.8), we deduce that

⟨z − u,∇g(u)−∇g(x1)⟩ ≥ 0, ∀z ∈ F.

In view of (3.2), we have u = projgFx1, which completes the proof. �

Here is the correct version of Assertion 1.1. Note that the construction of the closed convex

sets Cn is a bit different from those in [9, Theorem 4.1]. Moreover, we can now deal with the more

general case of weakly relative nonexpansive representations than that of relative nonexpansive

representations in [9].

Theorem 4.3. Let C be a nonempty, closed and convex subset of a uniformly convex and uni-

formly smooth Banach space E. Let T = {T (s) : s ∈ S} be a representation of a left reversible

semigroup S as maps from C into C with common fixed point set F (T ) ̸= ∅. Assume that every

point in C is almost periodic for T . Let X be a rich subspace of ℓ∞(S) for T , and let {µn}n∈N be

an asymptotically left invariant sequence of means on X. Let Tµn be the barycenter representation

of T associated to each µn. Assume one of the following conditions holds.

(a) all Tµn are relatively weak nonexpansive.

(b) all T (s) are nonexpansive.

(c) all T (s) are norm-to-weak continuous and quasi-nonexpansive.
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Let {αn}n∈N be a sequence in (0, 1) such that limn→∞ αn = 0. Let {xn}n∈N be a sequence generated

by the following algorithm

x0 = x ∈ C chosen arbitrarily,

C1 = C,

x1 = ΠC1x0,

yn,k = J−1[αnJx1 + (1− αn)JTµk
xn)], ∀k = 1, 2, . . . n,

Cn+1 = {z ∈ Cn : max1≤k≤n ϕ(z, yn,k) ≤ αnϕ(z, x1) + (1− αn)ϕ(z, xn)]},
xn+1 = ΠCn+1x1.

(4.9)

Then {xn}n∈N converges strongly to the common fixed point ΠF (T )x1 of T .

Proof. (a) Assume that all Tµn are relatively weak nonexpansive. We consider here the Bregman

distance Dg(x, y) = ϕ(x, y) with g(x) = ∥x∥2. Then Tµ is Bregman relatively weak nonexpansive

mappings from C into C for Dg. Applying Theorem 4.2 to the family {Tµn}, we get a strong limit

u = limn xn = Π∩∞
n=1 F (Tµn )

x1, which is a common fixed point of all Tµn . It follows from (1.2)

that F (T ) =
∩∞

n=1 F (Tµn). Hence, we have u = ΠF (T )x1.

(b) Assume to start with all T (s) being nonexpansive, and thus quasi-nonexpansive. Let Tµ be

a barycenter of {T (s) : s ∈ S} for a mean µ on X. We consider µ as a norm one functional of

functions in s. Let xn → u and limn ∥Tµxn−xn∥ = 0. As in [9, p. 3416], we have ∥Tµx∥ ≤ µ∥T (·)x∥
for all x in C. Thus,

∥Tµu− u∥ = lim
n

∥Tµu− Tµxn∥ ≤ lim
n

µ∥T (·)u− T (·)xn∥ ≤ lim
n

µ∥u− xn∥ = 0.

Therefore, Tµu = u. This says that all barycenters Tµk
are weak relatively nonexpansive. We

apply case (a).

(c) Assume in the beginning that all T (s) are quasi-nonexpansive maps from C into C. The

arguments in [9, p. 3417] shows that the barycenter representation Tµ of the family T is also

quasi-nonexpansive for any mean µ on X. Now suppose further that all T (s) are norm-to-weak

continuous, and thus so are their barycenters Tµk
. If xn → u and limn ∥Tµk

xn − xn∥ = 0, then by

the norm-to-weak continuity of Tµ we have Tµxn ⇀ Tµu, and thus Tµk
u = u. Therefore all Tµk

are relatively weak nonexpansive. We apply case (a) to finish the proof. �
Remark 4.4. (1) As been pointed out earlier, closed quasi-nonexpansive maps are relatively

weak nonexpansive, and thus so are norm-to-weak continuous quasi-nonexpansive maps.

On the other hand, nonexpansive maps are norm-to-norm continuous, and thus (b) is

indeed a special case of (c).

(2) Suppose instead all T (s) are relatively weak nonexpansive. We do not know, however, if

the barycenter Tµ for a mean µ on X is relatively weak nonexpansive as well.

Remark 4.5. Theorems 4.2 and 4.3 improve Assertion 1.1 in the following aspects.

(1) We extend the duality mapping J to the more general case, that is, the gradient ∇g of a

convex, continuous and strongly coercive Bregman function g which is bounded, uniformly

convex and uniformly smooth on bounded subsets.
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(2) We extend our discussion from relatively nonexpansive mappings to Bregman weakly relatively

nonexpansive mappings. We replace the assumption Fa(T ) = F (T ) with the weaker one

Fsa(T ) = F (T ). Here, Fa(T ) and Fsa(T ) are the set of asymptotic fixed points and the set of

strong asymptotic fixed points of T , respectively.

Remark 4.6. The main result of [26] gave a strong convergence theorem to approximate common

fixed points of a family of closed relatively nonexpansive mappings, while the present paper give a

strong convergence theorem to approximate common fixed points of a family of Bregman relatively

weak nonexpansive mappings. We note that the proof of [26, Theorem 3.2], more precisely, line

15 where the authors used the closedness of the mappings Sλ, is not valid in our discussion, as

Example 3.8 demonstrates. We note also that the proof of [11, Theorem 3.2], where the authors

used the relatively nonexpansivity of the mappings Sλ, is not valid in our discussion, either. In

fact, our result extends and improves the corresponding results of [11, 26].

Let E be a reflexive Banach space with the dual space E∗. Let A : E → 2E
∗
be a set-valued

mapping with dom A = {x ∈ E : Ax ̸= ∅}. The graph of A is G(A) = {(x, x∗) ∈ E × E∗ :

x∗ ∈ Ax}. The mapping A ⊂ E × E∗ is said to be monotone if ⟨x − y, x∗ − y∗⟩ ≥ 0 whenever

(x, x∗), (y, y∗) ∈ A. It is said to be maximal monotone if its graph is not contained in the graph

of any other monotone operator on E. If A ⊂ E × E∗ is maximal monotone, then the set

A−10 = {z ∈ E : 0 ∈ Az} is closed and convex. See [21] for details.

Let g : E → (−∞,+∞] be a proper, lower semicontinuous and convex function. Let A be a

maximal monotone operator from E to 2E
∗
. For any r > 0, define the g-resolvent ResgrA : E →

dom A by

ResgrA = (∇g + rA)−1∇g.

It is known that ResgrA is Bregman relatively weak nonexpansive and A−1(0) = F
(
ResgrA

)
for

each r > 0. Examples and some important properties of such operators are discussed in [1, 2, 23].

An application of Theorem 4.2 gives the following.

Theorem 4.7. Let E be a reflexive Banach space and g : E → R a strongly coercive Bregman

function which is bounded, uniformly convex and uniformly smooth on bounded subsets of E. Let

A be a maximal monotone operator from E to E∗ such that A−1(0) ̸= ∅. Let {rn}n∈N ⊂ (0,+∞) be

a sequence of positive real numbers. Let {αn}n∈N be a sequence in (0, 1) such that limn→∞ αn = 0.

Let {xn}n∈N be a sequence generated by

x0 = x ∈ E chosen arbitrarily,

C1 = E,

x1 = projgC1
x0,

yn,k = ∇g∗
[
αn∇g(x1) + (1− αn)∇g

(
ResgrkAxn

)]
, ∀k = 1, 2, . . . n,

Cn+1 = {z ∈ Cn : max1≤k≤nDg(z, yn,k) ≤ αnDg(z, x1) + (1− αn)Dg(z, xn)},

xn+1 = projgCn+1
x1, ∀n = 1, 2, . . . .
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Then the sequence {xn}n∈N converges strongly to projg
A−1(0)

x1 as n → ∞.

5. A numerical example

In this section, in order to demonstrate the effectiveness, realization and convergence of Algo-

rithm (4.1) in Theorem 4.2, we consider the following simple example.

Example 5.1. Let E = R, C = [0,+∞) and Tk : C → C be defined by

Tk(x) =

{
0, if x ∈ [0, 2],

e−kx, otherwise.

Then {Tk}k∈N is a family of quasi-nonexpansive mapping from C into C such that F =∩+∞
k=1 F (Tk) = {0}. Indeed, for any x ∈ (2,+∞), we have

|Tkx− 0| = e−kx ≤ |x− 0|, ∀k ≥ 1.

It is worth mentioning that Tk is neither nonexpansive nor continuous for all k in N. Let g(t) = t2

be the Bregman function on R.

In this case, Algorithm (4.1) in Theorem 4.2 states as follows:

x0 = x ∈ (0,+∞) chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn,k = αnx1 + (1− αn)Tkxn, k = 1, 2, · · · , n,
Cn+1 = {z ∈ Cn : max1≤k≤n |z − yn,k|2 ≤ αn|z − x1|2 + (1− αn)|z − xn|2},
xn+1 = PCn+1x.

(5.1)

We set

Hn,k = {z ∈ E : |z − yn,k|2 ≤ αn|z − x1|2 + (1− αn)|z − xn|2}.
Observe that

|z − yn,k|2 =|αn(z − x1) + (1− αn)(z − Tkxn)|2

=αn(z − x1)
2 + (1− αn)(z − Tkxn)

2 − αn(1− αn)(Tkxn − x1)
2.

It follows

Hn,k = {z ∈ E : z ≤ αn(Tkxn − x1)
2

2(xn − Tkxn)
+

xn + Tkxn
2

}.

Note that xn − Tkxn > 0 if xn > 0. Hence, Cn+1 = Cn ∩ (
∩n

k=1Hn,k) is a closed interval for all

n = 0, 1, 2, . . .. Write Cn+1 = [an+1, bn+1]. Then

xn+1 = PCn+1x =


x, if x ∈ [an+1, bn+1];

bn+1, if x > bn+1;

an+1, if x < an+1.
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Figure 1. The plots of the sequence {xn}n∈N in Example 5.1 with initial value

x0 = 1 under different weight parameters αn.

Choose x0 = x = 2.5. The iteration process (5.1) produces

(5.2) xn+1 = min
1≤k≤n

{
αn(Tkxn − x1)

2

2(xn − Tkxn)
+

xn + Tkxn
2

}
.

With different choices of the weights αn = n−1, n−2, n−3, we demonstrate in Figure 1 the

convergence of the sequence {xn}n∈N generated by (5.2) to the unique common fixed point 0.

Note that using smaller values of αn means that the effect of x1 in producing Cn is weakening.

In this easy example, the efficiency of the algorithm is improved drastically.
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