On a notion of closeness of groups

Chi－Wai Leung 梁子威（CUHK），Chi－Keung Ng 吳志強 （Nankai）and Ngai－Ching Wong 黃毅靑＊

Department of Applied Mathematics
National Sun Yat－sen University
Kaohsiung，80424，Taiwan．
台灣•中山大學•應用數學系
wong＠math．nsysu．edu．tw
http：
www．math．nsysu．edu．tw \backslash～wong

To be or not to be, ...
the question is how to say two groups G, H are close, or not close.

Question. Is an apple close to a mango?

To be or not to be, ...

the question is how to say two groups G, H are close, or not close.

Question. Is an apple close to a mango?
We need to put G, H into the same context to compare!

To be or not to be, ...

the question is how to say two groups G, H are close, or not close.
Question. Is an apple close to a mango?
We need to put G, H into the same context to compare!

To be or not to be, ...

the question is how to say two groups G, H are close, or not close.
Question. Is an apple close to a mango?
We need to put G, H into the same context to compare!

Unitary representations of groups

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H}.
$\mathfrak{H}=\mathbb{C}^{n} \Longrightarrow U(\mathfrak{H})=S U(n)$, the group of $n \times n$ unitary matrices.

Unitary representations of groups

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H}.
$\mathfrak{H}=\mathbb{C}^{n} \Longrightarrow U(\mathfrak{H})=S U(n)$, the group of $n \times n$ unitary matrices.
Call (\mathfrak{H}, φ) a (unitary) representation of a group G if $\varphi: G \rightarrow U(\mathfrak{H})$ is an injective group homomorphism.

Note that there is a metric structure on $U(5)$, and thus so is $\varphi(G)$

Unitary representations of groups

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H}.
$\mathfrak{H}=\mathbb{C}^{n} \Longrightarrow U(\mathfrak{H})=S U(n)$, the group of $n \times n$ unitary matrices.
Call (\mathfrak{H}, φ) a (unitary) representation of a group G if $\varphi: G \rightarrow U(\mathfrak{H})$ is an injective group homomorphism.

Note that there is a metric structure on $U(\mathfrak{H})$, and thus so is $\varphi(G)$.

Unitary representations of groups

Let \mathfrak{H} be a complex Hilbert space and $U(\mathfrak{H})$ the group of unitary operators on \mathfrak{H}.
$\mathfrak{H}=\mathbb{C}^{n} \Longrightarrow U(\mathfrak{H})=S U(n)$, the group of $n \times n$ unitary matrices.
Call (\mathfrak{H}, φ) a (unitary) representation of a group G if
$\varphi: G \rightarrow U(\mathfrak{H})$ is an injective group homomorphism.
Note that there is a metric structure on $U(\mathfrak{H})$, and thus so is $\varphi(G)$.

Distance between groups

Let (\mathfrak{H}, φ) be a representation of G.
Let (\mathfrak{H}, ψ) be a representation of H.
The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

Distance between groups

Let (\mathfrak{H}, φ) be a representation of G.
Let (\mathfrak{H}, ψ) be a representation of H.
The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

$$
\begin{aligned}
& d_{(\varphi, \psi)}(G, H):= \\
& \quad \max \left\{\sup _{g \in G} \inf _{h \in H}\|\varphi(g)-\psi(h)\|,\right.
\end{aligned}
$$

The distance between two groups G and H is

Distance between groups

Let (\mathfrak{H}, φ) be a representation of G.
Let (\mathfrak{H}, ψ) be a representation of H.
The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

$$
\begin{aligned}
& d_{(\varphi, \psi)}(G, H):= \\
& \quad \max \left\{\sup _{g \in G} \inf _{h \in H}\|\varphi(g)-\psi(h)\|, \sup _{h \in H} \inf _{g \in G}\|\psi(h)-\varphi(g)\|\right\} .
\end{aligned}
$$

The distance between two groups G and H is

Distance between groups

Let (\mathfrak{H}, φ) be a representation of G.
Let (\mathfrak{H}, ψ) be a representation of H.
The distance between $\varphi(G)$ and $\psi(H)$ in $U(\mathfrak{H})$ is

$$
\begin{aligned}
& d_{(\varphi, \psi)}(G, H):= \\
& \quad \max \left\{\sup _{g \in G} \inf _{h \in H}\|\varphi(g)-\psi(h)\|, \sup _{h \in H} \inf _{g \in G}\|\psi(h)-\varphi(g)\|\right\} .
\end{aligned}
$$

The distance between two groups G and H is

$$
d(G, H):=\inf _{\varphi, \psi} d_{(\varphi, \psi)}(G, H)
$$

1. G is δ-contained in H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
\sup _{g \in G} \inf _{h \in H}\|\varphi(g)-\psi(h)\| \leq \delta
$$

2. G is δ-close to H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
d_{(\varphi, \psi)}(G, H) \leq \delta .
$$

1. G is δ-contained in H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
\sup _{g \in G} \inf _{h \in H}\|\varphi(g)-\psi(h)\| \leq \delta
$$

2. G is δ-close to H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
d_{(\varphi, \psi)}(G, H) \leq \delta
$$

In other words, G is δ-contained in (resp. δ-close to) H if

$$
\phi(G) \subseteq \psi^{\prime}(H)+\delta B_{\mathcal{L}(5)}
$$

1. G is δ-contained in H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
\sup _{g \in G} \inf _{h \in H}\|\varphi(g)-\psi(h)\| \leq \delta
$$

2. G is δ-close to H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
d_{(\varphi, \psi)}(G, H) \leq \delta
$$

In other words, G is δ-contained in (resp. δ-close to) H if

$$
\phi(G) \subseteq \psi(H)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}
$$

(resp.

1. G is δ-contained in H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
\sup _{g \in G} \inf _{h \in H}\|\varphi(g)-\psi(h)\| \leq \delta
$$

2. G is δ-close to H if $\exists(\mathfrak{H}, \phi),(\mathfrak{H}, \psi)$ s.t.

$$
d_{(\varphi, \psi)}(G, H) \leq \delta
$$

In other words, G is δ-contained in (resp. δ-close to) H if

$$
\phi(G) \subseteq \psi(H)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}
$$

(resp.

$$
\left.\phi(G) \subseteq \psi(H)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})} \quad \text { and } \quad \psi(H) \subseteq \phi(G)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}\right)
$$

for some representations $(\mathfrak{H}, \varphi),(\mathfrak{H}, \psi)$ of G, H.
G is asymptotically contained in (resp., asymptotically close to) H if it is δ-contained in (resp., δ-close to) H for each $\delta>0$.

Thus, G is asymptotically close to $H \Leftrightarrow d(G, H)=0$.
Question. So what?
G is asymptotically contained in (resp., asymptotically close to) H if it is δ-contained in (resp., δ-close to) H for each $\delta>0$.

Thus, G is asymptotically close to $H \Leftrightarrow d(G, H)=0$.
Question. So what?
G is asymptotically contained in (resp., asymptotically close to) H if it is δ-contained in (resp., δ-close to) H for each $\delta>0$.

Thus, G is asymptotically close to $H \Leftrightarrow d(G, H)=0$.
Question. So what?

A good example

(a) \mathbb{Z}_{2} is not δ-contained in \mathbb{Z}_{3} if $0<\delta<2-\sqrt{3}$.

In fact, if \mathfrak{H} is a Hilbert space and $u, v \in U(\mathfrak{F}) \backslash\{1\}$ with $u^{2}=1$ and $v^{3}=1$, then

$$
\|1-u\|=2 \text { and }\|1-v\|=\sqrt{3} \text {. }
$$

Thus,

$$
\|u-v\| \geq\|1-u\|-\|1-v\| \geq 2-\sqrt{3} .
$$

A good example

(a) \mathbb{Z}_{2} is not δ-contained in \mathbb{Z}_{3} if $0<\delta<2-\sqrt{3}$.

In fact, if \mathfrak{H} is a Hilbert space and $u, v \in U(\mathfrak{H}) \backslash\{1\}$ with $u^{2}=1$ and $v^{3}=1$, then

$$
\|1-u\|=2 \quad \text { and } \quad\|1-v\|=\sqrt{3} .
$$

Thus,

$$
\|u-v\| \geq\|1-u\|-\|1-v\| \geq 2-\sqrt{3} .
$$

A bad example

(b) Let $t \in(0,1)$ be an irrational number.

Then

$$
\theta: n \mapsto e^{2 n t \pi \mathrm{i}}
$$

is an injective group homomorphism

$$
\text { from } \mathbb{Z} \text { into } \mathbb{T}:=U(\mathbb{C})(=\{z \in \mathbb{C}:|z|=1\})
$$

with dense range.
Therefore, \mathbb{T} and \mathbb{Z} are asymptotically close to each other.
Note that \mathbb{Z} is countable but \mathbb{T} is not.

A bad example

(b) Let $t \in(0,1)$ be an irrational number.

Then

$$
\theta: n \mapsto e^{2 n t \pi \mathrm{i}}
$$

is an injective group homomorphism

$$
\text { from } \mathbb{Z} \text { into } \mathbb{T}:=U(\mathbb{C})(=\{z \in \mathbb{C}:|z|=1\})
$$

with dense range.
Therefore, \mathbb{T} and \mathbb{Z} are asymptotically close to each other.
Note that \mathbb{Z} is countable but \mathbb{T} is not.

A bad example

(b) Let $t \in(0,1)$ be an irrational number.

Then

$$
\theta: n \mapsto e^{2 n t \pi \mathrm{i}}
$$

is an injective group homomorphism

$$
\text { from } \mathbb{Z} \text { into } \mathbb{T}:=U(\mathbb{C})(=\{z \in \mathbb{C}:|z|=1\})
$$

with dense range.
Therefore, \mathbb{T} and \mathbb{Z} are asymptotically close to each other.
Note that \mathbb{Z} is countable but \mathbb{T} is not.

An ugly example

(c) Let n_{1}, n_{2}, \ldots be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ into \mathbb{T} defined by

$$
\left(\bar{k}_{j}\right)_{j \in \mathbb{N}} \mapsto \Pi_{j=1}^{\infty} e^{2 k_{j} \pi i / n_{j}}
$$

An ugly example

(c) Let n_{1}, n_{2}, \ldots be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ into \mathbb{T} defined by

$$
\left(\bar{k}_{j}\right)_{j \in \mathbb{N}} \mapsto \Pi_{j=1}^{\infty} e^{2 k_{j} \pi i / n_{j}} .
$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ is asymptotically contained in \mathbb{Z}. In the case when $\left\{p_{1}, p_{2}, \ldots\right\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is dense in \mathbb{T}.

An ugly example

(c) Let n_{1}, n_{2}, \ldots be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ into \mathbb{T} defined by

$$
\left(\bar{k}_{j}\right)_{j \in \mathbb{N}} \mapsto \Pi_{j=1}^{\infty} e^{2 k_{j} \pi i / n_{j}} .
$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ is asymptotically contained in \mathbb{Z}.
In the case when $\left\{p_{1}, p_{2}, \ldots\right\}$ $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is dense in \mathbb{T}. This means that $\oplus_{1}=\mathbb{Z}_{n}$. is asymptotically close to \mathbb{Z}.

An ugly example

(c) Let n_{1}, n_{2}, \ldots be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ into \mathbb{T} defined by

$$
\left(\bar{k}_{j}\right)_{j \in \mathbb{N}} \mapsto \Pi_{j=1}^{\infty} e^{2 k_{j} \pi i / n_{j}} .
$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ is asymptotically contained in \mathbb{Z}. In the case when $\left\{p_{1}, p_{2}, \ldots\right\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is dense in \mathbb{T}.

An ugly example

(c) Let n_{1}, n_{2}, \ldots be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ into \mathbb{T} defined by

$$
\left(\bar{k}_{j}\right)_{j \in \mathbb{N}} \mapsto \Pi_{j=1}^{\infty} e^{2 k_{j} \pi i / n_{j}} .
$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ is asymptotically contained in \mathbb{Z}. In the case when $\left\{p_{1}, p_{2}, \ldots\right\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is dense in \mathbb{T}.
This means that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is asymptotically close to \mathbb{Z}.
Note that \mathbb{Z} have a single generator but the minimal number of generators of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is infinite.

An ugly example

(c) Let n_{1}, n_{2}, \ldots be a sequence of relatively prime numbers. Consider the canonical injective representation from $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ into \mathbb{T} defined by

$$
\left(\bar{k}_{j}\right)_{j \in \mathbb{N}} \mapsto \Pi_{j=1}^{\infty} e^{2 k_{j} \pi i / n_{j}} .
$$

we see that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{n_{k}}$ is asymptotically contained in \mathbb{Z}. In the case when $\left\{p_{1}, p_{2}, \ldots\right\}$ list all prime numbers, the image of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is dense in \mathbb{T}.
This means that $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is asymptotically close to \mathbb{Z}.
Note that \mathbb{Z} have a single generator but the minimal number of generators of $\bigoplus_{k \in \mathbb{N}} \mathbb{Z}_{p_{k}}$ is infinite.

Another bad example

(d) Let $D:=\underset{\longrightarrow}{\lim } \mathbb{Z}_{2^{k}}$ and $T:=\lim _{\mathbb{Z}_{3^{k}}}$.

Then both of them can be considered as dense subgroups of \mathbb{T} and hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the order of any element in D is a power of 2 while the order of any element in T is a power of 3 .

Another bad example

(d) Let $D:=\underset{\longrightarrow}{\lim } \mathbb{Z}_{2^{k}}$ and $T:=\underset{\lim _{3^{k}}}{ }$.

Then both of them can be considered as dense subgroups of \mathbb{T} and hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the order of any element in D is a power of 2 while the order of any element in T is a power of 3 .

Another bad example

(d) Let $D:=\underset{\longrightarrow}{\lim } \mathbb{Z}_{2^{k}}$ and $T:=\underset{\lim _{3^{k}}}{ }$.

Then both of them can be considered as dense subgroups of \mathbb{T} and hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the order of any element in D is a power of 2 while the order of any element in T is a power of 3 .

Some positive results

Theorem 1. Any close enough finite abelian groups G, H are isomorphic.

In fact, if G, H are k-bounded abelian group, then

Recall that a group H is called k-bounded for some integer $k \geq 2$ if the order $o(t) \leq k$, for all $t \in H$.

Some positive results

Theorem 1. Any close enough finite abelian groups G, H are isomorphic.

In fact, if G, H are k-bounded abelian group, then

$$
G, H \text { are group isomorphic } \Leftrightarrow d(G, H)=0 .
$$

Recall that a group H is called k-bounded for some integer $k \geq 2$ if the order $o(t) \leq k$, for all $t \in H$.

Some positive results

Theorem 1. Any close enough finite abelian groups G, H are isomorphic.

In fact, if G, H are k-bounded abelian group, then

$$
G, H \text { are group isomorphic } \Leftrightarrow d(G, H)=0
$$

Recall that a group H is called k-bounded for some integer $k \geq 2$ if the order $o(t) \leq k$, for all $t \in H$.

Proof.

First, we note that for any representation (ψ, \mathfrak{H}) of an k-bounded group H and any distinct $r, s \in H$,

$$
\|\psi(r)-\psi(s)\| \geq 2 \sin \frac{\pi}{k}
$$

The assertion follows from the following inequalities.
$\|\psi(r)-\psi(s)\|=r_{\sigma}\left(1-\psi\left(r^{-1} s\right)\right) \geq\left|1-e^{2 \pi \mathrm{i} / o\left(\mathrm{r}^{-1} \mathrm{~s}\right)}\right| \geq 2 \sin (\pi / k)$,
where $r_{\sigma}()$ is the spectral radius.

Proof.

First, we note that for any representation (ψ, \mathfrak{H}) of an k-bounded group H and any distinct $r, s \in H$,

$$
\|\psi(r)-\psi(s)\| \geq 2 \sin \frac{\pi}{k}
$$

The assertion follows from the following inequalities.
$\|\psi(r)-\psi(s)\|=r_{\sigma}\left(1-\psi\left(r^{-1} s\right)\right) \geq\left|1-e^{2 \pi \mathrm{i} / o\left(\mathrm{r}^{-1} \mathrm{~s}\right)}\right| \geq 2 \sin (\pi / k)$,
where $r_{\sigma}(\cdot)$ is the spectral radius.

Now, assume $d(G, H)=0$, and $0<\delta<\sin \frac{\pi}{k}$.
G is δ-contained in H
\exists representations $(\phi, \mathfrak{H}),(\psi, \mathfrak{H})$ of G, H s.t.

$$
\phi(G) \subseteq \psi(H)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}
$$

\exists bijection $\theta: G \rightarrow H$ with

Furthermore, θ preserves orders of elements, i.e.

Now, assume $d(G, H)=0$, and $0<\delta<\sin \frac{\pi}{k}$.
G is δ-contained in H
\Longrightarrow
\exists representations $(\phi, \mathfrak{H}),(\psi, \mathfrak{H})$ of G, H s.t.

$$
\phi(G) \subseteq \psi(H)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}
$$

\exists bijection $\theta: G \rightarrow H$ with

$$
\|\phi(r)-\psi(\theta(r))\|<\delta, \quad \forall r \in G .
$$

Furthermore, θ preserves orders of elements, i.e.,

Now, assume $d(G, H)=0$, and $0<\delta<\sin \frac{\pi}{k}$.
G is δ-contained in H
\Longrightarrow
\exists representations $(\phi, \mathfrak{H}),(\psi, \mathfrak{H})$ of G, H s.t.

$$
\phi(G) \subseteq \psi(H)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}
$$

\exists bijection $\theta: G \rightarrow H$ with

$$
\|\phi(r)-\psi(\theta(r))\|<\delta, \quad \forall r \in G
$$

Furthermore, θ preserves orders of elements, i.e.,

$$
o(\theta(r))=o(r), \quad \forall r \in G
$$

Now suppose that the common order of G and H is

$$
n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}
$$

Then we can write G and H as direct sums of their Sylow subgroups

$$
G=G\left(p_{1}\right) \oplus \cdots \oplus G\left(p_{k}\right) \text { and } H=H\left(p_{1}\right) \oplus \cdots \oplus H\left(p_{k}\right) .
$$

Since θ preserves order, θ maps bijectively from the Sylow p_{i}-subgroup $G\left(p_{i}\right)$ onto the Sylow p_{i}-subgroup $H\left(p_{i}\right)(i=1, \ldots, k)$ Thus, one can assume that $n=p^{r}$.

Now suppose that the common order of G and H is

$$
n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}} .
$$

Then we can write G and H as direct sums of their Sylow subgroups

$$
G=G\left(p_{1}\right) \oplus \cdots \oplus G\left(p_{k}\right) \quad \text { and } \quad H=H\left(p_{1}\right) \oplus \cdots \oplus H\left(p_{k}\right)
$$

Since θ preserves order, θ maps bijectively from the Sylow p_{i}-subgroup $G\left(p_{i}\right)$ onto the Sylow p_{i}-subgroup $H\left(p_{i}\right)(i=1, \ldots, k)$ Thus, one can assume that $n=p^{r}$.

Now suppose that the common order of G and H is

$$
n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}
$$

Then we can write G and H as direct sums of their Sylow subgroups

$$
G=G\left(p_{1}\right) \oplus \cdots \oplus G\left(p_{k}\right) \quad \text { and } \quad H=H\left(p_{1}\right) \oplus \cdots \oplus H\left(p_{k}\right)
$$

Since θ preserves order, θ maps bijectively from the Sylow p_{i}-subgroup $G\left(p_{i}\right)$ onto the Sylow p_{i}-subgroup $H\left(p_{i}\right)(i=1, \ldots, k)$. Thus, one can assume that $n=p^{r}$.

In this case, $G=\bigoplus_{k=1}^{i} \mathbb{Z}_{p^{m_{k}}}$ and $H=\bigoplus_{l=1}^{j} \mathbb{Z}_{p^{n} l}$, where

$$
m_{1} \leq \ldots \leq m_{i} \text { and } n_{1} \leq \ldots \leq n_{j}
$$

In this case, $G=\bigoplus_{k=1}^{i} \mathbb{Z}_{p^{m_{k}}}$ and $H=\bigoplus_{l=1}^{j} \mathbb{Z}_{p^{n} l}$, where

$$
m_{1} \leq \ldots \leq m_{i} \text { and } n_{1} \leq \ldots \leq n_{j}
$$

It is clear that $m_{i}=n_{j}$.

By using some counting arguments, we will see $m_{i-1}=n_{j-1}$.
Inductively, one has $i=j$ and $m_{k}=n_{k}(k=1, \ldots, i)$.

In this case, $G=\bigoplus_{k=1}^{i} \mathbb{Z}_{p^{m_{k}}}$ and $H=\bigoplus_{l=1}^{j} \mathbb{Z}_{p^{n} l}$, where

$$
m_{1} \leq \ldots \leq m_{i} \text { and } n_{1} \leq \ldots \leq n_{j}
$$

It is clear that $m_{i}=n_{j}$.

By using some counting arguments, we will see $m_{i-1}=n_{j-1}$.
Inductively, one has $i=j$ and $m_{k}=n_{k}(k=1, \ldots, i)$.

Theorem 2.
Suppose that $k \in\{2,3,4, \ldots\}$, and G and H are two groups such that H is k-bounded. Take any $\delta \in\left(0, \frac{1}{2} \sin \frac{\pi}{k}\right)$.
2. If G is δ-close to H, then they are isomorphic.

Theorem 2.
Suppose that $k \in\{2,3,4, \ldots\}$, and G and H are two groups such that H is k-bounded. Take any $\delta \in\left(0, \frac{1}{2} \sin \frac{\pi}{k}\right)$.

1. If G is δ-contained in H, then G is isomorphic to a subgroup of H.
2. If G is δ-close to H, then they are isomorphic.

Theorem 2.
Suppose that $k \in\{2,3,4, \ldots\}$, and G and H are two groups such that H is k-bounded. Take any $\delta \in\left(0, \frac{1}{2} \sin \frac{\pi}{k}\right)$.

1. If G is δ-contained in H, then G is isomorphic to a subgroup of H.
2. If G is δ-close to H, then they are isomorphic.
(a) A subset $E \subseteq G$ is asymptotically included in another $F \subseteq G$ if $\forall \delta>0, \exists(\mathfrak{H}, \phi)$ with

$$
\phi(E) \subseteq \phi(F)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})} .
$$

(b) G is asymptotically abelian if $C_{G}:=\left\{s^{-1} r^{-1} s r: r, s \in G\right\}$ is asymptotically included in $\{e\}$.
(a) A subset $E \subseteq G$ is asymptotically included in another $F \subseteq G$ if $\forall \delta>0, \exists(\mathfrak{H}, \phi)$ with

$$
\phi(E) \subseteq \phi(F)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})} .
$$

(b) G is asymptotically abelian if $C_{G}:=\left\{s^{-1} r^{-1} s r: r, s \in G\right\}$ is asymptotically included in $\{e\}$.
(c) G is pairwise asymptotically abelian if $\left\{s^{-1} r^{-1} s r\right\}$
asymptotically included in $\{e\}, \forall r, s \in G$.
(a) A subset $E \subseteq G$ is asymptotically included in another $F \subseteq G$ if $\forall \delta>0, \exists(\mathfrak{H}, \phi)$ with

$$
\phi(E) \subseteq \phi(F)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}
$$

(b) G is asymptotically abelian if $C_{G}:=\left\{s^{-1} r^{-1} s r: r, s \in G\right\}$ is asymptotically included in $\{e\}$.
(c) G is pairwise asymptotically abelian if $\left\{s^{-1} r^{-1} s r\right\}$ asymptotically included in $\{e\}, \forall r, s \in G$.

Theorem 3.

```
1. If \(r, s \in G\) have finite orders and \(\{r\}\) is asymptotically
included in \(\{s\}\) then \(o(r)=o(s)\)
```

If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.

Theorem 3.

1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then $o(r)=o(s)$.
2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.

Theorem 3.

1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then $o(r)=o(s)$.
2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
If G is asymptotically contained in an abelian group, then G is asymptotically abelian.

If G is asymptotically con tained in an abelian group, then G
does not contain any finite non-abelian subgroup.

Theorem 3.

1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then $o(r)=o(s)$.
2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
3. If G is asymptotically contained in an abelian group, then G is asymptotically abelian.
4. If G is asymptotically contained in an abelian group, then G does not contain any finite non-abelian subgroup.

Theorem 3.

1. If $r, s \in G$ have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then $o(r)=o(s)$.
2. If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
3. If G is asymptotically contained in an abelian group, then G is asymptotically abelian.
4. If G is asymptotically contained in an abelian group, then G does not contain any finite non-abelian subgroup.

If G_{1}, \ldots, G_{n} are groups in a class \mathcal{G} such that G_{i} is asymptotically close to G_{i+1} for every $i=1, \ldots, n-1$, then we say that G_{1} and G_{n} are asymptotically equivalent inside \mathcal{G}.

When \mathcal{G} is the class of all groups, we simple say that G_{1} and G_{n} are asymptotically equivalent.

If G_{1}, \ldots, G_{n} are groups in a class \mathcal{G} such that G_{i} is asymptotically close to G_{i+1} for every $i=1, \ldots, n-1$, then we say that G_{1} and G_{n} are asymptotically equivalent inside \mathcal{G}.

When \mathcal{G} is the class of all groups, we simple say that G_{1} and G_{n} are asymptotically equivalent.

Theorem 4.

1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.

Theorem 4.

1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.

Theorem 4.

1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
Note that G, H need not be isomorphic (see Example (d)).
2. If G is k-bounded and is asymptotically equivalent to H, then
G is isomorphic to H.
If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.

Theorem 4.

1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
Note that G, H need not be isomorphic (see Example (d)).
2. If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
3. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite. Let \mathcal{H} be the class of all finitely generated infinite abelian groups. Any two elements in \mathcal{H} are asymptotically equivalent inside \mathcal{H}.

Theorem 4.

1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian.
Note that G, H need not be isomorphic (see Example (d)).
2. If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
3. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
Let \mathcal{H} be the class of all finitely generated infinite abelian groups. Any two elements in \mathcal{H} are asymptotically equivalent inside \mathcal{H}.

Theorem 4.

1. If G and H are asymptotically equivalent inside the class of groups whose elements are all of finite orders, then G is abelian if and only if H is abelian. Note that G, H need not be isomorphic (see Example (d)).
2. If G is k-bounded and is asymptotically equivalent to H, then G is isomorphic to H.
3. If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.
4. Let \mathcal{H} be the class of all finitely generated infinite abelian groups. Any two elements in \mathcal{H} are asymptotically equivalent inside \mathcal{H}.

Results presented here can be found from
Chi-Wai Leung, Chi-Keung Ng and Ngai-Ching Wong, On a notion of closeness of groups, Ann. Funct. Anal. 7(1) (2016), 24-32.

Please visit
http:
www.math.nsysu.edu.tw \backslash ~wong
to explore more of Wong.

Results presented here can be found from
Chi-Wai Leung, Chi-Keung Ng and Ngai-Ching Wong, On a notion of closeness of groups, Ann. Funct. Anal. 7(1) (2016), 24-32.

Please visit
http:
\www.math.nsysu.edu.tw \backslash ~wong
to explore more of Wong.

Thank you!

