The wavelet representation for shifts by wallpaper groups

Keith F. Taylor
joint work with
Larry Baggett, Kathy Merrill, and Judy Packer

Dalhousie University Halifax, Canada

AHA 2018
June 25-29, 2018
Kaohsiung, Taiwan

Thank you Professor Anthony Lau for 50 years of contributions to abstract harmonic analysis and your leadership of the Canadian team.

Thank you Professor Anthony Lau for 50 years of contributions to abstract harmonic analysis and your leadership of the Canadian team.

Happy $75^{\text {th }}$ birthday.

Dedicated to the memory of Eberhard Kaniuth

Outline

（1）Classical wavelets：Haar and Shannon．
(1) Classical wavelets: Haar and Shannon.
(2) The wavelet group and wavelet representation in the classical case.
(1) Classical wavelets: Haar and Shannon.
(2) The wavelet group and wavelet representation in the classical case.
(3) A wavelets for expansive $A \in \mathrm{GL}_{d}(\mathbb{R})$.
(1) Classical wavelets: Haar and Shannon.
(2) The wavelet group and wavelet representation in the classical case.
(0) A wavelets for expansive $A \in \mathrm{GL}_{d}(\mathbb{R})$.
(Concept of an A-wavelet set in frequency space.
(1) Classical wavelets: Haar and Shannon.
(2) The wavelet group and wavelet representation in the classical case.
(0) A wavelets for expansive $A \in \mathrm{GL}_{d}(\mathbb{R})$.
(1) Concept of an A-wavelet set in frequency space.
(0) A direct integral decomposition of the A-wavelet representation.
(1) Classical wavelets: Haar and Shannon.
(2) The wavelet group and wavelet representation in the classical case.
(0. A wavelets for expansive $A \in \mathrm{GL}_{d}(\mathbb{R})$.
(1) Concept of an A-wavelet set in frequency space.
(0) A direct integral decomposition of the A-wavelet representation.
© Crystal groups.
(1) Classical wavelets: Haar and Shannon.
(2) The wavelet group and wavelet representation in the classical case.
(3) A wavelets for expansive $A \in \mathrm{GL}_{d}(\mathbb{R})$.
(4) Concept of an A-wavelet set in frequency space.
(5) A direct integral decomposition of the A-wavelet representation.
(6) Crystal groups.
(Wavelets for shifts by a crystal group Γ and a compatible expansive transformation A.

Outline

(1) Classical wavelets: Haar and Shannon.
(2) The wavelet group and wavelet representation in the classical case.
(3) A wavelets for expansive $A \in \mathrm{GL}_{d}(\mathbb{R})$.
(4) Concept of an A-wavelet set in frequency space.
(5) A direct integral decomposition of the A-wavelet representation.
(6) Crystal groups.
(1) Wavelets for shifts by a crystal group Γ and a compatible expansive transformation A.
(8) Simple $A \Gamma$-wavelet sets. Lots of pictures.

Classical Wavelets

In wavelet theory, there are two basic unitary representations
$j \rightarrow D_{2}^{j}$ and $k \rightarrow T_{k}$ of \mathbb{Z} on $L^{2}(\mathbb{R})$, where

Classical Wavelets

In wavelet theory, there are two basic unitary representations $j \rightarrow D_{2}^{j}$ and $k \rightarrow T_{k}$ of \mathbb{Z} on $L^{2}(\mathbb{R})$, where

$$
D_{2} f(x)=2^{1 / 2} f(2 x), \text { for } x \in \mathbb{R}, f \in L^{2}(\mathbb{R})
$$

Classical Wavelets

In wavelet theory, there are two basic unitary representations $j \rightarrow D_{2}^{j}$ and $k \rightarrow T_{k}$ of \mathbb{Z} on $L^{2}(\mathbb{R})$, where

$$
D_{2} f(x)=2^{1 / 2} f(2 x), \text { for } x \in \mathbb{R}, f \in L^{2}(\mathbb{R})
$$

$T_{k} f(x)=f(x-k)$, for $x \in \mathbb{R}, f \in L^{2}(\mathbb{R}), k \in \mathbb{Z}$.

Classical Wavelets

In wavelet theory, there are two basic unitary representations $j \rightarrow D_{2}^{j}$ and $k \rightarrow T_{k}$ of \mathbb{Z} on $L^{2}(\mathbb{R})$, where

$$
D_{2} f(x)=2^{1 / 2} f(2 x), \text { for } x \in \mathbb{R}, f \in L^{2}(\mathbb{R})
$$

$$
T_{k} f(x)=f(x-k), \text { for } x \in \mathbb{R}, f \in L^{2}(\mathbb{R}), k \in \mathbb{Z}
$$

Combined $D_{2}^{j} T_{k} f(x)=2^{j / 2} f\left(2^{j} x-k\right)$.

Classical Wavelets

In wavelet theory, there are two basic unitary representations $j \rightarrow D_{2}^{j}$ and $k \rightarrow T_{k}$ of \mathbb{Z} on $L^{2}(\mathbb{R})$, where

$$
D_{2} f(x)=2^{1 / 2} f(2 x), \text { for } x \in \mathbb{R}, f \in L^{2}(\mathbb{R})
$$

$$
T_{k} f(x)=f(x-k), \text { for } x \in \mathbb{R}, f \in L^{2}(\mathbb{R}), k \in \mathbb{Z}
$$

Combined $D_{2}^{j} T_{k} f(x)=2^{j / 2} f\left(2^{j} x-k\right)$.
A classical wavelet is a $w \in L^{2}(\mathbb{R})$ such that

$$
\left\{D_{2}^{j} T_{k} w: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}(\mathbb{R})$.

Haar Wavelets

Let $w(x)=\mathbf{1}_{(0,1 / 2)}-\mathbf{1}_{(1 / 2,1)}$ ．

Haar Wavelets

Let $w(x)=\mathbf{1}_{(0,1 / 2)}-\mathbf{1}_{(1 / 2,1)}$.

Then w is a classical wavelet called the Haar wavelet. It is widely used in applications even though it is not smooth.

On the frequency side

\mathcal{F} is the unitary map on $L^{2}(\mathbb{R})$ such that

$$
\mathcal{F} f(\omega)=\widehat{f}(\omega)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \omega x} d x
$$

for $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.

On the frequency side

\mathcal{F} is the unitary map on $L^{2}(\mathbb{R})$ such that

$$
\mathcal{F} f(\omega)=\widehat{f}(\omega)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \omega x} d x
$$

for $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.
Let $\widehat{D_{2}}=\mathcal{F} D_{2} \mathcal{F}^{-1}$ and $\widehat{T}_{k}=\mathcal{F} T_{k} \mathcal{F}^{-1}$, for $k \in \mathbb{Z}$.

On the frequency side

\mathcal{F} is the unitary map on $L^{2}(\mathbb{R})$ such that

$$
\mathcal{F} f(\omega)=\widehat{f}(\omega)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \omega x} d x,
$$

for $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.
Let $\widehat{D_{2}}=\mathcal{F} D_{2} \mathcal{F}^{-1}$ and $\widehat{T}_{k}=\mathcal{F} T_{k} \mathcal{F}^{-1}$, for $k \in \mathbb{Z}$.
${\widehat{D_{2}}}^{j} g(\omega)=2^{-j / 2} g\left(2^{-j} \omega\right)$ and $\widehat{T}_{k} g(\omega)=e^{-2 \pi i k \omega} g(\omega)$.

On the frequency side

\mathcal{F} is the unitary map on $L^{2}(\mathbb{R})$ such that

$$
\mathcal{F} f(\omega)=\widehat{f}(\omega)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \omega x} d x
$$

for $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.
Let $\widehat{D_{2}}=\mathcal{F} D_{2} \mathcal{F}^{-1}$ and $\widehat{T}_{k}=\mathcal{F} T_{k} \mathcal{F}^{-1}$, for $k \in \mathbb{Z}$.
${\widehat{D_{2}}}^{j} g(\omega)=2^{-j / 2} g\left(2^{-j} \omega\right)$ and $\widehat{T}_{k} g(\omega)=e^{-2 \pi i k \omega} g(\omega)$.
So ${\widehat{D_{2}}}^{j} \widehat{T}_{k} g(\omega)=2^{-j / 2} e^{-2 \pi i 2^{-j} k \omega} g\left(2^{-j} \omega\right)$.

On the frequency side

$$
\text { Let } \Omega=(-1,-1 / 2) \cup(1 / 2,1) \text {. }
$$

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

1. It tiles the line by integer shifts: $\bigcup_{k \in \mathbb{Z}}(\Omega+k)$ is a co-null open subset of \mathbb{R} and $(\Omega+k) \cap\left(\Omega+k^{\prime}\right)=\emptyset$, if $k \neq k^{\prime}$.

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

1. It tiles the line by integer shifts: $\bigcup_{k \in \mathbb{Z}}(\Omega+k)$ is a co-null open subset of \mathbb{R} and $(\Omega+k) \cap\left(\Omega+k^{\prime}\right)=\emptyset$, if $k \neq k^{\prime}$.
2. It tiles the line by dilations by powers of 2 : $\bigcup_{j \in \mathbb{Z}}\left(2^{j} \Omega\right)$ is a co-null open subset of \mathbb{R} and $\left(2^{j} \Omega\right) \cap\left(2^{j^{\prime}} \Omega\right)=\emptyset$, if $j \neq j^{\prime}$.

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

1. It tiles the line by integer shifts: $\bigcup_{k \in \mathbb{Z}}(\Omega+k)$ is a co-null open subset of \mathbb{R} and $(\Omega+k) \cap\left(\Omega+k^{\prime}\right)=\emptyset$, if $k \neq k^{\prime}$.
2. It tiles the line by dilations by powers of 2 : $\bigcup_{j \in \mathbb{Z}}\left(2^{j} \Omega\right)$ is a co-null open subset of \mathbb{R} and $\left(2^{j} \Omega\right) \cap\left(2^{j^{\prime}} \Omega\right)=\emptyset$, if $j \neq j^{\prime}$.

Property 2 implies $L^{2}(\mathbb{R})=\oplus_{j \in \mathbb{Z}} L^{2}\left(2^{j} \Omega\right)$

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

1. It tiles the line by integer shifts: $\bigcup_{k \in \mathbb{Z}}(\Omega+k)$ is a co-null open subset of \mathbb{R} and $(\Omega+k) \cap\left(\Omega+k^{\prime}\right)=\emptyset$, if $k \neq k^{\prime}$.
2. It tiles the line by dilations by powers of 2 : $\bigcup_{j \in \mathbb{Z}}\left(2^{j} \Omega\right)$ is a co-null open subset of \mathbb{R} and $\left(2^{j} \Omega\right) \cap\left(2^{j^{\prime}} \Omega\right)=\emptyset$, if $j \neq j^{\prime}$.

Property 2 implies $L^{2}(\mathbb{R})=\oplus_{j \in \mathbb{Z}} L^{2}\left(2^{j} \Omega\right)=\oplus_{j \in \mathbb{Z}}{\widehat{D_{2}}}^{j} L^{2}(\Omega)$.

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

1. It tiles the line by integer shifts: $\bigcup_{k \in \mathbb{Z}}(\Omega+k)$ is a co-null open subset of \mathbb{R} and $(\Omega+k) \cap\left(\Omega+k^{\prime}\right)=\emptyset$, if $k \neq k^{\prime}$.
2. It tiles the line by dilations by powers of 2 : $\bigcup_{j \in \mathbb{Z}}\left(2^{j} \Omega\right)$ is a co-null open subset of \mathbb{R} and $\left(2^{j} \Omega\right) \cap\left(2^{j^{\prime}} \Omega\right)=\emptyset$, if $j \neq j^{\prime}$.

Property 2 implies $L^{2}(\mathbb{R})=\oplus_{j \in \mathbb{Z}} L^{2}\left(2^{j} \Omega\right)=\oplus_{j \in \mathbb{Z}}{\widehat{D_{2}}}^{j} L^{2}(\Omega)$.
Property 1 happens because Ω is piecewise integer shift equivalent to a unit interval.

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

1. It tiles the line by integer shifts: $\bigcup_{k \in \mathbb{Z}}(\Omega+k)$ is a co-null open subset of \mathbb{R} and $(\Omega+k) \cap\left(\Omega+k^{\prime}\right)=\emptyset$, if $k \neq k^{\prime}$.
2. It tiles the line by dilations by powers of 2 : $\bigcup_{j \in \mathbb{Z}}\left(2^{j} \Omega\right)$ is a co-null open subset of \mathbb{R} and $\left(2^{j} \Omega\right) \cap\left(2^{j^{\prime}} \Omega\right)=\emptyset$, if $j \neq j^{\prime}$.

Property 2 implies $L^{2}(\mathbb{R})=\oplus_{j \in \mathbb{Z}} L^{2}\left(2^{j} \Omega\right)=\oplus_{j \in \mathbb{Z}}{\widehat{D_{2}}}^{j} L^{2}(\Omega)$.
Property 1 happens because Ω is piecewise integer shift equivalent to a unit interval. This implies $\left\{\widehat{T}_{k} \mathbf{1}_{\Omega}: k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\Omega)$.

On the frequency side

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$. There are two remarkable properties possessed by Ω.

1. It tiles the line by integer shifts: $\bigcup_{k \in \mathbb{Z}}(\Omega+k)$ is a co-null open subset of \mathbb{R} and $(\Omega+k) \cap\left(\Omega+k^{\prime}\right)=\emptyset$, if $k \neq k^{\prime}$.
2. It tiles the line by dilations by powers of 2 : $\bigcup_{j \in \mathbb{Z}}\left(2^{j} \Omega\right)$ is a co-null open subset of \mathbb{R} and $\left(2^{j} \Omega\right) \cap\left(2^{j^{\prime}} \Omega\right)=\emptyset$, if $j \neq j^{\prime}$.

Property 2 implies $L^{2}(\mathbb{R})=\oplus_{j \in \mathbb{Z}} L^{2}\left(2^{j} \Omega\right)=\oplus_{j \in \mathbb{Z}}{\widehat{D_{2}}}^{j} L^{2}(\Omega)$.
Property 1 happens because Ω is piecewise integer shift equivalent to a unit interval. This implies $\left\{\widehat{T}_{k} \mathbf{1}_{\Omega}: k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\Omega)$.

Thus, $\left\{{\widehat{D_{2}}}^{j} \widehat{T}_{k} \mathbf{1}_{\Omega}: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$.

The Shannon wavelet

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$ and let $w \in L^{2}(\mathbb{R})$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$.

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$ and let $w \in L^{2}(\mathbb{R})$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$.
Since $\left\{{\widehat{D_{2}}}^{j} \widehat{T}_{k} \mathbf{1}_{\Omega}: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$,

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$ and let $w \in L^{2}(\mathbb{R})$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$.
Since $\left\{{\widehat{D_{2}}}^{j} \widehat{T}_{k} \mathbf{1}_{\Omega}: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$, $\left\{D_{2}^{j} T_{k} w: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$.

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$ and let $w \in L^{2}(\mathbb{R})$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$.
Since $\left\{{\widehat{D_{2}}}^{j} \widehat{T}_{k} \mathbf{1}_{\Omega}: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$, $\left\{D_{2}^{j} T_{k} w: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$. $w(x)=\frac{1}{\pi x}[\sin (2 \pi x)-\sin (\pi x)]$ is called the Shannon wavelet.

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$ and let $w \in L^{2}(\mathbb{R})$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$.
Since $\left\{{\widehat{D_{2}}}^{j} \widehat{T}_{k} \mathbf{1}_{\Omega}: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$, $\left\{D_{2}^{j} T_{k} w: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$. $w(x)=\frac{1}{\pi x}[\sin (2 \pi x)-\sin (\pi x)]$ is called the Shannon wavelet.

Again, the Shannon wavelet is widely used and has the advantage of being an elementary analytic function.

Let $\Omega=(-1,-1 / 2) \cup(1 / 2,1)$ and let $w \in L^{2}(\mathbb{R})$ satisfy $\widehat{w}=\mathbf{1}_{\Omega}$.
Since $\left\{{\widehat{D_{2}}}^{j} \widehat{T}_{k} \mathbf{1}_{\Omega}: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$, $\left\{D_{2}^{j} T_{k} w: j \in \mathbb{Z}, k \in \mathbb{Z}\right\}$ is an orthonormal basis of $L^{2}(\mathbb{R})$. $w(x)=\frac{1}{\pi x}[\sin (2 \pi x)-\sin (\pi x)]$ is called the Shannon wavelet.

Again, the Shannon wavelet is widely used and has the advantage of being an elementary analytic function.

It has the disadvantage of very slow decay.

The Shannon Wavelet，graph

Note that $(j, k) \rightarrow D_{2}^{j} T_{k}$ is not a group representation. Nor is
$(j, k) \rightarrow T_{k} D_{2}^{j}$. But also note that

Note that $(j, k) \rightarrow D_{2}^{j} T_{k}$ is not a group representation. Nor is
$(j, k) \rightarrow T_{k} D_{2}^{j}$. But also note that
$D_{2}^{j} T_{k} f(x)=2^{j / 2} f\left(2^{j} x-k\right)=2^{j / 2} f\left(2^{j}\left(x-2^{-j} k\right)\right)=T_{2^{-j} k} D_{2}^{j} f(x)$

Note that $(j, k) \rightarrow D_{2}^{j} T_{k}$ is not a group representation. Nor is $(j, k) \rightarrow T_{k} D_{2}^{j}$. But also note that

$$
\begin{gathered}
D_{2}^{j} T_{k} f(x)=2^{j / 2} f\left(2^{j} x-k\right)=2^{j / 2} f\left(2^{j}\left(x-2^{-j} k\right)\right)=T_{2^{-j} k} D_{2}^{j} f(x) \\
\Rightarrow \quad\left(T_{k} D_{2}^{j}\right)\left(T_{k^{\prime}} D_{2}^{j^{\prime}}\right)=T_{k}\left(D_{2}^{j} T_{k^{\prime}}\right) D_{2}^{j^{\prime}}=T_{k+2^{-j} k^{\prime}} D_{2}^{\left(j+j^{\prime}\right)}
\end{gathered}
$$

Note that $(j, k) \rightarrow D_{2}^{j} T_{k}$ is not a group representation. Nor is $(j, k) \rightarrow T_{k} D_{2}^{j}$. But also note that
$D_{2}^{j} T_{k} f(x)=2^{j / 2} f\left(2^{j} x-k\right)=2^{j / 2} f\left(2^{j}\left(x-2^{-j} k\right)\right)=T_{2^{-j} k} D_{2}^{j} f(x)$

$$
\Rightarrow \quad\left(T_{k} D_{2}^{j}\right)\left(T_{k^{\prime}} D_{2}^{j^{\prime}}\right)=T_{k}\left(D_{2}^{j} T_{k^{\prime}}\right) D_{2}^{j^{\prime}}=T_{k+2^{-j} k^{\prime}} D_{2}^{\left(j+j^{\prime}\right)}
$$

Let $\mathbb{Z}[1 / 2]=\left\{2^{\ell} m: \ell, m \in \mathbb{Z}\right\}$, the dyadic rationals.

Define an action ϑ of \mathbb{Z} on $\mathbb{Z}[1 / 2]$ by

$$
\vartheta_{j} \beta=2^{-j} \beta, \text { for } \beta \in \mathbb{Z}[1 / 2], j \in \mathbb{Z} .
$$

Define an action ϑ of \mathbb{Z} on $\mathbb{Z}[1 / 2]$ by

$$
\vartheta_{j} \beta=2^{-j} \beta, \text { for } \beta \in \mathbb{Z}[1 / 2], j \in \mathbb{Z}
$$

Let $G_{2}=\mathbb{Z}[1 / 2] \rtimes_{\vartheta} \mathbb{Z}=\{(\beta, j): \beta \in \mathbb{Z}[1 / 2], j \in \mathbb{Z}\}$ with product

$$
(\beta, j)\left(\beta^{\prime}, j^{\prime}\right)=\left(\beta+\vartheta_{j} \beta^{\prime}, j+j^{\prime}\right)
$$

Define an action ϑ of \mathbb{Z} on $\mathbb{Z}[1 / 2]$ by

$$
\vartheta_{j} \beta=2^{-j} \beta, \text { for } \beta \in \mathbb{Z}[1 / 2], j \in \mathbb{Z} .
$$

Let $G_{2}=\mathbb{Z}[1 / 2] \rtimes_{\vartheta} \mathbb{Z}=\{(\beta, j): \beta \in \mathbb{Z}[1 / 2], j \in \mathbb{Z}\}$ with product

$$
(\beta, j)\left(\beta^{\prime}, j^{\prime}\right)=\left(\beta+\vartheta_{j} \beta^{\prime}, j+j^{\prime}\right)
$$

We call G_{2} the wavelet group and $(\beta, j) \rightarrow T_{\beta} D_{2}^{j}$ the wavelet representation.

Define an action ϑ of \mathbb{Z} on $\mathbb{Z}[1 / 2]$ by

$$
\vartheta_{j} \beta=2^{-j} \beta, \text { for } \beta \in \mathbb{Z}[1 / 2], j \in \mathbb{Z}
$$

Let $G_{2}=\mathbb{Z}[1 / 2] \rtimes_{\vartheta} \mathbb{Z}=\{(\beta, j): \beta \in \mathbb{Z}[1 / 2], j \in \mathbb{Z}\}$ with product

$$
(\beta, j)\left(\beta^{\prime}, j^{\prime}\right)=\left(\beta+\vartheta_{j} \beta^{\prime}, j+j^{\prime}\right)
$$

We call G_{2} the wavelet group and $(\beta, j) \rightarrow T_{\beta} D_{2}^{j}$ the wavelet representation.

See Martin and Valette: Markov Operators on the Solvable Baumslag-Solitar Groups (2000). They coined the term wavelet group.

Let $d \in \mathbb{N}$ and $A \in \mathrm{GL}_{d}(\mathbb{R})$ be an expansive matrix such that $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$.

Let $d \in \mathbb{N}$ and $A \in \mathrm{GL}_{d}(\mathbb{R})$ be an expansive matrix such that $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$. Then $A \mathbb{Z}^{d} \subsetneq \mathbb{Z}^{d}$ and $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$ is finite.

Let $d \in \mathbb{N}$ and $A \in \mathrm{GL}_{d}(\mathbb{R})$ be an expansive matrix such that $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$. Then $A \mathbb{Z}^{d} \subsetneq \mathbb{Z}^{d}$ and $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$ is finite.

Now $D_{A} f(\underline{x})=|\operatorname{det}(A)|^{1 / 2} f(A \underline{x})$, for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right)$.

Let $d \in \mathbb{N}$ and $A \in \mathrm{GL}_{d}(\mathbb{R})$ be an expansive matrix such that $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$. Then $A \mathbb{Z}^{d} \subsetneq \mathbb{Z}^{d}$ and $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$ is finite.

Now $D_{A} f(\underline{x})=|\operatorname{det}(A)|^{1 / 2} f(A \underline{x})$, for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right)$.
Also $T_{\underline{k}} f(\underline{x})=f(\underline{x}-\underline{k})$, for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right), \underline{k} \in \mathbb{Z}^{d}$.

Let $d \in \mathbb{N}$ and $A \in \mathrm{GL}_{d}(\mathbb{R})$ be an expansive matrix such that $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$. Then $A \mathbb{Z}^{d} \subsetneq \mathbb{Z}^{d}$ and $\mathbb{Z}^{d} / A \mathbb{Z}^{d}$ is finite.

Now $D_{A} f(\underline{x})=|\operatorname{det}(A)|^{1 / 2} f(A \underline{x})$, for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right)$.
Also $T_{\underline{k}} f(\underline{x})=f(\underline{x}-\underline{k})$, for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right), \underline{k} \in \mathbb{Z}^{d}$.

Definition

An A-wavelet set is a Borel subset Ω of \mathbb{R}^{d} such that

$$
\left\{D_{A}^{j} T_{\underline{k}} w: \underline{k} \in \mathbb{Z}^{d}, j \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$, where $w \in L^{2}\left(\mathbb{R}^{d}\right)$ satisfies $\widehat{w}=\mathbf{1}_{\Omega}$.

1997: Dai, Larsen, and Speegle proved the existence of A-wavelet sets, for any expansive A with $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$. Construction was iterative and the resulting sets were fractal in nature.

1997: Dai, Larsen, and Speegle proved the existence of A-wavelet sets, for any expansive A with $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$. Construction was iterative and the resulting sets were fractal in nature.

A simple A-wavelet set is a wavelet set that is a finite union of convex sets.

1997: Dai, Larsen, and Speegle proved the existence of A-wavelet sets, for any expansive A with $A \mathbb{Z}^{d} \subseteq \mathbb{Z}^{d}$. Construction was iterative and the resulting sets were fractal in nature.

A simple A-wavelet set is a wavelet set that is a finite union of convex sets.

2008, 2012, 2015: Kathy Merrill constructed simple A-wavelet sets for increasingly wider classes of matrices A.

Example of A-wavelet set

If $d=2$ and $A=2 \cdot$ id, Merrill found sets like the following.

$$
\square^{\circ}
$$

Example of A-wavelet set

If $d=2$ and $A=2 \cdot$ id, Merrill found sets like the following.

Example of A-wavelet set

If $d=2$ and $A=2 \cdot \mathrm{id}$, Merrill found sets like the following.

Example of A-wavelet set

If $d=2$ and $A=2 \cdot \mathrm{id}$, Merrill found sets like the following.

Example of A-wavelet set

If $d=2$ and $A=2 \cdot \mathrm{id}$, Merrill found sets like the following.

\square°

Dilation by powers of 2

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet Representation, PAMS 129 3057-3067 (2001).

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet Representation, PAMS 129 3057-3067 (2001).

Let $\mathbb{Z}^{d}[A]=\cup_{j \in \mathbb{Z}} A^{i} \mathbb{Z}^{d}$, a countable dense subgroup of \mathbb{R}^{d}.

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet Representation, PAMS 129 3057-3067 (2001).

Let $\mathbb{Z}^{d}[A]=\cup_{j \in \mathbb{Z}} A^{i} \mathbb{Z}^{d}$, a countable dense subgroup of \mathbb{R}^{d}.
Form $G_{A}=\mathbb{Z}^{d}[A] \rtimes_{\vartheta} \mathbb{Z}$, where $\vartheta_{j} \underline{\beta}=A^{-j} \underline{\beta}$, for $\underline{\beta} \in \mathbb{Z}^{d}[A], j \in \mathbb{Z}$.

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet Representation, PAMS 129 3057-3067 (2001).

Let $\mathbb{Z}^{d}[A]=\cup_{j \in \mathbb{Z}} A^{i} \mathbb{Z}^{d}$, a countable dense subgroup of \mathbb{R}^{d}.
Form $G_{A}=\mathbb{Z}^{d}[A] \rtimes_{\vartheta} \mathbb{Z}$, where $\vartheta_{j} \underline{\beta}=A^{-j} \underline{\beta}$, for $\underline{\beta} \in \mathbb{Z}^{d}[A], j \in \mathbb{Z}$.

Definition:

We call G_{A} the A-wavelet group. The A-wavelet representation is the unitary representation ρ of G_{A} on $L^{2}\left(\mathbb{R}^{d}\right)$ given by

$$
\rho(\underline{\beta}, j) f(\underline{x})=T_{\underline{\beta}} D_{A}^{j} f(\underline{x})=|\operatorname{det}(A)|^{j / 2} f\left(A^{j}(\underline{x}-\underline{\beta})\right),
$$

for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right),(\underline{\beta}, j) \in G_{A}$.

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet Representation, PAMS 129 3057-3067 (2001).

Let $\mathbb{Z}^{d}[A]=\cup_{j \in \mathbb{Z}} A^{i} \mathbb{Z}^{d}$, a countable dense subgroup of \mathbb{R}^{d}.
Form $G_{A}=\mathbb{Z}^{d}[A] \rtimes_{\vartheta} \mathbb{Z}$, where $\vartheta_{j} \underline{\beta}=A^{-j} \underline{\beta}$, for $\underline{\beta} \in \mathbb{Z}^{d}[A], j \in \mathbb{Z}$.

Definition:

We call G_{A} the A-wavelet group. The A-wavelet representation is the unitary representation ρ of G_{A} on $L^{2}\left(\mathbb{R}^{d}\right)$ given by

$$
\rho(\underline{\beta}, j) f(\underline{x})=T_{\underline{\beta}} D_{A}^{j} f(\underline{x})=|\operatorname{det}(A)|^{j / 2} f\left(A^{j}(\underline{x}-\underline{\beta})\right),
$$

for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right),(\underline{\beta}, j) \in G_{A}$.

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet Representation, PAMS 129 3057-3067 (2001).

Let $\mathbb{Z}^{d}[A]=\cup_{j \in \mathbb{Z}} A^{i} \mathbb{Z}^{d}$, a countable dense subgroup of \mathbb{R}^{d}.
Form $G_{A}=\mathbb{Z}^{d}[A] \rtimes_{\vartheta} \mathbb{Z}$, where $\vartheta_{j} \underline{\beta}=A^{-j} \underline{\beta}$, for $\underline{\beta} \in \mathbb{Z}^{d}[A], j \in \mathbb{Z}$.

Definition:

We call G_{A} the A-wavelet group. The A-wavelet representation is the unitary representation ρ of G_{A} on $L^{2}\left(\mathbb{R}^{d}\right)$ given by

$$
\rho(\underline{\beta}, j) f(\underline{x})=T_{\underline{\beta}} D_{A}^{j} f(\underline{x})=|\operatorname{det}(A)|^{j / 2} f\left(A^{j}(\underline{x}-\underline{\beta})\right),
$$

for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right),(\underline{\beta}, j) \in G_{A}$.

In the above paper, we provided a direct integral decomposition of ρ into irreducible representations.

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet Representation, PAMS 129 3057-3067 (2001).

Let $\mathbb{Z}^{d}[A]=\cup_{j \in \mathbb{Z}} A^{i} \mathbb{Z}^{d}$, a countable dense subgroup of \mathbb{R}^{d}.
Form $G_{A}=\mathbb{Z}^{d}[A] \rtimes_{\vartheta} \mathbb{Z}$, where $\vartheta_{j} \underline{\beta}=A^{-j} \underline{\beta}$, for $\underline{\beta} \in \mathbb{Z}^{d}[A], j \in \mathbb{Z}$.

Definition:

We call G_{A} the A-wavelet group. The A-wavelet representation is the unitary representation ρ of G_{A} on $L^{2}\left(\mathbb{R}^{d}\right)$ given by

$$
\rho(\underline{\beta}, j) f(\underline{x})=T_{\underline{\beta}} D_{A}^{j} f(\underline{x})=|\operatorname{det}(A)|^{j / 2} f\left(A^{j}(\underline{x}-\underline{\beta})\right),
$$

for $\underline{x} \in \mathbb{R}^{d}, f \in L^{2}\left(\mathbb{R}^{d}\right),(\underline{\beta}, j) \in G_{A}$.

In the above paper, we provided a direct integral decomposition of ρ into irreducible representations. Let me explain.

Let $\mathcal{N}_{A}=\left\{(\beta, 0): \beta \in \mathbb{Z}^{d}[A]\right\}$, a normal abelian subgroup of G_{A}.

Let $\mathcal{N}_{A}=\left\{(\beta, 0): \beta \in \mathbb{Z}^{d}[A]\right\}$, a normal abelian subgroup of G_{A}.
We consider \mathcal{N}_{A} as a countable discrete group. Thus, $\widehat{\mathcal{N}_{A}}$ is a compact abelian group.

Let $\mathcal{N}_{A}=\left\{(\beta, 0): \beta \in \mathbb{Z}^{d}[A]\right\}$, a normal abelian subgroup of G_{A}.
We consider \mathcal{N}_{A} as a countable discrete group. Thus, $\widehat{\mathcal{N}_{A}}$ is a compact abelian group.

For $\underline{\omega} \in \mathbb{R}^{d}$, define $\chi_{\underline{\omega}}$ in $\widehat{\mathcal{N}_{A}}$ by

$$
\chi_{\underline{\omega}}(\underline{\beta}, 0)=e^{2 \pi i \underline{\omega} \underline{\beta}}, \text { for }(\underline{\beta}, 0) \in \mathcal{N}_{A} .
$$

Let $\mathcal{N}_{A}=\left\{(\beta, 0): \beta \in \mathbb{Z}^{d}[A]\right\}$, a normal abelian subgroup of G_{A}.
We consider \mathcal{N}_{A} as a countable discrete group. Thus, $\widehat{\mathcal{N}_{A}}$ is a compact abelian group.

For $\underline{\omega} \in \mathbb{R}^{d}$, define $\chi_{\underline{\omega}}$ in $\widehat{\mathcal{N}_{A}}$ by

$$
\chi_{\underline{\omega}}(\underline{\beta}, 0)=e^{2 \pi i \omega \underline{\beta}, \text { for }(\underline{\beta}, 0) \in \mathcal{N}_{A} .}
$$

Proposition

The map $\underline{\omega} \rightarrow \chi_{\omega}$ is a continuous isomorphism of \mathbb{R}^{d} with a dense subgroup of $\widehat{\mathcal{N}_{A}}$.

Let $\mathcal{N}_{A}=\left\{(\beta, 0): \beta \in \mathbb{Z}^{d}[A]\right\}$, a normal abelian subgroup of G_{A}.
We consider \mathcal{N}_{A} as a countable discrete group. Thus, $\widehat{\mathcal{N}_{A}}$ is a compact abelian group.

For $\underline{\omega} \in \mathbb{R}^{d}$, define $\chi_{\underline{\omega}}$ in $\widehat{\mathcal{N}_{A}}$ by

$$
\chi_{\underline{\omega}}(\underline{\beta}, 0)=e^{2 \pi i \omega \underline{\beta}, \text { for }(\underline{\beta}, 0) \in \mathcal{N}_{A} .}
$$

Proposition

The map $\underline{\omega} \rightarrow \chi_{\omega}$ is a continuous isomorphism of \mathbb{R}^{d} with a dense subgroup of $\widehat{\mathcal{N}_{A}}$.

Let $\mathcal{N}_{A}=\left\{(\beta, 0): \beta \in \mathbb{Z}^{d}[A]\right\}$, a normal abelian subgroup of G_{A}.
We consider \mathcal{N}_{A} as a countable discrete group. Thus, $\widehat{\mathcal{N}_{A}}$ is a compact abelian group.

For $\underline{\omega} \in \mathbb{R}^{d}$, define $\chi_{\underline{\omega}}$ in $\widehat{\mathcal{N}_{A}}$ by

$$
\chi_{\underline{\omega}}(\underline{\beta}, 0)=e^{2 \pi i \underline{\omega} \underline{\beta}}, \text { for }(\underline{\beta}, 0) \in \mathcal{N}_{A} .
$$

Proposition

The map $\underline{\omega} \rightarrow \chi_{\underline{\omega}}$ is a continuous isomorphism of \mathbb{R}^{d} with a dense subgroup of $\widehat{\mathcal{N}_{A}}$.

Thus, $\left\{\chi_{\underline{\omega}}: \underline{\omega} \in \mathbb{R}^{d}\right\}$ is weakly equivalent with the regular representation of \mathcal{N}_{A}.

Aside on weak equivalence

For a locally compact group G, two sets of unitary representations
\mathcal{S} and \mathcal{T} are weakly equivalent if, when considered as
-representations of $C^{}(G)$

Aside on weak equivalence

For a locally compact group G, two sets of unitary representations \mathcal{S} and \mathcal{T} are weakly equivalent if, when considered as *-representations of $C^{*}(G)$
$\left\{a \in C^{*}(G): \sigma(a)=0, \forall \sigma \in \mathcal{S}\right\}=\left\{a \in C^{*}(G): \tau(a)=0, \forall \tau \in \mathcal{T}\right\}$

Aside on weak equivalence

For a locally compact group G, two sets of unitary representations \mathcal{S} and \mathcal{T} are weakly equivalent if, when considered as *-representations of $C^{*}(G)$
$\left\{a \in C^{*}(G): \sigma(a)=0, \forall \sigma \in \mathcal{S}\right\}=\left\{a \in C^{*}(G): \tau(a)=0, \forall \tau \in \mathcal{T}\right\}$
That is

$$
\cap_{\sigma \in \mathcal{S}} \operatorname{ker}(\sigma)=\cap_{\tau \in \mathcal{T}} \operatorname{ker}(\tau)
$$

Aside on weak equivalence

For a locally compact group G, two sets of unitary representations \mathcal{S} and \mathcal{T} are weakly equivalent if, when considered as *-representations of $C^{*}(G)$
$\left\{a \in C^{*}(G): \sigma(a)=0, \forall \sigma \in \mathcal{S}\right\}=\left\{a \in C^{*}(G): \tau(a)=0, \forall \tau \in \mathcal{T}\right\}$
That is

$$
\cap_{\sigma \in \mathcal{S}} \operatorname{ker}(\sigma)=\cap_{\tau \in \mathcal{T}} \operatorname{ker}(\tau)
$$

Saying that $\left\{\chi_{\underline{\omega}}: \underline{\omega} \in \mathbb{R}^{d}\right\}$ is weakly equivalent with the regular representation of \mathcal{N}_{A} is simply saying that $\left\{\chi_{\underline{\omega}}: \underline{\omega} \in \mathbb{R}^{d}\right\}$ is dense in $\widehat{\mathcal{N}_{A}}$.

Decomposing the A-wavelet representation, II

An A-wavelet set Ω is free if $A^{j} \Omega \cap A^{k} \Omega=\emptyset$, for $j \neq k$. For every simple A-wavelet set, there is a free simple A-wavelet set that differs only by a null set.

Decomposing the A-wavelet representation, II

An A-wavelet set Ω is free if $A^{j} \Omega \cap A^{k} \Omega=\emptyset$, for $j \neq k$. For every simple A-wavelet set, there is a free simple A-wavelet set that differs only by a null set.

For $\underline{\omega} \in \mathbb{R}^{d}$, let $U^{\underline{\omega}}=\operatorname{ind}_{\mathcal{N}_{A}}^{G_{A}} \chi_{\underline{\omega}}$.

Decomposing the A-wavelet representation, II

An A-wavelet set Ω is free if $A^{j} \Omega \cap A^{k} \Omega=\emptyset$, for $j \neq k$. For every simple A-wavelet set, there is a free simple A-wavelet set that differs only by a null set.

For $\underline{\omega} \in \mathbb{R}^{d}$, let $U^{\underline{\omega}}=\operatorname{ind}_{\mathcal{N}_{A}}^{G_{A}} \chi_{\underline{\omega}}$.

Theorem: Lim, Packer and T, 2001

Let Ω be a free A-wavelet set in \mathbb{R}^{d}. Then the A-wavelet representation ρ is unitarily equivalent to the direct integral

$$
\int_{\Omega}^{\oplus} U^{\underline{\omega}} d \underline{\omega}
$$

and $U \underline{\omega}$ is irreducible for $\underline{\omega} \in \Omega$.

Decomposing the A-wavelet representation, II

An A-wavelet set Ω is free if $A^{j} \Omega \cap A^{k} \Omega=\emptyset$, for $j \neq k$. For every simple A-wavelet set, there is a free simple A-wavelet set that differs only by a null set.

For $\underline{\omega} \in \mathbb{R}^{d}$, let $U^{\underline{\omega}}=\operatorname{ind}_{\mathcal{N}_{A}}^{G_{A}} \chi_{\underline{\omega}}$.

Theorem: Lim, Packer and T, 2001

Let Ω be a free A-wavelet set in \mathbb{R}^{d}. Then the A-wavelet representation ρ is unitarily equivalent to the direct integral

$$
\int_{\Omega}^{\oplus} U^{\underline{\omega}} d \underline{\omega}
$$

and $U \underline{\omega}$ is irreducible for $\underline{\omega} \in \Omega$.

Decomposing the A-wavelet representation, II

An A-wavelet set Ω is free if $A^{j} \Omega \cap A^{k} \Omega=\emptyset$, for $j \neq k$. For every simple A-wavelet set, there is a free simple A-wavelet set that differs only by a null set.

For $\underline{\omega} \in \mathbb{R}^{d}$, let $U^{\underline{\omega}}=\operatorname{ind}_{\mathcal{N}_{A}}^{G_{A}} \chi_{\underline{\omega}}$.

Theorem: Lim, Packer and T, 2001

Let Ω be a free A-wavelet set in \mathbb{R}^{d}. Then the A-wavelet representation ρ is unitarily equivalent to the direct integral

$$
\int_{\Omega}^{\oplus} U^{\underline{\omega}} d \underline{\omega}
$$

and $U \underline{\omega}$ is irreducible for $\underline{\omega} \in \Omega$. Moreover, $\{U \underline{\omega}: \underline{\omega} \in \Omega\}$ is weakly equivalent with the left regular representation of G_{A}.

Decomposing the A-wavelet representation, III

Our work on decomposing the A-wavelet representation was motivated by the previously cited paper of Martin and Valette and by

Decomposing the A-wavelet representation, III

Our work on decomposing the A-wavelet representation was motivated by the previously cited paper of Martin and Valette and by

Brenken: The local product structure of expansive automorphisms of solenoids and their associated C*-algebras (1996).

Decomposing the A-wavelet representation, III

Our work on decomposing the A-wavelet representation was motivated by the previously cited paper of Martin and Valette and by

Brenken: The local product structure of expansive automorphisms of solenoids and their associated C^{\star}-algebras (1996).

Note: $C^{*}\left(G_{A}\right) \simeq C\left(\widehat{\mathcal{N}_{A}}\right) \rtimes \mathbb{Z}$.

Decomposing the A-wavelet representation, III

Our work on decomposing the A-wavelet representation was motivated by the previously cited paper of Martin and Valette and by

Brenken: The local product structure of expansive automorphisms of solenoids and their associated C^{\star}-algebras (1996).

Note: $C^{*}\left(G_{A}\right) \simeq C\left(\widehat{\mathcal{N}_{A}}\right) \rtimes \mathbb{Z}$.
In turn, our theorem led to further results on dynamical systems; in particular by Dutkay and Jorgensen.

Decomposing the A-wavelet representation, III

Our work on decomposing the A-wavelet representation was motivated by the previously cited paper of Martin and Valette and by

Brenken: The local product structure of expansive automorphisms of solenoids and their associated C^{\star}-algebras (1996).

Note: $C^{*}\left(G_{A}\right) \simeq C\left(\widehat{\mathcal{N}_{A}}\right) \rtimes \mathbb{Z}$.
In turn, our theorem led to further results on dynamical systems; in particular by Dutkay and Jorgensen.

We recently returned to this theme in order to explore the implications of the introduction of crystal symmetries into the theory of wavelets.

Crystal groups

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Crystal groups

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Then $[\underline{x}, B][\underline{y}, C]=\left[C^{-1} \underline{x}+\underline{y}, B C\right]$ and $[\underline{x}, B]^{-1}=\left[-B \underline{x}, B^{-1}\right]$.

Crystal groups

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Then $[\underline{x}, B][\underline{y}, C]=\left[C^{-1} \underline{x}+\underline{y}, B C\right]$ and $[\underline{x}, B]^{-1}=\left[-B \underline{x}, B^{-1}\right]$.
$\operatorname{Aff}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathrm{GL}_{d}(\mathbb{R})\right\}=\mathbb{R}^{d} \rtimes \mathrm{GL}_{d}(\mathbb{R})$.

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Then $[\underline{x}, B][\underline{y}, C]=\left[C^{-1} \underline{x}+\underline{y}, B C\right]$ and $[\underline{x}, B]^{-1}=\left[-B \underline{x}, B^{-1}\right]$.
$\operatorname{Aff}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathrm{GL}_{d}(\mathbb{R})\right\}=\mathbb{R}^{d} \rtimes \mathrm{GL}_{d}(\mathbb{R})$.
$\operatorname{Iso}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathcal{O}_{d}\right\}=\mathbb{R}^{d} \rtimes \mathcal{O}_{d}$, where \mathcal{O}_{d} is the group of orthogonal transformations of \mathbb{R}^{d}.

Crystal groups

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Then $[\underline{x}, B][\underline{y}, C]=\left[C^{-1} \underline{x}+\underline{y}, B C\right]$ and $[\underline{x}, B]^{-1}=\left[-B \underline{x}, B^{-1}\right]$.
$\operatorname{Aff}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathrm{GL}_{d}(\mathbb{R})\right\}=\mathbb{R}^{d} \rtimes \mathrm{GL}_{d}(\mathbb{R})$.
$\operatorname{Iso}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathcal{O}_{d}\right\}=\mathbb{R}^{d} \rtimes \mathcal{O}_{d}$, where \mathcal{O}_{d} is the group of orthogonal transformations of \mathbb{R}^{d}.

Definition

A d-dimensional crystal group is a discrete subgroup Γ of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ such that \mathbb{R}^{d} / Γ is compact.

Crystal groups

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Then $[\underline{x}, B][\underline{y}, C]=\left[C^{-1} \underline{x}+\underline{y}, B C\right]$ and $[\underline{x}, B]^{-1}=\left[-B \underline{x}, B^{-1}\right]$.
$\operatorname{Aff}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathrm{GL}_{d}(\mathbb{R})\right\}=\mathbb{R}^{d} \rtimes \mathrm{GL}_{d}(\mathbb{R})$.
$\operatorname{Iso}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathcal{O}_{d}\right\}=\mathbb{R}^{d} \rtimes \mathcal{O}_{d}$, where \mathcal{O}_{d} is the group of orthogonal transformations of \mathbb{R}^{d}.

Definition

A d-dimensional crystal group is a discrete subgroup Γ of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ such that \mathbb{R}^{d} / Γ is compact.

Crystal groups

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Then $[\underline{x}, B][\underline{y}, C]=\left[C^{-1} \underline{x}+\underline{y}, B C\right]$ and $[\underline{x}, B]^{-1}=\left[-B \underline{x}, B^{-1}\right]$.
$\operatorname{Aff}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathrm{GL}_{d}(\mathbb{R})\right\}=\mathbb{R}^{d} \rtimes \mathrm{GL}_{d}(\mathbb{R})$.
$\operatorname{Iso}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathcal{O}_{d}\right\}=\mathbb{R}^{d} \rtimes \mathcal{O}_{d}$, where \mathcal{O}_{d} is the group of orthogonal transformations of \mathbb{R}^{d}.

Definition

A d-dimensional crystal group is a discrete subgroup Γ of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ such that \mathbb{R}^{d} / Γ is compact.

A 2-dimensional crystal group is also called a wallpaper group.

Crystal groups

For $\underline{x} \in \mathbb{R}^{d}$ and $B \in \mathrm{GL}_{d}(\mathbb{R})$, define the affine transformation $[\underline{x}, B]$ by $[\underline{x}, B] \underline{z}=B(\underline{z}+\underline{x})$, for all $\underline{z} \in \mathbb{R}^{d}$.

Then $[\underline{x}, B][\underline{y}, C]=\left[C^{-1} \underline{x}+\underline{y}, B C\right]$ and $[\underline{x}, B]^{-1}=\left[-B \underline{x}, B^{-1}\right]$.
$\operatorname{Aff}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathrm{GL}_{d}(\mathbb{R})\right\}=\mathbb{R}^{d} \rtimes \mathrm{GL}_{d}(\mathbb{R})$.
$\operatorname{Iso}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, B]: \underline{x} \in \mathbb{R}^{d}, B \in \mathcal{O}_{d}\right\}=\mathbb{R}^{d} \rtimes \mathcal{O}_{d}$, where \mathcal{O}_{d} is the group of orthogonal transformations of \mathbb{R}^{d}.

Definition

A d-dimensional crystal group is a discrete subgroup Γ of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ such that \mathbb{R}^{d} / Γ is compact.

A 2-dimensional crystal group is also called a wallpaper group. There are 17 of them.

Crystal groups II

Let $\operatorname{Tran}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, i d]: \underline{x} \in \mathbb{R}^{d}\right\}$, the normal subgroup of $\operatorname{Aff}\left(\mathbb{R}^{d}\right)$ consisting of pure translations.

Let $\operatorname{Tran}\left(\mathbb{R}^{d}\right)=\left\{[\underline{X}, \mathrm{id}]: \underline{x} \in \mathbb{R}^{d}\right\}$, the normal subgroup of $\mathrm{Aff}\left(\mathbb{R}^{d}\right)$ consisting of pure translations.

Let $q: \operatorname{Aff}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{GL}_{d}(\mathbb{R})$ be defined by $q[\underline{x}, B]=B$, for $[\underline{X}, B] \in \operatorname{Aff}\left(\mathbb{R}^{d}\right)$.

Let $\operatorname{Tran}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, \mathrm{id}]: \underline{x} \in \mathbb{R}^{d}\right\}$, the normal subgroup of $\mathrm{Aff}\left(\mathbb{R}^{d}\right)$ consisting of pure translations.

Let $q: \operatorname{Aff}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{GL}_{d}(\mathbb{R})$ be defined by $q[\underline{x}, B]=B$, for $[\underline{X}, B] \in \operatorname{Aff}\left(\mathbb{R}^{d}\right)$. We view q as the quotient homomorphism identifying $\operatorname{Aff}\left(\mathbb{R}^{d}\right) / \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ with $\mathrm{GL}_{d}(\mathbb{R})$.

Let $\operatorname{Tran}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, \mathrm{id}]: \underline{x} \in \mathbb{R}^{d}\right\}$, the normal subgroup of $\mathrm{Aff}\left(\mathbb{R}^{d}\right)$ consisting of pure translations.

Let $q: \operatorname{Aff}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{GL}_{d}(\mathbb{R})$ be defined by $q[\underline{x}, B]=B$, for $[\underline{X}, B] \in \operatorname{Aff}\left(\mathbb{R}^{d}\right)$. We view q as the quotient homomorphism identifying $\operatorname{Aff}\left(\mathbb{R}^{d}\right) / \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ with $\mathrm{GL}_{d}(\mathbb{R})$.

If Γ is a d-dimensional crystal group, then $\mathcal{N}=\Gamma \cap \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ is a normal abelian subgroup of Γ.

Let $\operatorname{Tran}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, \mathrm{id}]: \underline{x} \in \mathbb{R}^{d}\right\}$, the normal subgroup of Aff $\left(\mathbb{R}^{d}\right)$ consisting of pure translations.

Let $q: \operatorname{Aff}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{GL}_{d}(\mathbb{R})$ be defined by $q[\underline{x}, B]=B$, for $[\underline{x}, B] \in \operatorname{Aff}\left(\mathbb{R}^{d}\right)$. We view q as the quotient homomorphism identifying $\operatorname{Aff}\left(\mathbb{R}^{d}\right) / \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ with $\mathrm{GL}_{d}(\mathbb{R})$.

If Γ is a d-dimensional crystal group, then $\mathcal{N}=\Gamma \cap \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ is a normal abelian subgroup of Γ.

There exists a basis $\left\{\underline{v}_{j}: 1 \leq i \leq d\right\}$ of \mathbb{R}^{d} such that

$$
\mathcal{N}=\left\{\sum_{i=1}^{d} k_{i} \underline{v}_{i}:\left(k_{1}, \cdots, k_{d}\right) \in \mathbb{Z}^{d}\right\} .
$$

Let $\operatorname{Tran}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, \mathrm{id}]: \underline{x} \in \mathbb{R}^{d}\right\}$, the normal subgroup of $\mathrm{Aff}\left(\mathbb{R}^{d}\right)$ consisting of pure translations.

Let $q: \operatorname{Aff}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{GL}_{d}(\mathbb{R})$ be defined by $q[\underline{x}, B]=B$, for $[\underline{x}, B] \in \operatorname{Aff}\left(\mathbb{R}^{d}\right)$. We view q as the quotient homomorphism identifying $\operatorname{Aff}\left(\mathbb{R}^{d}\right) / \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ with $\mathrm{GL}_{d}(\mathbb{R})$.

If Γ is a d-dimensional crystal group, then $\mathcal{N}=\Gamma \cap \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ is a normal abelian subgroup of Γ.

There exists a basis $\left\{\underline{v}_{i}: 1 \leq i \leq d\right\}$ of \mathbb{R}^{d} such that

$$
\mathcal{N}=\left\{\sum_{i=1}^{d} k_{i} \underline{v}_{i}:\left(k_{1}, \cdots, k_{d}\right) \in \mathbb{Z}^{d}\right\} .
$$

Let $\mathcal{D}=q(\Gamma)=\left\{L \in \mathcal{O}_{d}:[\underline{x}, L] \in \Gamma\right.$, for some $\left.\underline{x} \in \mathbb{R}^{d}\right\}$, the point group of Γ.

Let $\operatorname{Tran}\left(\mathbb{R}^{d}\right)=\left\{[\underline{x}, \mathrm{id}]: \underline{x} \in \mathbb{R}^{d}\right\}$, the normal subgroup of $\mathrm{Aff}\left(\mathbb{R}^{d}\right)$ consisting of pure translations.

Let $q: \operatorname{Aff}\left(\mathbb{R}^{d}\right) \rightarrow \mathrm{GL}_{d}(\mathbb{R})$ be defined by $q[\underline{x}, B]=B$, for $[\underline{x}, B] \in \operatorname{Aff}\left(\mathbb{R}^{d}\right)$. We view q as the quotient homomorphism identifying $\operatorname{Aff}\left(\mathbb{R}^{d}\right) / \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ with $\mathrm{GL}_{d}(\mathbb{R})$.

If Γ is a d-dimensional crystal group, then $\mathcal{N}=\Gamma \cap \operatorname{Tran}\left(\mathbb{R}^{d}\right)$ is a normal abelian subgroup of Γ.

There exists a basis $\left\{\underline{v}_{j}: 1 \leq i \leq d\right\}$ of \mathbb{R}^{d} such that

$$
\mathcal{N}=\left\{\sum_{i=1}^{d} k_{i} \underline{v}_{i}:\left(k_{1}, \cdots, k_{d}\right) \in \mathbb{Z}^{d}\right\} .
$$

Let $\mathcal{D}=q(\Gamma)=\left\{L \in \mathcal{O}_{d}:[\underline{x}, L] \in \Gamma\right.$, for some $\left.\underline{x} \in \mathbb{R}^{d}\right\}$, the point group of Γ.

$$
\{1\} \rightarrow \mathbb{Z}^{d} \rightarrow \Gamma \rightarrow \mathcal{D} \rightarrow\{1\} .
$$

Compatible Transformations

Let Γ be a d-dimensional crystal group and $A \in \mathrm{GL}_{d}(\mathbb{R})$.

Compatible Transformations

Let Γ be a d-dimensional crystal group and $A \in \mathrm{GL}_{d}(\mathbb{R})$. We say A is compatible with Γ if

$$
[0, A] \Gamma[0, A]^{-1} \subsetneq \Gamma \quad \text { and } \quad \Gamma /[0, A] \Gamma[0, A]^{-1} \text { is finite. }
$$

Compatible Transformations

Let Γ be a d-dimensional crystal group and $A \in \mathrm{GL}_{d}(\mathbb{R})$. We say A is compatible with Γ if

$$
[0, A] \Gamma[0, A]^{-1} \subsetneq \Gamma \quad \text { and } \quad \Gamma /[0, A] \Gamma[0, A]^{-1} \text { is finite. }
$$

In two dimensions, $\boldsymbol{A}=3 \cdot \mathrm{id}$ is compatible with all wallpaper groups.

Compatible Transformations

Let Γ be a d-dimensional crystal group and $A \in \mathrm{GL}_{d}(\mathbb{R})$. We say A is compatible with Γ if

$$
[0, A] \Gamma[0, A]^{-1} \subsetneq \Gamma \quad \text { and } \quad \Gamma /[0, A] \Gamma[0, A]^{-1} \text { is finite. }
$$

In two dimensions, $A=3 \cdot$ id is compatible with all wallpaper groups.

We will shift functions by members of Γ and dilate functions by powers of A.

Compatible Transformations

Let Γ be a d-dimensional crystal group and $A \in \mathrm{GL}_{d}(\mathbb{R})$. We say A is compatible with Γ if

$$
[0, A] \Gamma[0, A]^{-1} \subsetneq \Gamma \quad \text { and } \quad \Gamma /[0, A] \Gamma[0, A]^{-1} \text { is finite. }
$$

In two dimensions, $A=3 \cdot$ id is compatible with all wallpaper groups.

We will shift functions by members of Γ and dilate functions by powers of A.

For $[\underline{x}, L] \in \Gamma, f \in L^{2}\left(\mathbb{R}^{d}\right), \underline{y} \in \mathbb{R}^{d}$,

$$
T_{[\underline{x}, L]} f(\underline{y})=f\left([\underline{x}, L]^{-1} \underline{y}\right)=f\left(L^{-1} \underline{y}-\underline{x}\right) .
$$

Compatible Transformations

Let Γ be a d-dimensional crystal group and $A \in \mathrm{GL}_{d}(\mathbb{R})$. We say A is compatible with Γ if

$$
[0, A] \Gamma[0, A]^{-1} \subsetneq \Gamma \quad \text { and } \Gamma /[0, A] \Gamma[0, A]^{-1} \text { is finite. }
$$

In two dimensions, $\boldsymbol{A}=3 \cdot \mathrm{id}$ is compatible with all wallpaper groups.

We will shift functions by members of Γ and dilate functions by powers of A.

For $[\underline{x}, L] \in \Gamma, f \in L^{2}\left(\mathbb{R}^{d}\right), \underline{y} \in \mathbb{R}^{d}$,

$$
T_{[\underline{x}, L]} f(\underline{y})=\bar{f}\left([\underline{x}, L]^{-1} \underline{y}\right)=f\left(L^{-1} \underline{y}-\underline{x}\right) .
$$

As before $D_{A} f(\underline{y})=|\operatorname{det}(A)|^{1 / 2} f(A \underline{y})$.

$A \Gamma$-wavelet group

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$.

$A \Gamma$-wavelet group

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$. So $\Gamma \subseteq\left[0, A^{-1}\right] \Gamma[0, A]$.

$A \Gamma$-wavelet group

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$. So $\Gamma \subseteq\left[0, A^{-1}\right] \Gamma[0, A]$.

Let $\Gamma[A]=\cup_{j \in \mathbb{Z}}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]$

$A \Gamma$-wavelet group

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$. So $\Gamma \subseteq\left[0, A^{-1}\right] \Gamma[0, A]$.

Let $\Gamma[A]=\cup_{j \in \mathbb{Z}}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]=\cup_{j=M}^{\infty}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]$, for any M.

$A \Gamma$-wavelet group

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$. So $\Gamma \subseteq\left[0, A^{-1}\right] \Gamma[0, A]$.

Let $\Gamma[A]=\cup_{j \in \mathbb{Z}}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]=\cup_{j=M}^{\infty}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]$, for any M.
$\Gamma[A]$ is a countable subgroup of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ and $q(\Gamma[A])=\mathcal{D}$.

$A \Gamma$-wavelet group

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$. So $\Gamma \subseteq\left[0, A^{-1}\right] \Gamma[0, A]$.

Let $\Gamma[A]=\cup_{j \in \mathbb{Z}}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]=\cup_{j=M}^{\infty}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]$, for any M.
$\Gamma[A]$ is a countable subgroup of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ and $q(\Gamma[A])=\mathcal{D}$.
$\mathcal{N}[A]=\operatorname{Trans}\left(\mathbb{R}^{d}\right) \cap \Gamma[A]$ is a dense subgroup of $\operatorname{Trans}\left(\mathbb{R}^{d}\right)$.

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$. So $\Gamma \subseteq\left[0, A^{-1}\right] \Gamma[0, A]$.

Let $\Gamma[A]=\cup_{j \in \mathbb{Z}}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]=\cup_{j=M}^{\infty}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]$, for any M.
$\Gamma[A]$ is a countable subgroup of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ and $q(\Gamma[A])=\mathcal{D}$.
$\mathcal{N}[A]=\operatorname{Trans}\left(\mathbb{R}^{d}\right) \cap \Gamma[A]$ is a dense subgroup of $\operatorname{Trans}\left(\mathbb{R}^{d}\right)$.
For $j \in \mathbb{Z}$, the automorphism ϑ_{j} of $\Gamma[A]$ is given by

$$
\vartheta_{j}[\underline{\beta}, L]=\left[0, A^{-j}\right][\underline{\beta}, L]\left[0, A^{j}\right] .
$$

Let Γ be a d-dimensional crystal group and A a compatible matrix. Recall that $[0, A] \Gamma\left[0, A^{-1}\right] \subsetneq \Gamma$. So $\Gamma \subseteq\left[0, A^{-1}\right] \Gamma[0, A]$.

Let $\Gamma[A]=\cup_{j \in \mathbb{Z}}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]=\cup_{j=M}^{\infty}\left[0, A^{-j}\right] \Gamma\left[0, A^{j}\right]$, for any M.
$\Gamma[A]$ is a countable subgroup of $\operatorname{Iso}\left(\mathbb{R}^{d}\right)$ and $q(\Gamma[A])=\mathcal{D}$.
$\mathcal{N}[A]=\operatorname{Trans}\left(\mathbb{R}^{d}\right) \cap \Gamma[A]$ is a dense subgroup of $\operatorname{Trans}\left(\mathbb{R}^{d}\right)$.
For $j \in \mathbb{Z}$, the automorphism ϑ_{j} of $\Gamma[A]$ is given by

$$
\vartheta_{j}[\underline{\beta}, L]=\left[0, A^{-j}\right][\underline{\beta}, L]\left[0, A^{j}\right] .
$$

Let $G_{A \Gamma}=\Gamma[A] \rtimes_{\vartheta} \mathbb{Z}$, the $A \Gamma$-wavelet group.

$A \Gamma$-wavelet representation

$$
G_{A \Gamma}=\Gamma[A] \rtimes_{\vartheta} \mathbb{Z}=\{([\underline{\beta}, L], j):[\underline{\beta}, L] \in \Gamma[A], j \in \mathbb{Z}\} .
$$

$A Г$-wavelet representation

$G_{A \Gamma}=\Gamma[A] \rtimes_{\vartheta} \mathbb{Z}=\{([\underline{\beta}, L], j):[\underline{\beta}, L] \in \Gamma[A], j \in \mathbb{Z}\}$.
The $A \Gamma$-wavelet representation is the map $\rho: G_{A\ulcorner } \rightarrow \mathcal{U}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ given by

$$
\rho([\underline{\beta}, L], j) f(\underline{x})=T_{[\underline{\beta}, L]} D_{A}^{j} f(\underline{x})=|\operatorname{det}(A)|^{j / 2} f\left(A^{i} L^{-1} \underline{x}-A^{j} \underline{\beta}\right) .
$$

$A Г$-wavelet representation

$G_{A \Gamma}=\Gamma[A] \rtimes_{\vartheta} \mathbb{Z}=\{([\underline{\beta}, L], j):[\underline{\beta}, L] \in \Gamma[A], j \in \mathbb{Z}\}$.
The $A \Gamma$-wavelet representation is the map $\rho: G_{A\ulcorner } \rightarrow \mathcal{U}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ given by

$$
\rho([\underline{\beta}, L], j) f(\underline{x})=T_{[\underline{\beta}, L]} D_{A}^{j} f(\underline{x})=|\operatorname{det}(A)|^{j / 2} f\left(A^{i} L^{-1} \underline{x}-A^{j} \underline{\beta}\right) .
$$

The $A \Gamma$-wavelet representation is an object we want to fully understand.

$A Г$-wavelet representation

$$
G_{A \Gamma}=\Gamma[A] \rtimes_{\vartheta} \mathbb{Z}=\{([\underline{\beta}, L], j):[\underline{\beta}, L] \in \Gamma[A], j \in \mathbb{Z}\} .
$$

The $A \Gamma$-wavelet representation is the map $\rho: G_{A \Gamma} \rightarrow \mathcal{U}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$ given by

$$
\rho([\underline{\beta}, L], j) f(\underline{x})=T_{[\underline{\beta}, L]} D_{A}^{j} f(\underline{x})=|\operatorname{det}(A)|^{j / 2} f\left(A^{i} L^{-1} \underline{x}-A^{j} \underline{\beta}\right) .
$$

The $A \Gamma$-wavelet representation is an object we want to fully understand.

But, let's digress again!

$A \Gamma$-wavelets

Definition: MacArthur and T, 2009

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-multiwavelet is a finite set $\left\{w_{1}, \cdots, w_{\ell}\right\} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\{D_{A}^{j} T_{[x, L]} w_{i}: 1 \leq i \leq \ell,[x, L] \in \Gamma, j \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.

$A \Gamma$-wavelets

Definition: MacArthur and T, 2009

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-multiwavelet is a finite set $\left\{w_{1}, \cdots, w_{\ell}\right\} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\{D_{A}^{j} T_{[x, L]} w_{i}: 1 \leq i \leq \ell,[x, L] \in \Gamma, j \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$.

$A \Gamma$-wavelets

Definition: MacArthur and T, 2009

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-multiwavelet is a finite set $\left\{w_{1}, \cdots, w_{\ell}\right\} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\{D_{A}^{j} T_{[x, L]} w_{i}: 1 \leq i \leq \ell,[x, L] \in \Gamma, j \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$. If $\ell=1$, we call $w=w_{1}$ an $A \Gamma$-wavelet.

$А Г$-wavelets

Definition: MacArthur and T, 2009

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-multiwavelet is a finite set $\left\{w_{1}, \cdots, w_{\ell}\right\} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\{D_{A}^{j} T_{[x, L]} w_{i}: 1 \leq i \leq \ell,[x, L] \in \Gamma, j \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$. If $\ell=1$, we call $w=w_{1}$ an $A \Gamma$-wavelet.

Definition

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-wavelet set is a Borel subset Ω of \mathbb{R}^{d} such that $\mathbf{1}_{\Omega}=\widehat{w}$ and w is an $A \Gamma$-wavelet in $L^{2}\left(\mathbb{R}^{d}\right)$.

$А Г$-wavelets

Definition: MacArthur and T, 2009

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-multiwavelet is a finite set $\left\{w_{1}, \cdots, w_{\ell}\right\} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\{D_{A}^{j} T_{[x, L]} w_{i}: 1 \leq i \leq \ell,[x, L] \in \Gamma, j \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$. If $\ell=1$, we call $w=w_{1}$ an $A \Gamma$-wavelet.

Definition

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-wavelet set is a Borel subset Ω of \mathbb{R}^{d} such that $\mathbf{1}_{\Omega}=\widehat{w}$ and w is an $A \Gamma$-wavelet in $L^{2}\left(\mathbb{R}^{d}\right)$.

АГ-wavelets

Definition: MacArthur and T, 2009

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-multiwavelet is a finite set $\left\{w_{1}, \cdots, w_{\ell}\right\} \in L^{2}\left(\mathbb{R}^{d}\right)$ such that

$$
\left\{D_{A}^{j} T_{[x, L]} w_{i}: 1 \leq i \leq \ell,[x, L] \in \Gamma, j \in \mathbb{Z}\right\}
$$

is an orthonormal basis of $L^{2}\left(\mathbb{R}^{d}\right)$. If $\ell=1$, we call $w=w_{1}$ an $A \Gamma$-wavelet.

Definition

Let Γ be a d-dimensional crystal group and A a compatible matrix. An $A \Gamma$-wavelet set is a Borel subset Ω of \mathbb{R}^{d} such that $\mathbf{1}_{\Omega}=\widehat{w}$ and w is an $A \Gamma$-wavelet in $L^{2}\left(\mathbb{R}^{d}\right)$.

Definition

A simple $A \Gamma$-wavelet set is an $A \Gamma$-wavelet that is a finite union of convex sets.

Constructions in two dimensions

Josh MacArthur has identified all compatible matrices for each wallpaper group.

Josh MacArthur has identified all compatible matrices for each wallpaper group.

He has also constructed Haar-like $A \Gamma$-multiwavelets for each wallpaper group Γ and each compatible matrix A.

Josh MacArthur has identified all compatible matrices for each wallpaper group.

He has also constructed Haar-like $А Г$-multiwavelets for each wallpaper group Γ and each compatible matrix A.

Our goals: Baggett, Merrill, Packer and T

1. On the frequency side, construct simple $A \Gamma$-wavelet sets, for all wallpaper groups and compatible matrices.

Josh MacArthur has identified all compatible matrices for each wallpaper group.

He has also constructed Haar-like $А Г$-multiwavelets for each wallpaper group Γ and each compatible matrix A.

Our goals: Baggett, Merrill, Packer and T

1. On the frequency side, construct simple $A \Gamma$-wavelet sets, for all wallpaper groups and compatible matrices.

Josh MacArthur has identified all compatible matrices for each wallpaper group.

He has also constructed Haar-like $А Г$-multiwavelets for each wallpaper group Γ and each compatible matrix A.

Our goals: Baggett, Merrill, Packer and T

1. On the frequency side, construct simple $A \Gamma$-wavelet sets, for all wallpaper groups and compatible matrices.
2. Decompose the $A \Gamma$-wavelet representation as a direct integral of irreducible representations over a simple $A \Gamma$-wavelet set.

Josh MacArthur has identified all compatible matrices for each wallpaper group.

He has also constructed Haar-like $A \Gamma$-multiwavelets for each wallpaper group Γ and each compatible matrix A.

Our goals: Baggett, Merrill, Packer and T

1. On the frequency side, construct simple $A \Gamma$-wavelet sets, for all wallpaper groups and compatible matrices.
2. Decompose the $A \Gamma$-wavelet representation as a direct integral of irreducible representations over a simple $А \Gamma$-wavelet set.

I believe we have accomplished 2 . for all Γ and $A=3 \cdot \mathrm{id}$, which is compatible with all wallpaper groups, as long as we can do 1.

Construction of simple $А Г$-wavelet sets

Fix $A=3 \cdot \mathrm{id}$ since it is compatible with all wallpaper groups. Let Γ be a wallpaper group with point group \mathcal{D} and $\underline{u}, \underline{v}$ as basic spanning vectors.

Construction of simple $A \Gamma$-wavelet sets

Fix $A=3 \cdot$ id since it is compatible with all wallpaper groups. Let Γ be a wallpaper group with point group \mathcal{D} and $\underline{u}, \underline{v}$ as basic spanning vectors.

Proposition

Let Ω be a Borel subset of \mathbb{R}^{2}. Then Ω is an $A \Gamma$-wavelet set iff (1), (2) and (3) hold.

Construction of simple $A \Gamma$-wavelet sets

Fix $A=3 \cdot$ id since it is compatible with all wallpaper groups. Let Γ be a wallpaper group with point group \mathcal{D} and $\underline{u}, \underline{v}$ as basic spanning vectors.

Proposition

Let Ω be a Borel subset of \mathbb{R}^{2}. Then Ω is an $A \Gamma$-wavelet set iff (1), (2) and (3) hold.

Construction of simple $A \Gamma$-wavelet sets

Fix $A=3 \cdot$ id since it is compatible with all wallpaper groups. Let Γ be a wallpaper group with point group \mathcal{D} and $\underline{u}, \underline{v}$ as basic spanning vectors.

Proposition

Let Ω be a Borel subset of \mathbb{R}^{2}. Then Ω is an $A \Gamma$-wavelet set iff (1), (2) and (3) hold.
(1) $\cup_{(j, k) \in \mathbb{Z}^{2}}(\Omega+j \underline{u}+k \underline{v})$ is co-null in \mathbb{R}^{2} and $\left(j^{\prime}, k^{\prime}\right) \neq(k, j)$ implies $(\Omega+j \underline{u}+k \underline{v}) \cap\left(\Omega+j^{\prime} \underline{u}+k^{\prime} \underline{v}\right)$ is a null set.

Construction of simple $A \Gamma$-wavelet sets

Fix $A=3 \cdot$ id since it is compatible with all wallpaper groups. Let Γ be a wallpaper group with point group \mathcal{D} and $\underline{u}, \underline{v}$ as basic spanning vectors.

Proposition

Let Ω be a Borel subset of \mathbb{R}^{2}. Then Ω is an $A \Gamma$-wavelet set iff (1), (2) and (3) hold.
(1) $\cup_{(j, k) \in \mathbb{Z}^{2}}(\Omega+j \underline{u}+k \underline{v})$ is co-null in \mathbb{R}^{2} and $\left(j^{\prime}, k^{\prime}\right) \neq(k, j)$ implies $(\Omega+j \underline{u}+k \underline{v}) \cap\left(\Omega+j^{\prime} \underline{u}+k^{\prime} \underline{v}\right)$ is a null set.
(2) For $L, M \in \mathcal{D}, L \neq M, L \Omega \cap M \Omega$ is a null set.

Construction of simple $A \Gamma$-wavelet sets

Fix $A=3 \cdot$ id since it is compatible with all wallpaper groups. Let Γ be a wallpaper group with point group \mathcal{D} and $\underline{u}, \underline{v}$ as basic spanning vectors.

Proposition

Let Ω be a Borel subset of \mathbb{R}^{2}. Then Ω is an $A \Gamma$-wavelet set iff (1), (2) and (3) hold.
(1) $\cup_{(j, k) \in \mathbb{Z}^{2}}(\Omega+j \underline{u}+k \underline{v})$ is co-null in \mathbb{R}^{2} and $\left(j^{\prime}, k^{\prime}\right) \neq(k, j)$ implies $(\Omega+j \underline{u}+k \underline{v}) \cap\left(\Omega+j^{\prime} \underline{u}+k^{\prime} \underline{v}\right)$ is a null set.
(2) For $L, M \in \mathcal{D}, L \neq M, L \Omega \cap M \Omega$ is a null set.
(3) $\cup_{\ell \in \mathbb{Z}} A^{\ell}\left(\cup_{L \in \mathcal{D}} L \Omega\right)$ is co-null in \mathbb{R}^{2} and $\ell \neq m$ implies $A^{\ell}\left(\cup_{L \in \mathcal{D}} L \Omega\right) \cap A^{m}\left(\cup_{L \in \mathcal{D}} L \Omega\right)$ is a null set.

$p 2=\left\{[k \underline{u}+\ell \underline{v}, L]:(k, \ell) \in \mathbb{Z}^{2}, L \in\left\{\mathrm{id}, R_{\pi}\right\}\right\}$ ，where R_{π} is rotation through π ．

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

Surprisingly, the introduction of the rotation makes it easier to find a simple $A \Gamma$-wavelet set.

A simple $А Г$-wavelet set for $\Gamma=p 2$

Surprisingly, the introduction of the rotation makes it easier to find a simple $A \Gamma$-wavelet set.

The blue set below is our candidate Ω.

A simple $А Г$－wavelet set for $\Gamma=p 2$

Surprisingly，the introduction of the rotation makes it easier to find a simple $A \Gamma$－wavelet set．

The blue set below is our candidate Ω ．

The red set is $R_{\pi} \Omega$ ．

A simple $А Г$－wavelet set for $\Gamma=p 2$

Surprisingly，the introduction of the rotation makes it easier to find a simple $A \Gamma$－wavelet set．

The blue set below is our candidate Ω ．

The red set is $R_{\pi} \Omega$ ．The plane is tiled by $\left\{3^{\ell}\left(\Omega \cup R_{\pi} \Omega\right): \ell \in \mathbb{Z}\right\}$ ．

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

Surprisingly, the introduction of the rotation makes it easier to find a simple $A \Gamma$-wavelet set.

The blue set below is our candidate Ω.

The red set is $R_{\pi} \Omega$. The plane is tiled by $\left\{3^{\ell}\left(\Omega \cup R_{\pi} \Omega\right): \ell \in \mathbb{Z}\right\}$. We need to show that the blue set tiles the plane by \mathbb{Z}^{2} translations.

A simple $А Г$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

A simple $A \Gamma$－wavelet set for $\Gamma=p 2$

A simple $A \Gamma$-wavelet set for $\Gamma=p 2$

Thus, the set interior to the blue line tiles the plane by \mathbb{Z}^{2} translations.

$\Gamma=p 6 m$

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
$\Gamma=p 6 m$

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
Let S denote the reflection that leaves \underline{u} fixed.

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
Let S denote the reflection that leaves \underline{u} fixed.
Then, the point group is $\mathcal{D}=\left\{\left(R_{\pi / 3}\right)^{i}, S\left(R_{\pi / 3}\right)^{i}: 0 \leq i \leq 5\right\}$

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
Let S denote the reflection that leaves \underline{u} fixed.
Then, the point group is $\mathcal{D}=\left\{\left(R_{\pi / 3}\right)^{i}, S\left(R_{\pi / 3}\right)^{i}: 0 \leq i \leq 5\right\}$

$$
\Gamma=p 6 m=\left\{[j \underline{u}+k \underline{v}, L]:(j, k) \in \mathbb{Z}^{2}, L \in \mathcal{D}\right\}
$$

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
Let S denote the reflection that leaves \underline{u} fixed.
Then, the point group is $\mathcal{D}=\left\{\left(R_{\pi / 3}\right)^{i}, S\left(R_{\pi / 3}\right)^{i}: 0 \leq i \leq 5\right\}$

$$
\Gamma=p 6 m=\left\{[j \underline{u}+k \underline{v}, L]:(j, k) \in \mathbb{Z}^{2}, L \in \mathcal{D}\right\} .
$$

With $A=3 \cdot \mathrm{id}$, a simple $A \Gamma$-wavelet set Ω satisfies:

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
Let S denote the reflection that leaves \underline{u} fixed.
Then, the point group is $\mathcal{D}=\left\{\left(R_{\pi / 3}\right)^{i}, S\left(R_{\pi / 3}\right)^{i}: 0 \leq i \leq 5\right\}$

$$
\Gamma=p 6 m=\left\{[j \underline{u}+k \underline{v}, L]:(j, k) \in \mathbb{Z}^{2}, L \in \mathcal{D}\right\} .
$$

With $A=3 \cdot \mathrm{id}$, a simple $A \Gamma$-wavelet set Ω satisfies:
(1) Ω tiles the plane under translations by $\underline{j}+k \underline{v}, j, k \in \mathbb{Z}$, and

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
Let S denote the reflection that leaves \underline{u} fixed.
Then, the point group is $\mathcal{D}=\left\{\left(R_{\pi / 3}\right)^{i}, S\left(R_{\pi / 3}\right)^{i}: 0 \leq i \leq 5\right\}$

$$
\Gamma=p 6 m=\left\{[j \underline{u}+k \underline{v}, L]:(j, k) \in \mathbb{Z}^{2}, L \in \mathcal{D}\right\} .
$$

With $A=3 \cdot \mathrm{id}$, a simple $A \Gamma$-wavelet set Ω satisfies:
(1) Ω tiles the plane under translations by $j \underline{u}+k \underline{v}, j, k \in \mathbb{Z}$, and
(2) $\cup_{L \in \mathcal{D}} L \Omega$ tiles the plane under dilations by powers of A.

Let $R_{\pi / 3}$ denote rotation through $\pi / 3$.
Let S denote the reflection that leaves \underline{u} fixed.
Then, the point group is $\mathcal{D}=\left\{\left(R_{\pi / 3}\right)^{i}, S\left(R_{\pi / 3}\right)^{i}: 0 \leq i \leq 5\right\}$

$$
\Gamma=p 6 m=\left\{[j \underline{u}+k \underline{v}, L]:(j, k) \in \mathbb{Z}^{2}, L \in \mathcal{D}\right\} .
$$

With $A=3 \cdot \mathrm{id}$, a simple $A \Gamma$-wavelet set Ω satisfies:
(1) Ω tiles the plane under translations by $j \underline{u}+k \underline{v}, j, k \in \mathbb{Z}$, and
(2) $\cup_{L \in \mathcal{D}} L \Omega$ tiles the plane under dilations by powers of A.

Here is an example.

An \bar{A}-wavelet set, $\Gamma=p 6 m$

Tiling by integer translations

Tiling the plane with dilations by powers of 3

So far, we have found a simple $A \Gamma$-wavelet set Ω for 14 of the 17 wallpaper groups.

So far, we have found a simple $A \Gamma$-wavelet set Ω for 14 of the 17 wallpaper groups.

There is a Shannon-type $A \Gamma$-wavelet whose Fourier transform is the characteristic function of Ω.

So far，we have found a simple $A \Gamma$－wavelet set Ω for 14 of the 17 wallpaper groups．

There is a Shannon－type $A \Gamma$－wavelet whose Fourier transform is the characteristic function of Ω ．

Conjecture：The natural representation of the $A \Gamma$－wavelet group on $L^{2}\left(\mathbb{R}^{2}\right)$ can be decomposed as a direct integral of irreducible representations over Ω ．

So far，we have found a simple $A \Gamma$－wavelet set Ω for 14 of the 17 wallpaper groups．

There is a Shannon－type $A \Gamma$－wavelet whose Fourier transform is the characteristic function of Ω ．

Conjecture：The natural representation of the $A \Gamma$－wavelet group on $L^{2}\left(\mathbb{R}^{2}\right)$ can be decomposed as a direct integral of irreducible representations over Ω ．We are nearly there．

Thank you!

