Twisted tensor products, and cocycles on Fourier algebras

Yemon Choi
Lancaster University

Abstract Harmonic Analysis 2018
Kaohsiung, Taiwan, 26th June 2018

Examples to provide intuition

For $\alpha \geq 0$ we may define

$$
\mathrm{A}_{\alpha}(\mathbb{T})=\left\{f \in C(\mathbb{T}): \sum_{n \in \mathbb{Z}}|\hat{f}(n)|(1+|n|)^{\alpha}<\infty\right\}
$$

We may define $\mathrm{A}_{\alpha}\left(\mathbb{T}^{d}\right)$ in an analogous way, using the weight function

$$
\left(n_{1}, \ldots, n_{d}\right) \mapsto\left(1+\left|n_{1}\right|\right)^{\alpha} \ldots\left(1+\left|n_{d}\right|\right)^{\alpha}
$$

This notation is non-standard, but useful here, since

$$
\mathrm{A}_{\alpha}\left(\mathbb{T}^{d}\right) \cong \mathrm{A}_{\alpha}(\mathbb{T}) \hat{\otimes}_{\gamma} \cdots \hat{\otimes}_{\gamma} \mathrm{A}_{\alpha}(\mathbb{T})
$$

isometrically as Banach algebras. (Here, $\hat{\otimes}_{\gamma}$ is the projective tensor product of Banach spaces.)

Remark

These are basic examples of Beurling-Fourier algebras; we can make analogous definitions with more general weight functions.

Reminder

If A is a Banach algebra then a bounded linear map $D: A \rightarrow A^{*}$ is a derivation if it satisfies

$$
\begin{aligned}
D\left(a_{1} a_{2}\right)\left(a_{0}\right) & =\left[a_{1} \cdot D\left(a_{2}\right)\right]\left(a_{0}\right)+\left[D\left(a_{1}\right) \cdot a_{2}\right]\left(a_{0}\right) \\
& =D\left(a_{2}\right)\left(a_{0} a_{1}\right)+D\left(a_{1}\right)\left(a_{2} a_{0}\right)
\end{aligned}
$$

Reminder

If A is a Banach algebra then a bounded linear map $D: A \rightarrow A^{*}$ is a derivation if it satisfies

$$
\begin{aligned}
D\left(a_{1} a_{2}\right)\left(a_{0}\right) & =\left[a_{1} \cdot D\left(a_{2}\right)\right]\left(a_{0}\right)+\left[D\left(a_{1}\right) \cdot a_{2}\right]\left(a_{0}\right) \\
& =D\left(a_{2}\right)\left(a_{0} a_{1}\right)+D\left(a_{1}\right)\left(a_{2} a_{0}\right)
\end{aligned}
$$

An example of a derivation

For $f_{1}, f_{0} \in C^{1}(\mathbb{T})$, define

$$
D\left(f_{1}\right)\left(f_{0}\right)=\int_{\mathbb{T}} \frac{\partial f_{1}}{\partial \theta} f_{0}
$$

Then $D: C^{1}(\mathbb{T}) \rightarrow C^{1}(\mathbb{T})^{*}$ is a non-zero derivation.

Reminder

If A is a Banach algebra then a bounded linear map $D: A \rightarrow A^{*}$ is a derivation if it satisfies

$$
\begin{aligned}
D\left(a_{1} a_{2}\right)\left(a_{0}\right) & =\left[a_{1} \cdot D\left(a_{2}\right)\right]\left(a_{0}\right)+\left[D\left(a_{1}\right) \cdot a_{2}\right]\left(a_{0}\right) \\
& =D\left(a_{2}\right)\left(a_{0} a_{1}\right)+D\left(a_{1}\right)\left(a_{2} a_{0}\right)
\end{aligned}
$$

An example of a derivation

For $f_{1}, f_{0} \in C^{1}(\mathbb{T})$, define

$$
D\left(f_{1}\right)\left(f_{0}\right)=\int_{\mathbb{T}} \frac{\partial f_{1}}{\partial \theta} f_{0}
$$

Then $D: C^{1}(\mathbb{T}) \rightarrow C^{1}(\mathbb{T})^{*}$ is a non-zero derivation.
If $\alpha \geq 1 / 2$, then D extends to a non-zero derivation $\mathrm{A}_{\alpha}(\mathbb{T}) \rightarrow \mathrm{A}_{\alpha}(\mathbb{T})^{*}$.

Idea of the proof

Use Parseval/Plancherel for the group $\mathbb{T}: \quad\langle g, h\rangle_{L^{2}(\mathbb{T})}=\langle\widehat{g}, \widehat{h}\rangle_{\ell^{2}(\mathbb{Z})}$.

Another example (JoHnsON, 1994)

For $f_{1}, f_{0} \in C^{1}(\mathrm{SU}(2))$, define

$$
D\left(f_{1}\right)\left(f_{0}\right)=\int_{\mathrm{SU}(2)}\left(\partial_{\phi} f_{1}\right) f_{0}
$$

where $\left(\partial_{\phi} h\right)(p)=\left.\frac{\partial}{\partial \phi} h\left(p s_{\phi}\right)\right|_{\phi=0}$ for $s_{\phi}=\left(\begin{array}{cc}e^{i \phi / 2} & 0 \\ 0 & e^{-i \phi / 2}\end{array}\right)$.
Then $D: C^{1}(\mathbb{T}) \rightarrow C^{1}(\mathbb{T})^{*}$ is a non-zero derivation.
D extends to a non-zero derivation $\mathrm{A}(\mathrm{SU}(2)) \rightarrow \mathrm{A}(\mathrm{SU}(2))^{*}$.

In particular: $\mathrm{A}(\mathrm{SU}(2))$ is not weakly amenable
Idea of one possible proof (C.+Ghandehari, 2014)
Use Parseval/Plancherel for the group SU(2):

$$
\langle g, h\rangle_{L^{2}(\mathrm{SU}(2))}=\sum_{n \geq 1} n \operatorname{Tr}\left(\pi_{n}(g) \pi_{n}(h)^{*}\right) .
$$

Alternating cocycles on commutative Banach algebras

Introduced and studied for CBAs by Johnson (1997).
He gave a definition/characterization that doesn't require introducing higher-degree Hochschild cohomology groups.

Alternating cocycles on commutative Banach algebras

Introduced and studied for CBAs by Johnson (1997).
He gave a definition/characterization that doesn't require introducing higher-degree Hochschild cohomology groups.

Definition

Let A be a commutative Banach algebra and M a symmetric Banach A-bimodule, e.g. $M=A^{*}$. An alternating n-cocycle is: an n-multilinear $\operatorname{map} \psi: A \times \cdots \times A \rightarrow M$ which satisfies

- $\psi\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)=(-1)^{\sigma} \psi\left(a_{1}, \cdots a_{n}\right)$ for every $\sigma \in S_{n}$, and
- $\psi\left(b c, a_{2}, \ldots, a_{n}\right)=b \cdot \psi\left(c, a_{2}, \ldots, a_{n}\right)+c \cdot \psi\left(b, a_{2}, \ldots, a_{n}\right)$,
for all $b, c, a_{1}, \ldots, a_{n} \in A$.

Introduced and studied for CBAs by Johnson (1997).
He gave a definition/characterization that doesn't require introducing higher-degree Hochschild cohomology groups.

Definition

Let A be a commutative Banach algebra and M a symmetric Banach A-bimodule, e.g. $M=A^{*}$. An alternating n-cocycle is: an n-multilinear $\operatorname{map} \psi: A \times \cdots \times A \rightarrow M$ which satisfies

- $\psi\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)=(-1)^{\sigma} \psi\left(a_{1}, \cdots a_{n}\right)$ for every $\sigma \in S_{n}$, and
- $\psi\left(b c, a_{2}, \ldots, a_{n}\right)=b \cdot \psi\left(c, a_{2}, \ldots, a_{n}\right)+c \cdot \psi\left(b, a_{2}, \ldots, a_{n}\right)$,
for all $b, c, a_{1}, \ldots, a_{n} \in A$.

Remark

These objects were already known in commutative algebra/algebraic geometry. (E.g. implicit in HKR theorem for smooth algebras; explicitly named in work of Gerstenhaber-Schack, 1987.)

[Callback]

For $\alpha \geq 0$ we may define

$$
\mathrm{A}_{\alpha}(\mathbb{T})=\left\{f \in C(\mathbb{T}): \sum_{n \in \mathbb{Z}}|\hat{f}(n)|(1+|n|)^{\alpha}<\infty\right\}
$$

The multivariable version satisfies

$$
\mathrm{A}_{\alpha}\left(\mathbb{T}^{d}\right) \cong \mathrm{A}_{\alpha}(\mathbb{T}) \hat{\otimes}_{\gamma} \cdots \hat{\otimes}_{\gamma} \mathrm{A}_{\alpha}(\mathbb{T})
$$

isometrically as Banach algebras.

Motivating example of A (non-inner) 2-cocycle

For $F_{1}, F_{2}, F_{0} \in C^{1}\left(\mathbb{T}^{2}\right)$, define

$$
\Psi\left(F_{1}, F_{2}\right)\left(F_{0}\right):=\int_{\mathbb{T}^{2}}\left(\frac{\partial F_{1}}{\partial \theta_{1}} \frac{\partial F_{2}}{\partial \theta_{2}}-\frac{\partial F_{2}}{\partial \theta_{1}} \frac{\partial F_{1}}{\partial \theta_{2}}\right) F_{0}
$$

Then $\Psi: C^{1}\left(\mathbb{T}^{2}\right) \times C^{1}\left(\mathbb{T}^{2}\right) \rightarrow C^{1}\left(\mathbb{T}^{2}\right)^{*}$ is a non-zero, alternating 2-cocycle.

Motivating example of A (non-inner) 2-cocycle

For $F_{1}, F_{2}, F_{0} \in C^{1}\left(\mathbb{T}^{2}\right)$, define

$$
\Psi\left(F_{1}, F_{2}\right)\left(F_{0}\right):=\int_{\mathbb{T}^{2}}\left(\frac{\partial F_{1}}{\partial \theta_{1}} \frac{\partial F_{2}}{\partial \theta_{2}}-\frac{\partial F_{2}}{\partial \theta_{1}} \frac{\partial F_{1}}{\partial \theta_{2}}\right) F_{0}
$$

Then $\Psi: C^{1}\left(\mathbb{T}^{2}\right) \times C^{1}\left(\mathbb{T}^{2}\right) \rightarrow C^{1}\left(\mathbb{T}^{2}\right)^{*}$ is a non-zero, alternating 2-cocycle.

If $\alpha \geq 1 / 2$, then Ψ extends to a non-zero, alternating 2 -cocycle $\mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right) \times \mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right) \rightarrow \mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right)^{*}$.

Motivating example of a (non-inner) 2-cocycle

For $F_{1}, F_{2}, F_{0} \in C^{1}\left(\mathbb{T}^{2}\right)$, define

$$
\Psi\left(F_{1}, F_{2}\right)\left(F_{0}\right):=\int_{\mathbb{T}^{2}}\left(\frac{\partial F_{1}}{\partial \theta_{1}} \frac{\partial F_{2}}{\partial \theta_{2}}-\frac{\partial F_{2}}{\partial \theta_{1}} \frac{\partial F_{1}}{\partial \theta_{2}}\right) F_{0}
$$

Then $\Psi: C^{1}\left(\mathbb{T}^{2}\right) \times C^{1}\left(\mathbb{T}^{2}\right) \rightarrow C^{1}\left(\mathbb{T}^{2}\right)^{*}$ is a non-zero, alternating 2-cocycle.

If $\alpha \geq 1 / 2$, then Ψ extends to a non-zero, alternating 2 -cocycle $\mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right) \times \mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right) \rightarrow \mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right)^{*}$.

Remark

This construction has something to do with "tensoring derivations".

Motivating example of a (non-inner) 2-cocycle

For $F_{1}, F_{2}, F_{0} \in C^{1}\left(\mathbb{T}^{2}\right)$, define

$$
\Psi\left(F_{1}, F_{2}\right)\left(F_{0}\right):=\int_{\mathbb{T}^{2}}\left(\frac{\partial F_{1}}{\partial \theta_{1}} \frac{\partial F_{2}}{\partial \theta_{2}}-\frac{\partial F_{2}}{\partial \theta_{1}} \frac{\partial F_{1}}{\partial \theta_{2}}\right) F_{0}
$$

Then $\Psi: C^{1}\left(\mathbb{T}^{2}\right) \times C^{1}\left(\mathbb{T}^{2}\right) \rightarrow C^{1}\left(\mathbb{T}^{2}\right)^{*}$ is a non-zero, alternating 2-cocycle.

If $\alpha \geq 1 / 2$, then Ψ extends to a non-zero, alternating 2 -cocycle $\mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right) \times \mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right) \rightarrow \mathrm{A}_{\alpha}\left(\mathbb{T}^{2}\right)^{*}$.

Remark

This construction has something to do with "tensoring derivations".

Question.

Can we do the same for (some) Fourier algebras?

A GLIMPSE OF A DISTANT GOAL

Question.
Why seek 2-cocycles (or n-cocycles) on Banach function algebras?

Question.

Why seek 2 -cocycles (or n-cocycles) on Banach function algebras?

Partial answer

Let $\mathcal{Z}_{\text {alt }}^{n}\left(A, A^{*}\right)$ be the space of alternating n-cocycles for a CBA A.
The number

$$
\operatorname{dim}_{\mathrm{JDR}}(A):=\max \left\{n: \mathcal{Z}_{\text {alt }}^{n}\left(A, A^{*}\right) \neq 0\right\}
$$

is a candidate for measuring some kind of "dimension" of A, which is more tractable than the usual homological dimension.

Question.

Why seek 2-cocycles (or n-cocycles) on Banach function algebras?

Partial answer

Let $\mathcal{Z}_{\text {alt }}^{n}\left(A, A^{*}\right)$ be the space of alternating n-cocycles for a CBA A.
The number

$$
\operatorname{dim}_{\mathrm{JDR}}(A):=\max \left\{n: \mathcal{Z}_{\text {alt }}^{n}\left(A, A^{*}\right) \neq 0\right\}
$$

is a candidate for measuring some kind of "dimension" of A, which is more tractable than the usual homological dimension.

Note: $\operatorname{dim}_{\operatorname{JDR}}(A)=0$ if and only if A is weakly amenable.

Example (can be extracted from JoHNSON, 1997)

$\operatorname{dim}_{\mathrm{JDR}} \mathrm{A}_{\alpha}\left(\mathbb{T}^{d}\right)$ is d if $\alpha \geq 1 / 2$ and 0 if $0 \leq \alpha<1 / 2$.
In contrast, for every $\alpha>0, \mathrm{~A}_{\alpha}(\mathbb{T})$ has non-trivial cohomology in degree 2 (and possibly all higher degrees).

Example (can be extracted from JoHNSON, 1997)

$\operatorname{dim}_{\mathrm{JDR}} \mathrm{A}_{\alpha}\left(\mathbb{T}^{d}\right)$ is d if $\alpha \geq 1 / 2$ and 0 if $0 \leq \alpha<1 / 2$.
In contrast, for every $\alpha>0, \mathrm{~A}_{\alpha}(\mathbb{T})$ has non-trivial cohomology in degree 2 (and possibly all higher degrees).

Remark (paraphrasing results of Johnson)

Results are even more interesting for the algebras $\operatorname{lip}_{\alpha}\left(\mathbb{T}^{d}\right)$:

$$
\operatorname{dim}_{\mathrm{JDR}} \operatorname{lip}_{\alpha}\left(\mathbb{T}^{d}\right)=\min \left(d,\left[\frac{1}{1-\alpha}\right\rceil-2\right)
$$

So for fixed d : as $\alpha \searrow 0$ we get $\operatorname{dim}_{\text {JDR }} \rightarrow 0$; as $\alpha \nearrow 1$ we get $\operatorname{dim}_{\mathrm{JDR}} \rightarrow d$.

Example (can be extracted from JoHNSON, 1997)

$\operatorname{dim}_{\mathrm{JDR}} \mathrm{A}_{\alpha}\left(\mathbb{T}^{d}\right)$ is d if $\alpha \geq 1 / 2$ and 0 if $0 \leq \alpha<1 / 2$.
In contrast, for every $\alpha>0, \mathrm{~A}_{\alpha}(\mathbb{T})$ has non-trivial cohomology in degree 2 (and possibly all higher degrees).

Remark (paraphrasing results of Johnson)

Results are even more interesting for the algebras $\operatorname{lip}_{\alpha}\left(\mathbb{T}^{d}\right)$:

$$
\operatorname{dim}_{\mathrm{JDR}} \operatorname{lip}_{\alpha}\left(\mathbb{T}^{d}\right)=\min \left(d,\left[\frac{1}{1-\alpha}\right\rceil-2\right)
$$

So for fixed d : as $\alpha \searrow 0$ we get $\operatorname{dim}_{\text {JDR }} \rightarrow 0$; as $\alpha \nearrow 1$ we get $\operatorname{dim}_{\mathrm{JDR}} \rightarrow d$.

Question.

Can we find G with $\operatorname{dim}_{\text {JDR }} \mathrm{A}(G) \geq 2$?

Building 2-cocycles: 1st attempt

Consider CBAs A and B, and derivations $D_{A}: A \rightarrow A^{*}, D_{B}: B \rightarrow B^{*}$.
Define $\psi:\left(A \hat{\otimes}_{\gamma} B\right) \times\left(A \hat{\otimes}_{\gamma} B\right) \rightarrow\left(A \hat{\otimes}_{\gamma} B\right)^{*}$ by

$$
\psi\left(a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right)\left(a_{0} \otimes b_{0}\right)=\left\{\begin{array}{r}
D_{A}\left(a_{1}\right)\left(a_{2} a_{0}\right) D_{B}\left(b_{2}\right)\left(b_{1} b_{0}\right) \\
-D_{A}\left(a_{2}\right)\left(a_{1} a_{0}\right) D_{B}\left(b_{1}\right)\left(b_{2} b_{0}\right)
\end{array}\right.
$$

Building 2-cocycles: 1st attempt

Consider CBAs A and B, and derivations $D_{A}: A \rightarrow A^{*}, D_{B}: B \rightarrow B^{*}$.
Define $\psi:\left(A \hat{\otimes}_{\gamma} B\right) \times\left(A \hat{\otimes}_{\gamma} B\right) \rightarrow\left(A \hat{\otimes}_{\gamma} B\right)^{*}$ by

$$
\psi\left(a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right)\left(a_{0} \otimes b_{0}\right)=\left\{\begin{array}{r}
D_{A}\left(a_{1}\right)\left(a_{2} a_{0}\right) D_{B}\left(b_{2}\right)\left(b_{1} b_{0}\right) \\
-D_{A}\left(a_{2}\right)\left(a_{1} a_{0}\right) D_{B}\left(b_{1}\right)\left(b_{2} b_{0}\right)
\end{array}\right.
$$

Then $\psi \in \mathcal{Z}_{\text {alt }}^{2}\left(A \hat{\otimes}_{\gamma} B,\left(A \hat{\otimes}_{\gamma} B\right)^{*}\right)$.
Under mild conditions on A and B : if $D_{A} \neq 0$ and $D_{B} \neq 0$ then $\psi \neq 0$

Building 2-cocycles: 1st attempt

Consider CBAs A and B, and derivations $D_{A}: A \rightarrow A^{*}, D_{B}: B \rightarrow B^{*}$.
Define $\psi:\left(A \hat{\otimes}_{\gamma} B\right) \times\left(A \hat{\otimes}_{\gamma} B\right) \rightarrow\left(A \hat{\otimes}_{\gamma} B\right)^{*}$ by

$$
\psi\left(a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right)\left(a_{0} \otimes b_{0}\right)=\left\{\begin{array}{r}
D_{A}\left(a_{1}\right)\left(a_{2} a_{0}\right) D_{B}\left(b_{2}\right)\left(b_{1} b_{0}\right) \\
-D_{A}\left(a_{2}\right)\left(a_{1} a_{0}\right) D_{B}\left(b_{1}\right)\left(b_{2} b_{0}\right)
\end{array}\right.
$$

Then $\psi \in \mathcal{Z}_{\text {alt }}^{2}\left(A \hat{\otimes}_{\gamma} B,\left(A \hat{\otimes}_{\gamma} B\right)^{*}\right)$.
Under mild conditions on A and B :
if $D_{A} \neq 0$ and $D_{B} \neq 0$ then $\psi \neq 0$

Aide-memoire

Compare this with the earlier motivating example:

$$
\Psi\left(F_{1}, F_{2}\right)\left(F_{0}\right):=\int_{\mathbb{T}^{2}}\left(\frac{\partial F_{1}}{\partial \theta_{1}} \frac{\partial F_{2}}{\partial \theta_{2}}-\frac{\partial F_{2}}{\partial \theta_{1}} \frac{\partial F_{1}}{\partial \theta_{2}}\right) F_{0}
$$

Can we apply this for $\mathrm{SU}(2) \times \mathrm{SU}(2)$?

Recall: by Johnson's result/construction, there is a non-zero derivation $D: \mathrm{A}(\mathrm{SU}(2)) \rightarrow \mathrm{A}(\mathrm{SU}(2))^{*}$.

Taking $A=B=\mathrm{A}(\mathrm{SU}(2))$ and $D_{A}=D_{B}=D$, we get a non-zero 2-cocycle on $\mathrm{A}(\mathrm{SU}(2)) \hat{\otimes}_{\gamma} \mathrm{A}(\mathrm{SU}(2))$.

But this is well-known to be strictly smaller than $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2))$!

Recall: by Johnson's result/construction, there is a non-zero derivation $D: \mathrm{A}(\mathrm{SU}(2)) \rightarrow \mathrm{A}(\mathrm{SU}(2))^{*}$.
Taking $A=B=\mathrm{A}(\mathrm{SU}(2))$ and $D_{A}=D_{B}=D$, we get a non-zero 2 -cocycle on $\mathrm{A}(\mathrm{SU}(2)) \hat{\otimes}_{\gamma} \mathrm{A}(\mathrm{SU}(2))$.
But this is well-known to be strictly smaller than $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2))$!
On the other hand: $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2)) \cong \mathrm{A}(\mathrm{SU}(2)) \widehat{\otimes} \mathrm{A}(\mathrm{SU}(2))$ where $\widehat{\otimes}$ denotes the operator space projective tensor product.
This suggests trying to do our 2-cocycle construction in the operator-space category. But now we run into the following brick wall:

Recall: by Johnson's result/construction, there is a non-zero derivation $D: \mathrm{A}(\mathrm{SU}(2)) \rightarrow \mathrm{A}(\mathrm{SU}(2))^{*}$.
Taking $A=B=\mathrm{A}(\mathrm{SU}(2))$ and $D_{A}=D_{B}=D$, we get a non-zero 2 -cocycle on $\mathrm{A}(\mathrm{SU}(2)) \hat{\otimes}_{\gamma} \mathrm{A}(\mathrm{SU}(2))$.
But this is well-known to be strictly smaller than $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2))$!
On the other hand: $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2)) \cong \mathrm{A}(\mathrm{SU}(2)) \widehat{\otimes} \mathrm{A}(\mathrm{SU}(2))$ where $\widehat{\otimes}$ denotes the operator space projective tensor product.
This suggests trying to do our 2-cocycle construction in the operator-space category. But now we run into the following brick wall:

Theorem (Spronk, 2002; Samei, 2005)

For any locally compact G, the only c.b. derivation $\mathrm{A}(G) \rightarrow \mathrm{A}(G)^{*}$ is the zero map.

However: if we revisit the derivation for $\mathrm{A}(\mathrm{SU}(2))$, one can show that this map D is c .b. when viewed as a linear map

$$
[\mathrm{A}(\mathrm{SU}(2))]^{\sim} \rightarrow \mathrm{A}(\mathrm{SU}(2))^{*}
$$

where the tilde denotes the opposite operator space structure.

Remark

More concretely, this means that $D: \mathrm{A}(\mathrm{SU}(2)) \rightarrow \mathrm{A}(\mathrm{SU}(2))^{*}$ is actually given by an element of $\mathrm{VN}\left(\mathrm{SU}(2)^{\mathrm{op}} \times \mathrm{SU}(2)\right)$.

[Callback]

Another example (JOHNSON, 1994)

$$
D\left(f_{1}\right)\left(f_{0}\right)=\int_{\mathrm{SU}(2)}\left(\partial_{\phi} f_{1}\right) f_{0}
$$

where $\left(\partial_{\phi} h\right)(p)=\left.\frac{\partial}{\partial \phi} h\left(p s_{\phi}\right)\right|_{\phi=0}$ for $s_{\phi}=\left(\begin{array}{cc}e^{i \phi / 2} & 0 \\ 0 & e^{-i \phi / 2}\end{array}\right)$.
D extends to a non-zero derivation $\mathrm{A}(\mathrm{SU}(2)) \rightarrow \mathrm{A}(\mathrm{SU}(2))^{*}$.

Idea of one possible proof (C.+GHANDEHARI, 2014)

Use Parseval/Plancherel for the group $\operatorname{SU}(2)$:

$$
\langle g, h\rangle_{L^{2}(\mathrm{SU}(2))}=\sum_{n \geq 1} n \operatorname{Tr}\left(\pi_{n}(g) \pi_{n}(h)^{*}\right) .
$$

- By work of Lee-Ludwig-Samei-Spronk (2016), there exist non-zero derivations $\mathrm{A}(G) \rightarrow \mathrm{A}(G)^{*}$ for every connected non-abelian Lie group G.

Some remarks for more general G

- By work of LEE-LUDWIG-SAMEI-Spronk (2016), there exist non-zero derivations $\mathrm{A}(G) \rightarrow \mathrm{A}(G)^{*}$ for every connected non-abelian Lie group G.
- The argument in [LLSS16] works by bootstrapping from a finite number of concrete cases, and in all those cases one has explicit non-zero derivations that are c.b. from $\widetilde{\mathrm{A}(G)} \rightarrow \mathrm{A}(G)^{*}$.
(See also earlier examples of C.+Ghandehari, 2014.)

Some remarks for more general G

- By work of LEE-LUDWIG-SAMEI-Spronk (2016), there exist non-zero derivations $\mathrm{A}(G) \rightarrow \mathrm{A}(G)^{*}$ for every connected non-abelian Lie group G.
- The argument in [LLSS16] works by bootstrapping from a finite number of concrete cases, and in all those cases one has explicit non-zero derivations that are c.b. from $\widetilde{\mathrm{A}(G)} \rightarrow \mathrm{A}(G)^{*}$.
(See also earlier examples of C.+Ghandehari, 2014.)
- It is natural to wonder if the twisted c.b. property holds in all cases, but it is unclear if the bootstrapping process respects this property. (Work in progress with E. Samei.)

Building 2-COCYCles: 2ND ATtempt

Consider CCBAs A and B, and cb maps $T_{A}: \widetilde{A} \rightarrow A^{*}, T_{B}: \widetilde{B} \rightarrow B^{*}$.
Define $\psi_{0}: A \times B \times A \times B \rightarrow A^{*} \otimes B^{*}$ by

$$
\psi_{0}\left(a_{1}, b_{1}, a_{2}, b_{2}\right)=\left\{\begin{array}{r}
{\left[T_{A}\left(a_{1}\right) \cdot a_{2}\right] \otimes\left[T_{B}\left(b_{2}\right) \cdot b_{1}\right]} \\
-\left[T_{A}\left(a_{2}\right) \cdot a_{1}\right] \otimes\left[T_{B}\left(b_{1}\right) \cdot b_{2}\right]
\end{array}\right.
$$

Building 2-cocycles: 2nd attempt

Consider CCBAs A and B, and cb maps $T_{A}: \widetilde{A} \rightarrow A^{*}, T_{B}: \widetilde{B} \rightarrow B^{*}$.
Define $\psi_{0}: A \times B \times A \times B \rightarrow A^{*} \otimes B^{*}$ by

$$
\psi_{0}\left(a_{1}, b_{1}, a_{2}, b_{2}\right)=\left\{\begin{array}{r}
{\left[T_{A}\left(a_{1}\right) \cdot a_{2}\right] \otimes\left[T_{B}\left(b_{2}\right) \cdot b_{1}\right]} \\
-\left[T_{A}\left(a_{2}\right) \cdot a_{1}\right] \otimes\left[T_{B}\left(b_{1}\right) \cdot b_{2}\right]
\end{array}\right.
$$

Although this looks unappealing, we find after some book-keeping that:

Lemma

The map ψ_{0} extends to a bounded bilinear map

$$
\psi_{1}:(A \widehat{\otimes} B) \times(A \widehat{\otimes} B) \rightarrow A^{*} \widehat{\otimes} \widetilde{B^{*}}
$$

Now what do we do? Remember, we want to land in $(A \widehat{\otimes} B)^{*}$!
[tumbleweed rolls by]

AN UNEXPECTED RESULT

Theorem (C., 2016 preprint)

If X and Y are operator spaces, then the identity map on $X \otimes Y$ extends to a linear contraction $X \widehat{\otimes} \widetilde{Y} \rightarrow X \otimes_{\min } Y$.

An unexpected result

Theorem (C., 2016 preprint)

If X and Y are operator spaces, then the identity map on $X \otimes Y$ extends to a linear contraction $X \widehat{\otimes} \widetilde{Y} \rightarrow X \otimes_{\min } Y$.

The proof goes via the special case $X=\mathcal{B}(\mathrm{H}), Y=\mathcal{B}(\mathrm{K})$. In turn, this special case is a consequence of the following result.

Proposition
Define $\Phi_{0}: \mathcal{B}(\mathrm{H}) \otimes \mathcal{B}(\mathrm{K}) \rightarrow \mathcal{B}\left(\mathcal{S}_{2}(\mathrm{~K}, \mathrm{H})\right)$ by

$$
\Phi_{0}(a \otimes b): c \mapsto a c b
$$

Then $\left\|\Phi_{0}(w)\right\| \leq\|w\|_{\mathcal{B}(\mathrm{H}) \widehat{\otimes} \mathcal{B}(\mathrm{K})}$ for all $w \in \mathcal{B}(\mathrm{H}) \otimes \mathcal{B}(\mathrm{K})$.

Proposition
Define $\Phi_{0}: \mathcal{B}(\mathrm{H}) \otimes \mathcal{B}(\mathrm{K}) \rightarrow \mathcal{B}\left(\mathcal{S}_{2}(\mathrm{~K}, \mathrm{H})\right)$ by

$$
\Phi_{0}(a \otimes b): c \mapsto a c b
$$

Then $\left\|\Phi_{0}(w)\right\| \leq\|w\|_{\mathcal{B}(\mathrm{H}) \widehat{\otimes} \mathcal{B}(\mathrm{K})}$ for all $w \in \mathcal{B}(\mathrm{H}) \otimes \mathcal{B}(\mathrm{K})$.

Sketch of the proof

WLOG $\|w\|_{\mathcal{B}(H) \widehat{\otimes} \mathcal{B}(\mathrm{K})} \leq 1$. Can show, by o.s. tensor product arguments, that $\Phi_{0}(w)$ acts contractively on $\mathrm{H} \widehat{\otimes} \mathrm{K}^{*} \cong \mathcal{S}_{1}(\mathrm{~K}, \mathrm{H})$ and contractively on $\mathrm{H} \otimes_{\min } \mathrm{K}^{*} \cong \mathcal{S}_{\infty}(\mathrm{K}, \mathrm{H})$. INTERPOLATE.

Proposition
Define $\Phi_{0}: \mathcal{B}(\mathrm{H}) \otimes \mathcal{B}(\mathrm{K}) \rightarrow \mathcal{B}\left(\mathcal{S}_{2}(\mathrm{~K}, \mathrm{H})\right)$ by

$$
\Phi_{0}(a \otimes b): c \mapsto a c b
$$

Then $\left\|\Phi_{0}(w)\right\| \leq\|w\|_{\mathcal{B}(\mathrm{H}) \widehat{\otimes} \mathcal{B}(\mathrm{K})}$ for all $w \in \mathcal{B}(\mathrm{H}) \otimes \mathcal{B}(\mathrm{K})$.

Sketch of the proof

WLOG $\|w\|_{\mathcal{B}(\mathrm{H}) \widehat{\otimes} \mathcal{B}(\mathrm{K})} \leq 1$. Can show, by o.s. tensor product arguments, that $\Phi_{0}(w)$ acts contractively on $\mathrm{H} \widehat{\otimes} \mathrm{K}^{*} \cong \mathcal{S}_{1}(\mathrm{~K}, \mathrm{H})$ and contractively on $\mathrm{H} \otimes_{\min } \mathrm{K}^{*} \cong \mathcal{S}_{\infty}(\mathrm{K}, \mathrm{H})$. INTERPOLATE.

Remark

If you interpolate in the o.s. category you obtain a complete contraction $\mathcal{B}(\mathrm{H}) \widehat{\otimes} \mathcal{B}(\mathrm{K}) \rightarrow \mathcal{C B}(\mathrm{OH})$ where OH is $\mathcal{S}_{2}(\mathrm{~K}, \mathrm{H})$ equipped with Pisier's self-dual o.s.s.

The PAYOFF

Taking $X=Y=\mathrm{VN}(\mathrm{SU}(2))$, and combining this with the earlier calculations:

Corollary

If D is "Johnson's derivation" for $\mathrm{A}(\mathrm{SU}(2))$, and we use it to construct the 2-cocycle ψ on $\mathrm{A}(\mathrm{SU}(2)) \hat{\otimes}_{\gamma} \mathrm{A}(\mathrm{SU}(2))$, then ψ extends to a 2 -cocycle on $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2))$.

The Payoff

Taking $X=Y=\mathrm{VN}(\mathrm{SU}(2))$, and combining this with the earlier calculations:

Corollary
If D is "Johnson's derivation" for $\mathrm{A}(\mathrm{SU}(2))$, and we use it to construct the 2-cocycle ψ on $\mathrm{A}(\mathrm{SU}(2)) \hat{\otimes}_{\gamma} \mathrm{A}(\mathrm{SU}(2))$, then ψ extends to a 2 -cocycle on $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2))$.

Invoking Herz's restriction theorem and standard properties of cocycles:
Corollary
If G is a locally compact group containing a closed copy of $\mathrm{SU}(2) \times \mathrm{SU}(2)$, then $\operatorname{dim}_{\mathrm{JDR}} \mathrm{A}(G) \geq 2$.

The payoff

Taking $X=Y=\mathrm{VN}(\mathrm{SU}(2))$, and combining this with the earlier calculations:

Corollary

If D is "Johnson's derivation" for $\mathrm{A}(\mathrm{SU}(2))$, and we use it to construct the 2-cocycle ψ on $\mathrm{A}(\mathrm{SU}(2)) \hat{\otimes}_{\gamma} \mathrm{A}(\mathrm{SU}(2))$, then ψ extends to a 2 -cocycle on $\mathrm{A}(\mathrm{SU}(2) \times \mathrm{SU}(2))$.

Invoking Herz's restriction theorem and standard properties of cocycles:

Corollary

If G is a locally compact group containing a closed copy of $\mathrm{SU}(2) \times \mathrm{SU}(2)$, then $\operatorname{dim}_{\mathrm{JDR}} \mathrm{A}(G) \geq 2$.

Question.

Is there a group G with $\operatorname{dim}_{\mathrm{JDR}} \mathrm{A}(G) \geq 3$?

Thank you for your attention!

