Fourier inversion and prime ideals on Nilpotent Lie groups

YING-FEN LIN

Queen's University Belfast (joint work with Jean Ludwig and Carine Molitor-Braun)

Kaohsiung 25 June 2018

3 N

The classical result

Let G be a locally compact *abelian* group.

Theorem (The Fourier inversion theorem)

If $f \in L^1(G)$ and $\hat{f} \in L^1(\widehat{G})$, then $f(x) = (\widehat{f})(x^{-1})$ for a.e. x in G. If f is continuous, then the above relation holds for every x in G.

For *non-abelian* groups, say if $G = \exp(\mathfrak{g})$ is a nilpotent Lie group, then there is an one-to-one correspondence between \widehat{G} and \mathfrak{g}^*/G (Kirillov, 1962).

The classical result

Let G be a locally compact *abelian* group.

Theorem (The Fourier inversion theorem)

If $f \in L^1(G)$ and $\hat{f} \in L^1(\widehat{G})$, then $f(x) = (\widehat{f})(x^{-1})$ for a.e. x in G. If f is continuous, then the above relation holds for every x in G.

For non-abelian groups, say if $G = \exp(\mathfrak{g})$ is a nilpotent Lie group, then there is an one-to-one correspondence between \widehat{G} and \mathfrak{g}^*/G (Kirillov, 1962).

The classical result

Let G be a locally compact *abelian* group.

Theorem (The Fourier inversion theorem)

If $f \in L^1(G)$ and $\hat{f} \in L^1(\widehat{G})$, then $f(x) = (\widehat{f})(x^{-1})$ for a.e. x in G. If f is continuous, then the above relation holds for every x in G.

For non-abelian groups, say if $G = \exp(\mathfrak{g})$ is a nilpotent Lie group, then there is an one-to-one correspondence between \widehat{G} and \mathfrak{g}^*/G (Kirillov, 1962).

$$(\pi_{\ell}(f)\xi)(g) = \int_{G/P(\ell)} F_{\ell}(g, u)\xi(u)du,$$

where F_{ℓ} is the operator kernel given by

$$F_\ell(g,u) = \int_{P(\ell)} f(ghu^{-1})\chi_\ell(h) dh ext{ for } g, u \in G,$$

$$(\pi_{\ell}(f)\xi)(g) = \int_{G/P(\ell)} F_{\ell}(g, u)\xi(u)du,$$

where F_{ℓ} is the operator kernel given by

$$F_\ell(g,u) = \int_{P(\ell)} f(ghu^{-1})\chi_\ell(h)dh$$
 for $g, u \in G$,

$$(\pi_\ell(f)\xi)(g) = \int_{G/P(\ell)} F_\ell(g,u)\xi(u)du,$$

where F_{ℓ} is the operator kernel given by

$$F_\ell(g,u) = \int_{P(\ell)} f(ghu^{-1})\chi_\ell(h)dh ext{ for } g, u \in G,$$

$$(\pi_\ell(f)\xi)(g) = \int_{G/P(\ell)} F_\ell(g,u)\xi(u)du,$$

where F_{ℓ} is the operator kernel given by

$$\mathcal{F}_\ell(g,u) = \int_{\mathcal{P}(\ell)} f(ghu^{-1})\chi_\ell(h)dh ext{ for } g, u \in G,$$

Let G be a connected, simply connected nilpotent Lie group.

Howe (1977)

For any irreducible unitary representation (π, \mathcal{H}_{π}) of G and any $a \in B^{\infty}(\mathcal{H}_{\pi})$, smooth bounded linear operators on \mathcal{H}_{π} , there is $f_a \in S(G)$ such that $\pi(f_a) = a$. Moreover,

$$a\mapsto f_a:B^\infty(\mathcal{H}_\pi)\mapsto\mathcal{S}(G)$$

is linear and continuous w.r.t. the Fréchet topology.

伺 ト イ ヨ ト イ ヨ ト

Let G be a connected, simply connected nilpotent Lie group.

Howe (1977)

For any irreducible unitary representation (π, \mathcal{H}_{π}) of G and any $a \in B^{\infty}(\mathcal{H}_{\pi})$, smooth bounded linear operators on \mathcal{H}_{π} , there is $f_a \in S(G)$ such that $\pi(f_a) = a$. Moreover,

$$a\mapsto f_a:B^\infty(\mathcal{H}_\pi)\mapsto\mathcal{S}(G)$$

is linear and continuous w.r.t. the Fréchet topology.

伺 ト イ ヨ ト イ ヨ ト

Let G be a connected, simply connected nilpotent Lie group.

Howe (1977)

For any irreducible unitary representation (π, \mathcal{H}_{π}) of G and any $a \in B^{\infty}(\mathcal{H}_{\pi})$, smooth bounded linear operators on \mathcal{H}_{π} , there is $f_a \in S(G)$ such that $\pi(f_a) = a$. Moreover,

$$a\mapsto f_a:B^\infty(\mathcal{H}_\pi)\mapsto\mathcal{S}(G)$$

is linear and continuous w.r.t. the Fréchet topology.

Let G be a connected, simply connected nilpotent Lie group.

Howe (1977) For any irreducible unitary representation (π, \mathcal{H}_{π}) of G and any $a \in B^{\infty}(\mathcal{H}_{\pi})$, smooth bounded linear operators on \mathcal{H}_{π} , there is $f_a \in \mathcal{S}(G)$ such that $\pi(f_a) = a$. Moreover,

 $a\mapsto f_a:B^\infty(\mathcal{H}_\pi)\mapsto\mathcal{S}(G)$

is linear and continuous w.r.t. the Fréchet topology.

伺 ト イ ヨ ト イ ヨ ト

Let G be a connected, simply connected nilpotent Lie group.

Howe (1977) For any irreducible unitary representation (π, \mathcal{H}_{π}) of G and any $a \in B^{\infty}(\mathcal{H}_{\pi})$, smooth bounded linear operators on \mathcal{H}_{π} , there is $f_a \in \mathcal{S}(G)$ such that $\pi(f_a) = a$. Moreover,

$$a\mapsto f_a:B^\infty(\mathcal{H}_\pi)\mapsto\mathcal{S}(G)$$

is linear and continuous w.r.t. the Fréchet topology.

We study a version of the Fourier inversion theorem for nilpotent Lie groups which generalised Howe's result by constructing a *continuous retract* from the space of adapted *smooth kernel functions* defined on a smooth *G*-invariant manifold of \mathfrak{g}^* with certain property into the space $\mathcal{S}(G)$.

Definition

A subset M of \mathfrak{g}^* is called *G*-invariant if for every $\ell \in M$, the element

$$g \cdot \ell := \operatorname{Ad}^*(g)\ell$$

is contained in *M*.

We study a version of the Fourier inversion theorem for nilpotent Lie groups which generalised Howe's result by constructing a *continuous retract* from the space of adapted *smooth kernel functions* defined on a smooth *G*-invariant manifold of \mathfrak{g}^* with certain property into the space $\mathcal{S}(G)$.

Definition A subset M of \mathfrak{g}^* is called G-invariant if for every $\ell \in M$, the element $g \cdot \ell := \operatorname{Ad}^*(g)\ell$ is contained in M.

同 ト イ ヨ ト イ ヨ ト

We study a version of the Fourier inversion theorem for nilpotent Lie groups which generalised Howe's result by constructing a *continuous retract* from the space of adapted *smooth kernel functions* defined on a smooth *G*-invariant manifold of \mathfrak{g}^* with certain property into the space $\mathcal{S}(G)$.

Definition

A subset M of \mathfrak{g}^* is called *G*-invariant if for every $\ell \in M$, the element

$$g \cdot \ell := \operatorname{Ad}^*(g)\ell$$

is contained in M.

Theorem (Lin, Ludwig, Molitor-Braun)

Let g be a nilpotent Lie algebra and M be a smooth G-invariant submanifold of g^{*}. Let π_{ℓ} be an induced unitary representation for $\ell \in M$. Then there is an open relatively compact subset \mathcal{M} of M such that for any kernel function F supported in $G \cdot \mathcal{M}$, there is $f \in S(G)$ such that $\pi_{\ell}(f)$ has $F(\ell, \cdot, \cdot)$ as an operator kernel for all $\ell \in M$. Moreover, the mapping $F \mapsto f$ is continuous w.r.t the corresponding function space topologies.

Remark: We have a similar Fourier inversion theorem for smooth variable nilpotent Lie groups.

Theorem (Lin, Ludwig, Molitor-Braun)

Let \mathfrak{g} be a nilpotent Lie algebra and M be a smooth G-invariant submanifold of \mathfrak{g}^* . Let π_ℓ be an induced unitary representation for $\ell \in M$. Then there is an open relatively compact subset \mathcal{M} of Msuch that for any kernel function F supported in $G \cdot \mathcal{M}$, there is $f \in S(G)$ such that $\pi_\ell(f)$ has $F(\ell, \cdot, \cdot)$ as an operator kernel for all $\ell \in M$. Moreover, the mapping $F \mapsto f$ is continuous w.r.t the corresponding function space topologies.

Remark: We have a similar Fourier inversion theorem for smooth variable nilpotent Lie groups.

▲ 同 ▶ → 三 ▶

Theorem (Lin, Ludwig, Molitor-Braun)

Let \mathfrak{g} be a nilpotent Lie algebra and M be a smooth G-invariant submanifold of \mathfrak{g}^* . Let π_ℓ be an induced unitary representation for $\ell \in M$. Then there is an open relatively compact subset \mathcal{M} of Msuch that for any kernel function F supported in $G \cdot \mathcal{M}$, there is $f \in S(G)$ such that $\pi_\ell(f)$ has $F(\ell, \cdot, \cdot)$ as an operator kernel for all $\ell \in M$. Moreover, the mapping $F \mapsto f$ is continuous w.r.t the corresponding function space topologies.

Remark: We have a similar Fourier inversion theorem for smooth variable nilpotent Lie groups.

Theorem (Lin, Ludwig, Molitor-Braun)

Let \mathfrak{g} be a nilpotent Lie algebra and M be a smooth G-invariant submanifold of \mathfrak{g}^* . Let π_ℓ be an induced unitary representation for $\ell \in M$. Then there is an open relatively compact subset \mathcal{M} of Msuch that for any kernel function F supported in $G \cdot \mathcal{M}$, there is $f \in S(G)$ such that $\pi_\ell(f)$ has $F(\ell, \cdot, \cdot)$ as an operator kernel for all $\ell \in M$. Moreover, the mapping $F \mapsto f$ is continuous w.r.t the corresponding function space topologies.

Remark: We have a similar Fourier inversion theorem for smooth variable nilpotent Lie groups.

Let \mathfrak{g} be a real vector space with dim $(\mathfrak{g}) = n$ and $\mathcal{B} \neq \emptyset$. Then $(\mathcal{B}, \mathfrak{g})$ is called a *variable nilpotent Lie algebra* if

- for $\beta \in \mathcal{B}$, there is $[\cdot, \cdot]_{\beta}$ defined on \mathfrak{g} such that $\mathfrak{g}_{\beta} := (\mathfrak{g}, [\cdot, \cdot]_{\beta})$ is a nilpotent Lie algebra; and
- there is Jordan-Hölder basis {Z₁,..., Z_n} for g_β. That is, ∃ a fixed basis {Z₁,..., Z_n} of g such that the constants a^k_{ij}(β) defined by

$$[Z_i, Z_j]_\beta := \sum_{k=1}^n a_{ij}^k(\beta) Z_k$$

has the property that $a_{ij}^k(\beta) = 0$ for $\beta \in \mathcal{B}$ and $k \leq \max\{i, j\}$.

くほし くほし くほし

Let \mathfrak{g} be a real vector space with dim $(\mathfrak{g}) = n$ and $\mathcal{B} \neq \emptyset$. Then $(\mathcal{B}, \mathfrak{g})$ is called a *variable nilpotent Lie algebra* if

- for $\beta \in \mathcal{B}$, there is $[\cdot, \cdot]_{\beta}$ defined on \mathfrak{g} such that $\mathfrak{g}_{\beta} := (\mathfrak{g}, [\cdot, \cdot]_{\beta})$ is a nilpotent Lie algebra; and
- there is Jordan-Hölder basis {Z₁,..., Z_n} for g_β. That is, ∃ a fixed basis {Z₁,..., Z_n} of g such that the constants a^k_{ij}(β) defined by

$$[Z_i, Z_j]_\beta := \sum_{k=1}^n a_{ij}^k(\beta) Z_k$$

has the property that $a_{ij}^k(\beta) = 0$ for $\beta \in \mathcal{B}$ and $k \leq \max\{i, j\}$.

周 ト イ ヨ ト イ ヨ ト

Let \mathfrak{g} be a real vector space with dim $(\mathfrak{g}) = n$ and $\mathcal{B} \neq \emptyset$. Then $(\mathcal{B}, \mathfrak{g})$ is called a *variable nilpotent Lie algebra* if

- for $\beta \in \mathcal{B}$, there is $[\cdot, \cdot]_{\beta}$ defined on \mathfrak{g} such that $\mathfrak{g}_{\beta} := (\mathfrak{g}, [\cdot, \cdot]_{\beta})$ is a nilpotent Lie algebra; and
- there is Jordan-Hölder basis {Z₁,..., Z_n} for g_β. That is, ∃ a fixed basis {Z₁,..., Z_n} of g such that the constants a^k_{ij}(β) defined by

$$[Z_i, Z_j]_\beta := \sum_{k=1}^n a_{ij}^k(\beta) Z_k$$

has the property that $a_{ii}^k(\beta) = 0$ for $\beta \in \mathcal{B}$ and $k \leq \max\{i, j\}$.

Let \mathfrak{g} be a real vector space with dim $(\mathfrak{g}) = n$ and $\mathcal{B} \neq \emptyset$. Then $(\mathcal{B}, \mathfrak{g})$ is called a *variable nilpotent Lie algebra* if

- for $\beta \in \mathcal{B}$, there is $[\cdot, \cdot]_{\beta}$ defined on \mathfrak{g} such that $\mathfrak{g}_{\beta} := (\mathfrak{g}, [\cdot, \cdot]_{\beta})$ is a nilpotent Lie algebra; and
- there is Jordan-Hölder basis $\{Z_1, \ldots, Z_n\}$ for \mathfrak{g}_β . That is, \exists a fixed basis $\{Z_1, \ldots, Z_n\}$ of \mathfrak{g} such that the constants $a_{ij}^k(\beta)$ defined by

$$[Z_i, Z_j]_\beta := \sum_{k=1}^n a_{ij}^k(\beta) Z_k$$

has the property that $a_{ij}^k(\beta) = 0$ for $\beta \in \mathcal{B}$ and $k \leq \max\{i, j\}$.

くほし くほし くほし

A retract for smooth variable nilpotent Lie groups

Theorem (Lin, Ludwig, Molitor-Braun)

Let $\mathcal{B} \times G$ be a smooth variable nilpotent Lie group and M be a smooth G-invariant submanifold of $\mathcal{B} \times \mathfrak{g}^*$ contained in $(\mathcal{B} \times \mathfrak{g}^*)_{\leq I}$ such that $M_I := M \cap (\mathcal{B} \times \mathfrak{g}^*)_I \neq \emptyset$. Let $\pi(\beta, I)$ be the corresponding family of induced unitary representations for $(\beta, I) \in M$. Then there exists an open relatively compact subset \mathcal{M} of M_I such that the following holds: for any adapted kernel function F supported in $G \cdot \mathcal{M}$, there is a function $f \in \mathcal{S}(\mathbb{R}^r, \mathcal{B}, G)$ such that $\pi_{(\beta,I)}(f(\alpha, \beta, \cdot))$ has $F(\alpha, (\beta, I), \cdot, \cdot)$ as an operator kernel for all $(\alpha, (\beta, I)) \in \mathbb{R}^r \times M$. Moreover, the mapping $F \mapsto f$ is continuous w.r.t the corresponding function space topologies.

- 4 回 ト 4 ヨト 4 ヨト

A retract for smooth variable nilpotent Lie groups

Theorem (Lin, Ludwig, Molitor-Braun)

Let $\mathcal{B} \times G$ be a smooth variable nilpotent Lie group and M be a smooth G-invariant submanifold of $\mathcal{B} \times \mathfrak{g}^*$ contained in $(\mathcal{B} \times \mathfrak{g}^*)_{\leq I}$ such that $M_I := M \cap (\mathcal{B} \times \mathfrak{g}^*)_I \neq \emptyset$. Let $\pi(\beta, I)$ be the corresponding family of induced unitary representations for $(\beta, I) \in M$. Then there exists an open relatively compact subset \mathcal{M} of M_I such that the following holds: for any adapted kernel function F supported in $G \cdot \mathcal{M}$, there is a function $f \in \mathcal{S}(\mathbb{R}^r, \mathcal{B}, G)$ such that $\pi_{(\beta,I)}(f(\alpha, \beta, \cdot))$ has $F(\alpha, (\beta, I), \cdot, \cdot)$ as an operator kernel for all $(\alpha, (\beta, I)) \in \mathbb{R}^r \times M$. Moreover, the mapping $F \mapsto f$ is continuous w.r.t the corresponding function space topologies.

A retract for smooth variable nilpotent Lie groups

Theorem (Lin, Ludwig, Molitor-Braun)

Let $\mathcal{B} \times G$ be a smooth variable nilpotent Lie group and M be a smooth G-invariant submanifold of $\mathcal{B} \times \mathfrak{g}^*$ contained in $(\mathcal{B} \times \mathfrak{g}^*)_{\leq I}$ such that $M_I := M \cap (\mathcal{B} \times \mathfrak{g}^*)_I \neq \emptyset$. Let $\pi(\beta, I)$ be the corresponding family of induced unitary representations for $(\beta, I) \in M$. Then there exists an open relatively compact subset \mathcal{M} of M_I such that the following holds: for any adapted kernel function F supported in $G \cdot \mathcal{M}$, there is a function $f \in \mathcal{S}(\mathbb{R}^r, \mathcal{B}, G)$ such that $\pi_{(\beta,I)}(f(\alpha, \beta, \cdot))$ has $F(\alpha, (\beta, I), \cdot, \cdot)$ as an operator kernel for all $(\alpha, (\beta, I)) \in \mathbb{R}^r \times M$. Moreover, the mapping $F \mapsto f$ is continuous w.r.t the corresponding function space topologies.

- 4 周 ト 4 戸 ト 4 戸 ト

Prime ideals in $L^1(G)$

As an application, we can study the **G**-prime ideals of $L^1(G)$, where **G** is a Lie subgroup of Aut(G).

Definition

A two-sided closed ideal \mathfrak{I} in $L^1(G)$ is called **G**-prime if \mathfrak{I} is **G**-invariant and for all **G**-invariant ideals $\mathfrak{I}_1, \mathfrak{I}_2$ in $L^1(G)$ with the property that $\mathfrak{I}_1 * \mathfrak{I}_2 \subset \mathfrak{I}$, then either $\mathfrak{I}_1 \subset \mathfrak{I}$ or $\mathfrak{I}_2 \subset \mathfrak{I}$.

Note: the kernel of each **G**-orbit is a **G**-prime ideal.

Prime ideals in $L^1(G)$

As an application, we can study the **G**-prime ideals of $L^1(G)$, where **G** is a Lie subgroup of Aut(G).

Definition

A two-sided closed ideal \mathfrak{I} in $L^1(G)$ is called **G**-prime if \mathfrak{I} is **G**-invariant and for all **G**-invariant ideals $\mathfrak{I}_1, \mathfrak{I}_2$ in $L^1(G)$ with t

property that $\mathfrak{I}_1 * \mathfrak{I}_2 \subset \mathfrak{I}$, then either $\mathfrak{I}_1 \subset \mathfrak{I}$ or $\mathfrak{I}_2 \subset \mathfrak{I}$.

Note: the kernel of each **G**-orbit is a **G**-prime ideal.

伺 ト イ ヨ ト イ ヨ ト

Prime ideals in $L^1(G)$

As an application, we can study the **G**-prime ideals of $L^1(G)$, where **G** is a Lie subgroup of Aut(G).

Definition

A two-sided closed ideal \mathfrak{I} in $L^1(G)$ is called **G**-prime if \mathfrak{I} is **G**-invariant and for all **G**-invariant ideals $\mathfrak{I}_1, \mathfrak{I}_2$ in $L^1(G)$ with the property that $\mathfrak{I}_1 * \mathfrak{I}_2 \subset \mathfrak{I}$, then either $\mathfrak{I}_1 \subset \mathfrak{I}$ or $\mathfrak{I}_2 \subset \mathfrak{I}$.

Note: the kernel of each G-orbit is a G-prime ideal.

Prime ideals in $L^1(G)$

As an application, we can study the **G**-prime ideals of $L^1(G)$, where **G** is a Lie subgroup of Aut(G).

Definition

A two-sided closed ideal \mathfrak{I} in $L^1(G)$ is called **G**-prime if \mathfrak{I} is **G**-invariant and for all **G**-invariant ideals $\mathfrak{I}_1, \mathfrak{I}_2$ in $L^1(G)$ with the property that $\mathfrak{I}_1 * \mathfrak{I}_2 \subset \mathfrak{I}$, then either $\mathfrak{I}_1 \subset \mathfrak{I}$ or $\mathfrak{I}_2 \subset \mathfrak{I}$.

Note: the kernel of each **G**-orbit is a **G**-prime ideal.

Known results

Ludwig (1983)

Closed prime ideals of $L^1(G)$ coincide with the kernels of irreducible unitary representations.

Poguntke (1984)

characterised the K-prime ideals as kernel of K-orbits, where K is an abelian compact group acting on a nilpotent Lie group M

Lahiani and Molitor-Braun (2011) If I is a proper closed K-prime ideal, where K is a compact subgroup of Aut(G), then there is K-orbit Ω_{ℓ} such that

 $I \cap \mathcal{S}(G) = \ker \Omega_{\ell} \cap \mathcal{S}(G).$

Prime ideals in $L^1(G)$

Theorem (Lin, Ludwig, Molitor-Braun)

Let G be a simply connected, connected nilpotent Lie group and **G** be a Lie group of automorphisms of G containing the inner automorphisms such that every **G**-orbit in \mathfrak{g}^* is locally closed. Then every **G**-prime ideal of $L^1(G)$ is the kernel of an **G**-orbit.

Prime ideals in $L^1(G)$

Theorem (Lin, Ludwig, Molitor-Braun)

Let G be a simply connected, connected nilpotent Lie group and **G** be a Lie group of automorphisms of G containing the inner automorphisms such that every **G**-orbit in \mathfrak{g}^* is locally closed. Then every **G**-prime ideal of $L^1(G)$ is the kernel of an **G**-orbit.

Notations and remarks

Let $\operatorname{Prim}^*(G) := \{\ker \pi : \pi \in \widehat{G}\}$. For $\mathfrak{I} \subset L^1(G)$, the hull of \mathfrak{I} is given by

$$h(\mathfrak{I}) := \{ P \in \mathsf{Prim}^*(G) : \mathfrak{I} \subset P \}.$$

For connected, simply connected nilpotent Lie group G,

$$\pi \mapsto \ker \pi : \widehat{G} \mapsto \operatorname{Prim}^*(G)$$

is a homeomorphism.

Note that for any closed orbit Ω in \mathfrak{g}^* ,

• $\overline{\mathcal{S}(G)} \cap \ker(\Omega)^{L^{1}(G)} = \ker(\Omega)$ (from the Inversion Theorem);

 there is a minimal ideal J(Ω) in S(G) such that h(J(Ω)) = Ω and J(Ω) ⊂ ℑ for all ideal ℑ of S(G) with h(ℑ) ⊂ Ω.

• • = • • = •

Notations and remarks

Let $Prim^*(G) := \{ \ker \pi : \pi \in \widehat{G} \}$. For $\mathfrak{I} \subset L^1(G)$, the hull of \mathfrak{I} is given by

$$h(\mathfrak{I}) := \{ P \in \mathsf{Prim}^*(G) : \mathfrak{I} \subset P \}.$$

For connected, simply connected nilpotent Lie group G,

$$\pi \mapsto \ker \pi : \widehat{G} \mapsto \mathsf{Prim}^*(G)$$

is a homeomorphism.

Note that for any closed orbit Ω in \mathfrak{g}^* ,

• $\overline{\mathcal{S}(G) \cap \ker(\Omega)}^{L^1(G)} = \ker(\Omega)$ (from the Inversion Theorem);

 there is a minimal ideal J(Ω) in S(G) such that h(J(Ω)) = Ω and J(Ω) ⊂ ℑ for all ideal ℑ of S(G) with h(ℑ) ⊂ Ω.

伺 と く ヨ と く ヨ と

-

Notations and remarks

Let $Prim^*(G) := \{ \ker \pi : \pi \in \widehat{G} \}$. For $\mathfrak{I} \subset L^1(G)$, the hull of \mathfrak{I} is given by

$$h(\mathfrak{I}) := \{ P \in \mathsf{Prim}^*(G) : \mathfrak{I} \subset P \}.$$

For connected, simply connected nilpotent Lie group G,

$$\pi \mapsto \ker \pi : \widehat{\mathcal{G}} \mapsto \mathsf{Prim}^*(\mathcal{G})$$

is a homeomorphism.

Note that for any closed orbit Ω in \mathfrak{g}^* ,

• $\overline{\mathcal{S}(G) \cap \ker(\Omega)}^{L^1(G)} = \ker(\Omega)$ (from the Inversion Theorem);

 there is a minimal ideal J(Ω) in S(G) such that h(J(Ω)) = Ω and J(Ω) ⊂ ℑ for all ideal ℑ of S(G) with h(ℑ) ⊂ Ω.

- A 🗐 🕨

Let \mathfrak{I} be a proper **G**-prime ideal of $L^1(G)$. Then $\mathfrak{I}_S = \mathfrak{I} \cap S(G)$ is a proper **G**-prime ideal of S(G) which is closed in the $\|\cdot\|_1$ -norm. By Molitor-Braun, there is an orbit $\Omega \in \operatorname{Prim}^*(G)$ such that $\mathfrak{I}_S = \ker \Omega \cap S(G)$. Hence,

$$h(\mathfrak{I}) = h(\mathfrak{I}_{\mathcal{S}}) = h(\ker \Omega \cap \mathcal{S}(G)) = h(\ker \Omega) = \overline{\Omega}$$

and $\mathfrak{I} \subset \ker \Omega$. On the other hand, since $\mathcal{S}(G) \cap \ker \Omega$ is dense in $\ker \Omega$, we have

$$(\ker \Omega)^N \subset J(\Omega) \subset \mathfrak{I}$$

for some $N \in \mathbb{N}$. Since \mathfrak{I} is **G**-prime, we have that $\mathfrak{I} = \ker \Omega$.

同 ト イ ヨ ト イ ヨ ト

Let \mathfrak{I} be a proper **G**-prime ideal of $L^1(G)$. Then $\mathfrak{I}_S = \mathfrak{I} \cap \mathcal{S}(G)$ is a proper **G**-prime ideal of $\mathcal{S}(G)$ which is closed in the $\|\cdot\|_1$ -norm. By Molitor-Braun, there is an orbit $\Omega \in \operatorname{Prim}^*(G)$ such that $\mathfrak{I}_S = \ker \Omega \cap \mathcal{S}(G)$. Hence,

$$h(\mathfrak{I}) = h(\mathfrak{I}_{\mathcal{S}}) = h(\ker \Omega \cap \mathcal{S}(\mathcal{G})) = h(\ker \Omega) = \overline{\Omega}$$

and $\mathfrak{I} \subset \ker \Omega$. On the other hand, since $\mathcal{S}(G) \cap \ker \Omega$ is dense in $\ker \Omega$, we have

$$(\ker \Omega)^N \subset J(\Omega) \subset \mathfrak{I}$$

for some $N \in \mathbb{N}$. Since \mathfrak{I} is **G**-prime, we have that $\mathfrak{I} = \ker \Omega$.

伺 ト イ ヨ ト イ ヨ ト

Let \mathfrak{I} be a proper **G**-prime ideal of $L^1(G)$. Then $\mathfrak{I}_S = \mathfrak{I} \cap S(G)$ is a proper **G**-prime ideal of S(G) which is closed in the $\|\cdot\|_1$ -norm. By Molitor-Braun, there is an orbit $\Omega \in \operatorname{Prim}^*(G)$ such that $\mathfrak{I}_S = \ker \Omega \cap S(G)$. Hence,

$$h(\mathfrak{I}) = h(\mathfrak{I}_{\mathcal{S}}) = h(\ker \Omega \cap \mathcal{S}(G)) = h(\ker \Omega) = \overline{\Omega}$$

and $\mathfrak{I} \subset \ker \Omega$. On the other hand, since $\mathcal{S}(G) \cap \ker \Omega$ is dense in $\ker \Omega$, we have

$$(\ker \Omega)^N \subset J(\Omega) \subset \mathfrak{I}$$

for some $N \in \mathbb{N}$. Since \mathfrak{I} is **G**-prime, we have that $\mathfrak{I} = \ker \Omega$.

伺 ト イ ヨ ト イ ヨ ト

Let \mathfrak{I} be a proper **G**-prime ideal of $L^1(G)$. Then $\mathfrak{I}_S = \mathfrak{I} \cap S(G)$ is a proper **G**-prime ideal of S(G) which is closed in the $\|\cdot\|_1$ -norm. By Molitor-Braun, there is an orbit $\Omega \in \operatorname{Prim}^*(G)$ such that $\mathfrak{I}_S = \ker \Omega \cap S(G)$. Hence,

$$h(\mathfrak{I}) = h(\mathfrak{I}_{\mathcal{S}}) = h(\ker \Omega \cap \mathcal{S}(G)) = h(\ker \Omega) = \overline{\Omega}$$

and $\mathfrak{I} \subset \ker \Omega$. On the other hand, since $\mathcal{S}(G) \cap \ker \Omega$ is dense in $\ker \Omega$, we have

 $(\ker \Omega)^N \subset J(\Omega) \subset \mathfrak{I}$

for some $N \in \mathbb{N}$. Since \mathfrak{I} is **G**-prime, we have that $\mathfrak{I} = \ker \Omega$.

伺下 イヨト イヨト

Let \mathfrak{I} be a proper **G**-prime ideal of $L^1(G)$. Then $\mathfrak{I}_S = \mathfrak{I} \cap S(G)$ is a proper **G**-prime ideal of S(G) which is closed in the $\|\cdot\|_1$ -norm. By Molitor-Braun, there is an orbit $\Omega \in \operatorname{Prim}^*(G)$ such that $\mathfrak{I}_S = \ker \Omega \cap S(G)$. Hence,

$$h(\mathfrak{I}) = h(\mathfrak{I}_{\mathcal{S}}) = h(\ker \Omega \cap \mathcal{S}(G)) = h(\ker \Omega) = \overline{\Omega}$$

and $\mathfrak{I} \subset \ker \Omega$. On the other hand, since $\mathcal{S}(G) \cap \ker \Omega$ is dense in $\ker \Omega$, we have

$$(\ker \Omega)^N \subset J(\Omega) \subset \mathfrak{I}$$

for some $N \in \mathbb{N}$. Since \mathfrak{I} is **G**-prime, we have that $\mathfrak{I} = \ker \Omega$.

Let \mathfrak{I} be a proper **G**-prime ideal of $L^1(G)$. Then $\mathfrak{I}_S = \mathfrak{I} \cap S(G)$ is a proper **G**-prime ideal of S(G) which is closed in the $\|\cdot\|_1$ -norm. By Molitor-Braun, there is an orbit $\Omega \in \operatorname{Prim}^*(G)$ such that $\mathfrak{I}_S = \ker \Omega \cap S(G)$. Hence,

$$h(\mathfrak{I}) = h(\mathfrak{I}_{\mathcal{S}}) = h(\ker \Omega \cap \mathcal{S}(G)) = h(\ker \Omega) = \overline{\Omega}$$

and $\mathfrak{I} \subset \ker \Omega$. On the other hand, since $\mathcal{S}(G) \cap \ker \Omega$ is dense in $\ker \Omega$, we have

$$(\ker \Omega)^N \subset J(\Omega) \subset \mathfrak{I}$$

for some $N \in \mathbb{N}$. Since \mathfrak{I} is **G**-prime, we have that $\mathfrak{I} = \ker \Omega$.

Theorem

Let G be a simply connected, connected nilpotent Lie group and **G** be a Lie group of automorphisms of G containing the inner automorphisms such that every **G**-orbit in \mathfrak{g}^* is locally closed. Then every **G**-prime ideal of $L^1(G)$ is the kernel of an **G**-orbit.

THANK YOU for YOUR ATTENTION !!

- 4 同 6 4 日 6 4 日 6

э