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Let K be a discrete space.

M(K)= The space of complex-valued regular Borel measures on K.

Denote the subset of M(K) consisting of measures with finite support and

probability measures by MF(K) and Mp(K) respectively.

Set MF,p(K) := MF(K)∩Mp(K).

We begin with a map ∗ : K×K→MF,p(K) given by (δm,δn) 7→ δm ∗δn. Extend

‘∗’ to a bilinear map called convolution, denoted by ‘∗’ again, from

M(K)×M(K) to M(K).

A bijective map ∨ : m 7→ m̌ from K to K is called an involution if ˇ̌m = m. We can

extend it to M(K) in a natural way.
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Discrete semiconvos [Dunkl, 73 / Jewett, 75/ Specter, 75 ]

A pair (K,∗) is called a discrete semiconvo if the following conditions hold.

The map ∗ : K×K→MF,p(K) satisfies the associativity condition

(δm ∗δn)∗δk = δm ∗ (δn ∗δk) for allm,n,k ∈ K.

There exists (necessarily unique) element e ∈ K such that

δm ∗δe = δe ∗δm = δm for all m ∈ K.

A discrete semiconvo (K,∗) is called commutative if δm ∗δn = δn ∗δm for all

m,n ∈ K.
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Discrete hypergroups

A triplet (K,∗,∨) is called a discrete hypergroup if

(i) (K,∗) is a discrete semiconvo,

(ii) ∨ is an involution on K that satisfies

(a) (δm ∗δn)̌ = δň ∗δm̌ for all m,n ∈ K and

(b) e ∈ spt(δm ∗δň) if and only if m = n.

A discrete hypergroup (K,∗,∨) is called hermitian if the involution on K is the

identity map, i.e., m̌ = m for all m ∈ K.

Hermitian⇒ Commutative.

[Jewett] The Haar measure λ on a discrete hermitian hypergroup K is given by:

λ (e) = 1 and for e 6= n ∈ K, λ (n) = 1
(δn∗δn)(e)

.
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Let K be a commutative discrete hypergroup. For a complex-valued function χ

defined on K, we write χ̌(m) := χ(m̌) and

χ(m∗n) =
∫

K
χ d(δm ∗δn) for m,n ∈ K.

Dual objects
Define two dual objects of K :

Xb(K) = {χ ∈ `∞(K) : χ 6= 0,χ(m∗n) = χ(m)χ(n) for all m,n ∈ K} ,

K̂ =
{

χ ∈Xb(K) : χ̌ = χ, i.e., χ(m̌) = χ(m) for allm ∈ K
}
.

Each χ ∈Xb(K) is called a character and each χ ∈ K̂ is called a symmetric character.
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Examples of discrete hypergroups

Every discrete group is a discrete hypergroup with the convolution ‘∗’ given by

δm ∗δn = δmn.

Polynomial hypergroups [Lasser, 83/ Bloom and Heyer, 94] This is a wide and

important class of hermitian discrete hypergroups in which hypergroup

structures are defined on Z+. This class contains Chebyshev polynomial

hypergroups of first kind (CP1), Chebyshev polynomial hypergroups of second

kind (CP2), Gegenbauer hypergroups, Hermite hypergroups, Jacobi

hypergroups, Laguerre hypergroups etc.
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Theorem [Lasser, 83]
Let P = (Pn)n∈Z+ be an orthogonal polynomial system such that the linearization

coefficients g(n,m;k) occurring in

Pn(x)Pm(x) =
n+m

∑
k=|n−m|

g(n,m;k)Pk(x)

satisfy

g(n,m;k)≥ 0, n,m ∈ Z+, |n−m| ≤ k ≤ n+m.

Let ∗ : Z+×Z+→MF,p(Z+) be given by

δn ∗δm =
n+m

∑
k=|n−m|

g(n,m;k)δk.

Then KP = (Z+.∗) is a hermitian discrete hypergroup, called polynomial hypergroup

(related to P = (Pn)n∈Z+).
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CP1 and CP2 hypergroups

The condition g(n.m;k)≥ 0 is satisfied in all known cases. Also, it is known that

g(n,m; |n−m|)> 0 and g(n,m;n+m)> 0, [Lasser, 83].

Chebyshev polynomials of first kind define the following convolution ‘∗’ on Z+ :

δm ∗δn =
1
2

δm+n +
1
2

δ|m−n| for m,n ∈ Z+.

The Chebyshev polynomial hypergroup of second kind (Z+,∗) arises from the

Chebyshev polynomials of second kind and the convolution ’∗’ on Z+ is given by

δm ∗δn =
min{m,n}

∑
k=0

|m−n|+2k+1
(m+1)(n+1)

δ|m−n|+2k.
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Discrete orbit semiconvos

Theorem [Jewett, 75]

Let G be a discrete group and let H be a finite group with #H = c. Suppose that

(x,s) 7→ xs is an affine action of H on G. Then the space GH of orbits xH given by

xH = {xs : s ∈ H} equipped with the discrete topology is a semiconvo with respect to

the convolution ‘∗’ defined by

δxH ∗δyH =
1
c2 ∑

s,t∈H
δ(xsyt)H .
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Discrete automorphisms orbit hypergroups

Theorem [Jewett, 75]

Let G be a discrete group and let H be a finite subgroup of the group of

automorphisms of G with #H = c. Suppose that (x,s) 7→ xs is the corresponding

action of H on G. Then the space GH of orbits xH given by xH = {xs : s ∈ H}

equipped with the discrete topology is a discrete hypergroup with respect to the

convolution ‘∗’ defined by

δxH ∗δyH =
1
c ∑

s∈H
δ(xsy)H

with the identity eH = idG and the involution (xH )̌ = (x−1)H.
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Dunkl-Ramirez example

[Dunkl and Ramirez, 75 (TAMS)] The one-point compactification

Ha = {0,1,2, . . . ,∞},0 < a≤ 1
2 of Z+, can be made it a (hermitian) countable

compact hypergroup given by

δm ∗δn :=

δmin(m,n) m 6= n

2a−1
a−1 δn +∑

∞
k=n+1 ak−nδk m = n,

with δm ∗δ∞ = δ∞ ∗δm := δm.

The symmetric dual space Ĥa of Ha is a hermitian discrete hypergroup.
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The members of Ĥa are given by {χn : n ∈ Z+}, where, for k ∈ Ha,

χn(k) =


0 if k < n−1,

a
a−1 if k = n−1,

1 if k ≥ n (or k = ∞).

The convolution ‘∗’ on K = Z+ identified with Ĥa = {χn : n ∈ Z+} is dictated by

the pointwise product of functions in Ĥa, that is:

χmχn = χmax{m,n} for m 6= n,

χ
2
0 = χ0, χ

2
1 =

a
1−a

χ0 +
1−2a
1−a

χ1,

χ
2
n =

an

1−a
χ0 +

n−1

∑
k=1

an−k
χk +

1−2a
1−a

χn forn≥ 2.

We call (K,∗) a (discrete) Dunkl-Ramirez hypergroup.
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Some observations about D-R example

If λ is the haar measure on K = Ĥa (0 < a≤ 1
2 ) then

λ (n) = 1−a
an for all n ∈ N,

For n ∈ N, we have

δn ∗δn(0) =
an

1−a
=

1
λ (n)

,

δn ∗δn(k) = an−k =
λ (k)
λ (n)

for 1≤ k < n and

δn ∗δn(n) =
1−2a
1−a

= 1− ∑
0≤k<n

(δn ∗δn)(k) =
λ (n)−λ (Ln)

λ (n)
.

(δn ∗δn)(n) = 0 for some n ∈ N if and only if a = 1
2 if and only if

(δn ∗δn)(n) = 0 for all n ∈ N. In this case, λ (n) = 2n−1 for n ∈ N.
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Motivation

We note that a Dunkl-Ramirez hypergroup is a hermitian (hence commutative)

discrete hypergroup K = Ĥa (0 < a≤ 1
2 ) and its convolution ‘∗’ arises as a

hypergroup deformation of the semigroup (Z+,<, ·), where m ·n = max{m,n} in the

sense that δm ∗δn = δmn for m 6= n or, m = n = 0 and for m = n 6= 0, we have

δ1 ∗δ1 =
a

1−a
δ0 +

1−2a
1−a

δ1,

δn ∗δn =
an

1−a
δ0 +

n−1

∑
k=1

an−k
δk +

1−2a
1−a

δn for n≥ 2.

Also, each element of Z+ is an idempotent in (Z+, ·).
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First step towards abstraction

We try to replace (Z+,<, ·) by a discrete “max" semigroup (S,<,max) and try to

deform this discrete semigroup (S,<, ·) into a hermitian (hence commutative)

discrete hypergroup (S,∗) by deforming the product on the diagonal of S\{e}.

The convolution product ‘∗’ defined as follows:

δm ∗δn = δn ∗δm = δm·n(= δmax{m,n}) form,n ∈ Swithm 6= n, or, m = n = e,

δn ∗δn = qn forn ∈ S\{e}.

Here, qn is a probability measure on S with finite support Qn containing e and

has the form ∑j∈Qn qn(j)δj with qn(j)> 0 for j ∈ Qn and ∑j∈Qn qn(j) = 1.
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Question

Under what condition(s), will (S,∗) become a discrete hermitian hypergroup?
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Theorem 1 [Kumar, Ross and Singh, preprint]

Let (S,<, ·) be a discrete (commutative) “max" semigroup with identity e and ‘ ∗’ and

other related symbols as above. Then (S,∗) is a hermitian discrete hypergroup if and

only if the following conditions hold.

(i) Either S is finite or (S,<, ·) is isomorphic to (Z+,<,max).

(ii) For n ∈ S\{e}, we have Ln ⊂ Qn ⊂Ln∪{n}.

(iii) If #S > 2, then for e 6= m < n in S, we have

(a) qn(e) = qn(m)qm(e) and

(b) qn(e)
(

1+∑e6=k∈Ln
1

qk(e)

)
≤ 1;

or, equivalently, with vn =
1

qn(e)
for n ∈ S,

(iii)’ If #S > 2, then for e 6= m < n in S, we have

(a) qn(m) = vm
vn

and

(b) ∑k∈Ln
vk ≤ vn.
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Let V be the set of sequences v = (vj)j∈Z+ in [1,∞) which satisfy (i) v0 = 1 and (ii)

vn ≥ ∑j∈Ln vj for n ∈ N.

For n ∈ N, let un = vn−∑j∈Ln vj. Then simple calculations give the following:

v0 = 1,

v1 = 1+u1,

v2 = (2+u1)+u2,

v3 = (22 +2u1 +u2)+u3,

... =
...,

to elaborate,

vn = (2n−1 +2n−2u1 + . . .+un−1)+un for n≥ 3.
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Corollary [Kumar, Ross and Singh, preprint]

For each v ∈ V (or the corresponding u ∈U ), there is one and only one (hermitian)

hypergroup deformation (Z+,∗) of (Z+,<,max) which satisfies (δn ∗δn)(0) = 1
vn
,

n ∈ Z+. Further, for this deformation, the convolution ‘∗’ and the Haar measure λ

satisfy the following conditions.

(i) λ (n) = vn for n ∈ Z+ and λ (n)−λ (Ln) = un for n ∈ N.

(ii) λ (Ln)≤ λ (n) for n ∈ N.

(iii) For n ∈ N,

(a) δn ∗δn(m) =
λ (m)
λ (n) for m < n,

(b) δn ∗δn(n) =
λ (n)−λ (Ln)

λ (n) ,

(c) δn ∗δn(m) = 0 for m > n.

(iv) For n ∈ N, spt(δn ∗δn) =

Ln if λ (n) = λ (Ln),

Ln∪{n} if λ (n)> λ (Ln).
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Theorem 2 [Kumar, Ross and Singh, preprint]
Let (S,<, ·)∼= (Z+,<,max) and other symbols satisfy the conditions (ii)-(iii) of

Theorem 1 and let (S,∗) be the corresponding deformed hypergroup with the Haar

measure λ . Then the dual objects Xb(S) and Ŝ of (S,∗) are equal. Equipped with the

topology of uniform convergence on compact subsets of S, Ŝ can be identified with the

one point compactification Z∗+(= Z+∪{∞}) of Z+. More precisely, the identification

is given by k 7→ χ
k
, where χ

∞
(n) = 1 for all n ∈ Z+, and, for k ∈ Z+, χ

k
is given by

χ
k
(n) =


1 if n≤ k,

βk if n = k+1,

0 if n > k+1,

where,

βk =
−λ (Lk+1)

λ (k+1) =
−∑j∈Lk+1

vj

vk+1
=

uk+1
vk+1
−1 = δk+1 ∗δk+1(k+1)−1 = qk+1(k+1)−1.
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Theorem 3 [Kumar, Ross and Singh, preprint]

Let (S,<, ·)∼= (Z+,<,max) and other symbols satisfy the conditions (ii)-(iii) of

Theorem 1 and let (S,∗) be the corresponding deformed hypergroup with the Haar

measure λ . The dual space Ŝ of (S,∗) becomes a countable compact hermitian

hypergroup with respect to pointwise multiplication.

More precisely, the convolution ‘∗’ on Ŝ is given by

δχ
m
∗δχ

n
=


δχ

min{m,n}
for m,n ∈ Z+ with m 6= n or m = n = ∞,

∑j∈Z+
γm

j δχ
j

otherwise,

where, γm
j = 0 for j < m, γm

m = 1+βm ≥ 0, and for p≥ 1, γm
m+p = ∏

m+p−1
j=m

−βj
1−βj+1

> 0,

and, βj’s are as in the previous theorem. Further, we also have Xb(Ŝ) =
̂̂S∼= (S,∗).
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Complete characterization

Main theorem [Kumar, Ross and Singh, preprint]

Let (S, ·) be a commutative discrete semigroup with identity e such that S is

action-free. Let ‘∗’ and other related notation and concepts be as above. Then (S,∗) is

a commutative discrete semiconvo if and only if the following conditions hold.

(i) E(S) is finite or E(S) is isomorphic to (Z+,<,max), where the order on E(S) is

defined by m < n if mn = n 6= m.

(ii) (S̃, ·) is an ideal of (S, ·).

(iii) Qn ⊂ E(S) for n ∈ E0(S).
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Continue...

(iv) If n ∈ E0(S) and m ∈ S̃ then Qn ·m = {nm}.

(v) For n ∈ E0(S), we have Ln ⊂ Qn ⊂Ln∪{n}, where for n ∈ E(S),

Ln := {j ∈ E(S) : j < n}.

(vi) If #E(S)> 2, then for e 6= m < n in E(S), we have the following:

(α) qn(e) = qn(m)qm(e) and

(β ) qn(e)
(

1+∑e6=k∈Ln
1

qk(e)

)
≤ 1.

Further, under these conditions, E(S) is a hermitian discrete hypergroup. Moreover, S

is a hermitian discrete hypergroup if and only if S = E(S).
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Begining of Ramsey theory

Ramsey theory, now a well-developed branch of combinatorics, has a long

history dating back to 1892 starting with David Hilbert.

D. Hilbert, Ueber die Irreducibilität ganzer rationaler Functionen mit

ganzzahligen Coefficienten, (German) J. Reine Angew. Math. 110 (1892)

104-129.

For a discrete semigroup (S, ·), the algebra structure of Stone-Čech

compactification βS of S has been utilized with a great advantage to study the

Ramsey theory.

A good account of all this can be found in the book by N. Hindman and D.

Strauss, Algebra in Stone-Čech compactification: theory and application, 2nd

edition, De Gruyter, Berlin (2012).
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Celebrated Hindman’s Theorem

• Given a sequence 〈xn〉∞n=1 in N,

FS(〈xn〉∞n=1) = {∑
n∈F

xn : F is non-empty finite subset of N}.

Finite Sums Theorem [Hindman, 74 (J. Combinatorial Theory) ]

Let r ∈ N and let N=
⋃r

i=1 Ai be a partition of N. There exist i ∈ {1,2, ...,r} and a

sequence 〈xn〉∞n=1 in N such that FS(〈xn〉∞n=1)⊂ Ai.
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Semigroup version of Hindman’s Theorem

For a sequence 〈xn〉∞n=1 in a semigroup S, set

FP(〈xn〉∞n=1) = {∏n∈F xn : F is non-empty finite subset of N}, if S is

commutative.

FP(〈xn〉∞n=1) = {∏
k
j=1 xnj : k ∈ N, 1 < n1 < n2 < .. . < nk}, if S is

non-commutative.

Finite products theorem for semigroups [Hindman and Strauss]

Let S be a semigroup, let r ∈ N and let S =
⋃r

i=1 Ai be a partition of S. There exist

i ∈ {1,2, . . . ,r} and a sequence 〈xn〉∞n=1 in S such that FP(〈xn〉∞n=1)⊂ Ai.
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Galvin-Glazer-Hindman Theorem

[Golan and Tsaban, 13] A semigroup S is called moving if it is infinite and, for

each infinite A⊂ S and each finite F ⊂ S, there exist x1,x2, . . . ,xk ∈ A such that

{x1s,x2s, . . . ,xks}* F for all but finitely many s ∈ S.

It is clear that every right cancellative infinite semigroup is moving. In particular,

the semigroup (Z+,+) and every infinite group is moving.

Galvin-Glazer-Hindman Theorem [Golan and Tsaban,13]

Let S be a moving semigroup. For each finite colouring of S, there is a sequence

〈xn〉∞n=1 with distinct terms such that FP(〈xn〉∞n=1) is monochromatic.

Vishvesh Kumar Hypergroup deformations of semigroups and Ramsey hypergroups June 28, 2018 27 / 50



Ramsey semigroups

Ramsey semigroups or groups
(i) An infinite semigroup S is called a Ramsey semigroup if the conclusion of

Galvin-Glazer-Hindman Theorem holds for S.

(ii) A group which is a Ramsey semigroup will be called a Ramsey group.

Let (S,<, ·) be an infinite “max" semigroup with m ·n = max{m,n}. Then

(S,<, ·) is a Ramsey semigroup.

Galvin-Glazer-Hindman Theorem can be restated as: every moving semigroup is

a Ramsey semigroup. In particular, every infinite group is a Ramsey group.

If an infinite semigroup S contains a copy of (N,+) then S is a Ramsey

semigroup. This follows immediately from the observation that a partition of S

induces a partition of N.
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GGH Theorem is not true for arbitrary semigroups

.

[Golan and Tsaban, 13] Let k ∈ N, let Sk := {0,1,2, . . . ,k−1}∪ kN+1 be the

commutative semigroup with the operation of addition modulo k. It can be easily

seen that Sk is not Ramsey semigroup by assigning each s ∈ Sk the colour smodk.

Theorem [Golan and Tsaban, 13]

Let S be an infinite semigroup. For each finite colouring of S, there exist a sequence

〈xn〉∞n=1 with distinct terms and a finite subset F of FP(〈xn〉∞n=1) such that

FP(〈xn〉∞n=1)\F is monochromatic.

Theorem [Golan and Tsaban, 13]

For each finite colouring of
⊕

nZ2, there is an infinite subgroup H of
⊕

nZ2 such that

H\{0} is monochromatic.
Vishvesh Kumar Hypergroup deformations of semigroups and Ramsey hypergroups June 28, 2018 29 / 50



Almost-strong Ramsey semigroups or groups

Definition

(i) An infinite semigroup S is called an almost-strong Ramsey semigroup if given

any finite colouring of S there exists an infinite almost-monochromatic

subsemigroup T of S.

(ii) An almost-strong Ramsey group can be defined by replacing semigroup and

subsemigroup by group and subgroup respectively in (i) above.

If T is an almost-strong Ramsey semigroup (group) then S is an almost-strong

Ramsey semigroup (group). In particular, if
⊕

nZ2 is contained in a group G as

subgroup of G, then G is an almost-strong Ramsey group.

If S\T is finite then the converse is also true.
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Examples

[Golan and Tsaban, 13] Let k ∈ N. Consider the commutative semigroup

Sk := {0,1,2, . . . ,k−1}∪ kN+1 with the operation of addition modulo k . Then

Sk is an almost -strong Ramsey semigroup.

[Lemma (Folklore), Golan and Tsaban, 13] The semigroup (N,+) is not

almost-strong Ramsey semigroup . It can be seen by considering the 2-colouring

of N given by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 . . .

where the length of the intervals of elements of identical colours are 1,2,3, . . ..
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Ramsey theory for hypergroups
From sums to convolutions

It seems natural that the finite sums in Z+ will be replaced by the supports of the

convolution of finitely many unit point mass measures on KP.

Let x = 〈xn〉∞n=1 be an injective sequence in Z+ with the range B. For a

non-empty finite subset F of B i.e., F = {xnj : 1≤ j≤ m}, we set

δF = δxn1
∗δxn2

∗ · · · ∗δxnm .

Let {Ai}r
i=1 be a partition of Z+. We would like that there must be an injective

sequence 〈xn〉∞n=1 with the range B and an i ∈ {1,2, . . . ,r} such that sup(δF)⊂ Ai

for all finite subsets F of B.
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Motivation through CP2

Consider the Chebyshev polynomial hypergroup of second kind (CP2).

Take the finite partition {Ai}3
i=1 where Ai := {n ∈ Z+ : n≡ i−1mod3}. Take any

injective sequence 〈xn〉∞n=1 in N. Since xn’s are distinct, we may take it to be strictly

increasing. Then, for k ∈ N, 1≤ xk < xk +1≤ xk+1. By choosing F := {xk,xk+1}, we

get spt(δF)* Ai for any i as the support spt(δxk ∗δxk+1) contains two or more

elements staring from xk+1− xk to xk+1 + xk with the consecutive differences of 2

while every Ai contains elements with the difference of multiples of 3. Therefore, the

situation is different in the setting of hypergroups.
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Motivation through hypergroup deformations of semigroups

Consider a hypergroup deformations (S,∗) of semigroup (S, ·) = (Z+,<,max).

Take a partition (Ai)
r
i=1 of Z+. Then at least one of the Ai’s is infinite. In case Ai has

identity e = 0, we replace Ai by Ãi = Ai\{e}, otherwise we redesignate Ai by Ãi. Then

Ãi has an injective sequence 〈xn〉∞n=1 with the range B so that all finite products from

〈xn〉∞n=1 in (Z+,<,max) are in Ai. Now, for this set and sequence; for any finite subset

F = {xnj : 1≤ j≤ m} of B, δF becomes δy where y = ∏
1≤j≤m

xnj = max
1≤j≤m

xnj and thus

spt(δF)⊆ Ai.
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Formulation of new concepts in hypergroups

Let (K,∗) be an infinite discrete semiconvo. Let x = 〈xn〉∞n=1 be an injective

sequence in K\{e}. We denote its range by B. For a non-empty finite subset F of

B, we first write it in its increasing indices form, i.e., F = {xnj : 1≤ j≤ m} with

1≤ n1 < n2 < .. . < nm. Next, we set δF = δxn1
∗δxn2

∗ · · · ∗δxnm .

Let x = 〈xn〉∞n=1 be an injective sequence in K\{e} with range B. Set

SFC(〈xn〉∞n=1) := {spt(δxn1
∗δxn2

∗ · · · ∗δxnm ) : n1 < n2 < .. . < nm, m≥ 1}

= {spt(δF) : F is a non-empty finite subset ofB}.
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Ramsey semiconvos or hypergroups

Definition [Kumar, Ross and Singh]

Let (K,∗) be an infinite discrete semiconvo. (K,∗) will be called a Ramsey

semiconvos if for every partition K =
⋃r

i=1 Ci, there exist i and an injective

sequence x = 〈xn〉∞n=1 in K\{e} such that spt(δF)⊂ Ci, i.e., δF(Ci) = 1 for every

non-empty finite subset F ⊂ B. In other words, SFC(〈xn〉∞n=1)⊂P(Ci).

If (K,∗,∨) is an infinite discrete hypergroup such that (K,∗) is a Ramsey

semiconvo then (K,∗,∨) will be called a Ramsey hypergroup.
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Lemma [Kumar, Ross and Singh]

If an infinite discrete subsemiconvo L of semiconvo K is Ramsey then K is Ramsey

semiconvo.

Theorem [Kumar, Ross and Singh]

Let (S, ·) be an infinite commutative discrete action-free semigroup with the identity e

satisfying the conditions (i)-(vi) of main theorem. Then the semiconvo (S,∗) is a

Ramsey semiconvo.

Theorem [Kumar, Ross and Singh]

Let K be a commutative discrete hypergroup and let H be a finite subgroup of Z(K). If

K is a Ramsey hypergroup then the hypergroup K//H is a Ramsey hypergroup.
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Example

We may take K = (S,∗) for any hypergroup deformation of (Z+,<,max) with

q1(1) = 0. Then Z(K) = {0,1}. We take H = Z(K). We note that

K//H = {{0,1},{m} : m≥ 2}

and

δ{m} ∗δ{n} =

δ{max{m,n}} form 6= n withm,n≥ 2,

(qm(0)+qm(1))δ{0,1}+∑n≥2 qm(n)δ{n} for m = n≥ 2.

Then, by above Theorem K//H is a Ramsey hypergroup.
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Almost-Ramsey semiconvos or hypergroups

Definition [Kumar, Ross and Singh]
Let (K,∗) be an infinite discrete semiconvo. (K,∗) will be called an

almost-Ramsey semiconvo if for every partition K =
⋃r

i=1 Ci, there exist i, an

injective sequence x = 〈xn〉∞n=1 in K\{e} and a finite subset F of SFC(〈xn〉∞n=1)

such that SFC(〈xn〉∞n=1)\F ⊂P(Ci).

If (K,∗,∨) is an infinite discrete hypergroup such that (K,∗) is an

almost-Ramsey semiconvo then (K,∗,∨) will be called an almost-Ramsey

hypergroup.
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Almost-strong Ramsey semiconvos or hypergroups

Definition [Kumar, Ross and Singh]
Let (K,∗) be an infinite discrete semiconvo. (K,∗) will be called an

almost-strong Ramsey semiconvo if for every partition K =
⋃r

i=1 Ci, there exist

an i ∈ {1,2, . . . ,r}, an infinite subsemiconvo of L of K and a finite subset D of L

such that L\D⊂ Ci.

An almost-strong Ramsey hypergroup can be defined by replacing semiconvo and

subsemicovo by hypergroup and subhypergroup respectively in above definition.

If an infinite discrete subsemiconvo L of semiconvo K is an almost-Ramsey

semiconvo or an almost-strong Ramsey semiconvo then K is also an

almost-Ramsey semiconvo or an almost-strong Ramsey semiconvo respectively.
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Examples

The Chebyshev polynomial hypergroup of second kind (CP2) is not an

almost-Ramsey hypergroup.

The hypergroup deformaations (S,∗) of (S, ·) := (Z+,<,max) as above are not

almost-strong Ramsey hypergroups as (S,∗) does not have any proper infinite

subhypergroup.

Theorem [Kumar, Ross and Singh]
Let K be a commutative discrete hypergroup and let H be a finite subgroup of Z(K). If

K is an almost-Ramsey hypergroup then the hypergroup K//H is an almost-Ramsey

hypergroup.

Theorem [Kumar, Ross and Singh]
No polymomial hypergroup KP is almost-strong Ramsey hypergroup.
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A variant of Ramsey principle for hypergroups
Recurrent semiconvos or hypergroups

Definition [Kumar, Ross and Singh]

Let (K,∗) be an infinite discrete semiconvo. (K,∗) will be called a recurrent

semiconvos if for every partition K =
⋃r

i=1 Ci, there exist i and an injective

sequence x = 〈xn〉∞n=1 in K\{e} such that δF(Ci)> 0, (i.e., spt(δF)∩Ci 6= /0) for

every non-empty finite subset F of the range of 〈xn〉∞n=1.

If (K,∗,∨) is an infinite discrete hypergroup such that (K,∗) is a recurrent

semiconvo then (K,∗,∨) will be called a recurrent hypergroup.

If an infinite discrete sub-semiconvo L of a discrete semiconvo K is recurrent

then K is recurrent.
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Theorem [Kumar, Ross and Singh]

Every polynomial hypergroup KP is a recurrent hypergroup.

Theorem [Kumar, Ross and Singh]
Let G be an infinite discrete group and let H be a finite group with #H = c. Suppose

that (x,s) 7→ xs is an affine action of H on G. Then the discrete orbit semiconvo GH is

a recurrent semiconvo. In particular, we have the following facts.

(i) If H is a finite subgroup of G with #H = c then discrete coset semiconvo G/H is

a recurrent semiconvo.

(ii) If H is a finite subgroup of G with #H = c then discrete doube coset hypergroup

G//H is a recurrent hypergroup.

(iii) If H is a finite subgroup of the group of automorphisms of G with #H = c then

discrete automorphism orbit hypergroup GH is a recurrent hypergroup.
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Theorem [Kumar, Ross and Singh]
Let (S, ·) be an infinite discrete Ramsey semigroup with identity e. Let H be a finite

group of automorphisms of (S, ·) with #H = c. Then the space SH of orbits sH given

by sH = {α(s) : α ∈ H} equipped with the discrete topology can be made into a

recurrent semiconvo by defining ‘ ∗’ as follows:

δsH ∗δtH =
1
c ∑

α∈H
δ(α(s)·t)H .
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Thank you for your attention !!!
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and application, 2nd edition, De Gruyter, Berlin (2012).

Vishvesh Kumar Hypergroup deformations of semigroups and Ramsey hypergroups June 28, 2018 48 / 50



References IV

[13] R. I. Jewett, Spaces with an abstract convolution of measures, Adv. Math., 18

(1975) 1-101.

[14] S. Kawakami, T. Tsurii and S. Yamanaka, Deformations of finite hypergroups,

Sci. Math. Jpn., 79(2) (2016) 213-223.

[15] R. Lasser, Discrete commutative hypergroups, Inzell Lectures on Orthogonal

Polynomials (Inzell, 2001), Advances in the Theory of Special Functions and

Orthogonal Polynomials 2, Nova Sci. Publ. Hauppauge, New York, (2005)

55-102.

[16] M. Petrich, Semicharacters of the cartesian product of two semigroups, Pacific

J. Math., 12(2) (1962) 679-683.

[17] F. P. Ramsey, On a Problem of Formal Logic, Proc. Lond. Math. Soc. (3), 30(4)

(1929) 264-286.

Vishvesh Kumar Hypergroup deformations of semigroups and Ramsey hypergroups June 28, 2018 49 / 50



References V

[18] K. A. Ross, Center of hypergroups, Trans. Amer. Math. Soc., 243 (1978)

251-269.

[19] K. A. Ross, The structure of certain measure algebras, Pacific J. Math., 11(2)

(1961) 723-737.

[20] K. A. Ross and Daming Xu, Hypergroup deformations and Markov chains, J.

Theoret. Probab., 7(4), (1994) 813-830.

[21] M. Voit, Compact almost discrete hypergroups, Canad. J. Math., 48 (1996)

210-224.

[22] B. Willson, Configuration and invariant nets for amenable hypergroups and

related algebras, Trans. Amer. Math. Soc., 366(10) (2014) 5087-5112.

Thank You !!!
Vishvesh Kumar Hypergroup deformations of semigroups and Ramsey hypergroups June 28, 2018 50 / 50


	References

