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Classical motivation I

Let G be a locally compact (non-discrete) Abelian group and let M(G )
denote the Banach algebra of all complex-valued Borel regular measures on

G equipped with the total variation norm and the convolution product.

The Gelfand space of M(G ) (the set of all multiplicative - linear functionals

endowed with the weak∗ topology) will be abbreviated 4(M(G )).
Since the convolution is transferred to the pointwise product via

Fourier-Stieltjes transform it is clear that the dual group of G (denoted Γ)
is canonically embedded into 4(M(G )).
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Classical motivation II: Wiener-Pitt phenomenon

As M(G ) is a Banach algebra it is natural to consider the spectrum of

µ ∈ M(G ) de�ned as

σ(µ) = {λ ∈ C : µ− λ · δ0 is not invertible}.

For special types of measures (for example, absolutely continuous or

discrete ones) we have σ(µ) = µ̂(Γ). However, by the following result it is

not true in general.

Wiener-Pitt phenomenon

There exists a measure µ ∈ M(G ) such that µ̂(Γ) ( σ(µ).

Note that the above result implies the non-density of Γ in 4(M(G )) (recall

that the spectrum of an element is an image of its Gelfand transform).
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Basic de�nitions

We are going now to change the setting to non-commutative groups.

Let G be an in�nite discrete group and let B(G ) be the Fourier-Stieltjes

algebra of G (the linear span of positive de�nite functions equipped with

the norm de�ned by the duality (C ∗(G ))∗ = B(G )). With pointwise

multiplication it is a commutative unital Banach algebra. We recall also the

standard notion of the spectrum of an element f ∈ B(G ):

σ(f ) = {λ ∈ C : f − λ · 1 is not invertible}.

Observe that, in case of Abelian group G the Fourier-Stieltjes transform

de�nes a natural isomorphism between B(G ) and M(Γ) where Γ is a dual

group of G .
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Wiener-Pitt phenomenon again

As we are now already on 'the Fourier-Stieltjes side' we have a natural

embeeding of G into 4(B(G )) (via point-evaluations).

Using the fact that one can always extend a positive-de�nite function from

a subgroup of a discrete group to the whole group we obtain the following

result.

Wiener-Pitt phenomenon again

If G contains an in�nite Abelian subgroup then there exists f ∈ B(G ) such

that f (G ) ( σ(f ).

This implies the non-density of G in 4(B(G )) in the same way as before.
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Non-separability of 4(B(G ))

In a similar fashion, but exploiting the results from the recent paper of

myself, M. Wojciechowski and C. C. Graham instead of classical

Wiener-Pitt phenomenon, we prove the non-separability of 4(B(G )).

Non-separability of 4(B(G ))

If G contains an in�nite Abelian subgroup then 4(B(G )) contains

continuum many pairwise disjoint open subsets. In particular, 4(B(G )) is

not separable.
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Elements with a natural spectrum

Following M. Zafran we introduce the following de�nition.

Natural spectrum

Let f ∈ B(G ). We say that f has a natural spectrum if σ(f ) = f (G ). The
set of all such elements will be denoted by NS(G ).

As in the classical setting we have a rich family of elements with a natural

spectrum.

Examples of elements with a natural spectrum

If f ∈ A(G ) or f ∈ B(G ) ∩ AP(G ) then f ∈ NS(G ).
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More examples of elements with a natural spectrum

In the classical case (for Abelian group G ) the notion of the 'spine' supplies

us with more examples of measures with a natural spectrum generalizing

absolutely continuous and discrete measures. The spine is the direct sum of

'maximal group subalgebras' which are the L1 spaces with respect to the

original group but with the topology replaced by a �ner one (preserving the

property of being locally compact group). The analogue of this notion for

Fourier-Stieltjes algebras was introduced by N. Spronk and M. Ilie. As in

the commutative setting the elements belonging to the spine of the

Fourier-Stieltjes algebra also have a natural spectrum.

Question

What about the structure of NS(G )?
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The structure of NS(G )

Motivated by the theorem of Hatori and Sato we obtained the following

result.

Decomposition of B(G )

If G is maximally almost periodic discrete group then

B(G ) = NS(G ) + NS(G ) + B(G ) ∩ AP(G ).

When we drop the assumption on the group we are able to prove only a

weaker assertion.

Weaker variant

Let G be a discrete group containing an in�nite Abelian subgroup. Then

B(G ) = NS(G ) + NS(G ) + NS(G ).

By the above theorem and the existence of the Wiener-Pitt phenomenon

the set NS(G ) is not closed under addition.

Ohrysko, Wasilewski (Chalmers) Spectral theory of Fourier-Stieltjes algebras 9 / 21



The structure of NS(G )

Motivated by the theorem of Hatori and Sato we obtained the following

result.

Decomposition of B(G )

If G is maximally almost periodic discrete group then

B(G ) = NS(G ) + NS(G ) + B(G ) ∩ AP(G ).

When we drop the assumption on the group we are able to prove only a

weaker assertion.

Weaker variant

Let G be a discrete group containing an in�nite Abelian subgroup. Then

B(G ) = NS(G ) + NS(G ) + NS(G ).

By the above theorem and the existence of the Wiener-Pitt phenomenon

the set NS(G ) is not closed under addition.

Ohrysko, Wasilewski (Chalmers) Spectral theory of Fourier-Stieltjes algebras 9 / 21



The ideal of Zafran

Let B0(G ) := B(G ) ∩ c0(G ). For B0(G ) ∩NS(G ) the analogue of Zafran's

theorem holds true.

Non-commutative Zafran's theorem

Let G be a discrete group. Then

1 B0(G ) ∩ NS(G ) is a closed ideal of B(G ).

2 If ϕ ∈ 4(B(G )) \ G then ϕ(f ) = 0 for every f ∈ B0(G ) ∩ NS(G ).

3 4(B0(G ) ∩ NS(G )) = G .
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Mutual singularity and absolute continuity

Let A = C ∗(G ), A∗ = (C ∗(G ))∗ = B(G ) = M∗,
A∗∗ = (C ∗(G ))∗∗ = B(G )∗ = M =: W ∗(G ).

Central support

Let f ∈ B(G ) = M∗. We de�ne the central support of f (denoted zs(f )) as
the smallest central projection in W ∗(G ) such that f vanishes on

(1− zs(f ))M.

Mutual singularity and absolute continuity

Let f , g ∈ B(G ). We say that f and g are mutually singular if

zs(f )zs(g) = 0 (notation f⊥g). If zs(f ) ≤ zs(g) then we say that f is

absolutely continuous with respect to g (f � g).
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Applications

First of all, the de�nition of mutual singularity and absolute continuity in

B(G ) extends the classical notions for commutative G . Moreover, proving

�rst the fact f � g if and only if f is a norm limit of linear combinations of

translates of g we get the next theorem shedding some light on the

well-known ideals and subalgebras.

L-subspaces

Let X ⊂ B(G ) be a closed linear subspace. The following conditions are

equivalent.

1 X is an L-subspace (g ∈ X , f � g ⇒ f ∈ X ).

2 X is bi-G -invariant, i.e. C[G ] · X ⊂ X and X · C[G ] ⊂ X .

3 There exists a central projection z ∈W ∗(G ) such that X = zB(G ).

In particular, A(G ), B0(G ) and B0(G ) ∩ NS(G ) are L-ideals and
B(G ) ∩ AP(G ) is an L-subalgebra.
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Problems

Working with the notion of central support is convenient but there are

some unexpected obstacles.

For example, it is not true in general that f1 � g1, f2 � g2 ⇒ f1f2 � g1g2
even if all f1, f2, g1 and g2 are positive de�nite (there is an easy

counterexample for G = S3) so we need one technical assumption.

GNS faithfulness

Let f be a positive de�nite function. We say that f is GNS faithful if f is a

faithful functional on the von Neumann algebra generated by f .
Equivalently, a positive de�nite function f is GNS faithful, if the standard

support of f (treated as a functional on W ∗(G ) = (B(G ))∗) is equal to the

central support.

The previous assertion holds true provided both g1 and g2 are GNS faithful.
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New applications

Equipped with the theorem on L-subspaces and the notion of GNS

faithfulness we are prepared to prove two nice results (also counterparts of

commutative ones).

Criterion for non-naturality of the spectrum

Let f ∈ B0(G ) \ {0} and suppose that f n⊥A(G ) for all n ∈ N. Then
f /∈ B0(G ) ∩ NS(G ).

Orthogonality to B0(G ) ∩ NS(G )

Let f ∈ B(G ) be positive, GNS faithful and such that f n⊥A(G ) for all

n ∈ N. Then f⊥B0(G ) ∩ NS(G ).
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Example: the Haagerup function

We will examine the spectral properties of two examples of positive de�nite

functions on free groups.

Let fr : Fk → R for r ∈ (0, 1) be the Haagerup function de�ned by the

formula fr (x) = r |x | where | · | is the lenght of the reduced word in Fk . Of

course, f mr = frm and calculating the l2 norm of fr we get

The naturality of the spectrum of the Haagerup function

For every r ∈ (0, 1) there exists n ∈ N such that

f nr ∈ l2(G ) ⊂ A(G ) ⊂ NS(G ).
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Example: free products

Let F∞ be the free group on in�nitely many generators xk , k ∈ N,
considered as a free product of Z(k) =< xk >' Z.

Free product of M. Bo»ejko

If fk : Z(k) → C is a sequence of normalized positive de�nite functions then

we de�ne their free product f :=©∞k=1fk by the following recipe: f (e) = 1

and if x is reduced word in the alphabet {xk}k∈N then to each x±mk in the

word x we apply the function fk and �nally multiply the outcomes.

It is not trivial to check the positive-de�niteness of f (theorem of M.

Bo»ejko).
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Example: free Riesz products

It is easy to check that for αk satisfying 0 < |αk | ≤ 1
2 the function

vk = δe + αkδxk + αkδx−1
k

is positive de�nite.

Free Riesz products

Let (αk)∞k=1 be a sequence of complex numbers satisfying 0 < |αk | ≤ 1
2 .

Then R =©∞k=1vk is called a free Riesz product.

It is elementary to check that R ∈ B0(F∞) i� (αk) ∈ c0.

Theorem on free Riesz products (M. Bo»ejko)

If
∑

k |αk |2 =∞ then R⊥Bλ(G ). In particular R⊥A(G ).
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Corollary on free Riesz products

One checks easily that the power of a free Riesz product is again a Riesz

product so basing on on our criterion on the non-naturality of the spectrum

in B0(G ) and the last result we obtain the corrolary.

Corollary on free Riesz products

If (αk) ∈ c0 is such that
∑

k |αk |n =∞ for every n ∈ N then the

corresponding free Riesz product does not have a natural spectrum.

Using completely di�erent method (functional calculus + idempotent

theorem) it is also possible to show that R =©(δe + 1
2δxk + 1

2δx−1
k

) does

not have a natural spectrum.
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Non-naturality of the standard free Riesz product I

Let R =©(δe + 1
2δxk + 1

2δx−1
k

). In order to prove that R /∈ NS(F∞) we

are going to mimic the approach of the classical Riesz product proof of the

Wiener-Pitt phenomenon by C.C. Graham.

Suppose R ∈ NS(F∞), towards the contradiction. Then,

σ(R) = R(F∞) = R(F∞) = {0} ∪
{

1

2n

}
n∈N
∪ {1}.

Let us take two disjoint open sets A,B ⊂ C such that σ(R) ⊂ A ∪ B and

A ∩ σ(R) =
{
1
2

}
and de�ne a function F : A ∪ B → {0, 1} by the

conditions: F |A = 1 and F |B = 0.
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Non-naturality of the standard free Riesz product II

Clearly, F is an analytic function on A ∪ B . Thus we are allowed to use

functional calculus obtaining an element P := F (R) ∈ B(G ). We see

immediately that P is an idempotent. Moreover, as R(x) = 1
2 i�

x ∈
{
xk , x

−1
k

}
k∈N := X we get P = χX .

By the Host idempotent theorem X belongs to the coset ring of F∞. We

show that this is not possible using an elementary theorem valid for all

groups.

Theorem on coset ring

Let X be an in�nite member of the coset ring of any group. Then X
contains a coset of in�nite subgroup with a possible exception of �nitely

many elements.
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Thank You for your attention!
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