Idempotents, topologies and ideals Nico Spronk, U. of Waterloo

Abstract Harmonic Analysis 2018 National Sun Yat-Sen University June 2018

 (G, τ_G) – topological group,

<u>Representation</u> on a Banach space \mathcal{X} : strong operator continuous homomorphism $\pi : G \to Is(\mathcal{X})$ (invertible isometries on \mathcal{X}). Weak operator continuous \Rightarrow strong operator continuous if

- π unitary on Hilbert (folklore), \mathcal{X} reflexive [Megrelishvili '98];
- τ_G locally compact [Johnson '74].

Defintion

A representation $\pi : G \to \text{Is}(\mathcal{X})$ is called <u>weakly almost periodic</u> (<u>w.a.p.</u>) if $\overline{\pi(G)\xi}^w$ is weakly compact for each ξ in \mathcal{X} .

Equivalently, $\overline{\pi(G)}^{wot}$ is weak operator compact in $\mathcal{B}(\mathcal{X})$.

 ${\mathcal X}$ reflexive: any π weakly almost periodic

Weakly almost periodic part

 $\pi: \mathcal{G} \to \operatorname{Is}(\mathcal{X})$ representation:

$$\mathcal{X}_{\mathcal{W}}^{\pi} = \{\xi : \overline{\pi(G)\xi}^{w} \text{ is weakly compact}\}$$

is a closed subspace of \mathcal{X} .

In particular, in bounded continuous functions CB(G), let

$$\mathcal{LUC}(G) = \{ f \in \mathcal{CB}(G) : s \mapsto f(s^{-1} \cdot) \text{ continuous} \}$$
$$\mathcal{W}(G) = \mathcal{LUC}(G)_{\mathcal{W}} \text{ (translation-invariant C*-subalgebra}$$

(really $W(G) = CB(G)_W$, also $W(G) = RUC(G)_W$ with right translations), and we call the latter space that of <u>weakly almost</u> periodic functions.

Theorem [Jacobs '54, Dye '65, Bergelson-Rosenblatt '88]

 $\pi: G \to Is(\mathcal{X})$ w.a.p. representation (unitary on Hilbert space) Then \mathcal{X} decomposes as two π -invariant (hence reducing) subspaces

$$\mathcal{X} = \mathcal{X}_{\mathit{ret}}^{\pi} \oplus \mathcal{X}_{\mathit{wm}}^{\pi}$$

where

$$\mathcal{X}_{ret}^{\pi} = \{\xi \in \mathcal{X} : \xi \in \overline{\pi(G)\eta}^{w} \text{ whenever } \eta \in \overline{\pi(G)\xi}^{w}\}$$
$$\mathcal{X}_{wm}^{\pi} = \{\xi \in \mathcal{X} : 0 \in \overline{\pi(G)\xi}^{w}\}$$

are spaces of "return" and "weakly mixing" vectors.

Theorem [Eberlein '56, de Leeuw-Glicksberg '61]

$$\mathcal{W}(G) = \mathcal{AP}(G) \oplus \mathcal{W}_0(G)$$

where

$$\mathcal{AP}(G) = \{ u \in \mathcal{C}_b(G) : \overline{\{f(s^{-1} \cdot) : s \in G\}}^{\|\cdot\|_{\infty}} \text{ compact} \}$$
$$\mathcal{W}_0(G) = \{ u \in \mathcal{W}(G) : m(|u|) = 0 \} \lhd \mathcal{W}(G)$$

for the unique invariant mean m on $\mathcal{W}(G)$, with $\mathcal{W}_0(G) \lhd \mathcal{W}(G)$.

Here, $\mathcal{W}_0(G) = \mathcal{W}(G)_{wm}$.

Semitopological compactifications

G

 $G^{\mathcal{W}}$ – Gelfand spectrum of $\mathcal{W}(G)$, $\varepsilon^{\mathcal{W}}: G \to G^{\mathcal{W}}$ evaluation map

Proposition (folklore)

• $G^{\mathcal{W}}$ semigroup: unique extension of multiplication from dense subgroup $\varepsilon^{\mathcal{W}}(G)$.

• $G^{\mathcal{W}}$ <u>semitopological</u>: $s \mapsto st, t \mapsto st$ each continuous.

• Universal property: $h: G \to S$ continuous homo'm into compact semitop'l semigroup S, then $\mathcal{C}(S) \circ h \subseteq \mathcal{W}(G)$, which induces restriction $\rho: G^{\mathcal{W}} \to S$ with

$$\begin{array}{ccc}
 & G^{\mathcal{W}} \\
 \varepsilon^{\mathcal{W}} & \stackrel{\uparrow}{\downarrow} \rho \\
 & \stackrel{\vee}{\longrightarrow} & S \\
\end{array}$$
i.e. $\rho \circ \varepsilon^{\mathcal{W}} = h$

Definition: weakly almost periodic topologies

 $\mathcal{T}(\mathcal{G}) = \{ \tau \subseteq \tau_{\mathcal{G}} : (\mathcal{G}, \tau) \text{ top'l group with } \tau = \sigma(\mathcal{G}, \mathcal{W}^{\tau}(\mathcal{G})) \}$

where $\mathcal{W}^{\tau}(G) = \mathcal{W}(G) \cap \mathcal{C}_{b}^{\tau}(G)$ (τ -continuous elements)

Assumption: $\tau_G \in \mathcal{T}(G)$ and is Hausdorff **Warning:** not all elements of $\mathcal{T}(G)$ are Hausdorff

e.g.
$$\tau_{triv} = \{ \varnothing, G \}$$
, often $\tau_{ap} = \sigma(G, \mathcal{AP}(G))$

Examples:

 $\begin{aligned} \mathcal{T}_{lc}(G) &= \{\sigma(G, \{h\}) \,|\, (H, \tau_H) \text{ loc. compact, } h : G \to H \text{ cts. homo'm} \} \\ \mathcal{T}_u(G) &= \{\sigma(G, \{\pi\}) \,|\, \pi : G \to (\text{Un}(\mathcal{H}), \textit{wot}) \text{ cts. unitary rep'n} \} \\ \mathcal{T}(G) &= \{\sigma(G, \{\pi\}) \,|\, \pi : G \to (\text{Is}(\mathcal{X}), \textit{wot}) \text{ cts. rep'n, } \mathcal{X} \text{ reflexive} \} \\ & \text{[Stern '94, Megrelishvili '98]} \\ \mathcal{T}_{lc}(G) &\subseteq \mathcal{T}_u(G) \subseteq \mathcal{T}(G) \end{aligned}$

On the scope of the classes of topologies

• [Teleman '57] G any topological group: $\varepsilon^{LUC} : G \to G^{LUC}$ (spectrum of $\mathcal{LUC}(G)$) homeomorphic embedding onto its range, G^{LUC} left topological semigroup.

- [Megrelishvili '01] $\mathcal{T}(\text{Homeo}^+[0,1]) = \{\tau_{triv}\}.$
- [Ferri-Galindo '07] $G = (c_0, +)$ (norm topology), $\tau_G \notin \mathcal{T}(G)$.
- [Megrelishvili '02] $G = (L^4[0, 1], +)$ (norm topology): $\tau_G \in \mathcal{T}(G) \setminus \mathcal{T}_u(G).$
- After [Schoenberg '38], $G = (\ell^1, +)$ (norm topology): $\tau_G \in \mathcal{T}_u(G)$ as $e^{-\|\cdot\|_1^2} \in P(G)$.

Conclusions: say $G = \mathbb{Z}^{\oplus \mathbb{N}} = (\mathbb{Z}^2)^{\oplus \mathbb{N}} \hookrightarrow \mathbb{R}^{\oplus \mathbb{N}}$ (i) $\mathcal{T}_{lc}(G) \subsetneq \mathcal{T}_u(G) \subsetneq \mathcal{T}(G) \subsetneq \{\text{group topologies}\}.$ (ii) Quotient groups of unitarizable groups may not be unitarizable.

• [Mayer '97] $G = N \rtimes R$ (certain connected Lie), $\mathcal{T}_{lc}(G) = \mathcal{T}(G)$.

Co-Cauchy/co-compact topologies, after [Ruppert '90]

 $\tau \in \mathcal{T}(G)$ $G^{\mathcal{W}^{\tau}} - \text{Gelfand spectrum of } \mathcal{W}^{\tau}(G), \ \varepsilon^{\mathcal{W}^{\tau}} : G \to G^{\mathcal{W}^{\tau}} - \text{evaluation}$ **Completion:** $G_{\tau} = G^{\mathcal{W}^{\tau}}(\varepsilon^{\mathcal{W}^{\tau}}(e_G)) - \text{intrinsic group at identity}$ $G_{\tau} \text{ complete w.r.t. 2-sided unifomity}$

$$\tau \subseteq \tau' \text{ in } \mathcal{T}(G) \Rightarrow \mathcal{W}^{\tau}(G) \subseteq \mathcal{W}^{\tau'}(G), \text{ induces } \rho_{\tau}^{\tau'} : G^{\mathcal{W}^{\tau'}} \to G^{\mathcal{W}^{\tau}}$$
$$\Rightarrow \eta_{\tau}^{\tau'} = \rho_{\tau}^{\tau'}|_{\mathcal{G}_{\tau'}} : \mathcal{G}_{\tau'} \to \mathcal{G}_{\tau} \text{ cts. homo'm, dense range}$$

Lemma (after [Ruppert '90] in abelian case)

For $\tau \subseteq \tau'$ in $\mathcal{T}(G)$ TFAE (co-compact) $\eta_{\tau}^{\tau'} : G_{\tau'} \to G_{\tau}$ open with ker $\eta_{\tau}^{\tau'}$ compact (co-Cauchy) each τ -Cauchy filter admits a τ' -Cauchy refinement

Write $\tau \subseteq_c \tau'$, in this case.

Definition

$$\operatorname{ZE}(G^{\mathcal{W}}) = \{ e \in G^{\mathcal{W}} : e^2 = e \And e \varepsilon^{\mathcal{W}}(s) = \varepsilon^{\mathcal{W}}(s) e \ \forall s \in G \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In ZE($G^{\mathcal{W}}$): $e \leq e' \Leftrightarrow ee' = e$

Theorem (after [Ruppert '90]; he covers abelian case)

There are maps $T : \operatorname{ZE}(G^{\mathcal{W}}) \to \mathcal{T}(G)$ and $E : \mathcal{T}(G) \to \operatorname{ZE}(G^{\mathcal{W}})$ s.t.

$$T(e) \subseteq T(e') \text{ if } e \leq e'$$

$$E(\tau) \leq E(\tau') \text{ if } \tau \subseteq \tau'$$

$$E(\tau) = E(\tau') \text{ if } \tau \subseteq_c \tau'$$

$$E \circ T = \operatorname{id}_{\operatorname{ZE}(G^{\mathcal{W}})} \text{ and } \tau \subseteq_c T \circ E(\tau).$$

Thus, if $\overline{\mathcal{T}}(G) = T(\operatorname{ZE}(G^{\mathcal{W}}))$, then $T \circ E|_{\overline{\mathcal{T}}(G)} = \operatorname{id}_{\overline{\mathcal{T}}(G)}$.

(E, T) is a <u>Galois connection</u> for p.o. sets (T(G), ZE(G^W)).
T ∘ E : T(G) → T(G) is a closure operator.

Idea of proof

• Definition of T. For $e \in ZE(G^{\mathcal{W}})$ let

$$T(e) = \sigma(G, \{s \mapsto e \varepsilon^{\mathcal{W}}(s) \in G^{\mathcal{W}}(e)\}).$$

• Definition of *E*. For $\tau \in \mathcal{T}(G)$ let $\rho_{\tau} : G^{\mathcal{W}} \to G^{\mathcal{W}^{\tau}}$, given by restriction to $\mathcal{W}^{\tau}(G) \subseteq \mathcal{W}(G)$, and

$$\mathcal{S}_{ au}=
ho_{ au}^{-1}(\{arepsilon^{\mathcal{W}^{ au}}(e_{\mathcal{G}})\})\subseteq \mathcal{G}^{\mathcal{W}}$$

which is a closed subsemigroup. [Ruppert's Book '90]: the minimal ideal $K(S_{\tau})$ of S_{τ} is unique and is a group, with identity $E(\tau)$. I.e.

$$E(\tau) = \min E(S_{\tau}) \quad \Rightarrow \quad E(\tau) \in ZE(G^{\mathcal{W}}).$$

Picture of $G^{\mathcal{W}}$

If $au \in \overline{\mathcal{T}}(G)$ then

$$G^{\mathcal{W}^{ au}} \cong E(au)G^{\mathcal{W}}$$
 (compression of $G^{\mathcal{W}}$)
 $G_{ au} = G^{\mathcal{W}}(E(au))$ (intrinsic group at $E(au)$)

Further, if $\tau \in \mathcal{T}(G)$

$$K_{\tau} = K(S_{\tau}) \cong \ker \eta_{\tau}^{T \circ E(\tau)}$$

is centric in $G^{\mathcal{W}}$, and letting $m_{K_{\tau}}$ be normalized Haar measure we have in convolution on $\mathcal{W}(G)^* \cong M(G^{\mathcal{W}})$ that $m_{K_{\tau}} \leq E(\tau)$ and

$$G^{\mathcal{W}^{\tau}} \cong E(\tau)G^{\mathcal{W}}/K_{\tau} \cong m_{K_{\tau}} * G^{\mathcal{W}} \text{ (averaged over } K_{\tau})$$

 $G_{\tau} = G^{\mathcal{W}}(E(\tau))/K_{\tau} \cong m_{K_{\tau}} * G^{\mathcal{W}}(E(\tau))$

Ideals

Definition

An ideal \mathcal{J} of $\mathcal{W}(G)$ is called an <u>Eberlein-de Leeuw-Glicksberg</u> (<u>E-dL-G</u>) ideal provided

- $\bullet~\mathcal{J}$ is translation invariant; and
- \mathcal{J} admits a linear complement \mathcal{A} , a C*-subalgebra of $\mathcal{W}(G)$.

Main Theorem on Ideals

(i) Let
$$au \in \overline{\mathcal{T}}(G)$$
, then $\mathcal{W}^{ au}(G) = E(au) \cdot \mathcal{W}(G)$ and

$$\mathcal{I}(\tau) = \{ u \in \mathcal{W}(G) : E(\tau) \cdot u = 0 \}$$

is an E-dL-G ideal. Further

$$\mathcal{W}(G) = \mathcal{W}^{\tau}(G) \oplus \mathcal{I}(\tau).$$

(ii) Any E-dL-G ideal of $\mathcal{W}(G)$ is of the form $\mathcal{I}(\tau)$, as above.

Some decompositions

Lemma

Given $\tau \in \overline{\mathcal{T}}(G)$, $e_G \in U \in \tau$, $\varepsilon > 0$ and u_1, \ldots, u_n in $\mathcal{I}(\tau)$, there is $s \in U$ s.t. $|u_j(s)| < \varepsilon$ for $j = 1, \ldots, n$.

Theorem

Given a w.a.p. rep'n $\pi : G \to Is(\mathcal{X}), \tau \in \overline{\mathcal{T}}(G)$, the spaces

$$\begin{aligned} \mathcal{X}^{\pi}_{\tau} &= \{\xi \in \mathcal{X} : \pi(\cdot)\xi \text{ is } \tau\text{-continuous} \} \\ \mathcal{X}^{\pi}_{\tau\perp} &= \{\xi \in \mathcal{X} : 0 \in \overline{\pi(U)\xi}^{\mathsf{w}} \text{ for each } e \in U \in \tau \} \end{aligned}$$

are π -reducing with $\mathcal{X} = \mathcal{X}_{\tau}^{\pi} \oplus \mathcal{X}_{\tau}^{\pi}$.

Corollary (refinement of Jacobs, Dye, Bergelson-Rosenblatt)

 $\mathcal{X}^{\pi}_{wm} = \mathcal{X}^{\pi}_{\tau_{ap}\perp} = \{\xi \in \mathcal{X} : 0 \in \overline{\pi(U)\xi}^{w} \text{ for each } e \in U \in \tau_{ap}\}$

Some more decompositions

If $au \in \mathcal{T}(\mathcal{G}) \setminus \overline{\mathcal{T}}(\mathcal{G})$, we can average π over $K_{ au}$ to get:

Theorem

Given a w.a.p. rep'n $\pi : G \to Is(\mathcal{X})$ the space

 $\mathcal{X}^{\pi}_{\tau} = \{\xi \in \mathcal{X} : \pi(\cdot)\xi \text{ is } \tau\text{-continuous}\}$

is π -reducing.

Examples

- [Segal-von Neumann '50] If $\pi : G_d \to Is(\mathcal{X})$ is w.a.p., then $\mathcal{X}_{\tau_G}^{\pi}$ is reducing in \mathcal{X} ; e.g. $\mathcal{W}(G)$ reducing in $\mathcal{W}(G_d)$.
- (after [Lau-Losert '90]) If $N \lhd G$ (and is closed)

$$\mathcal{X}_{\tau_{G:N}}^{\pi} = \{\xi \in \mathcal{X} : \pi(n)\xi = \xi \text{ for } n \text{ in } N\}$$

is π -reducing in \mathcal{X} .

$$\mathcal{T}_{u}(G) = \{ \tau \in \mathcal{T}(G) : \tau = \sigma(G, P^{\tau}(G)) \}$$

where $P^{\tau}(G) = \{ u \in \mathcal{C}_{b}^{\tau}(G) : u \text{ positive definite} \}.$
Let $\varpi_{\tau} = \bigoplus_{u \in P^{\tau}(G)} \pi_{u}$ (GNS), so $\sigma(G, P^{\tau}(G)) = \sigma(G, \{\varpi_{\tau}\}).$
Assume: $\tau_{G} \in \mathcal{T}_{u}(G).$
Let $\varpi = \varpi_{\tau_{G}}. \ G^{\varpi} = \overline{\varpi(G)}^{wot}$ is a semitopological semigroup.

Theorem (Galois connection, revisited)

There are two order preserving maps

$$P: \mathcal{T}_u(G) \to \operatorname{ZE}(G^{\varpi}), \quad T_u: \operatorname{ZE}(G^{\varpi}) \to \mathcal{T}_u(G)$$

so $\tau \subseteq_c T_u \circ P(\tau)$ for each τ in $\mathcal{T}_u(G)$.

Let $\overline{\mathcal{T}}_u(G) = T_u \circ P(\mathcal{T}_u(G)).$

E-dL-G ideals in Fourier-Steiltjes algebras

$$\mathrm{B}(\mathcal{G}) = \mathrm{spanP}(\mathcal{G}) \cong \mathrm{W}^*(\mathcal{G}) = \varpi(\mathcal{G})''$$
.

 $\varpi(s)\mapsto \varpi(s)\otimes \varpi(s) \text{ extends to } \mathrm{W}^*(G)\to \mathrm{W}^*(G)\overline{\otimes}\mathrm{W}^*(G).$

Preadjoint makes B(G) Banach algebra of continuous functions on G; see also [Lau-Ludwig '12].

Theorem

If $\tau \in \overline{\mathcal{T}}_u(G)$ then

$$\begin{split} \mathrm{B}^{\tau}(G) &:= P(\tau) \cdot \mathrm{B}(G) = \{ u \in \mathrm{B}(G) : u \text{ is } \tau \text{-continuous} \} \\ \mathrm{I}(\tau) &:= (I - P(\tau)) \cdot \mathrm{B}(G) \lhd \mathrm{B}(G). \end{split}$$

Moreover

$$B(G) = B^{\tau}(G) \oplus_{\ell^1} I(\tau)$$

is the direct sum of a translation-invariant subalgebra and a translation invariant ideal.

Application: Operator amenability of B(G)

Operator amenability ... is a certain "averaging property" for a Banach algebra with cooperative operator space structure.

Theorem

For locally comapct G, TFAE:
(i) G is amenable;
(ii) [Johnson] L¹(G) is (operator) amenable; and
(iii) [Ruan] A(G) is operator amenable.

Theorem [Dales, Ghahramani & Helemskiĭ]

For locally compact G:

M(G) is (operator) amenable $\Leftrightarrow G$ is discrete and amenable.

Naïve conjecture

B(G) is operator amenable $\Leftrightarrow G$ is compact.

Theorem [Runde-S.]

 $B(\mathbb{Q}_p \rtimes \mathbb{O}_p^{\times})$ is operator amenable.

Theorem

$$\operatorname{B}(G)$$
 operator amenable $\Rightarrow |\overline{\mathcal{T}}_u(G)| < \infty$.

Theorem

If G locally compact and connected, then B(G) is operator amenable $\Leftrightarrow G$ is compact.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

N.S., Weakly almost periodic topologies, idempotents and ideals, arXiv:1805.09892

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

N.S., On operator amenability of Fourier-Stieltjes algebras, arXiv:1806.08421

Happy birthday, Tony! (To the next 75 years ...)

> Xie! Xie! (Thank-you!)