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1 Introduction

A projection P W E ! E on a Banach spaceE is a bounded linear operator such that P 2 D P . The range space PE
has a topological complementary subspace .I �P /E, in the sense that E D PEC .I �P /E is a topological direct
sum of closed linear subspaces. An orthogonal projection q W H ! H on a Hilbert spaceH is a bounded self-adjoint
projection, i.e., q D q2 D q�. In this case, the range space qH has an orthogonal complementary subspace .I�q/H ,
in the sense thatH D qH C .I �q/H with qH?.I �q/H , or equivalently, kqhC˛.I �q/kk D kqh�˛.I �q/kk
for all scalars ˛ and all vectors h; k in H .

There are non-orthogonal projections onH . For example,P.x; y/ D .x�y=2; 0/ is a non-orthogonal projection
on the two-dimensional Hilbert space, with complementary projection I � P sending .x; y/ to .y=2; y/. Clearly,
orthogonal projections carry richer structure than non-orthogonal projections.

Recently, there are some efforts in looking for suitable generalizations of orthogonal projections in the Banach
space setting. See [1, 2, 7–16, 18, 23–25, 29–31, 34, 35, 38, 39, 42, 43]. The main task is to get rid of the involution
in defining an orthogonal projection.

Observe that a bounded linear operator P W E ! E on a Banach space is a projection if and only if T D 2P �I
is a symmetry, i.e., T 2 D I . For an orthogonal projection q on a Hilbert space, U D 2q � I is a self-adjoint
symmetry. It amounts to say that U is a self-adjoint unitary, or equivalently, a surjective (linear) isometry with
spectrum �.U / D f1;�1g. In this set up, q and I � q are the eigenprojections of U associated to the eigenvalues 1
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and�1, respectively. This motivates us to call a (necessarily proper) projection P on a Banach spaceE a generalized
orthogonal projection if P and I � P are the eigenprojections of a surjective isometry T on E with T 2 D I

associated to its eigenvalues 1 and �1, respectively. In this setting,

T D P � .I � P / D 2P � I and P D
I C T

2
: (1)

Generalized orthogonal projections give rise to orthogonal decompositions of Banach spaces into closed subspaces
in the following sense. According to [41], two elements x; y in a Banach space E are said to be Roberts orthogonal
if kx C �yk D kx � �yk for all scalars �. It is just by the definition that elements in PE are Roberts orthogonal
to elements in .I � P /E if and only if P is a generalized orthogonal projection. The Roberts orthogonality can be
considered as one of the strongest orthogonalities among others commonly used in the general Banach space setting;
see, e.g., [3, 4].

Note that the spectrum of a surjective isometry is contained in the unit circle T of the complex plane. We call a
projection P on a Banach space E a generalized bicircular projection if there is a surjective isometry T W E ! E

with spectrum �.T / D fe2�r i; e2�s ig for some real numbers r; s such that P and I � P are eigenprojections of
T associated to e2�r i and e2�s i, respectively. Replacing T with e�2�r iT , we can assume that e2�r i D 1. In this
setting,

T D P C e2�s i.I � P / and P D
T � e2�s iI

1 � e2�s i :

When e2�s i D �1, i.e., 2�s is the straight angle (mod 2�), we see that P D ICT
2

is a generalized orthogonal
projection.

There is another way to make the generalization. Observe that a projection q on a Hilbert space is self-adjoint if
e2�t iq is a unitary for all real t . Note that

e2�t iq
D

1X
nD0

.2�t iq/n

nŠ
D I C q

"
1X
nD1

.2�t i/n

nŠ

#
D I C qŒe2�t i

� 1� D e2�t iq C .I � q/:

Therefore, q is self-adjoint if and only if qCe�2�t i.I �q/ is a surjective isometry for all real t . We call a projection
P on a Banach space a hermitian projection if e2�t iP is a surjective isometry for all real t , and we callP a bicircular
projection if P Ce2�s i.I �P / is a surjective isometry for all real s. Above arguments say that hermitian projections
are exactly bicircular projections, see [34, Lemma 2.1].

In [39, Theorem 1], one sees that a projection P on a Banach spaceE is hermitian if it is a generalized bicircular
projection for some irrational angle s in R nQ, i.e., T D P C e2�s i.I � P / is a surjective isometry. Indeed, T n D
P Ce2ns� i.I �P /will be again surjective isometry onE for all n D 1; 2; : : :. Since s is irrational, the set fe2ns� i W

n D 1; 2; : : :g is dense in the complex unit circle T. With a continuity argument, we see that P C e2�t i.I � P / is a
surjective isometry for all real t , and thus P is hermitian. Therefore, the study of generalized bicircular projections
emphasis on those associated to rational angles. According to [39, Theorem 3], for each rational angle r there is a
Banach space Er and a non-hermitian generalized bicircular projection P on Er such that P C e2�r i.I � P / is a
surjective isometry on Er .

Obviously, all the notions of generalized orthogonal projections, generalized bicircular projections, bicircular
projections, and hermitian projections coincide with that of orthogonal projections in the Hilbert space setting. On
the other hand, only generalized orthogonal projections survive on the C*-algebra C0.�/ of continuous functions
when the underlying locally compact Hausdorff space � is connected. If � has a proper component Y then the
projection Pf D 1Y f is a nonzero hermitian projection on C0.�/, where 1Y is the indicator function of Y . See,
e.g., [7, 12, 32].

After the efforts in studying generalized bicircular projections, people define the notion of generalized tricircular
projections. We call a projection P0 on a Banach space E a generalized tricircular projection if there is a surjective
isometry T W E ! E with spectrum �.T / D f�0; �1; �2g consisting of three distinct eigenvalues of modulus one,
such that P0 is the eigenprojection of T associated to �0. Replacing T with �0T , we can assume �0 D 1. Let
P1 and P2 be the nonzero eigenprojections of T associated to the other two modulus one eigenvalues �1 and �2,
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respectively. Then
P0 C P1 C P2 D I and P0 C �1P1 C �2P2 D T:

Generalized tricircular projections on C.�/ for a connected compact Hausdorff space � were studied in [2].
Analogously, one can study projections P0 on E which are eigenprojections of surjective isometries on E with

spectrum consisting of n distinct eigenvalues, and without loss of generality it can be assumed that P0 is associated
to the eigenvalue 1. This leads to the notion of generalized n-circular projections.

In this paper, we study generalized n-circular projections on JB*-triples and Hilbert C0.�/-modules. As a
special case of JB*-triples, Hilbert C0.�/-modules M are in one-to-one correspondence to Hilbert bundles H over
� such that M is the Banach space of continuous sections f W � ! H vanishing at infinity, and every surjective
isometry between Hilbert C0.�/-modules arises exactly from an isometric isomorphism between the underlying
Hilbert bundles. See, e.g., [26, 27]. In this sense, next to Hilbert spaces, Hilbert C0.�/-modules are the natural
objects on which we consider generalized n-circular projections.

2 Generalized n-circular projections

Ever since the papers [20] and [42], various classes of projections on JB*-triples attract many attention in literature.
According to [22, Theorem 4], see also [29, Theorem 2.1], every generalized bicircular projection on a JB*-triple
is generalized orthogonal or hermitian (hence also generalized orthogonal). Below we give a geometric meaning of
such projections. We shall say that a subtriple J1 is complementary to J2 if ker.J1/ D J2 and J D J1CJ2. Here,

ker.J1/ WD fy 2 J W fx; y; zg D 0;8x; z 2 J1g

is an inner ideal of J . Note that J1 \ ker.J1/ D f0g. See [20] for details. We also refer the readers to [17] for the
general theory of JB*-triples.

Theorem 2.1. Let P be a generalized bicircular projection on a JB*-triple J . Then P is a generalized orthogonal
projection, and J D PJ C .I � P /J is a direct sum of JB*-subtriples. Furthermore, P is hermitian if and only if
PJ and .I � P /J are complementary to each other.

Proof. By [39, Corollary 2], every generalized bicircular projection P is bicontractive, i.e., both P and I � P are
contractive projections. It is pointed out in [22, Theorem 4] that a bicontractive projection of a JB*-triple is also a
generalized orthogonal projection.

Since the range of a bicontractive projection of a JB*-triple is a JB*-subtriple ([22, Proposition 3.1]), P gives
rise to a decomposition of the JB*-triple J D PJ C .I � P /J into a direct sum of two JB*-subtriples.

It is indicated in [42] that a projection P on J is hermitian if and only if P is a skew derivation, which means

P fx; y; zg D fPx; y; zg � fx; Py; zg C fx; y; P zg; 8x; y; z 2 J :

Suppose that P is hermitian. We claim that in this case the JB*-subtriples PJ and .I �P /J are complementary to
each other. Notice that for any modulus one complex scalar �, the surjective isometry T D P C �.I �P / is a triple
isomorphism by [36, Proposition 5.5], i.e., T preserves the triple products. Consequently, we have

T fPx; .I � P /y; P zg D fTPx; T .I � P /y; TP zg

D �fPx; .I � P /y; P zg; 8x; y; z 2 J :

On the other hand, since both P and I � P are skew derivations, we have

T fPx; .I � P /y; P zg D P fPx; .I � P /y; P zg C �.I � P /fPx; .I � P /y; P zg

D 2fPx; .I � P /y; P zg � �fPx; .I � P /y; P zg:

Therefore,

.2 � � � �/fPx; .I � P /y; P zg D 0:
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Choosing any modulus one � ¤ 1, we have

fPx; .I � P /y; P zg D 0:

It amounts to say that .I � P /J � ker.PJ /. Conversely, if fPx; y; P zg D 0 for all x; z in J then

fPy;Py; Pyg D fPy; y; Pyg � fPy; .I � P /y; Pyg D 0:

This forcesPy D 0, and thus y D .I�P /y. Therefore, ker.PJ / D .I�P /J . Analogously, ker..I�P /J / D PJ .
Let us prove the converse. Suppose that ker.PJ / D .I � P /J and ker..I � P /J / D PJ . Then for all

x; y; z 2 J we have

fPx;Py; P zg D fPx; y; P zg; (2)

fx; Py; zg � fPx;Py; zg � fx; Py; P zg C fPx;Py; P zg D 0: (3)

Since P is generalized orthogonal, 2P � I is an isometry, and thus a triple isomorphism. Hence

.2P � I /fx; y; zg D f.2P � I /x; .2P � I /y; .2P � I /zg; 8x; y; z 2 J :

From the above, using (2) and (3), we get

.2P � I /fx; y; zg D 4.fPx;Py; P zg � fx; Py; P zg � fPx;Py; zg C fx; Py; zg/

C2.fPx; y; zg � fx; Py; zg C fx; y; P zg/ � fx; y; zg

D 2.fPx; y; zg � fx; Py; zg C fx; y; P zg/ � fx; y; zg;

which implies that P is a skew derivation, hence a hermitian projection.

In [37, Theorem 5], it is shown that every isolated point in the spectrum �.T / of a surjective isometry T on a Banach
space is an eigenvalue of T with a complemented eigenspace. In particular, if �.T / D f�0; �1; : : : ; �n�1g then all
�i ’s are eigenvalues, and the associated eigenprojections Pi ’s satisfy

P0 ˚ P1 ˚ � � � ˚ Pn�1 D I and T D P0 C �1P1 C � � � C �n�1Pn�1:

Here, we write P ˚Q to indicate that the Banach space projections P and Q disjoint from each other, i.e., PQ D
QP D 0. By [37, Corollary 3], vectors x; y from different eigenspaces are James orthogonal, i.e., kxk � kxC ˛yk
for all scalars ˛.

The following definition is equivalent to the one given in [31] but different from [1, 2, 7].

Definition 2.2. Let P0 be a nonzero projection on a complex Banach space E, and n � 2. We call P0 a generalized
n-circular projection if there exists a surjective isometry T W E ! E with �.T / D f1; �1; : : : ; �n�1g consisting of
n distinct modulus one eigenvalues such that P0 is the eigenprojection of T associated to �0 D 1. In this case, there
are nonzero projections P1; : : : ; Pn�1 on E such that

P0 ˚ P1 ˚ � � � ˚ Pn�1 D I and T D P0 C �1P1 C � � � C �n�1Pn�1:

We also say thatP0 is a generalized n-circular projection associated with .�1; : : : ; �n�1; P1; : : : ; Pn�1/. Moreover,
we call P0 a proper generalized n-circular projection if it is not a generalized k-circular projection for any integer
1 < k < n.

It follows from the spectral theory that the surjective isometry T in Definition 2.2 is periodic, i.e., Tm D I for some
integer m � n, if and only if all its eigenvalues 1; �1; : : : ; �n�1 are mth roots of unity. In this case, we can write

Pi D
I C �iT C � � � C �

m�1
i

Tm�1

m
; i D 0; 1; : : : ; n � 1:

We call the generalized n-circular projection P0 periodic (resp. primitive) if it is an eigenprojection of a periodic
surjective isometry T of period m � n (resp. of period m D n). In [1, 7] the authors assume generalized n-circular
projections to be primitive.
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Lemma 2.3. Let P0 be a generalized n-circular projection (n � 3) on a Banach space E, associated with
.�1; : : : ; �n�1; P1; : : : ; Pn�1/. If P0 is a proper generalized n-circular projection then all �1; : : : ; �n�1 are of
finite order. In particular, the surjective isometry

T D P0 C �1P1 C � � � C �n�1Pn�1

is periodic, i.e., Tm D I for some positive integer m.

Proof. Let �0 D 1 and T D �0P0C�1P1C� � �C�n�1Pn�1. Suppose that there is some modulus one �i that is not
of finite order. Without loss of generality we assume that it is �n�1. Let us define S D �n�1T , and �i D �i�n�1,
i D 0; : : : ; n�1. Then S D �0P0C� � �C�n�2Pn�2C�n�1Pn�1. Notice that �0 has infinite order, and �n�1 D 1.

Suppose that �0; : : : ; �k�1 have infinite order, and �k ; : : : ; �n�1 have finite order, 1 � k � n � 1. For some
positive integer l we have

S l D �l0P0 C � � � C �
l
k�1Pk�1 C Pk C � � � C Pn�1:

For simplicity of notations, we write Q D Pk C � � � C Pn�1, and �i D �li , i D 0; : : : ; k � 1. Then we have

S l D �0P0 C � � � C �k�1Pk�1 CQ:

If k D 1 then P0 is generalized bicircular, which is a contradiction. Thus in the sequel we assume that k � 2.
Write �j D e2rj� i for j D 0; : : : ; k � 1. By assumption, all rj are irrational numbers in [0,1]. Assume first

that the set fr0; : : : ; rk�1g is rational linearly independent, i.e., any rational linear relationship
Pk�1
jD0mj rj D 0

(mod 1) with integers m0; : : : ; mk�1 is trivial; namely, m0 D � � � D mk�1 D 0. For any distinct modulus one
scalars ˛0, . . . , ˛k�1, with ˛k�1 D 1, by Kronecker’s theorem (see, e.g., [5, Theorem 7.10]), we have a sequence
fqi gi of positive integers such that

lim
i
�
qi
j
D lim

i
e2qirj� i

D j̨ ; 8j D 0; 1; : : : ; k � 1:

By continuity, we see that
˛0P0 C � � � C ˛k�2Pk�2 C Pk�1 CQ

is a surjective isometry, which conflicts with the properness assumption on P0.
Suppose now the set fr0; : : : ; rk�1g is rational linearly dependent. We fix a maximal rational linearly

independent subset of it, fr0; : : : ; rh�1g, say. Then all rh; : : : ; rk�1 are rational linearly dependent on members
in this subset.

If h D 1, then r1; : : : ; rk�1 are all rational multiples of r0. Let c0; : : : ; ck�1 be positive integers such that

c0ri D ci r0; 8i D 0; 1; : : : ; k � 1:

Changing the indices if necessary, we can assume further that c0 < c1 < � � � < ck�1. Consider the surjective
isometry

�
c0
k�1

P0 C �
c1
k�1

P1 C � � � C �
ck�1
k�1

Pk�1 CQ:

Using Kronecker’s theorem, we have a sequence fhngn of positive integers such that

lim
n
�
hn
k�1
D e2� i=ck�1 :

Then we will have a surjective isometry

e2c0� i=ck�1P0 C � � � C e
2ck�2� i=ck�1Pk�2 C .Pk�1 CQ/:

This provides a contradiction since P0 is a proper generalized n-circular projection.
Suppose h � 2. Let

fj .r0; : : : ; rh�1/ D mrj ;
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wherem is a positive integer and fj are polynomials in h variables with integral coefficients for all j D h; : : : ; k�1.
Choose distinct modulus one scalars ˛0; : : : ; ˛h�1, with ˛h�1 D 1, with arguments 2s0� i=m; : : : ; 2sh�1� i=m
such that the set fs0; : : : ; sh�1g is rational linearly independent. Notice that sh�1 D m, and fj .s0; : : : ; sh�1/ does
not belong to the Q-span of the set fs0; : : : ; sh�1g for j D h; : : : ; k � 1 by the independence. The arguments as
above will bring us a surjective isometry

˛0P0 C ˛1P1 C � � � C ˛h�2Ph�2 C ˛hPh C � � � C ˛k�1Pk�1 C .Ph�1 CQ/

to establish a contradiction again.

3 Generalized n-circular projections on Hilbert C0.�/-modules

Let � be a locally compact Hausdorff space, and let C0.�/ denote the algebra (with usual pointwise operations) of
all continuous complex-valued functions on � vanishing at infinity. Equipped with the involution f �.w/ D f .w/

and the supremum norm, C0.�/ is a commutative C*-algebra, thus a JB*-triple. According to [22, Theorem 4],
every generalized bicircular projection on C0.�/ is hermitian, or generalized orthogonal.

Surjective isometries T WC0.�/ ! C0.�/ are weighted composition operators. By the Banach-Stone theorem
(see, e.g., [6, Theorem 7.1]), there exist a homeomorphism �W� ! �, and a continuous unimodular function
uW�! C (that is, a continuous function satisfying ju.w/j D 1 for every w in �), such that

Tf .w/ D u.w/f .�.w//; 8f 2 C0.�/;8w 2 �:

Using this, we can write down explicitly the structure of a generalized bicircular projection on C0.�/. See, e.g.,
[7, 12]. We want to extend this line to generalized n-circular projections on Hilbert C*-modules over C0.�/.

Recall that a (right complex) Hilbert C�-module M over a C�-algebra A, also called a Hilbert A-module, is a
right A-module equipped with an A-valued inner product h�; �i WM �M! A such that

1. hx; yai D hx; yia for all x; y in M and a in A;
2. hx; yi� D hy; xi for all x; y in M;
3. hx; xi � 0, and hx; xi D 0 exactly when x D 0.

Moreover, M is a Banach space equipped with the norm kxk D khx; xik1=2. We note that any C*-algebra A is
itself a Hilbert A-module with the inner product ha; bi D a�b. See e.g. [40] for more information about Hilbert
C*-modules.

We know from [33, Theorem 1.4] that every Hilbert C�-module is a JB�-triple with respect to the Jordan triple
product given by

fx; y; zg D
1

2
.xhy; zi C zhy; xi/:

Therefore, by [22, Theorem 4], we see that all generalized bicircular projections on Hilbert C*-modules are hermitian
or generalized orthogonal.

Remark 3.1. Suppose that P is a hermitian projection on a Hilbert C�-module M over a C�-algebra A. Then

T�
def
D P C �.I � P / is a surjective linear isometry on M for every modulus one � in C. We call P a complete

hermitian projection if all T� are complete surjective isometries with respect to the operator space structure of M.
By [28, Theorem 1.1], in this case, there exists a �-isomorphism '�WA! A such that

hT�x; T�yi D '�.hx; yi/ and T�.xa/ D T�.x/'�.a/; 8x; y 2M;8a 2 A:

Let us define a new module operation ı on M by x ı a D x'�1
�
.a/ for all x in M and a in A, and a new A-valued

inner product Œ�; ��� by Œx; y�� D '�.hx; yi/ for all x; y in M. Let us denote the obtained Hilbert C*-module by
M�. Notice that T�WM� !M is A-linear since T�.x ı a/ D T�.x'

�1
�
.a// D T�.x/a for all x 2M�, a 2 A.
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By [40, Theorem 3.5], T� is a unitary, that is, T �
�
T� D IM�

and T�T �� D IM. Since T� is adjointable, P is also
adjointable. Now for every modulus one scalar �, we have

IM D T�T
�
� D .P C �.I � P //.P C �.I � P //

�

D IM C 2PP
�
� P � P � C �.P � � PP �/C �.P � PP �/;

which implies PP � D P D P �. Hence, P WM!M is a self-adjoint idempotent.
If the underlying C*-algebra A is abelian, i.e., A D C0.�/ for some locally compact Hausdorff space�, every

surjective (complex linear) isometry is a complete isometry ([27, Theorem 1]), therefore every hermitian projection
on a Hilbert C0.�/-module M is complete hermitian, and thus corresponds to a self-adjoint idempotent on M.

We continue to study the structure of non-hermitian n-circular projections on Hilbert C0.�/-modules. To this end,
we recall that every Hilbert C0.�/-module is exactly the continuous section space of a Hilbert bundle based on �.
We sketch briefly the construction below.

A Hilbert bundle H over a locally compact Hausdorff space � is a pair hH�; ��i. Here H� is a topological
space and �� W H� ! � is a continuous open surjective map. For all ! in �, the fiber H! D ��1

�
.!/ carries a

nonzero complex Hilbert space structure. Moreover, we assume:

(HB1) Scalar multiplication, addition and the norm on H� are all continuous wherever they are defined.
(HB2) If ! 2 � and fhi g is any net in H� such that khik ! 0 and �.hi / ! ! in �, then hi ! 0! (the zero

element of H!) in H�.

A continuous section f of a Hilbert bundle hH�; ��i is a continuous function from � into H� such that
��.f .!// D !, i.e., f .!/ 2 H! for all ! in �. Denote by C0.�IH�/ the Banach space of all C0-sections
of hH�; ��i, i.e., those continuous sections f with lim

!!1
kf .!/k D 0. Note that the space C0.�IH�/ is a

Hilbert C0.�/-module with pointwise module action and inner product

.f �/.!/ D f .!/�.!/; hf; gi.!/ D .f .!/; g.!//; 8f; g 2 C0.�IH�/;8� 2 C0.�/;8! 2 �:

Conversely, every Hilbert C0.�/-module M can be represented as C0.�IH�/ arising from some Hilbert bundle
hH�; ��i. Here, we outline the construction in [26, 28], which is based on [19]. For each ! in �, let

I! D ff 2 C0.�/ W f .!/ D 0g:

By Cohen’s factorization theorem,

MI! D fvf W v 2M; f 2 I!g

is norm closed in M. In particular, if u 2MI! and w 2M, we have hu;wi.!/ D hw; ui.!/ D 0. Then M=MI!

is a pre-Hilbert space with inner product

huCMI! ; v CMI!i WD hu; vi.!/:

Denote by H! the completion of M=MI! . Let

H� WD
a
!2�

H! D
n
.z!/!2� W z! 2 H!

o
:

Each element u in M can be regarded as a section from � into H� by

u.!/ WD uCMI! :

Let �� W H� ! � be the canonical projection. By [21, Theorem 13.18], there is a unique topology on H� such
that hH�; ��i is a Hilbert bundle over � with C0-section space C0.�IH�/ DM.

We assume in below that all Hilbert C0.X/-modules M D C0.�IH�/ are full, i.e., the *-subalgebra
hM;Mi D fhu; vi 2 C0.�/ W u; v 2Mg is dense in C0.�/. In this case, all fiber Hilbert spaces H! are nonzero,
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116 D. Ilišević et al.

and for any vectors a1 in H!1 and a2 in H!2 , there exists a continuous section a in M such that a.!1/ D a1 and
a.!2/ D a2.

The following is a consequence of [26, Theorem 3.1], which asserts the more general case of into isometries of
Banach C0.�/-modules; see also [28] for the real Hilbert C*-module case.

Theorem 3.2. Let � be a locally compact Hausdorff space and M D C0.�IH�/ be a Hilbert C0.�/-module. Let
T W C0.�IH�/ ! C0.�IH�/ be a surjective isometry. Then there exist a homeomorphism � W � ! � and, for
each ! in �, a surjective isometry u.!/ W H�.!/ ! H! such that

T .f /.!/ D u.!/.f .�.!///; 8f 2 C0.�IH�/:

The examples below can be considered as extensions of the product Hilbert bundle case given in [12], i.e., the case
H� D � �H for a fixed Hilbert space H with C0.�IH�/ D C0.�;H/.

Example 3.3. Let � be a locally compact Hausdorff space and M D C0.�IH�/ be a Hilbert C0.�/-module. Let
T WM !M be a surjective isometry. Assume that the spectrum �.T / D f�0; �1; : : : ; �n�1g consists of n distinct
unimodular eigenvalues of finite orders. Thus there exists m � 2 such that Tm D I and all �i ’s are distinct mth
roots of unity. Note it is necessary that m � n. Write

T .f /.!/ D u.!/.f .�.!///; 8f 2 C0.�IH�/; 8! 2 �;

as in Theorem 3.2.
Since Tm D I , we have

f .!/ D u.!/ � � �u.�m�1.!//f .�m.!//; 8f 2 C0.�IH�/; 8! 2 �:

If there exists an ! in� such that �m.!/ ¤ ! then we can choose an f from M such that f .!/ D 0 and f .�m.!//
is any nonzero vector inH�m.!/ to yield a contradiction. Hence �m.!/ D !, and thus u.!/ : : : u.�m�1.!// D I! ,
the identity operator on the fiber Hilbert space H! for every ! in �. Let

Pi D
I C �iT C � � � C �i

m�1
Tm�1

m
; i D 0; 1; : : : ; n � 1:

Being the eigenprojections of the surjective isometry T , all Pi , i D 0; 1; : : : ; n � 1, are generalized n-circular
projections. In particular, each Pi is a nonzero projection,

P0 ˚ P1 ˚ � � � ˚ Pn�1 D I; and �0P0 C �1P1 C � � � C �n�1Pn�1 D T:

Example 3.4. If the locally compact Hausdorff space � has a proper component Y , then the indicator function 1Y
of Y gives rise to a hermitian projection Pf D 1Y f on C0.�IH�/. If� is connected, any hermitian projection P
of C0.�IH�/ is of the form

Pf .!/ D p.!/f .!/; 8! 2 �;

where ! 7! p.!/ is a field of projections on the fiber Hilbert space H! such that it is continuous in the sense that
the section ! 7! p.!/f .!/ is continuous whenever f 2 C0.�IH�/.

Example 3.5. Assume � is a connected locally compact Hausdorff space. Let P be a generalized bicircular
projection on C0.�IH�/ associated with a surjective isometry T D P C �.I � P /. Then

Pf .!/ D
Tf .!/ � �f .!/

1 � �
D
u.!/f .�.!// � �f .!/

1 � �
;

for a homeomorphism �W�! �, and a surjective isometry u.!/ W H�.!/ ! H! between the fiber Hilbert spaces
of the Hilbert bundle H. Since P 2 D P , we have

.1 � �/.u.!/f .�.!// � �f .!// D u.!/u.�.!//f .�2.!// � 2�u.!/f .�.!//C �2f .!/;
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or
u.!/u.�.!//f .�2.!// � .1C �/u.!/f .�.!//C �f .!/ D 0; 8f 2 C0.�IH�/;8! 2 �:

If �2.!/ ¤ ! then �.!/ ¤ ! either. Choosing any f from C0.�IH�/ such that f .!/ is nonzero and f .�.!// D
f .�2.!// D 0, we will arrive at a contradiction as � ¤ 0. Hence, �2.!/ D ! on �.

If there is an ! such that �.!/ ¤ ! then by considering a continuous section f with f .!/ D 0 and f .�.!// ¤
0, we have

Case 1. � D �1, and P D
I C T

2
is a generalized orthogonal projection.

If �.!/ D ! for all ! in � then the unitary operator u.!/ on the fiber Hilbert space H! satisfies the operator
equation

u.!/2 � .1C �/u.!/C �I! D 0; 8! 2 �;

where I! is the identity operator on H! . By spectral theory, the spectrum �.u.!// can contain only 1 and �.
Because � is connected, the unitary operator field ! 7! u.!/ is a multiple of the identity whenever it is so at
any one point !. Since P and I � P are both (proper) eigenprojections for Tf .!/ D u.!/f .!/, we see that
�.u.!// D f1; �g for all ! in �. Let u.!/ D p.!/C �.I! � p.!// be the diagonal decomposition of u.!/ into
the orthogonal sum of its two proper eigenprojections. In this setting, we have

Case 2. Pf .!/ D p.!/f .!/ arises from a nonvanishing continuous field of Hilbert space projections ! 7! P.!/.

We end the paper with a structure theorem about generalized n-circular projections on an abelian C*-algebra C0.�/.
The general Hilbert C0.�/-module case looks far away to us at this moment.

Recall that a modulus one complex scalar � is called a primitive mth root of unity if �m D 1 but �k ¤ 1

for k D 1; : : : ; m � 1. We also note that the scalars �1; : : : ; �n�1 associated to the proper generalized n-circular
projection P0 below are automatically of finite orders by Lemma 2.3.

Theorem 3.6. Let � be a locally compact Hausdorff space with at most n � 1 connected components. Let P0 be a
proper generalized n-circular projection on C0.�/ associated with .�1; : : : ; �n�1; P1; : : : ; Pn�1/, where n � 3.
In other words,

I D P0 ˚ P1 ˚ � � � ˚ Pn�1; and T D P0 C �1P1 C � � � C �n�1Pn�1 is a surjective isometry.

Assume that all �1; : : : ; �n�1 are primitive mth roots. Then m D n, f1; �1; : : : ; �n�1g is the complete set of nth
roots of unity, and T n D I . Thus all P0; P1; : : : ; Pn�1 are primitive generalized n-circular projections.

Moreover, there exist a homeomorphism �W�! �, and a continuous unimodular scalar function u on � such
that

�n.w/ D w; u.w/ � � �u.�n�1.w// D 1; Tf .!/ D u.!/f .�.!//;

and

Pif .w/ D
I C �iT C � � � C �i

n�1
T n�1

n

D
f .w/C �iu.w/f .�.w//C � � � C �i

n�1
u.w/ : : : u.�n�2.w//f .�n�1.w//

n

for all f 2 C0.�/, w 2 �, and i D 0; 1; : : : ; n � 1.

Proof. Assume all �1; : : : ; �n�1 have the same (minimum) order m � n. Consequently, Tm D I .
Suppose m D rs and r � 2. Consider the surjective isometry

S WD T s D P0 C �
s
1P1 C � � � C �

s
n�1Pn�1:

Note that none of the eigenvalues �s
1

, . . . , �s
n�1

is 1. By the properness assumption on P0, we see that all coefficients
are distinct. Since they are the r th roots of unity, we conclude that n � r .
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Write

Tf .!/ D u.!/f .�.!// (4)

for a homeomorphism � W �! � and a continuous unimodular scalar function u on�. Since Tm D I , we see that
�m.!/ D ! for all ! in �. It also follows from the spectral theory that

n�1Y
iD0

.T � �iI / D 0: (5)

Putting (4) into (5) we get

�0f .w/C

nX
iD1

�i

i�1Y
jD0

u.�j .w//f .�i .w// D 0; 8f 2 C0.�/; w 2 �; (6)

with some scalars �i ’s in which �0 D �0�1 � � ��n�1 ¤ 0:
Suppose anw in� is not equal to any of �i .w/ for i D 1; : : : ; n. We choose f from C0.�/ such that f .w/ D 1

and f .�i .w// D 0 for all i D 1; : : : ; n. Then (6) provides a contradiction that �0 D 0. Hence there exists a smallest
positive integer k! such that 1 � k! � n and �k! .!/ D !. Since �m.!/ D !, we can assume that k! is a factor
of m by the division algorithm. As n is not greater than any factor of m other than one, we see that k! D 1 or
k! D n. Suppose all k! D 1. Since Tm D I , we have

f .!/ D Tmf .!/ D u.!/ � � �u.�m�1.!//f .�m.!// D u.!/mf .!/; 8f 2 C0.�/;8! 2 �:

It amounts to say that the continuous scalar function u assumes values from the finite set ofmth roots of unity on�.
Hence, u assumes constant values on each component of �, and thus T is a sum of at most n � 1 scalar multiples
of the canonical hermitian projections on components (cf. the Case 2 part of Example 3.5). But T has n distinct
eigenvalues. With this contradiction we know that some k! D n, and thus n is a factor of m. Moreover,

�n.!/ D !; 8! 2 �:

Write m D nb for some positive integer b. Since Tm D I , we have

f .!/ D Tmf .!/ D u.!/u.�.!// � � �u.�m�1.!//f .�m.!//

D

h
u.!/u.�.!// � � �u.�n�1.!//

ib
f .!/; 8f 2 C0.�/;8! 2 �:

Hence the continuous unimodular scalar function u.!/u.�.!// � � �u.�n�1.!// assumes values from the discrete
set of bth roots of unity. Since � has at most n� 1 connected components, it assumes at most n� 1 different values
u0 with ub

0
D 1. Consequently, on each component of �, with some constant u0 from them, we can write

u0f .!/ D T
nf .!/ D P0f .!/C �

n
1P1f .!/C � � � C �

n
n�1Pn�1f .!/; 8f 2 C0.�/;8! 2 �:

Since each projection above is nonzero on some of the at most n � 1 components of �, and they sum up to the
identity, we have all such

u0 D �
n
1 D : : : D �

n
n�1 D 1:

It follows that m D n and f1; �1; : : : ; �n�1g is the complete set of nth roots of unity. The asserted representations
of Pi ’s then follows (see [31], or Example 3.3).

Acknowledgement: Liu and Wong are supported by the Taiwan MOST grants (105-2811-M-110-027, 104-2115-
M-110-009-MY2).

Brought to you by | National Sun Yat-sen University
Authenticated

Download Date | 10/19/17 9:35 AM



Generalized n-circular projections on JB*-triples and Hilbert C0.�/-modules 119

References

[1] A. B. Abubaker, F. Botelho and J. Jamison, Representation of generalized bi-circular projections on Banach spaces, Acta
Sci. Math. (Szeged) 80 (2014), 591–601.

[2] A. B. Abubaker and S. Dutta, Projections in the convex hull of three surjective isometries on C.�/, J. Math. Anal. Appl. 379
(2011), 878–888.

[3] J. Alonso and C. Benítez, Orthogonality in normed linear spaces: a survey. Part I: Main propierties, Extracta mathematicae 3
(1988), 1–15.

[4] J. Alonso and C. Benítez, Orthogonality in normed linear spaces: a survey. Part II: relations between main orthogonalities,
Extracta mathematicae 4 (1989), 121–131.

[5] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, 2nd edition (Springer-Verlag, New York, 1997)
[6] E. Behrends, M-Structure and the Banach-Stone theorem, Lecture Notes in Mathematics, vol. 736 (Springer-Verlag, Berlin, 1979)
[7] F. Botelho, Projections as convex combinations of surjective isometries on C.�/, J. Math. Anal. Appl. 341 (2008), 1163–1169.
[8] F. Botelho and J. Jamison, Generalized bi-circular projections on minimal ideals of operators, Proc. Amer. Math. Soc. 136 (2008),

1397–1402.
[9] F. Botelho and J. Jamison, Projections on tensor products of Banach spaces, Arch. Math. (Basel) 90 (2008), 341–352.
[10] F. Botelho and J. Jamison, Generalized bi-circular projections on Lipschitz spaces, Acta Sci. Math. (Szeged) 75 (2009), 103–112.
[11] F. Botelho and J. Jamison, Generalized bi-circular projections on spaces of analytic functions, Acta Sci. Math. (Szeged) 75 (2009),

527–546.
[12] F. Botelho and J. Jamison, Generalized bi-circular projections on C.�;X/, Rocky Mountain J. Math. 40 (2010), 77–83.
[13] F. Botelho and J. Jamison, Projections in the convex hull of surjective isometries, Canad. Math. Bull. 53 (2010), 398–403.
[14] F. Botelho and J. Jamison, Projections as averages of isometries on minimal norm ideals, Linear Algebra Appl. 435 (2011), 1344–

1355.
[15] F. Botelho, J. Jamison and A. Jiménez-Vargas, Projections and averages of isometries on Lipschitz spaces, J. Math. Anal. Appl.

386 (2012), 910–920.
[16] F. Botelho, J. Jamison and B. Zheng, Circular operators on minimal norm ideals of B.H/, Linear Multilinear Algebra 61 (2013),

1339–1347.
[17] C.-C. Chu, Jordan structures in geometry and analysis, Cambridge Tracts in Mathematics 190 (Cambridge University Press,

Cambridge, 2012)
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[32] D. Ilišević, C.-N. Liu and N.-C. Wong, When the average of composition operators being a projection, J. Nonlinear and Convex

Analysis 16 (2015), 1353-1362.
[33] J. M. Isidro, Holomorphic automorphisms of the unit balls of Hilbert C*-modules, Glasg. Math. J. 45 (2003), 249–262.
[34] J. Jamison, Bicircular projections on some Banach spaces, Linear Algebra Appl. 420 (2007), 29–33.
[35] J. Jamison, Generalized bi-circular projections on spaces of operators and JB*-triples, Rocky Mountain J. Math. 41 (2011), 1241–

1245.
[36] W. Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 138 (1983), 503–

529.

Brought to you by | National Sun Yat-sen University
Authenticated

Download Date | 10/19/17 9:35 AM



120 D. Ilišević et al.
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