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Examples to provide intuition

For α ≥ 0 we may define

Aα(T) = {f ∈ C(T) :
∑

n∈Z

|f̂(n)|(1 + |n|)α <∞}.

We may define Aα(T
d) in an analogous way, using the weight function

(n1, . . . , nd) 7→ (1 + |n1|)
α . . . (1 + |nd|)

α .

This notation is non-standard, but useful here, since

Aα(T
d) ∼= Aα(T) ⊗̂γ · · · ⊗̂γ Aα(T)

isometrically as Banach algebras. (Here, ⊗̂γ is the projective tensor
product of Banach spaces.)

Remark

These are basic examples of Beurling–Fourier algebras; we can make
analogous definitions with more general weight functions.
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Reminder

If A is a Banach algebra then a bounded linear map D : A→ A∗ is a
derivation if it satisfies

D(a1a2)(a0) = [a1 ·D(a2)](a0) + [D(a1) · a2](a0)

= D(a2)(a0a1) +D(a1)(a2a0)
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D(a1a2)(a0) = [a1 ·D(a2)](a0) + [D(a1) · a2](a0)

= D(a2)(a0a1) +D(a1)(a2a0)

An example of a derivation

For f1, f0 ∈ C1(T), define

D(f1)(f0) =

∫

T

∂f1
∂θ

f0

Then D : C1(T) → C1(T)∗ is a non-zero derivation.
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If A is a Banach algebra then a bounded linear map D : A→ A∗ is a
derivation if it satisfies

D(a1a2)(a0) = [a1 ·D(a2)](a0) + [D(a1) · a2](a0)

= D(a2)(a0a1) +D(a1)(a2a0)

An example of a derivation

For f1, f0 ∈ C1(T), define

D(f1)(f0) =

∫

T

∂f1
∂θ

f0

Then D : C1(T) → C1(T)∗ is a non-zero derivation.

If α ≥ 1/2, then D extends to a non-zero derivation Aα(T) → Aα(T)
∗.

Idea of the proof

Use Parseval/Plancherel for the group T: 〈g, h〉L2(T) = 〈ĝ, ĥ〉ℓ2(Z).
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Another example (Johnson, 1994)

For f1, f0 ∈ C1(SU(2)), define

D(f1)(f0) =

∫

SU(2)

(∂φf1)f0

where (∂φh)(p) =
∂
∂φh(psφ)

∣∣∣
φ=0

for sφ =

(
eiφ/2 0
0 e−iφ/2

)
.

Then D : C1(T) → C1(T)∗ is a non-zero derivation.

D extends to a non-zero derivation A(SU(2)) → A(SU(2))∗.

In particular: A(SU(2)) is not weakly amenable

Idea of one possible proof (C.+Ghandehari, 2014)

Use Parseval/Plancherel for the group SU(2):

〈g, h〉L2(SU(2)) =
∑

n≥1

nTr(πn(g)πn(h)
∗).

3 / 18



Alternating cocycles on commutative Banach algebras

Introduced and studied for CBAs by Johnson (1997).

He gave a definition/characterization that doesn’t require introducing
higher-degree Hochschild cohomology groups.
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Introduced and studied for CBAs by Johnson (1997).

He gave a definition/characterization that doesn’t require introducing
higher-degree Hochschild cohomology groups.

Definition

Let A be a commutative Banach algebra and M a symmetric Banach

A-bimodule, e.g. M = A∗. An alternating n-cocycle is: an n-multilinear

map ψ : A× · · · ×A→M which satisfies

ψ(aσ(1), . . . , aσ(n)) = (−1)σψ(a1, · · · an) for every σ ∈ Sn, and

ψ(bc, a2, . . . , an) = b · ψ(c, a2, . . . , an) + c · ψ(b, a2, . . . , an),

for all b, c, a1, . . . , an ∈ A.
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Introduced and studied for CBAs by Johnson (1997).

He gave a definition/characterization that doesn’t require introducing
higher-degree Hochschild cohomology groups.

Definition

Let A be a commutative Banach algebra and M a symmetric Banach

A-bimodule, e.g. M = A∗. An alternating n-cocycle is: an n-multilinear

map ψ : A× · · · ×A→M which satisfies

ψ(aσ(1), . . . , aσ(n)) = (−1)σψ(a1, · · · an) for every σ ∈ Sn, and

ψ(bc, a2, . . . , an) = b · ψ(c, a2, . . . , an) + c · ψ(b, a2, . . . , an),

for all b, c, a1, . . . , an ∈ A.

Remark

These objects were already known in commutative algebra/algebraic
geometry. (E.g. implicit in HKR theorem for smooth algebras; explicitly
named in work of Gerstenhaber–Schack, 1987.)
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[Callback]

For α ≥ 0 we may define

Aα(T) = {f ∈ C(T) :
∑

n∈Z

|f̂(n)|(1 + |n|)α <∞}.

The multivariable version satisfies

Aα(T
d) ∼= Aα(T) ⊗̂γ · · · ⊗̂γ Aα(T)

isometrically as Banach algebras.
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Motivating example of a (non-inner) 2-cocycle

For F1, F2, F0 ∈ C1(T2), define

Ψ(F1, F2)(F0) :=

∫

T2

(
∂F1

∂θ1

∂F2

∂θ2
−
∂F2

∂θ1

∂F1

∂θ2

)
F0

Then Ψ : C1(T2)× C1(T2) → C1(T2)∗ is a non-zero, alternating
2-cocycle.
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Then Ψ : C1(T2)× C1(T2) → C1(T2)∗ is a non-zero, alternating
2-cocycle.

If α ≥ 1/2, then Ψ extends to a non-zero, alternating 2-cocycle
Aα(T

2)×Aα(T
2) → Aα(T

2)∗.

Remark

This construction has something to do with “tensoring derivations”.

Question.

Can we do the same for (some) Fourier algebras?
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A glimpse of a distant goal

Question.

Why seek 2-cocycles (or n-cocycles) on Banach function algebras?
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Why seek 2-cocycles (or n-cocycles) on Banach function algebras?

Partial answer

Let Zn
alt(A,A

∗) be the space of alternating n-cocycles for a CBA A.

The number

dimJDR(A) := max{n : Zn
alt(A,A

∗) 6= 0}

is a candidate for measuring some kind of “dimension” of A, which is
more tractable than the usual homological dimension.
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A glimpse of a distant goal

Question.

Why seek 2-cocycles (or n-cocycles) on Banach function algebras?

Partial answer

Let Zn
alt(A,A

∗) be the space of alternating n-cocycles for a CBA A.

The number

dimJDR(A) := max{n : Zn
alt(A,A

∗) 6= 0}

is a candidate for measuring some kind of “dimension” of A, which is
more tractable than the usual homological dimension.

Note: dimJDR(A) = 0 if and only if A is weakly amenable.
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Example (can be extracted from Johnson, 1997)

dimJDR Aα(T
d) is d if α ≥ 1/2 and 0 if 0 ≤ α < 1/2.

In contrast, for every α > 0, Aα(T) has non-trivial cohomology in degree
2 (and possibly all higher degrees).
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2 (and possibly all higher degrees).

Remark (paraphrasing results of Johnson)

Results are even more interesting for the algebras lipα(T
d):

dimJDR lipα(T
d) = min

(
d,

⌈
1

1− α

⌉
− 2

)

So for fixed d: as αց 0 we get dimJDR → 0; as αր 1 we get
dimJDR → d.
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Example (can be extracted from Johnson, 1997)

dimJDR Aα(T
d) is d if α ≥ 1/2 and 0 if 0 ≤ α < 1/2.

In contrast, for every α > 0, Aα(T) has non-trivial cohomology in degree
2 (and possibly all higher degrees).

Remark (paraphrasing results of Johnson)

Results are even more interesting for the algebras lipα(T
d):

dimJDR lipα(T
d) = min

(
d,

⌈
1

1− α

⌉
− 2

)

So for fixed d: as αց 0 we get dimJDR → 0; as αր 1 we get
dimJDR → d.

Question.

Can we find G with dimJDR A(G) ≥ 2?
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Building 2-cocycles: 1st attempt

Consider CBAs A and B, and derivations DA : A→ A∗, DB : B → B∗.

Define ψ : (A ⊗̂γ B)× (A ⊗̂γ B) → (A ⊗̂γ B)∗ by

ψ(a1 ⊗ b1, a2 ⊗ b2)(a0 ⊗ b0) =

{
DA(a1)(a2a0)DB(b2)(b1b0)

−DA(a2)(a1a0)DB(b1)(b2b0)
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Consider CBAs A and B, and derivations DA : A→ A∗, DB : B → B∗.

Define ψ : (A ⊗̂γ B)× (A ⊗̂γ B) → (A ⊗̂γ B)∗ by

ψ(a1 ⊗ b1, a2 ⊗ b2)(a0 ⊗ b0) =

{
DA(a1)(a2a0)DB(b2)(b1b0)

−DA(a2)(a1a0)DB(b1)(b2b0)

Then ψ ∈ Z2
alt(A ⊗̂γ B, (A ⊗̂γ B)∗).

Under mild conditions on A and B:
if DA 6= 0 and DB 6= 0 then ψ 6= 0

Aide-memoire

Compare this with the earlier motivating example:

Ψ(F1, F2)(F0) :=

∫

T2

(
∂F1

∂θ1

∂F2

∂θ2
−
∂F2

∂θ1

∂F1

∂θ2

)
F0
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Can we apply this for SU(2)× SU(2)?

Recall: by Johnson’s result/construction, there is a non-zero derivation
D : A(SU(2)) → A(SU(2))∗.

Taking A = B = A(SU(2)) and DA = DB = D, we get a non-zero
2-cocycle on A(SU(2)) ⊗̂γ A(SU(2)).

But this is well-known to be strictly smaller than A(SU(2)× SU(2))!
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Recall: by Johnson’s result/construction, there is a non-zero derivation
D : A(SU(2)) → A(SU(2))∗.

Taking A = B = A(SU(2)) and DA = DB = D, we get a non-zero
2-cocycle on A(SU(2)) ⊗̂γ A(SU(2)).

But this is well-known to be strictly smaller than A(SU(2)× SU(2))!

On the other hand: A(SU(2)× SU(2)) ∼= A(SU(2)) ⊗̂A(SU(2))
where ⊗̂ denotes the operator space projective tensor product.

This suggests trying to do our 2-cocycle construction in the
operator-space category. But now we run into the following brick wall:

Theorem (Spronk, 2002; Samei, 2005)

For any locally compact G, the only c.b. derivation A(G) → A(G)∗ is

the zero map.
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However: if we revisit the derivation for A(SU(2)), one can show that
this map D is c.b. when viewed as a linear map

[A(SU(2))]∼ → A(SU(2))∗

where the tilde denotes the opposite operator space structure.

Remark

More concretely, this means that D : A(SU(2)) → A(SU(2))∗ is actually
given by an element of VN(SU(2)op × SU(2)).
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[Callback]

Another example (Johnson, 1994)

D(f1)(f0) =

∫

SU(2)

(∂φf1)f0

where (∂φh)(p) =
∂
∂φh(psφ)

∣∣∣
φ=0

for sφ =
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)
.
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Idea of one possible proof (C.+Ghandehari, 2014)
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Some remarks for more general G

By work of Lee–Ludwig–Samei–Spronk (2016), there exist
non-zero derivations A(G) → A(G)∗ for every connected
non-abelian Lie group G.

13 / 18



Some remarks for more general G

By work of Lee–Ludwig–Samei–Spronk (2016), there exist
non-zero derivations A(G) → A(G)∗ for every connected
non-abelian Lie group G.

The argument in [LLSS16] works by bootstrapping from a finite
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non-zero derivations that are c.b. from Ã(G) → A(G)∗.
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By work of Lee–Ludwig–Samei–Spronk (2016), there exist
non-zero derivations A(G) → A(G)∗ for every connected
non-abelian Lie group G.

The argument in [LLSS16] works by bootstrapping from a finite
number of concrete cases, and in all those cases one has explicit

non-zero derivations that are c.b. from Ã(G) → A(G)∗.

(See also earlier examples of C.+Ghandehari, 2014.)

It is natural to wonder if the twisted c.b. property holds in all cases,
but it is unclear if the bootstrapping process respects this property.
(Work in progress with E. Samei.)
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Building 2-cocycles: 2nd attempt

Consider CCBAs A and B, and cb maps TA : Ã→ A∗, TB : B̃ → B∗.

Define ψ0 : A×B ×A×B → A∗ ⊗B∗ by

ψ0(a1, b1, a2, b2) =

{
[TA(a1) · a2]⊗ [TB(b2) · b1]

−[TA(a2) · a1]⊗ [TB(b1) · b2]
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Consider CCBAs A and B, and cb maps TA : Ã→ A∗, TB : B̃ → B∗.

Define ψ0 : A×B ×A×B → A∗ ⊗B∗ by

ψ0(a1, b1, a2, b2) =

{
[TA(a1) · a2]⊗ [TB(b2) · b1]

−[TA(a2) · a1]⊗ [TB(b1) · b2]

Although this looks unappealing, we find after some book-keeping that:

Lemma

The map ψ0 extends to a bounded bilinear map

ψ1 : (A ⊗̂B)× (A ⊗̂B) → A∗ ⊗̂ B̃∗

Now what do we do? Remember, we want to land in (A ⊗̂B)∗!
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[tumbleweed rolls by]
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An unexpected result

Theorem (C., 2016 preprint)

If X and Y are operator spaces, then the identity map on X ⊗ Y extends

to a linear contraction X ⊗̂ Ỹ → X ⊗min Y .
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An unexpected result

Theorem (C., 2016 preprint)

If X and Y are operator spaces, then the identity map on X ⊗ Y extends

to a linear contraction X ⊗̂ Ỹ → X ⊗min Y .

The proof goes via the special case X = B(H), Y = B(K). In turn, this
special case is a consequence of the following result.

Proposition

Define Φ0 : B(H)⊗ B(K) → B(S2(K,H)) by

Φ0(a⊗ b) : c 7→ acb

Then ‖Φ0(w)‖ ≤ ‖w‖B(H)⊗̂B(K) for all w ∈ B(H)⊗ B(K).
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WLOG ‖w‖B(H)⊗̂B(K) ≤ 1. Can show, by o.s. tensor product arguments,

that Φ0(w) acts contractively on H ⊗̂ K∗ ∼= S1(K,H) and contractively
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Sketch of the proof

WLOG ‖w‖B(H)⊗̂B(K) ≤ 1. Can show, by o.s. tensor product arguments,

that Φ0(w) acts contractively on H ⊗̂ K∗ ∼= S1(K,H) and contractively
on H⊗min K∗ ∼= S∞(K,H). INTERPOLATE. �

Remark

If you interpolate in the o.s. category you obtain a complete contraction
B(H) ⊗̂ B(K) → CB(OH) where OH is S2(K,H) equipped with Pisier’s
self-dual o.s.s.
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The payoff

Taking X = Y = VN(SU(2)), and combining this with the earlier
calculations:

Corollary

If D is “Johnson’s derivation” for A(SU(2)), and we use it to construct

the 2-cocycle ψ on A(SU(2)) ⊗̂γ A(SU(2)), then ψ extends to a

2-cocycle on A(SU(2)× SU(2)).
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The payoff

Taking X = Y = VN(SU(2)), and combining this with the earlier
calculations:

Corollary

If D is “Johnson’s derivation” for A(SU(2)), and we use it to construct

the 2-cocycle ψ on A(SU(2)) ⊗̂γ A(SU(2)), then ψ extends to a

2-cocycle on A(SU(2)× SU(2)).

Invoking Herz’s restriction theorem and standard properties of cocycles:

Corollary

If G is a locally compact group containing a closed copy of

SU(2)× SU(2), then dimJDR A(G) ≥ 2.

Question.

Is there a group G with dimJDR A(G) ≥ 3?
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Thank you for your attention!
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