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To be or not to be, . . .

the question is how to say two groups G ,H are close, or not close.

Question. Is an apple close to a mango?

We need to put G ,H into the same context to compare!
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Unitary representations of groups

Let H be a complex Hilbert space and U(H) the group of unitary
operators on H.

H = Cn =⇒ U(H) = SU(n), the group of n × n unitary matrices.

Call (H, ϕ) a (unitary) representation of a group G if
ϕ : G → U(H) is an injective group homomorphism.

Note that there is a metric structure on U(H), and thus so is ϕ(G ).
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Distance between groups

Let (H, ϕ) be a representation of G .
Let (H, ψ) be a representation of H.

The distance between ϕ(G ) and ψ(H) in U(H) is

d(ϕ,ψ)(G ,H) :=

max

{
sup
g∈G

inf
h∈H
‖ϕ(g)− ψ(h)‖, sup

h∈H
inf
g∈G
‖ψ(h)− ϕ(g)‖

}
.

The distance between two groups G and H is

d(G ,H) := inf
ϕ,ψ

d(ϕ,ψ)(G ,H).
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1. G is δ-contained in H if ∃ (H, φ), (H, ψ) s.t.

sup
g∈G

inf
h∈H
‖ϕ(g)− ψ(h)‖ ≤ δ.

2. G is δ-close to H if ∃ (H, φ), (H, ψ) s.t.

d(ϕ,ψ)(G ,H) ≤ δ.

In other words, G is δ-contained in (resp. δ-close to) H if

φ(G ) ⊆ ψ(H) + δBL(H)

(resp.

φ(G ) ⊆ ψ(H) + δBL(H) and ψ(H) ⊆ φ(G ) + δBL(H))

for some representations (H, ϕ), (H, ψ) of G ,H.
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G is asymptotically contained in (resp., asymptotically close to) H
if it is δ-contained in (resp., δ-close to) H for each δ > 0.

Thus, G is asymptotically close to H ⇔ d(G ,H) = 0.

Question. So what?
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A good example

(a) Z2 is not δ-contained in Z3 if 0 < δ < 2−
√

3.

In fact, if H is a Hilbert space and u, v ∈ U(H) \ {1} with u2 = 1
and v3 = 1, then

‖1− u‖ = 2 and ‖1− v‖ =
√

3.

Thus,
‖u − v‖ ≥ ‖1− u‖ − ‖1− v‖ ≥ 2−

√
3.
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A bad example

(b) Let t ∈ (0, 1) be an irrational number.
Then

θ : n 7→ e2ntπi

is an injective group homomorphism

from Z into T := U(C) (= {z ∈ C : |z | = 1})

with dense range.

Therefore, T and Z are asymptotically close to each other.

Note that Z is countable but T is not.
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An ugly example

(c) Let n1, n2, ... be a sequence of relatively prime numbers.
Consider the canonical injective representation from

⊕
k∈N Znk

into T defined by

(k̄j)j∈N 7→ Π∞j=1e
2kjπi/nj .

we see that
⊕

k∈N Znk is asymptotically contained in Z.

In the case when {p1, p2, ...} list all prime numbers, the image of⊕
k∈N Zpk is dense in T.

This means that
⊕

k∈N Zpk is asymptotically close to Z.

Note that Z have a single generator but the minimal number of
generators of

⊕
k∈N Zpk is infinite.
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Another bad example

(d) Let D := lim−→ Z2k and T := lim−→ Z3k .

Then both of them can be considered as dense subgroups of T and
hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the
order of any element in D is a power of 2 while the order of any
element in T is a power of 3.
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Some positive results

Theorem 1. Any close enough finite abelian groups G ,H are
isomorphic.

In fact, if G ,H are k-bounded abelian group, then

G ,H are group isomorphic ⇔ d(G ,H) = 0.

Recall that a group H is called k-bounded for some integer k ≥ 2
if the order o(t) ≤ k , for all t ∈ H.
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Proof.

First, we note that for any representation (ψ,H) of an k-bounded
group H and any distinct r , s ∈ H,

‖ψ(r)− ψ(s)‖ ≥ 2 sin
π

k
.

The assertion follows from the following inequalities.

‖ψ(r)−ψ(s)‖ = rσ(1−ψ(r−1s)) ≥
∣∣1−e2πi/o(r−1s)

∣∣ ≥ 2 sin(π/k),

where rσ(·) is the spectral radius.
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Now, assume d(G ,H) = 0, and 0 < δ < sin π
k .

G is δ-contained in H
=⇒
∃ representations (φ,H), (ψ,H) of G ,H s.t.

φ(G ) ⊆ ψ(H) + δBL(H).

∃ bijection θ : G → H with

‖φ(r)− ψ(θ(r))‖ < δ, ∀r ∈ G .

Furthermore, θ preserves orders of elements, i.e.,

o(θ(r)) = o(r), ∀r ∈ G .
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Now suppose that the common order of G and H is

n = pr11 · · · p
rk
k .

Then we can write G and H as direct sums of their Sylow
subgroups

G = G (p1)⊕ · · · ⊕ G (pk) and H = H(p1)⊕ · · · ⊕ H(pk).

Since θ preserves order, θ maps bijectively from the Sylow

pi -subgroup G (pi ) onto the Sylow pi -subgroup H(pi ) (i = 1, ..., k).
Thus, one can assume that n = pr .
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In this case, G =
⊕i

k=1 Zpmk and H =
⊕j

l=1 Zpnl , where

m1 ≤ ... ≤ mi and n1 ≤ ... ≤ nj .

It is clear that mi = nj .

By using some counting arguments, we will see mi−1 = nj−1.

Inductively, one has i = j and mk = nk (k = 1, ..., i).
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Theorem 2.
Suppose that k ∈ {2, 3, 4, ...}, and G and H are two groups such
that H is k-bounded. Take any δ ∈ (0, 12 sin π

k ).

1. If G is δ-contained in H, then G is isomorphic to a subgroup
of H.

2. If G is δ-close to H, then they are isomorphic.
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(a) A subset E ⊆ G is asymptotically included in another F ⊆ G if
∀δ > 0, ∃(H, φ) with

φ(E ) ⊆ φ(F ) + δBL(H).

(b) G is asymptotically abelian if CG := {s−1r−1sr : r , s ∈ G} is
asymptotically included in {e}.

(c) G is pairwise asymptotically abelian if {s−1r−1sr}
asymptotically included in {e}, ∀r , s ∈ G .
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Theorem 3.

1. If r , s ∈ G have finite orders and {r} is asymptotically
included in {s}, then o(r) = o(s).

2. If every element in G has a finite order and G is pairwise
asymptotically abelian, then G is abelian.

3. If G is asymptotically contained in an abelian group, then G is
asymptotically abelian.

4. If G is asymptotically contained in an abelian group, then G
does not contain any finite non-abelian subgroup.
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If G1, ...,Gn are groups in a class G such that Gi is asymptotically
close to Gi+1 for every i = 1, .., n − 1, then we say that G1 and Gn

are asymptotically equivalent inside G.

When G is the class of all groups, we simple say that G1 and Gn

are asymptotically equivalent.



If G1, ...,Gn are groups in a class G such that Gi is asymptotically
close to Gi+1 for every i = 1, .., n − 1, then we say that G1 and Gn

are asymptotically equivalent inside G.

When G is the class of all groups, we simple say that G1 and Gn

are asymptotically equivalent.



Theorem 4.

1. If G and H are asymptotically equivalent inside the class of
groups whose elements are all of finite orders, then G is
abelian if and only if H is abelian.
Note that G ,H need not be isomorphic (see Example (d)).

2. If G is k-bounded and is asymptotically equivalent to H, then
G is isomorphic to H.

3. If two groups are asymptotically equivalent, then either they
are both finite and isomorphic or they are both infinite.

4. Let H be the class of all finitely generated infinite abelian
groups. Any two elements in H are asymptotically equivalent
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