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• Γ is a discrete group, e is the identity element of Γ.
• L(Γ) is the group von Neumann algebra of Γ.
• C0(Γ) is the space of functions on Γ vanishing at infinity.
• B2(Γ) is the set of Herz-Schur multipliers on Γ. In fact, B2(Γ)
is a unital Banach algebra when equipped with the Herz-Schur
norm ‖ · ‖B2 .
• M is a von Neumann algebra.
• τ is a faithful normal tracial state on M.
• L2(M, τ) is the GNS-space associated to τ with the Hilbert
norm ‖ · ‖2,τ .
• MōβΓ is the W ∗-crossed product of the W ∗-dynamical
system (M, Γ, β), where β is an action of Γ on M.
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• idM is the identity map of M.
• Suppose that T : M → M is a normal completely bounded
map and there exists K > 0 such that ‖T (a)‖2,τ ≤ K‖a‖2,τ for
every a ∈ M. Then T can be extended to a bounded operator
on L2(M, τ) with norm at most K . We say T is L2-compact if T
can be extended to a compact operator on L2(M, τ).

• A completely positive map Φ : M → M is a completely
bounded and ‖Φ‖cb = ‖Φ(I)‖.

• A positive definite function is a Herz-Schur multiplier.
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Approximation theory is particularly important in group theory
and operator algebra theory.
There are many different approximation properties for groups
such as amenability, weak amenability, the Haagerup property,
property T and so on.

Definition
Γ is amenable if there is a net {uα}α∈I of finitely supported
positive definite functions on Γ such that uα(g)→ 1 for every
g ∈ Γ.
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Definition
Γ is weak amenable if there is a constant C > 0 and a net
{uα}α∈I of finitely supported functions in B2(Γ) such that

(1). ‖uα‖B2 ≤ C, for every α ∈ I,
(2). uα(g)→ 1 as α→∞, for every g ∈ Γ.

The Cowling-Haagerup constant Λcb(Γ) is the infimum of all C
for which such a net {uα} exists. We set Λcb(Γ) =∞ if Γ is not
weakly amenable.

Definition
Γ has the Haagerup property if there is a net {uα}α∈I of positive
definite functions in C0(Γ) such that

(1). uα(e) = 1, for every α ∈ I,
(2). uα(g)→ 1 as α→∞, for every g ∈ Γ.
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The following are relations between some approximation
properties for groups.

(1). Γ is amenable⇒ Γ is weak amenable, but the converse is
not true (free groups);

(2). Γ is amenable⇒ Γ has the Haagerup property, but the
converse is not true (free groups);

(3). weak amenability does not imply the Haagerup property
(see Sp(1,n)).
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There are also many different approximation properties for von
Neumann algebras such as semidiscreteness, W∗CBAP
(weak∗ completely bounded approximation property), the
Haagerup property and so on.

Definition
We say M is semidiscrete if there exist contractive completely
positive maps ϕn : M → Mk(n)(C) and ψn : Mk(n)(C)→ M such
that ψn ◦ ϕn → idM in the point-ultraweak topology:

η(ψn ◦ ϕn(a))→ η(a)

for all a ∈ M and all normal functionals η ∈ M∗.
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Definition
We say M has the W ∗CBAP if there exists a constant C > 0
and a net of ultraweakly-continuous finite-rank completely
bounded maps ϕi : M → M such that ϕi → idM in the
point-ultraweak topology for all a ∈ M and sup ‖ϕi‖cb ≤ C.

The Haagerup constant Λcb(M) is the infimum of all C for which
such a net {ϕi} exists. We set Λcb(M) =∞ if M does not have
the W∗CBAP.
W∗CBAP is weaker than semidiscreteness.
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Definition

M is said to have the Haagerup property if there is a net {Φi}i∈I
of unital normal completely positive maps from M to itself
satisfying the following conditions:

(1) τ ◦ Φi ≤ τ for each i ∈ I;
(2) For any a ∈ M, ‖Φi(a)− a‖2,τ → 0 as i →∞;
(3) Each Φi is L2-compact.

The Haagerup property does not depend on the choice of the
faithful normal tracial state.
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The following are relations between approximation properties
for groups and approximation properties for von Neumann
algebras.

(1). Γ is amenable⇔ L(Γ) is semidiscrete;
(2). Γ is weak amenable⇔ L(Γ) has the W∗CBAP, and

Λcb(Γ) = Λcb(L(Γ)).
(3). Γ has the Haagerup property⇔ L(Γ) has the Haagerup

property.
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In order to study the relation between weak amenability and the
Haagerup property, Knudby introduced the weak Haagerup
property for discrete groups.

Definition
Γ has the weak Haagerup property if there is a constant C > 0
and a net {uα}α∈I in B2(Γ) ∩ C0(Γ) such that

(1). ‖uα‖B2 ≤ C, for every α ∈ I,
(2). uα(g)→ 1 as α→∞, for every g ∈ Γ.

The weak Haagerup constant ΛWH(Γ) is defined as the infimum
of those C for which such a net {uα}α∈I exists, and if no such
net exists we write ΛWH(Γ) =∞.
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In 2016, Knudby introduced the weak Haagerup property for
von Neumann algebras.

Definition

M has the weak Haagerup property if there is a constant C > 0
and a net {Tα}α∈I of normal completely bounded maps on M
such that

(1). ‖Tα‖cb ≤ C for every α ∈ I,
(2). 〈Tα(x), y〉 = 〈x ,Tα(y)〉 for every x , y ∈ M,
(3). each Tα is L2-compact,
(4). ‖Tα(x)− x‖2,τ → 0 for every x ∈ M.

The weak Haagerup constant ΛWH(M) is defined as the
infimum of those C for which such a net {uα}α∈I exists, and if
no such net exists we write ΛWH(M) =∞.
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The weak Haagerup property does not depend on the choice of
the faithful normal tracial state.
Γ has the weak Haagerup property⇔ L(Γ) has the weak
Haagerup property.

Motivated by the above results, we study the weak Haagerup
property of W ∗-crossed products.
First, we have the following result.

Theorem

If MōβΓ has the weak Haagerup property, then both M and Γ
have the weak Haagerup property and

ΛWH(M) ≤ ΛWH(MōβΓ), ΛWH(Γ) ≤ ΛWH(MōβΓ).
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In general, the weak Haagerup property of M and Γ does not
imply that of MōβΓ. For example, both groups Z2 and SL(2,Z)
enjoy the Haagerup property and hence also the weak
Haagerup property, but Z2 o SL(2,Z) does not have the weak
Haagerup property.
Next, we show that if Γ be a amenable group, then the weak
Haagerup property of M implies that of MōβΓ.

Theorem
Let Γ be an amenable group. If M has the weak Haagerup
property, then MōβΓ has the weak Haagerup property and

ΛWH(MōβΓ) = ΛWH(M).

Q. Meng Weak Haagerup property of W∗-crossed products



Notations and Background
Weak Haagerup property of W∗-crossed products

Main references

Finally, we give a condition under which the weak Haagerup
property of M and Γ implies that of MōβΓ.

Theorem

Let Γ be a countable group. Then the following statements are
equivalent:

(1). Γ has the weak Haagerup property and M has the weak
Haagerup property with the approximating maps
Ti : M → M satisfying Ti ◦ βt = βt ◦ Ti for all t ∈ Γ.

(2). MōβΓ has the weak Haagerup property and the
approximating maps Φi : MōβΓ→ MōβΓ satisfy
E ◦ Φi ◦ βt (x) = βt ◦ E ◦ Φi(x) for all t ∈ Γ and x ∈ M.
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Thank you!
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