On a notion of closeness of groups

Chi-Wai Leung 梁子威 (CUHK), Chi-Keung Ng 吳志強 (Nankai) and Ngai-Ching Wong 黃毅靑*

Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, 80424, Taiwan. 台灣·中山大學·應用數學系 wong@math.nsysu.edu.tw http:\\www.math.nsysu.edu.tw\~wong

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

To be or not to be, ...

- the question is how to say two groups G, H are close, or not close.
- **Question**. Is an apple close to a mango?
- We need to put G, H into the same context to compare!

To be or not to be, ...

the question is how to say two groups G, H are close, or not close.

Question. Is an apple close to a mango?

We need to put *G*, *H* into the same context to compare!

the question is how to say two groups G, H are close, or not close.

Question. Is an apple close to a mango?

We need to put *G*, *H* into the same context to compare!

the question is how to say two groups G, H are close, or not close.

Question. Is an apple close to a mango?

We need to put G, H into the same context to compare!

Unitary representations of groups

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H} .

 $\mathfrak{H}=\mathbb{C}^n\implies U(\mathfrak{H})=SU(n)$, the group of n imes n unitary matrices.

Call (\mathfrak{H}, φ) a (unitary) representation of a group G if $\varphi : G \to U(\mathfrak{H})$ is an injective group homomorphism.

Note that there is a metric structure on $U(\mathfrak{H})$, and thus so is arphi(G).

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H} .

 $\mathfrak{H} = \mathbb{C}^n \implies U(\mathfrak{H}) = SU(n)$, the group of $n \times n$ unitary matrices.

Call (\mathfrak{H}, φ) a (unitary) representation of a group G if $\varphi: G \to U(\mathfrak{H})$ is an injective group homomorphism.

Note that there is a metric structure on $U(\mathfrak{H})$, and thus so is $\varphi(G)$.

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H} .

 $\mathfrak{H} = \mathbb{C}^n \implies U(\mathfrak{H}) = SU(n)$, the group of $n \times n$ unitary matrices.

Call (\mathfrak{H}, φ) a (unitary) representation of a group G if $\varphi : G \to U(\mathfrak{H})$ is an injective group homomorphism.

Note that there is a metric structure on $U(\mathfrak{H})$, and thus so is $\varphi(G)$.

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H} .

 $\mathfrak{H} = \mathbb{C}^n \implies U(\mathfrak{H}) = SU(n)$, the group of $n \times n$ unitary matrices.

Call (\mathfrak{H}, φ) a (unitary) representation of a group G if $\varphi: G \to U(\mathfrak{H})$ is an injective group homomorphism.

Note that there is a metric structure on $U(\mathfrak{H})$, and thus so is $\varphi(G)$.

Let (\mathfrak{H}, φ) be a representation of G. Let (\mathfrak{H}, ψ) be a representation of H.

The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

$$d_{(\varphi,\psi)}(G,H) := \max \left\{ \sup_{g \in G} \inf_{h \in H} \|\varphi(g) - \psi(h)\|, \sup_{h \in H} \inf_{g \in G} \|\psi(h) - \varphi(g)\| \right\}.$$

The distance between two groups G and H is

$$d(G,H) := \inf_{\varphi,\psi} d_{(\varphi,\psi)}(G,H).$$

Let (\mathfrak{H}, φ) be a representation of G. Let (\mathfrak{H}, ψ) be a representation of H.

The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

$$d_{(arphi,\psi)}(G,H) := \max \left\{ \sup_{g \in G} \inf_{h \in H} \|arphi(g) - \psi(h)\|, \sup_{h \in H} \inf_{g \in G} \|\psi(h) - \varphi(g)\|
ight\}.$$

The distance between two groups G and H is

$$d(G,H) := \inf_{\varphi,\psi} d_{(\varphi,\psi)}(G,H).$$

Let (\mathfrak{H}, φ) be a representation of G. Let (\mathfrak{H}, ψ) be a representation of H.

The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

$$d_{(\varphi,\psi)}(G,H) := \max \left\{ \sup_{g \in G} \inf_{h \in H} \|\varphi(g) - \psi(h)\|, \sup_{h \in H} \inf_{g \in G} \|\psi(h) - \varphi(g)\| \right\}.$$

The distance between two groups G and H is

$$d(G,H) := \inf_{\varphi,\psi} d_{(\varphi,\psi)}(G,H).$$

(日)

Let (\mathfrak{H}, φ) be a representation of G. Let (\mathfrak{H}, ψ) be a representation of H.

The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

$$d_{(\varphi,\psi)}(G,H) := \max \left\{ \sup_{g \in G} \inf_{h \in H} \|\varphi(g) - \psi(h)\|, \sup_{h \in H} \inf_{g \in G} \|\psi(h) - \varphi(g)\| \right\}.$$

The distance between two groups G and H is

$$d(G,H) := \inf_{\varphi,\psi} d_{(\varphi,\psi)}(G,H).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\sup_{g\in G}\inf_{h\in H}\|\varphi(g)-\psi(h)\|\leq \delta.$

2. *G* is δ -close to *H* if \exists $(\mathfrak{H}, \phi), (\mathfrak{H}, \psi)$ s.t. $d_{(\varphi, \psi)}(G, H) \leq \delta.$

In other words, G is δ -contained in (resp. δ -close to) H if $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}$

(resp.

 $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})} \quad ext{and} \quad \psi(H) \subseteq \phi(G) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})})$ for some representations $(\mathfrak{H}, \varphi), (\mathfrak{H}, \psi)$ of G, H.

(ロ)、

$$\sup_{g\in G}\inf_{h\in H}\|\varphi(g)-\psi(h)\|\leq \delta.$$

2. *G* is δ -close to *H* if \exists (\mathfrak{H}, ϕ), (\mathfrak{H}, ψ) s.t.

 $d_{(\varphi,\psi)}(G,H) \leq \delta.$

In other words, G is δ -contained in (resp. δ -close to) H if $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}$

(resp.

 $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})} \quad \text{and} \quad \psi(H) \subseteq \phi(G) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})})$ for some representations $(\mathfrak{H}, \varphi), (\mathfrak{H}, \psi)$ of G, H.

$$\sup_{g\in G}\inf_{h\in H}\|\varphi(g)-\psi(h)\|\leq \delta.$$

2. *G* is δ -close to *H* if \exists (\mathfrak{H}, ϕ), (\mathfrak{H}, ψ) s.t.

 $d_{(\varphi,\psi)}(G,H) \leq \delta.$

In other words, G is δ -contained in (resp. δ -close to) H if $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}$

(resp.

 $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})} \text{ and } \psi(H) \subseteq \phi(G) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})})$ for some representations $(\mathfrak{H}, \varphi), (\mathfrak{H}, \psi)$ of G, H.

$$\sup_{g\in G}\inf_{h\in H}\|\varphi(g)-\psi(h)\|\leq \delta.$$

2. *G* is δ -close to *H* if \exists (\mathfrak{H}, ϕ), (\mathfrak{H}, ψ) s.t.

 $d_{(\varphi,\psi)}(G,H) \leq \delta.$

In other words, G is δ -contained in (resp. δ -close to) H if

$$\phi(\mathsf{G}) \subseteq \psi(\mathsf{H}) + \delta \mathsf{B}_{\mathcal{L}(\mathfrak{H})}$$

(resp.

 $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})} \quad \text{and} \quad \psi(H) \subseteq \phi(G) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})})$ for some representations $(\mathfrak{H}, \varphi), (\mathfrak{H}, \psi)$ of G, H.

G is asymptotically contained in (resp., asymptotically close to) H if it is δ -contained in (resp., δ -close to) H for each $\delta > 0$.

Thus, G is asymptotically close to $H \Leftrightarrow d(G, H) = 0$.

Question. So what?

G is asymptotically contained in (resp., asymptotically close to) H if it is δ -contained in (resp., δ -close to) H for each $\delta > 0$.

Thus, G is asymptotically close to $H \Leftrightarrow d(G, H) = 0$.

Question. So what?

G is asymptotically contained in (resp., asymptotically close to) H if it is δ -contained in (resp., δ -close to) H for each $\delta > 0$.

Thus, G is asymptotically close to $H \Leftrightarrow d(G, H) = 0$.

Question. So what?

A good example

(a) \mathbb{Z}_2 is not δ -contained in \mathbb{Z}_3 if $0 < \delta < 2 - \sqrt{3}$.

In fact, if \mathfrak{H} is a Hilbert space and $u,v\in U(\mathfrak{H})\setminus\{1\}$ with $u^2=1$ and $v^3=1,$ then

$$||1 - u|| = 2$$
 and $||1 - v|| = \sqrt{3}$.

Thus,

$$||u - v|| \ge ||1 - u|| - ||1 - v|| \ge 2 - \sqrt{3}.$$

(日)

A good example

(a) \mathbb{Z}_2 is not δ -contained in \mathbb{Z}_3 if $0 < \delta < 2 - \sqrt{3}$.

In fact, if \mathfrak{H} is a Hilbert space and $u, v \in U(\mathfrak{H}) \setminus \{1\}$ with $u^2 = 1$ and $v^3 = 1$, then

$$||1 - u|| = 2$$
 and $||1 - v|| = \sqrt{3}$.

Thus,

$$||u - v|| \ge ||1 - u|| - ||1 - v|| \ge 2 - \sqrt{3}.$$

(日)

A bad example

(b) Let $t \in (0,1)$ be an irrational number. Then

$$\theta: \mathbf{n} \mapsto e^{2\mathbf{n}t\pi \mathbf{i}}$$

is an injective group homomorphism

from
$$\mathbb{Z}$$
 into $\mathbb{T} := U(\mathbb{C}) \ (= \{z \in \mathbb{C} : |z| = 1\})$

with dense range.

Therefore, $\mathbb T$ and $\mathbb Z$ are asymptotically close to each other.

Note that \mathbb{Z} is countable but \mathbb{T} is not.

A bad example

(b) Let $t \in (0,1)$ be an irrational number. Then

$$\theta: \mathbf{n} \mapsto e^{2\mathbf{n}t\pi \mathbf{i}}$$

is an injective group homomorphism

from
$$\mathbb Z$$
 into $\mathbb T:=U(\mathbb C)$ $(=\{z\in\mathbb C:|z|=1\})$

(日)

with dense range.

Therefore, $\mathbb T$ and $\mathbb Z$ are asymptotically close to each other.

Note that \mathbb{Z} is countable but \mathbb{T} is not.

A bad example

(b) Let $t \in (0,1)$ be an irrational number. Then

$$\theta: \mathbf{n} \mapsto e^{2\mathbf{n}t\pi \mathbf{i}}$$

is an injective group homomorphism

from
$$\mathbb Z$$
 into $\mathbb T:=U(\mathbb C)$ $(=\{z\in\mathbb C:|z|=1\})$

with dense range.

Therefore, $\mathbb T$ and $\mathbb Z$ are asymptotically close to each other.

Note that \mathbb{Z} is countable but \mathbb{T} is not.

(c) Let $n_1, n_2, ...$ be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ into \mathbb{T} defined by

$$(\bar{k}_j)_{j\in\mathbb{N}}\mapsto \prod_{j=1}^{\infty}e^{2k_j\pi\mathrm{i}/n_j}.$$

we see that $\bigoplus_{k\in\mathbb{N}}\mathbb{Z}_{n_k}$ is asymptotically contained in \mathbb{Z} .

In the case when $\{p_1, p_2, ...\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is dense in \mathbb{T} .

This means that $\bigoplus_{k\in\mathbb{N}} \mathbb{Z}_{p_k}$ is asymptotically close to \mathbb{Z} .

(c) Let $n_1, n_2, ...$ be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ into \mathbb{T} defined by

$$(\bar{k}_j)_{j\in\mathbb{N}}\mapsto \mathsf{\Pi}_{j=1}^\infty e^{2k_j\pi\mathrm{i}/n_j}$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ is asymptotically contained in \mathbb{Z} .

In the case when $\{p_1, p_2, ...\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is dense in \mathbb{T} .

This means that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is asymptotically close to \mathbb{Z} .

(c) Let $n_1, n_2, ...$ be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ into \mathbb{T} defined by

$$(\bar{k}_j)_{j\in\mathbb{N}}\mapsto \mathsf{\Pi}_{j=1}^\infty e^{2k_j\pi\mathrm{i}/n_j}.$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ is asymptotically contained in \mathbb{Z} .

In the case when $\{p_1, p_2, ...\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is dense in \mathbb{T} .

This means that $\bigoplus_{k\in\mathbb{N}} \mathbb{Z}_{p_k}$ is asymptotically close to \mathbb{Z} .

(c) Let $n_1, n_2, ...$ be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ into \mathbb{T} defined by

$$(\bar{k}_j)_{j\in\mathbb{N}}\mapsto \mathsf{\Pi}_{j=1}^\infty e^{2k_j\pi\mathrm{i}/n_j}.$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ is asymptotically contained in \mathbb{Z} .

In the case when $\{p_1, p_2, ...\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is dense in \mathbb{T} .

This means that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is asymptotically close to \mathbb{Z} .

(c) Let $n_1, n_2, ...$ be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ into \mathbb{T} defined by

$$(\bar{k}_j)_{j\in\mathbb{N}}\mapsto \mathsf{\Pi}_{j=1}^\infty e^{2k_j\pi\mathrm{i}/n_j}.$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ is asymptotically contained in \mathbb{Z} .

In the case when $\{p_1, p_2, ...\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is dense in \mathbb{T} .

This means that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is asymptotically close to \mathbb{Z} .

(c) Let $n_1, n_2, ...$ be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ into \mathbb{T} defined by

$$(\bar{k}_j)_{j\in\mathbb{N}}\mapsto \mathsf{\Pi}_{j=1}^\infty e^{2k_j\pi\mathrm{i}/n_j}.$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_k}$ is asymptotically contained in \mathbb{Z} .

In the case when $\{p_1, p_2, ...\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is dense in \mathbb{T} .

This means that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_k}$ is asymptotically close to \mathbb{Z} .

Another bad example

(d) Let $D := \varinjlim \mathbb{Z}_{2^k}$ and $T := \varinjlim \mathbb{Z}_{3^k}$.

Then both of them can be considered as dense subgroups of $\mathbb T$ and hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the order of any element in D is a power of 2 while the order of any element in T is a power of 3.

Another bad example

(d) Let $D := \varinjlim \mathbb{Z}_{2^k}$ and $T := \varinjlim \mathbb{Z}_{3^k}$.

Then both of them can be considered as dense subgroups of $\mathbb T$ and hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the order of any element in D is a power of 2 while the order of any element in T is a power of 3.

Another bad example

(d) Let $D := \varinjlim \mathbb{Z}_{2^k}$ and $T := \varinjlim \mathbb{Z}_{3^k}$.

Then both of them can be considered as dense subgroups of \mathbb{T} and hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the order of any element in D is a power of 2 while the order of any element in T is a power of 3.

Some positive results

Theorem 1. Any close enough <u>finite abelian</u> groups G, H are isomorphic.

In fact, if G, H are k-bounded abelian group, then

G, H are group isomorphic $\Leftrightarrow d(G, H) = 0.$

Recall that a group H is called k-bounded for some integer $k \ge 2$ if the order $o(t) \le k$, for all $t \in H$.

Theorem 1. Any close enough <u>finite abelian</u> groups G, H are isomorphic.

In fact, if G, H are k-bounded abelian group, then

G, H are group isomorphic $\Leftrightarrow d(G, H) = 0.$

Recall that a group H is called k-bounded for some integer $k \ge 2$ if the order $o(t) \le k$, for all $t \in H$.

Theorem 1. Any close enough <u>finite abelian</u> groups G, H are isomorphic.

In fact, if G, H are k-bounded abelian group, then

G, H are group isomorphic $\Leftrightarrow d(G, H) = 0.$

Recall that a group H is called k-bounded for some integer $k \ge 2$ if the order $o(t) \le k$, for all $t \in H$.

Proof.

First, we note that for any representation (ψ, \mathfrak{H}) of an k-bounded group H and any distinct $r, s \in H$,

$$\|\psi(r)-\psi(s)\|\geq 2\sinrac{\pi}{k}.$$

The assertion follows from the following inequalities.

$$\|\psi(r)-\psi(s)\| = |r_{\sigma}(1-\psi(r^{-1}s))| \ge |1-e^{2\pi i/o(r^{-1}s)}| \ge 2\sin(\pi/k),$$

where $r_{\sigma}(\cdot)$ is the spectral radius.

Proof.

First, we note that for any representation (ψ, \mathfrak{H}) of an k-bounded group H and any distinct $r, s \in H$,

$$\|\psi(r)-\psi(s)\|\geq 2\sinrac{\pi}{k}.$$

The assertion follows from the following inequalities.

$$\|\psi(\mathbf{r})-\psi(\mathbf{s})\| = r_{\sigma}(1-\psi(\mathbf{r}^{-1}\mathbf{s})) \geq \left|1-e^{2\pi i/o(r^{-1}s)}\right| \geq 2\sin(\pi/k),$$

where $r_{\sigma}(\cdot)$ is the spectral radius.

Now, assume d(G, H) = 0, and $0 < \delta < \sin \frac{\pi}{k}$. *G* is δ -contained in *H* \Longrightarrow \exists representations $(\phi, \mathfrak{H}), (\psi, \mathfrak{H})$ of *G*, *H* s.t.

 $\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}.$

 \exists bijection θ : $G \rightarrow H$ with

 $\|\phi(r) - \psi(\theta(r))\| < \delta, \quad \forall r \in G.$

Furthermore, θ preserves orders of elements, i.e.,

 $o(\theta(r)) = o(r), \quad \forall r \in G.$

Now, assume d(G, H) = 0, and $0 < \delta < \sin \frac{\pi}{k}$. *G* is δ -contained in *H* \Longrightarrow \exists representations $(\phi, \mathfrak{H}), (\psi, \mathfrak{H})$ of *G*, *H* s.t.

$$\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}.$$

 \exists bijection θ : $G \rightarrow H$ with

$$\|\phi(r) - \psi(\theta(r))\| < \delta, \quad \forall r \in G.$$

Furthermore, θ preserves orders of elements, i.e.,

 $o(\theta(r)) = o(r), \quad \forall r \in G.$

Now, assume d(G, H) = 0, and $0 < \delta < \sin \frac{\pi}{k}$. *G* is δ -contained in *H* \Longrightarrow \exists representations $(\phi, \mathfrak{H}), (\psi, \mathfrak{H})$ of *G*, *H* s.t.

$$\phi(G) \subseteq \psi(H) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}.$$

 \exists bijection θ : $G \rightarrow H$ with

$$\|\phi(r) - \psi(\theta(r))\| < \delta, \quad \forall r \in G.$$

Furthermore, θ preserves orders of elements, i.e.,

$$o(\theta(r)) = o(r), \quad \forall r \in G.$$

(日)

Now suppose that the common order of G and H is

$$n=p_1^{r_1}\cdots p_k^{r_k}.$$

Then we can write G and H as direct sums of their Sylow subgroups

 $G = G(p_1) \oplus \cdots \oplus G(p_k)$ and $H = H(p_1) \oplus \cdots \oplus H(p_k)$.

Since θ preserves order, θ maps bijectively from the Sylow p_i -subgroup $G(p_i)$ onto the Sylow p_i -subgroup $H(p_i)$ (i = 1, ..., k). Thus, one can assume that $n = p^r$.

Now suppose that the common order of G and H is

$$n=p_1^{r_1}\cdots p_k^{r_k}.$$

Then we can write G and H as direct sums of their Sylow subgroups

 $G = G(p_1) \oplus \cdots \oplus G(p_k)$ and $H = H(p_1) \oplus \cdots \oplus H(p_k)$.

Since θ preserves order, θ maps bijectively from the Sylow p_i -subgroup $G(p_i)$ onto the Sylow p_i -subgroup $H(p_i)$ (i = 1, ..., k). Thus, one can assume that $n = p^r$.

Now suppose that the common order of G and H is

$$n=p_1^{r_1}\cdots p_k^{r_k}.$$

Then we can write G and H as direct sums of their Sylow subgroups

 $G = G(p_1) \oplus \cdots \oplus G(p_k)$ and $H = H(p_1) \oplus \cdots \oplus H(p_k)$.

Since θ preserves order, θ maps bijectively from the Sylow p_i -subgroup $G(p_i)$ onto the Sylow p_i -subgroup $H(p_i)$ (i = 1, ..., k). Thus, one can assume that $n = p^r$.

In this case, $G = \bigoplus_{k=1}^{i} \mathbb{Z}_{p^{m_k}}$ and $H = \bigoplus_{l=1}^{j} \mathbb{Z}_{p^{n_l}}$, where $m_1 \leq ... \leq m_i$ and $n_1 \leq ... \leq n_j$.

It is clear that $m_i = n_j$.

By using some counting arguments, we will see $m_{i-1} = n_{j-1}$.

Inductively, one has i = j and $m_k = n_k$ (k = 1, ..., i).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

In this case, $G = \bigoplus_{k=1}^{i} \mathbb{Z}_{p^{m_k}}$ and $H = \bigoplus_{l=1}^{j} \mathbb{Z}_{p^{n_l}}$, where $m_1 \leq ... \leq m_i$ and $n_1 \leq ... \leq n_j$.

It is clear that $m_i = n_j$.

By using some counting arguments, we will see $m_{i-1} = n_{j-1}$.

Inductively, one has i = j and $m_k = n_k$ (k = 1, ..., i).

In this case, $G = \bigoplus_{k=1}^{i} \mathbb{Z}_{p^{m_k}}$ and $H = \bigoplus_{l=1}^{j} \mathbb{Z}_{p^{n_l}}$, where $m_1 \leq ... \leq m_i$ and $n_1 \leq ... \leq n_j$.

It is clear that $m_i = n_j$.

By using some counting arguments, we will see $m_{i-1} = n_{j-1}$.

Inductively, one has i = j and $m_k = n_k$ (k = 1, ..., i).

Theorem 2.

Suppose that $k \in \{2, 3, 4, ...\}$, and G and H are two groups such that H is k-bounded. Take any $\delta \in (0, \frac{1}{2} \sin \frac{\pi}{k})$.

1. If G is δ -contained in H, then G is isomorphic to a subgroup of H.

2. If G is δ -close to H, then they are isomorphic.

Theorem 2.

Suppose that $k \in \{2, 3, 4, ...\}$, and G and H are two groups such that H is k-bounded. Take any $\delta \in (0, \frac{1}{2} \sin \frac{\pi}{k})$.

1. If G is δ -contained in H, then G is isomorphic to a subgroup of H.

2. If G is δ -close to H, then they are isomorphic.

Theorem 2.

Suppose that $k \in \{2, 3, 4, ...\}$, and G and H are two groups such that H is k-bounded. Take any $\delta \in (0, \frac{1}{2} \sin \frac{\pi}{k})$.

1. If G is δ -contained in H, then G is isomorphic to a subgroup of H.

2. If G is δ -close to H, then they are isomorphic.

(a) A subset $E \subseteq G$ is asymptotically included in another $F \subseteq G$ if $\forall \delta > 0, \exists (\mathfrak{H}, \phi)$ with

$$\phi(E) \subseteq \phi(F) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}.$$

(b) G is asymptotically abelian if $C_G := \{s^{-1}r^{-1}sr : r, s \in G\}$ is asymptotically included in $\{e\}$.

(c) G is pairwise asymptotically abelian if $\{s^{-1}r^{-1}sr\}$ asymptotically included in $\{e\}$, $\forall r, s \in G$.

(a) A subset $E \subseteq G$ is asymptotically included in another $F \subseteq G$ if $\forall \delta > 0, \exists (\mathfrak{H}, \phi)$ with

$$\phi(E) \subseteq \phi(F) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}.$$

(b) G is asymptotically abelian if $C_G := \{s^{-1}r^{-1}sr : r, s \in G\}$ is asymptotically included in $\{e\}$.

(c) G is pairwise asymptotically abelian if $\{s^{-1}r^{-1}sr\}$ asymptotically included in $\{e\}$, $\forall r, s \in G$.

(a) A subset $E \subseteq G$ is asymptotically included in another $F \subseteq G$ if $\forall \delta > 0, \exists (\mathfrak{H}, \phi)$ with

$$\phi(E) \subseteq \phi(F) + \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}.$$

(b) G is asymptotically abelian if $C_G := \{s^{-1}r^{-1}sr : r, s \in G\}$ is asymptotically included in $\{e\}$.

(c) G is pairwise asymptotically abelian if $\{s^{-1}r^{-1}sr\}$ asymptotically included in $\{e\}$, $\forall r, s \in G$.

- 1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then o(r) = o(s).
- 2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
- 3. If G is asymptotically contained in an abelian group, then G is asymptotically abelian.
- 4. If G is asymptotically contained in an abelian group, then G does not contain any finite non-abelian subgroup.

- 1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then o(r) = o(s).
- 2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
- 3. If G is asymptotically contained in an abelian group, then G is asymptotically abelian.
- 4. If G is asymptotically contained in an abelian group, then G does not contain any finite non-abelian subgroup.

- 1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then o(r) = o(s).
- 2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
- 3. If G is asymptotically contained in an abelian group, then G is asymptotically abelian.
- 4. If G is asymptotically contained in an abelian group, then G does not contain any finite non-abelian subgroup.

- 1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then o(r) = o(s).
- 2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
- 3. If G is asymptotically contained in an abelian group, then G is asymptotically abelian.
- 4. If G is asymptotically contained in an abelian group, then G does not contain any finite non-abelian subgroup.

- 1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then o(r) = o(s).
- 2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
- 3. If G is asymptotically contained in an abelian group, then G is asymptotically abelian.
- 4. If G is asymptotically contained in an abelian group, then G does not contain any finite non-abelian subgroup.

If $G_1, ..., G_n$ are groups in a class \mathcal{G} such that G_i is asymptotically close to G_{i+1} for every i = 1, ..., n - 1, then we say that G_1 and G_n are asymptotically equivalent inside \mathcal{G} .

When \mathcal{G} is the class of all groups, we simple say that G_1 and G_n are asymptotically equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

If $G_1, ..., G_n$ are groups in a class \mathcal{G} such that G_i is asymptotically close to G_{i+1} for every i = 1, ..., n - 1, then we say that G_1 and G_n are asymptotically equivalent inside \mathcal{G} .

When G is the class of all groups, we simple say that G_1 and G_n are asymptotically equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの(~

- 1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
 - Note that G, H need not be isomorphic (see Example (d)).
- If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
- 35. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
- 6: Let 3C be the class of all finitely generated infinite abelian groups. Any two elements in 3C are asymptotically equivalent inside 3C.

1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.

Note that G, H need not be isomorphic (see Example (d)).

- If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
- If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
- 40 Events and a second plantic process of all finitely processed informers and the second se second sec

- If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
 Note that G, H need not be isomorphic (see Example (d)).
- 2. If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
- 3. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
- Let H be the class of all finitely generated infinite abelian groups. Any two elements in H are asymptotically equivalent inside H.

- If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
 Note that G, H need not be isomorphic (see Example (d)).
- 2. If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
- 3. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
- 4. Let \mathcal{H} be the class of all finitely generated infinite abelian groups. Any two elements in \mathcal{H} are asymptotically equivalent inside \mathcal{H} .

- If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
 Note that G, H need not be isomorphic (see Example (d)).
- 2. If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
- 3. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
- 4. Let \mathcal{H} be the class of all finitely generated infinite abelian groups. Any two elements in \mathcal{H} are asymptotically equivalent inside \mathcal{H} .

- If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
 Note that G, H need not be isomorphic (see Example (d)).
- 2. If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
- 3. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
- 4. Let \mathcal{H} be the class of all finitely generated infinite abelian groups. Any two elements in \mathcal{H} are asymptotically equivalent inside \mathcal{H} .

Results presented here can be found from

Chi-Wai Leung, Chi-Keung Ng and Ngai-Ching Wong, On a notion of closeness of groups, Ann. Funct. Anal. **7**(1) (2016), 24–32.

Please visit

http://www.math.nsysu.edu.tw/ \sim wong

to explore more of Wong.

Thank you!

Results presented here can be found from

Chi-Wai Leung, Chi-Keung Ng and Ngai-Ching Wong, On a notion of closeness of groups, Ann. Funct. Anal. **7**(1) (2016), 24–32.

Please visit

 $\verb+http://www.math.nsysu.edu.tw/\simwong$

to explore more of Wong.

Thank you!