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To be or not to be, . ..

the question is how to say two groups G, H are close, or not close.
Question. Is an apple close to a mango?

We need to put G, H into the same context to compare!
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Unitary representations of groups

Let $) be a complex Hilbert space and U($)) the group of unitary
operators on §).

H=C" = U($H) = SU(n), the group of n x n unitary matrices.

Call (%, ) a (unitary) representation of a group G if
¢ : G — U(H) is an injective group homomorphism.

Note that there is a metric structure on U($)), and thus so is ¢(G).



Distance between groups

Let (£, ) be a representation of G.
Let (9,v) be a representation of H.



Distance between groups

Let (£, ) be a representation of G.
Let (9,v) be a representation of H.

The distance between ¢(G) and (H) in U($) is
d(cp,zp)(Ga H) =

max{sup inf o) = (A,

g€eG heH



Distance between groups

Let (£, ) be a representation of G.
Let (9,v) be a representation of H.

The distance between ¢(G) and (H) in U($) is
d(cp,zp)(Ga H) =

max{sup inf [ o(g) —w(h)|. sup inf [|u(h) ~ @(g)ll} .
heH &EG

geG



Distance between groups

Let (£, ) be a representation of G.
Let (9,v) be a representation of H.

The distance between ¢(G) and (H) in U($) is

d(cp,zp)(Ga H) =

max{sup inf [ o(g) —w(h)|. sup inf [|u(h) ~ @(g)ll} .
heH &EG

geG

The distance between two groups G and H is

d(G, H) = Jonl]; d(¢7¢)(G’ H)
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1. G is d-contained in H if 3 (9, ¢), (9, ) s.t.

sup inf [lo(g) — w(h)[| < 0.
geG heH

2. G is d-close to H if 3 (9, d), (9,v) s.t.

dipu) (G, H) < 6.

In other words, G is d-contained in (resp. d-close to) H if
$(G) C ¥(H) +Bg(s)
(resp.
$(G) S P(H) +0Bgg) and  ¢(H) € ¢(G) + 6By (s))

for some representations (9, ¢), (9, ) of G, H.
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G is asymptotically contained in (resp., asymptotically close to) H
if it is d-contained in (resp., d-close to) H for each § > 0.

Thus, G is asymptotically close to H < d(G,H) = 0.

Question. So what?
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A good example

(a) Zs is not d-contained in Z3 if 0 < § < 2 — /3.

In fact, if ) is a Hilbert space and u,v € U($) \ {1} with v?> =1
and v3 =1, then

I1—ul|=2 and ||1—v| =3

Thus,
lu—vl =1 —ul—1-v|>2-V3.



A bad example

(b) Let t € (0,1) be an irrational number.
Then

0:n— e2nt7ri

is an injective group homomorphism
from Z into T := U(C) (={z € C:|z| =1})

with dense range.



A bad example

(b) Let t € (0,1) be an irrational number.
Then

0:n— e2nt7ri

is an injective group homomorphism
from Z into T := U(C) (={z € C:|z| =1})
with dense range.

Therefore, T and Z are asymptotically close to each other.



A bad example

(b) Let t € (0,1) be an irrational number.
Then

2ntmi

0:n—e

is an injective group homomorphism

from Z into T := U(C) (={z € C:|z| =1})
with dense range.
Therefore, T and Z are asymptotically close to each other.

Note that Z is countable but T is not.
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An ugly example

(c) Let ny, ny, ... be a sequence of relatively prime numbers.
Consider the canonical injective representation from @,y Zn,
into T defined by

(kj)jEN — ﬂj’ile J7T1/nj‘

we see that @, . Zn, is asymptotically contained in Z.

In the case when {p1, p2, ...} list all prime numbers, the image of
Dren Zp, is dense in T.

This means that @, .y Zp, is asymptotically close to Z.

Note that Z have a single generator but the minimal number of
generators of @, . Zp, is infinite.
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Another bad example

(d) Let D :=lim Zyx and T := limy Zs.

Then both of them can be considered as dense subgroups of T and
hence they are asymptotically close to each other.

Note that all elements in both D and T are of finite order, but the
order of any element in D is a power of 2 while the order of any
element in T is a power of 3.
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Some positive results

Theorem 1. Any close enough finite abelian groups G, H are
isomorphic.

In fact, if G, H are k-bounded abelian group, then

G, H are group isomorphic < d(G,H)=0.

Recall that a group H is called k-bounded for some integer k > 2
if the order o(t) < k, for all t € H.
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Proof.

First, we note that for any representation (¢, $)) of an k-bounded
group H and any distinct r,s € H,

.
l(r) = 4(s)]| = 2sin .
The assertion follows from the following inequalities.
[6(N=b(s)l = rA=w(rs)) > |1=e>/°CT9)| > 2sin(r/k),

where r,(-) is the spectral radius.
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Now, assume d(G,H) =0, and 0 < § <sin 7.

G is d-contained in H
—
3 representations (¢, ), (1, $) of G, H s.t.

$(G) € P(H) + B

3 bijection 6 : G — H with

l6(r) — (8(r))|| <6, VreG.

Furthermore, 6 preserves orders of elements, i.e.,

o(0(r)) =o(r), VregG.



Now suppose that the common order of G and H is

r; i
n:pll...pkk_



Now suppose that the common order of G and H is

r; i
n:pll...pkk_

Then we can write G and H as direct sums of their Sylow
subgroups

G = G(p)@--®G(p) and H=H(py) @& H(p).



Now suppose that the common order of G and H is

r; i
n:pll...pkk_

Then we can write G and H as direct sums of their Sylow
subgroups

G = G(p)@--®G(p) and H=H(py) @& H(p).

Since 6 preserves order, 8 maps bijectively from the Sylow
pi-subgroup G(p;) onto the Sylow p;-subgroup H(p;) (i =1, ..., k).
Thus, one can assume that n = p".
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In this case, G = @) _; Zpm and H = @)_; Z v, where
my <..<mjand n <..<nj.

It is clear that m; = n;.

By using some counting arguments, we will see m;_; = n;_;.

Inductively, one has i = j and my = ng (k=1,...,1).
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Theorem 2.
Suppose that k € {2,3,4,...}, and G and H are two groups such
that H is k-bounded. Take any 6 € (0, 3 sin F).

1. If G is é-contained in H, then G is isomorphic to a subgroup
of H.

2. If G is d-close to H, then they are isomorphic.
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(a) A subset E C G is asymptotically included in another F C G if
Y5 > 0, 3(9, ¢) with

$(E) € ¢(F) +0Bg().-

(b) G is asymptotically abelian if Cg := {s~!r~lsr:r,s € G} is
asymptotically included in {e}.

(c) G is pairwise asymptotically abelian if {s~*r=1sr}
asymptotically included in {e}, Vr,s € G.
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Theorem 3.

1.

If r,s € G have finite orders and {r} is asymptotically
included in {s}, then o(r) = o(s).

If every element in G has a finite order and G is pairwise
asymptotically abelian, then G is abelian.

If G is asymptotically contained in an abelian group, then G is
asymptotically abelian.

. If G is asymptotically contained in an abelian group, then G

does not contain any finite non-abelian subgroup.
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If G, ..., G, are groups in a class G such that G; is asymptotically
close to Gji1 for every i =1,..,n— 1, then we say that G; and G,
are asymptotically equivalent inside G.

When § is the class of all groups, we simple say that G; and G,
are asymptotically equivalent.
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Theorem 4.

1. If G and H are asymptotically equivalent inside the class of
groups whose elements are all of finite orders, then G is
abelian if and only if H is abelian.

Note that G, H need not be isomorphic (see Example (d)).

2. If G is k-bounded and is asymptotically equivalent to H, then
G is isomorphic to H.

3. If two groups are asymptotically equivalent, then either they
are both finite and isomorphic or they are both infinite.

4. Let H be the class of all finitely generated infinite abelian
groups. Any two elements in J{ are asymptotically equivalent
inside J{.
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Thank you!



