Free Hilbert Transforms

Tao Mei
Baylor University

AHA 2018 Kaohsiung

Based mainly on a joint work with Eric Ricard
June 25, 2018

Commutative case

Consider

$$
L^{p}(\mathbb{T})=L^{p}(\hat{\mathbb{Z}})
$$

Commutative case

Consider

$$
L^{p}(\mathbb{T})=L^{p}(\hat{\mathbb{Z}})
$$

Given a symbol $m \in \ell^{\infty}(\mathbb{Z})$, the Fourier multiplier

$$
M_{m}: \sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto \sum_{k \in \mathbb{Z}} m_{k} c_{k} e^{i k \theta}
$$

has a norm $\|m\|_{\ell \infty}$ on $L^{2}(\hat{\mathbb{Z}})$.

Commutative case

Consider

$$
L^{p}(\mathbb{T})=L^{p}(\hat{\mathbb{Z}})
$$

Given a symbol $m \in \ell^{\infty}(\mathbb{Z})$, the Fourier multiplier

$$
M_{m}: \sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto \sum_{k \in \mathbb{Z}} m_{k} c_{k} e^{i k \theta}
$$

has a norm $\|m\|_{\ell \infty}$ on $L^{2}(\hat{\mathbb{Z}})$.
The L^{p}-boundedness of M_{m} usually involves real-analysis for $p \neq 1,2, \infty$.

Commutative case

Consider

$$
L^{p}(\mathbb{T})=L^{p}(\hat{\mathbb{Z}})
$$

Given a symbol $m \in \ell^{\infty}(\mathbb{Z})$, the Fourier multiplier

$$
M_{m}: \sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto \sum_{k \in \mathbb{Z}} m_{k} c_{k} e^{i k \theta}
$$

has a norm $\|m\|_{\ell \infty}$ on $L^{2}(\hat{\mathbb{Z}})$.
The L^{p}-boundedness of M_{m} usually involves real-analysis for $p \neq 1,2, \infty$.
The Hilbert transform H is the linear map sending

$$
x=\sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto H(x)=\sum_{k \in \mathbb{Z}}-i \operatorname{sign}(k) c_{k} e^{i k \theta} .
$$

Commutative case

Consider

$$
L^{p}(\mathbb{T})=L^{p}(\hat{\mathbb{Z}})
$$

Given a symbol $m \in \ell^{\infty}(\mathbb{Z})$, the Fourier multiplier

$$
M_{m}: \sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto \sum_{k \in \mathbb{Z}} m_{k} c_{k} e^{i k \theta}
$$

has a norm $\|m\|_{\ell \infty}$ on $L^{2}(\hat{\mathbb{Z}})$.
The L^{p}-boundedness of M_{m} usually involves real-analysis for $p \neq 1,2, \infty$.
The Hilbert transform H is the linear map sending

$$
\begin{gathered}
x=\sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto H(x)=\sum_{k \in \mathbb{Z}}-i \operatorname{sign}(k) c_{k} e^{i k \theta} . \\
\|H x\|_{p} \lesssim \frac{p^{2}}{p-1}\|x\|_{p}
\end{gathered}
$$

for $1<p<\infty$.

Commutative case

Consider

$$
L^{p}(\mathbb{T})=L^{p}(\hat{\mathbb{Z}})
$$

Given a symbol $m \in \ell^{\infty}(\mathbb{Z})$, the Fourier multiplier

$$
M_{m}: \sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto \sum_{k \in \mathbb{Z}} m_{k} c_{k} e^{i k \theta}
$$

has a norm $\|m\|_{\ell \infty}$ on $L^{2}(\hat{\mathbb{Z}})$.
The L^{p}-boundedness of M_{m} usually involves real-analysis for $p \neq 1,2, \infty$.
The Hilbert transform H is the linear map sending

$$
\begin{gathered}
x=\sum_{k \in \mathbb{Z}} c_{k} e^{i k \theta} \mapsto H(x)=\sum_{k \in \mathbb{Z}}-i \operatorname{sign}(k) c_{k} e^{i k \theta} . \\
\|H x\|_{p} \lesssim \frac{p^{2}}{p-1}\|x\|_{p}
\end{gathered}
$$

for $1<p<\infty$.
Remark $\int_{\mathbb{T}} x=\hat{x}(0)=c_{0}$ and $\|x\|_{L^{p}(\hat{\mathbb{Z}})}^{p}=\int_{\mathbb{T}}|x|^{p}=\widehat{|x|^{p}}(0)$.

Fourier Multipliers on Free groups

\mathbb{F}_{n} : group of n free generators, $1 \leq n \leq \infty$.
$\lambda_{s}: \delta_{t} \in \ell_{2}\left(\mathbb{F}_{n}\right) \mapsto \delta_{s t} \in \ell_{2}\left(\mathbb{F}_{n}\right)$

Fourier Multipliers on Free groups

\mathbb{F}_{n} : group of n free generators, $1 \leq n \leq \infty$.
$\lambda_{s}: \delta_{t} \in \ell_{2}\left(\mathbb{F}_{n}\right) \mapsto \delta_{s t} \in \ell_{2}\left(\mathbb{F}_{n}\right)$
Given $x=\sum_{s} c_{s} \lambda_{s}$, set
$\tau x=c_{e} ;$

$$
\begin{aligned}
L^{p}\left(\hat{\mathbb{F}}_{n}\right) & =\left\{x ;\|x\|_{L^{p}}=\left(\tau|x|^{p}\right)^{\frac{1}{p}}<\infty\right\} \\
\|x\|_{B\left(\ell_{2}\right)} & =\sup _{1<p<\infty}\|x\|_{L^{p}}
\end{aligned}
$$

Fourier Multipliers on Free groups

\mathbb{F}_{n} : group of n free generators, $1 \leq n \leq \infty$.
$\lambda_{s}: \delta_{t} \in \ell_{2}\left(\mathbb{F}_{n}\right) \mapsto \delta_{s t} \in \ell_{2}\left(\mathbb{F}_{n}\right)$
Given $x=\sum_{s} c_{s} \lambda_{s}$, set
$\tau x=c_{e} ;$

$$
\begin{aligned}
L^{p}\left(\hat{\mathbb{F}}_{n}\right) & =\left\{x ;\|x\|_{L^{p}}=\left(\tau|x|^{p}\right)^{\frac{1}{p}}<\infty\right\} \\
\|x\|_{B\left(\ell_{2}\right)} & =\sup _{1<p<\infty}\|x\|_{L^{p}}
\end{aligned}
$$

Given $m \in \ell_{\infty}\left(\mathbb{F}_{n}, \mathbb{C}\right)$, when does

$$
\left\|T_{m}: \sum_{s} c_{s} \lambda_{s} \mapsto \sum_{s} m(s) c_{s} \lambda_{s}\right\|_{L^{p} \mapsto L^{p}}<\infty ?
$$

Fourier Multipliers on Free groups

\mathbb{F}_{n} : group of n free generators, $1 \leq n \leq \infty$.
$\lambda_{s}: \delta_{t} \in \ell_{2}\left(\mathbb{F}_{n}\right) \mapsto \delta_{s t} \in \ell_{2}\left(\mathbb{F}_{n}\right)$
Given $x=\sum_{s} c_{s} \lambda_{s}$, set
$\tau x=c_{e} ;$

$$
\begin{aligned}
L^{p}\left(\hat{\mathbb{F}}_{n}\right) & =\left\{x ;\|x\|_{L^{p}}=\left(\tau|x|^{p}\right)^{\frac{1}{p}}<\infty\right\} \\
\|x\|_{B\left(\ell_{2}\right)} & =\sup _{1<p<\infty}\|x\|_{L^{p}}
\end{aligned}
$$

Given $m \in \ell_{\infty}\left(\mathbb{F}_{n}, \mathbb{C}\right)$, when does

$$
\left\|T_{m}: \sum_{s} c_{s} \lambda_{s} \mapsto \sum_{s} m(s) c_{s} \lambda_{s}\right\|_{L^{p} \mapsto L^{p}}<\infty ?
$$

- $p=2 ;\left\|T_{m}\right\|=\|m\|_{\ell_{\infty}}$.
- $p=1, \infty$; iff $m\left(s^{-1} t\right)=\langle Q(s), R(t)\rangle_{H}$ with

$$
\sup _{s, t}\|Q(s)\|_{H}\|R(t)\|_{H}<C
$$

Fourier Multipliers on Free groups

- $1<p \neq 2<\infty$; radial multipliers, e.g.

$$
m(s)=|s|^{i}
$$

Bożejko, Haagerup, Pytlik-Szwarc,...... Junge-Le Merdy-Xu, Junge-Mei.

Fourier Multipliers on Free groups

- $1<p \neq 2<\infty$; radial multipliers, e.g.

$$
m(s)=|s|^{i}
$$

Bożejko, Haagerup, Pytlik-Szwarc,...... Junge-Le Merdy-Xu, Junge-Mei......

- Non-radial multipliers ?

Fourier Multipliers on Free groups

- $1<p \neq 2<\infty$; radial multipliers, e.g.

$$
m(s)=|s|^{i}
$$

Bożejko, Haagerup, Pytlik-Szwarc,...... Junge-Le Merdy-Xu, Junge-Mei......

- Non-radial multipliers ?

An Example
Let $m=\chi_{\mathbb{F}_{2}^{+}}$, with $\mathbb{F}_{2}^{+}=\left\{s=g_{1}^{k_{1}} g_{2}^{k_{2}} g_{1}^{k_{3}} \cdots \in \mathbb{F}_{2} ; k_{1}>0\right\}$

$$
T_{m}: \lambda_{s} \mapsto \chi_{\mathbb{F}_{2}^{+}} \lambda_{s}
$$

Fourier Multipliers on Free groups

- $1<p \neq 2<\infty$; radial multipliers, e.g.

$$
m(s)=|s|^{i}
$$

Bożejko, Haagerup, Pytlik-Szwarc,...... Junge-Le Merdy-Xu, Junge-Mei......

- Non-radial multipliers ?

An Example
Let $m=\chi_{\mathbb{F}_{2}^{+}}$, with $\mathbb{F}_{2}^{+}=\left\{s=g_{1}^{k_{1}} g_{2}^{k_{2}} g_{1}^{k_{3}} \cdots \in \mathbb{F}_{2} ; k_{1}>0\right\}$

$$
T_{m}: \lambda_{s} \mapsto \chi_{\mathbb{P}_{2}^{+}} \lambda_{s}
$$

Pimsner/Voiculescu (1982),
Biane/Pisier (2000); Boundedness of T_{m} on $L^{P}\left(\hat{\mathbb{F}}_{2}\right)$?

Fourier Multipliers on Free groups

- $1<p \neq 2<\infty$; radial multipliers, e.g.

$$
m(s)=|s|^{i}
$$

Bożejko, Haagerup, Pytlik-Szwarc,...... Junge-Le Merdy-Xu, Junge-Mei......

- Non-radial multipliers ?

An Example
Let $m=\chi_{\mathbb{F}_{2}^{+}}$, with $\mathbb{F}_{2}^{+}=\left\{s=g_{1}^{k_{1}} g_{2}^{k_{2}} g_{1}^{k_{3}} \cdots \in \mathbb{F}_{2} ; k_{1}>0\right\}$

$$
T_{m}: \lambda_{s} \mapsto \chi_{\mathbb{P}_{2}^{+}} \lambda_{s}
$$

Pimsner/Voiculescu (1982),
Biane/Pisier (2000); Boundedness of T_{m} on $L^{p}\left(\hat{\mathbb{F}}_{2}\right)$?
Ozawa (2010), asked again

Free Hilbert transforms-Main Result

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty}$;

$$
\begin{aligned}
& \mathbb{L}_{j}=\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
& \mathbb{L}_{j}=\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N}
\end{aligned}
$$

$$
L_{j}: \quad \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
$$

Free Hilbert transforms-Main Result

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty}$;

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x=\sum_{g} c_{g} \lambda_{g} \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)}
$$

Free Hilbert transforms-Main Result

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty} ;$

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x=\sum_{g} c_{g} \lambda_{g} \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)}
$$

Corollary

$$
\left\|\left(\sum_{j=-\infty}^{\infty}\left|L_{j} x\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)}+\left\|\left(\sum_{j=-\infty}^{\infty}\left|\left(L_{j} x\right)^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)}
$$

for $p \geq 2$, applying Lust-Piquard/Pisier's non commutative Khintchine's inequality.

Convergence of the Tail of Fourier Sums on \mathbb{F}_{n}.
For $h=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} \ldots, i_{j} \neq i_{j+1}, k_{j} \neq 0$,

$$
|h|=\sum_{j}\left|k_{j}\right| .
$$

Let $P_{r}^{\perp}(x)=\sum_{|g| \geq r} c_{g} \lambda_{g}$,

Convergence of the Tail of Fourier Sums on \mathbb{F}_{n}.
For $h=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} \ldots, i_{j} \neq i_{j+1}, k_{j} \neq 0$,

$$
|h|=\sum_{j}\left|k_{j}\right| .
$$

Let $P_{r}^{\perp}(x)=\sum_{|g| \geq r} c_{g} \lambda_{g}$,

$$
\lim _{r \mapsto \infty}\left\|P_{r}^{\perp} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)}=0 ?
$$

Convergence of the Tail of Fourier Sums on \mathbb{F}_{n}.
For $h=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} \ldots, i_{j} \neq i_{j+1}, k_{j} \neq 0$,

$$
|h|=\sum_{j}\left|k_{j}\right| .
$$

Let $P_{r}^{\perp}(x)=\sum_{|g| \geq r} c_{g} \lambda_{g}$,

$$
\lim _{r \mapsto \infty}\left\|P_{r}^{\perp} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)}=0 ?
$$

No! for $p \geq 3$ (Bożejko/Fendler).

Convergence of the Tail of Fourier Sums on \mathbb{F}_{n}.
For $h=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} \ldots, i_{j} \neq i_{j+1}, k_{j} \neq 0$,

$$
|h|=\sum_{j}\left|k_{j}\right| .
$$

Let $P_{r}^{\perp}(x)=\sum_{|g| \geq r} c_{g} \lambda_{g}$,

$$
\lim _{r \mapsto \infty}\left\|P_{r}^{\perp} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)}=0 ?
$$

No! for $p \geq 3$ (Bożejko/Fendler).
Let

$$
L_{h}(x)=\sum_{g \geq h} c_{g} \lambda_{g}
$$

Convergence of the Tail of Fourier Sums on \mathbb{F}_{n}.
For $h=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} \ldots, i_{j} \neq i_{j+1}, k_{j} \neq 0$,

$$
|h|=\sum_{j}\left|k_{j}\right|
$$

Let $P_{r}^{\perp}(x)=\sum_{|g| \geq r} c_{g} \lambda_{g}$,

$$
\lim _{r \mapsto \infty}\left\|P_{r}^{\perp} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)}=0 ?
$$

No! for $p \geq 3$ (Bożejko/Fendler).
Let

$$
L_{h}(x)=\sum_{g \geq h} c_{g} \lambda_{g}
$$

Question

$$
\left\|L_{h} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)} \leq c_{p}\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)} ?
$$

Convergence of the Tail of Fourier Sums on \mathbb{F}_{n}.

For $h=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} \ldots, i_{j} \neq i_{j+1}, k_{j} \neq 0$,

$$
|h|=\sum_{j}\left|k_{j}\right| .
$$

Let $P_{r}^{\perp}(x)=\sum_{|g| \geq r} c_{g} \lambda_{g}$,

$$
\lim _{r \rightarrow \infty}\left\|P_{r}^{\perp} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)}=0 ?
$$

No! for $p \geq 3$ (Bożejko/Fendler).
Let

$$
L_{h}(x)=\sum_{g \geq h} c_{g} \lambda_{g},
$$

Question

$$
\left\|L_{h} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)} \leq c_{p}\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)} ?
$$

Yes! (M-Ricard '17) and $\lim _{|h| \mapsto \infty}\left\|L_{h} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{n}\right)^{\prime}}=0$.

Answer to a Question of Ozawa
Note for $h \in \mathbb{F}_{n}, x \in C_{\rho}^{*}\left(\mathbb{F}_{n}\right)$,

Answer to a Question of Ozawa

Note for $h \in \mathbb{F}_{n}, x \in C_{\rho}^{*}\left(\mathbb{F}_{n}\right)$,

$$
\left[L_{h}, x\right] \in \mathcal{K}\left(L^{2}\left(\hat{\mathbb{F}}_{n}\right)\right)
$$

Because $\left[L_{h}, \rho_{g}\right]$ is finite rank for each h, g.

Answer to a Question of Ozawa

Note for $h \in \mathbb{F}_{n}, x \in C_{\rho}^{*}\left(\mathbb{F}_{n}\right)$,

$$
\left[L_{h}, x\right] \in \mathcal{K}\left(L^{2}\left(\hat{\mathbb{F}}_{n}\right)\right) .
$$

Because $\left[L_{h}, \rho_{g}\right]$ is finite rank for each h, g. Let

$$
B\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)=\left\{x \in \mathcal{L}\left(\mathbb{F}_{n}\right) ;\|x\| \leq 1\right\} \subset L^{2}\left(\hat{\mathbb{F}}_{n}\right)
$$

Question: Is

$$
\left[L_{h}, x\right]\left(B\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)\right)
$$

norm (pre)-compact in $L^{2}\left(\hat{\mathbb{F}}_{n}\right)$ for all $h \in \mathbb{F}_{n}, x \in \mathcal{L}_{\rho}\left(\mathbb{F}_{n}\right)$?

Answer to a Question of Ozawa

Note for $h \in \mathbb{F}_{n}, x \in C_{\rho}^{*}\left(\mathbb{F}_{n}\right)$,

$$
\left[L_{h}, x\right] \in \mathcal{K}\left(L^{2}\left(\hat{\mathbb{F}}_{n}\right)\right) .
$$

Because $\left[L_{h}, \rho_{g}\right]$ is finite rank for each h, g. Let

$$
B\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)=\left\{x \in \mathcal{L}\left(\mathbb{F}_{n}\right) ;\|x\| \leq 1\right\} \subset L^{2}\left(\hat{\mathbb{F}}_{n}\right)
$$

Question: Is

$$
\left[L_{h}, x\right]\left(B\left(\mathcal{L}\left(\mathbb{F}_{n}\right)\right)\right)
$$

norm (pre)-compact in $L^{2}\left(\hat{\mathbb{F}}_{n}\right)$ for all $h \in \mathbb{F}_{n}, x \in \mathcal{L}_{\rho}\left(\mathbb{F}_{n}\right)$?
Yes, M-Ricard '17 because
$\left\|\left[L_{h}, x\right](y)\right\|_{L^{2}\left(\hat{\mathbb{F}}_{n}\right)} \leq\left\|L_{h}\right\|_{\mathcal{L}\left(\mathbb{F}_{n}\right) \mapsto L^{4}\left(\hat{\mathbb{F}}_{n}\right)}\|x\|_{L^{4}\left(\hat{\mathbb{F}}_{n}\right)}$ by Hölder's inequality.

Free Hilbert transforms-summary of M-Ricard'17
Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty}$;

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)}
$$

Free Hilbert transforms-summary of M-Ricard'17

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty}$;

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} .
$$

True for almagamated free products;

Free Hilbert transforms-summary of M-Ricard'17

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty} ;$

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} .
$$

True for almagamated free products; replacing L_{j} by L_{j}^{d}, the projection to reduced words having g_{j} as their d-th letter.

Free Hilbert transforms-summary of M-Ricard'17

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty} ;$

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} .
$$

True for almagamated free products; replacing L_{j} by L_{j}^{d}, the projection to reduced words having g_{j} as their d-th letter.
replacing L_{j} by L_{h}^{d}, the projection to reduced words starting with $h,|h|=d$.

Free Hilbert transforms-summary of M-Ricard'17

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty} ;$

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} .
$$

True for almagamated free products; replacing L_{j} by L_{j}^{d}, the projection to reduced words having g_{j} as their d-th letter.
replacing L_{j} by L_{h}^{d}, the projection to reduced words starting with $h,|h|=d$. But the c.b version for \mathbb{F}_{∞} is not true for L_{h}^{d} if $d \geq 2$.

Free Hilbert transforms-summary of M-Ricard'17

Set $\mathbb{L}_{0}=\{e\} \subset \mathbb{F}_{\infty}$;

$$
\begin{aligned}
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}\right\} ; \quad j \in \mathbb{N} \\
\mathbb{L}_{j} & =\left\{s ; s \geq g_{j}^{-1}\right\} ; \quad j \in-\mathbb{N} \\
L_{j} & : \lambda_{s} \mapsto \chi_{\mathbb{L}_{j}} \lambda_{s} ; \quad H_{\varepsilon}=\sum_{j \in \mathbb{Z}} \varepsilon_{j} L_{j}, \quad \varepsilon_{j}= \pm 1 .
\end{aligned}
$$

Theorem (M-Ricard, 17') For any $x \in C_{c}\left(\mathbb{F}_{\infty}\right)$ and $1<p<\infty$,

$$
\left\|H_{\varepsilon} x\right\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} \simeq\|x\|_{L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)} .
$$

True for almagamated free products; replacing L_{j} by L_{j}^{d}, the projection to reduced words having g_{j} as their d-th letter.
replacing L_{j} by L_{h}^{d}, the projection to reduced words starting with $h,|h|=d$. But the c.b version for \mathbb{F}_{∞} is not true for L_{h}^{d} if $d \geq 2$. Question Is this a lucky case, or there is a general result for all Fourier multipliers associated with the first segment ?

Fourier multipliers associated with the first segment

Consider

$$
T_{m}: \lambda_{s} \mapsto m\left(k_{1}(s)\right) \lambda_{s} ; \quad m \in \ell_{\infty}(\mathbb{Z}, \mathbb{C})
$$

with $k_{1}(s)$ the first power index in the reduced word,

$$
s=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} . ., i_{v} \neq i_{v+1}, k_{v} \in \pm \mathbb{N}
$$

Fourier multipliers associated with the first segment

Consider

$$
T_{m}: \lambda_{s} \mapsto m\left(k_{1}(s)\right) \lambda_{s} ; \quad m \in \ell_{\infty}(\mathbb{Z}, \mathbb{C})
$$

with $k_{1}(s)$ the first power index in the reduced word,

$$
s=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} . ., i_{v} \neq i_{v+1}, k_{v} \in \pm \mathbb{N}
$$

Question: Characterize the c. boundedness of T_{m} on $L^{p}\left(\hat{\mathbb{F}}_{n}\right)$?

Fourier multipliers associated with the first segment

Consider

$$
T_{m}: \lambda_{s} \mapsto m\left(k_{1}(s)\right) \lambda_{s} ; \quad m \in \ell_{\infty}(\mathbb{Z}, \mathbb{C})
$$

with $k_{1}(s)$ the first power index in the reduced word,

$$
s=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} . ., i_{v} \neq i_{v+1}, k_{v} \in \pm \mathbb{N}
$$

Question: Characterize the c. boundedness of T_{m} on $L^{p}\left(\hat{\mathbb{F}}_{n}\right)$?
Remark By taking the group homomorphism $\pi: \mathbb{F}_{\infty} \mapsto \mathbb{F}_{2}$ sending generators g_{k} to $a^{k} b a^{k}$, we see that $k_{1}(\pi(s))=k$ iff $\pi(s) \geq g_{k}$. So T_{m} catches the information on the starting letter through π.

Fourier multipliers associated with the first segment

Consider

$$
T_{m}: \lambda_{s} \mapsto m\left(k_{1}(s)\right) \lambda_{s} ; \quad m \in \ell_{\infty}(\mathbb{Z}, \mathbb{C})
$$

with $k_{1}(s)$ the first power index in the reduced word,

$$
s=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \ldots g_{i_{j}}^{k_{j}} . ., i_{v} \neq i_{v+1}, k_{v} \in \pm \mathbb{N}
$$

Question: Characterize the c. boundedness of T_{m} on $L^{p}\left(\hat{\mathbb{F}}_{n}\right)$?
Remark By taking the group homomorphism $\pi: \mathbb{F}_{\infty} \mapsto \mathbb{F}_{2}$ sending generators g_{k} to $a^{k} b a^{k}$, we see that $k_{1}(\pi(s))=k$ iff $\pi(s) \geq g_{k}$. So T_{m} catches the information on the starting letter through π.
Necessary Condition: $\left.T_{m}\right|_{\mathbb{F}_{1}}: e^{i k \theta} \mapsto m(k) e^{i k \theta}$ is completely bounded on $L^{P}(\mathbb{T})$.

Fourier multipliers associated with the first segment

 Theorem 1 ($\mathrm{M}-\mathrm{Xu}, 18$ ') Given $1<p<\infty$, then$$
T_{m}: \lambda_{s} \mapsto m\left(k_{1}(s)\right) \lambda_{s}
$$

extends to a completely bounded operator on $L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)$ if its restriction on \mathbb{F}_{1}

$$
T_{m} \mid \mathbb{F}_{1}: \lambda_{g_{1}^{k}} \mapsto m(k) \lambda_{g_{1}^{k}}
$$

is completely bounded.

Fourier multipliers associated with the first segment Theorem 1 ($\mathrm{M}-\mathrm{Xu}, 18$) Given $1<p<\infty$, then

$$
T_{m}: \lambda_{s} \mapsto m\left(k_{1}(s)\right) \lambda_{s}
$$

extends to a completely bounded operator on $L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)$ if its restriction on \mathbb{F}_{1}

$$
\left.T_{m}\right|_{\mathbb{F}_{1}}: \lambda_{g_{1}^{k}} \mapsto m(k) \lambda_{g_{1}^{k}}
$$

is completely bounded.
Remark No chance for the case of $p=\infty$. Take $m(k)=\chi_{[-2,2]}(k)$, which is the symbol of a c.b multiplier on $L^{\infty}\left(\mathbb{F}_{1}\right)$. Then the multiplier T_{m} is the projection onto the set $\left\{s ;\left|k_{1}(s)\right| \leq 2\right\}$ of $L^{\infty}\left(\mathbb{F}_{\infty}\right)$. To see this, let

$$
x=\sum_{-N<k<N} c_{k}\left(g_{1} g_{2}^{3}\right)^{k} g_{1}
$$

and note

$$
T_{m}(x)=\sum_{0 \leq k<N} c_{k}\left(g_{1} g_{2}^{3}\right)^{k} g_{1} .
$$

A Littlewood-Paley Theory on Free groups

Example Let $A_{0}=\{0\}$

$$
A_{j}=\left[2^{j-1}, 2^{j}\right), j \in \mathbb{N} ; A_{j}=-A_{-j}, j \in-\mathbb{N} .
$$

Let $\chi_{j}=\chi_{A_{j}}$ for $j \in \mathbb{Z}$. Let

$$
m=\sum_{j \in \mathbb{Z}} \varepsilon_{j} \chi_{j}
$$

for any $\varepsilon_{j}= \pm$.

A Littlewood-Paley Theory on Free groups

Example Let $A_{0}=\{0\}$

$$
A_{j}=\left[2^{j-1}, 2^{j}\right), j \in \mathbb{N} ; A_{j}=-A_{-j}, j \in-\mathbb{N} .
$$

Let $\chi_{j}=\chi_{A_{j}}$ for $j \in \mathbb{Z}$. Let

$$
m=\sum_{j \in \mathbb{Z}} \varepsilon_{j} \chi_{j}
$$

for any $\varepsilon_{j}= \pm$.
Corollary (M-Xu, 18') For $2 \leq p<\infty$,

$$
\|x\|_{L^{p}} \simeq\left\|\left(\sum_{j}\left|T_{\chi_{j}}(x)\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}}+\left\|\left(\sum_{j}\left|T_{\chi_{j}}(x)^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L^{p}}
$$

The Mikhin condition

Corollary ($\mathrm{M}-\mathrm{Xu}, 18$ ') If m satisfies the Mikhlin condition e.g.

$$
\sup _{k \in \mathbb{Z}}\{|m(k)|, k|m(k)-m(k-1)|\}<C .
$$

Then

$$
T_{m}: \lambda_{s} \mapsto m\left(k_{1}(s)\right) \lambda_{s}
$$

extends to a completely bounded linear operator on $L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)$ for all $1<p<\infty$.
Example $m(k)=k^{t i}$.

Ingredient: A Dirac operator on the free group
Let $D_{\varepsilon}\left(\lambda_{e}\right)=0$ and

$$
D_{\varepsilon}\left(\lambda_{s}\right)=\varepsilon_{i_{1}} k_{1} \lambda_{s}
$$

for

$$
\begin{gathered}
s=g_{i 1}^{k_{1}} g_{i}^{k_{2}} \cdots g_{i m}^{k_{m}}, \\
\text { and } \varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n} \ldots\right) \text { a sequence of }\left|\varepsilon_{k}\right|=1 .
\end{gathered}
$$

Ingredient: A Dirac operator on the free group

Let $D_{\varepsilon}\left(\lambda_{e}\right)=0$ and

$$
D_{\varepsilon}\left(\lambda_{s}\right)=\varepsilon_{i_{1}} k_{1} \lambda_{s}
$$

for

$$
s=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \cdots g_{i_{m}}^{k_{m}},
$$

and $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n} \ldots\right)$ a sequence of $\left|\varepsilon_{k}\right|=1$.
Theorem 2 ($\mathrm{M}-\mathrm{Xu}, 18$) For $1<p<\infty$,

$$
S_{t}=e^{i t D_{\varepsilon}},-\infty<t<\infty
$$

extends to a uniformly c.b group of operators on $L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)$.

Ingredient: A Dirac operator on the free group

Let $D_{\varepsilon}\left(\lambda_{e}\right)=0$ and

$$
D_{\varepsilon}\left(\lambda_{s}\right)=\varepsilon_{i_{1}} k_{1} \lambda_{s}
$$

for

$$
s=g_{i_{1}}^{k_{1}} g_{i_{2}}^{k_{2}} \cdots g_{i_{m}}^{k_{m}}
$$

and $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n} \ldots\right)$ a sequence of $\left|\varepsilon_{k}\right|=1$.
Theorem 2 ($\mathrm{M}-\mathrm{Xu}, 18$) For $1<p<\infty$,

$$
S_{t}=e^{i t D_{\varepsilon}},-\infty<t<\infty
$$

extends to a uniformly c.b group of operators on $L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)$.
Transference \Rightarrow Theorem 1 that $m\left(D_{\varepsilon}\right)$ is c. bounded on $L^{p}\left(\hat{\mathbb{F}}_{n}\right)$ for m being the symbol of a c.b. Fourier multiplier on $L^{p}(\hat{\mathbb{Z}})$, e.g.

$$
\operatorname{sign}(D)=H_{\varepsilon} .
$$

Fourier multipliers along a geodesic path?

Proposition (Chua, 18')
Fix a geodesic path \mathbb{P} on the Cayley graph of \mathbb{F}_{∞}, then

$$
T_{m}: \lambda_{s} \mapsto m\left(\left|E_{\mathbb{P}} s\right|\right) \lambda_{s}
$$

extends to a completely bounded linear operator on $L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)$ for all $1<p<\infty$ if m has a bounded variation, i.e.

$$
\sum_{k \in \mathbb{N}}|m(k-1)-m(k)|<C .
$$

Fourier multipliers along a geodesic path?

Proposition (Chua, 18')
Fix a geodesic path \mathbb{P} on the Cayley graph of \mathbb{F}_{∞}, then

$$
T_{m}: \lambda_{s} \mapsto m\left(\left|E_{\mathbb{P}} s\right|\right) \lambda_{s}
$$

extends to a completely bounded linear operator on $L^{p}\left(\hat{\mathbb{F}}_{\infty}\right)$ for all $1<p<\infty$ if m has a bounded variation, i.e.

$$
\sum_{k \in \mathbb{N}}|m(k-1)-m(k)|<C .
$$

Remark $\left|E_{\mathbb{P}} s\right|=\left|k_{1}(s)\right|$ for $s \geq g_{j}$ if $\mathbb{P}=\left\{g_{j}^{k}, k>0\right\}$. The Propsition is a consequence of the boundedness of the free Hilbert transforms H_{ε}.

Thank you.

Happy Birthday! Tony

