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Classical Wavelets

In wavelet theory, there are two basic unitary representations
j → D j

2 and k → Tk of Z on L2(R), where

D2f (x) = 21/2f (2x), for x ∈ R, f ∈ L2(R).

Tk f (x) = f (x − k), for x ∈ R, f ∈ L2(R), k ∈ Z.

Combined D j
2 Tk f (x) = 2j/2f (2jx − k).

A classical wavelet is a w ∈ L2(R) such that

{D j
2 Tk w : j ∈ Z, k ∈ Z}

is an orthonormal basis of L2(R).
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Haar Wavelets

Let w(x) = 1
(0,1/2)

− 1
(1/2,1)

.

Haar wavelet

Then w is a classical wavelet called the Haar wavelet. It is widely
used in applications even though it is not smooth.
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On the frequency side

F is the unitary map on L2(R) such that

F f (ω) = f̂ (ω) =

∫
R

f (x)e−2πiωxdx ,

for f ∈ L1(R) ∩ L2(R).

Let D̂2 = FD2F−1 and T̂k = FTkF−1, for k ∈ Z.

D̂2
j
g(ω) = 2−j/2g(2−jω) and T̂k g(ω) = e−2πikωg(ω).

So D̂2
j
T̂k g(ω) = 2−j/2e−2πi2−j kωg(2−jω).
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On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1).

There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ)

= ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval.

This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



On the frequency side

Let Ω = (−1,−1/2) ∪ (1/2, 1). There are two remarkable
properties possessed by Ω.

1. It tiles the line by integer shifts:
⋃

k∈Z(Ω + k) is a co-null open
subset of R and (Ω + k) ∩ (Ω + k ′) = ∅, if k 6= k ′.

2. It tiles the line by dilations by powers of 2:
⋃

j∈Z(2jΩ) is a co-null
open subset of R and (2jΩ) ∩ (2j ′Ω) = ∅, if j 6= j ′.

Property 2 implies L2(R) = ⊕j∈ZL2(2jΩ) = ⊕j∈ZD̂2
j
L2(Ω).

Property 1 happens because Ω is piecewise integer shift
equivalent to a unit interval. This implies {T̂k 1Ω : k ∈ Z} is an
orthonormal basis of L2(Ω).

Thus, {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).



The Shannon wavelet

Let Ω = (−1,−1/2) ∪ (1/2, 1) and let w ∈ L2(R) satisfy ŵ = 1Ω.

Since {D̂2
j
T̂k 1Ω : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R),

{D j
2 Tk w : j ∈ Z, k ∈ Z} is an orthonormal basis of L2(R).

w(x) = 1
πx

[
sin(2πx)− sin(πx)

]
is called the Shannon wavelet.

Again, the Shannon wavelet is widely used and has the advantage
of being an elementary analytic function.

It has the disadvantage of very slow decay.
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The Shannon Wavelet, graph



Where is the group representation

Note that (j, k)→ D j
2 Tk is not a group representation. Nor is

(j, k)→ Tk D j
2 . But also note that

D j
2 Tk f (x) = 2j/2f (2jx − k) = 2j/2f

(
2j(x − 2−jk)

)
= T2−j k D j

2 f (x)

⇒ (Tk D j
2 )(Tk ′D

j ′
2 ) = Tk (D j

2 Tk ′)D
j ′

2 = Tk+2−j k ′D
(j+j ′)
2

Let Z[1/2] = {2`m : `,m ∈ Z}, the dyadic rationals.
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The Wavelet Group

Define an action ϑ of Z on Z[1/2] by

ϑjβ = 2−jβ, for β ∈ Z[1/2], j ∈ Z.

Let G2 = Z[1/2]oϑ Z = {(β, j) : β ∈ Z[1/2], j ∈ Z} with product

(β, j)(β′, j ′) = (β + ϑjβ
′, j + j ′).

We call G2 the wavelet group and (β, j)→ TβD j
2 the wavelet

representation.

See Martin and Valette: Markov Operators on the Solvable
Baumslag-Solitar Groups (2000). They coined the term wavelet
group.
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Higher Dimensions

Let d ∈ N and A ∈ GLd (R) be an expansive matrix such that
AZd ⊆ Zd .

Then AZd ( Zd and Zd/AZd is finite.

Now DAf (x) = | det(A)|1/2f (Ax), for x ∈ Rd , f ∈ L2(Rd ).

Also Tk f (x) = f (x − k), for x ∈ Rd , f ∈ L2(Rd ), k ∈ Zd .

Definition

An A-wavelet set is a Borel subset Ω of Rd such that{
D j

ATk w : k ∈ Zd , j ∈ Z
}

is an orthonormal basis of L2(Rd ), where w ∈ L2(Rd ) satisfies
ŵ = 1Ω.
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Existence of A-wavelet sets

1997: Dai, Larsen, and Speegle proved the existence of A-wavelet
sets, for any expansive A with AZd ⊆ Zd . Construction was
iterative and the resulting sets were fractal in nature.

A simple A-wavelet set is a wavelet set that is a finite union of
convex sets.

2008, 2012, 2015: Kathy Merrill constructed simple A-wavelet sets
for increasingly wider classes of matrices A.
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The A-wavelet group

Lim, Packer and T: A Direct Integral Decomposition of the Wavelet
Representation, PAMS 129 3057-3067 (2001).

Let Zd [A] = ∪j∈ZAjZd , a countable dense subgroup of Rd .

Form GA = Zd [A]oϑ Z, where ϑjβ = A−jβ, for β ∈ Zd [A], j ∈ Z.

Definition:
We call GA the A-wavelet group. The A-wavelet representation is
the unitary representation ρ of GA on L2(Rd ) given by

ρ(β, j)f (x) = TβD j
Af (x) = | det(A)|j/2f

(
Aj(x − β)

)
,

for x ∈ Rd , f ∈ L2(Rd ), (β, j) ∈ GA.

In the above paper, we provided a direct integral decomposition of
ρ into irreducible representations. Let me explain.
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Decomposing the A-wavelet representation

Let NA = {(β, 0) : β ∈ Zd [A]}, a normal abelian subgroup of GA.

We consider NA as a countable discrete group. Thus, N̂A is a
compact abelian group.

For ω ∈ Rd , define χω in N̂A by
χω(β, 0) = e2πiω·β , for (β, 0) ∈ NA.

Proposition

The map ω → χω is a continuous isomorphism of Rd with a dense
subgroup of N̂A.

Thus, {χω : ω ∈ Rd} is weakly equivalent with the regular
representation of NA.
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Aside on weak equivalence

For a locally compact group G, two sets of unitary representations
S and T are weakly equivalent if, when considered as
∗-representations of C∗(G)

{a ∈ C∗(G) : σ(a) = 0, ∀σ ∈ S} = {a ∈ C∗(G) : τ(a) = 0, ∀τ ∈ T }

That is
∩σ∈S ker(σ) = ∩τ∈T ker(τ).

Saying that {χω : ω ∈ Rd} is weakly equivalent with the regular
representation of NA is simply saying that {χω : ω ∈ Rd} is dense
in N̂A.
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Decomposing the A-wavelet representation, II

An A-wavelet set Ω is free if AjΩ ∩ Ak Ω = ∅, for j 6= k . For every
simple A-wavelet set, there is a free simple A-wavelet set that
differs only by a null set.

For ω ∈ Rd , let U ω = indGA
NA
χω.

Theorem: Lim, Packer and T, 2001

Let Ω be a free A-wavelet set in Rd . Then the A-wavelet
representation ρ is unitarily equivalent to the direct integral∫ ⊕

Ω
U ω dω

and U ω is irreducible for ω ∈ Ω. Moreover, {U ω : ω ∈ Ω} is
weakly equivalent with the left regular representation of GA.
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Decomposing the A-wavelet representation, III

Our work on decomposing the A-wavelet representation was
motivated by the previously cited paper of Martin and Valette and
by

Brenken: The local product structure of expansive automorphisms
of solenoids and their associated C*-algebras (1996).

Note: C∗(GA) ' C(N̂A)o Z.

In turn, our theorem led to further results on dynamical systems; in
particular by Dutkay and Jorgensen.

We recently returned to this theme in order to explore the
implications of the introduction of crystal symmetries into the
theory of wavelets.
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Crystal groups

For x ∈ Rd and B ∈ GLd (R), define the affine transformation
[x ,B] by [x ,B]z = B(z + x), for all z ∈ Rd .

Then [x ,B][y ,C] = [C−1x + y ,BC] and [x ,B]−1 = [−Bx ,B−1].

Aff(Rd ) = {[x ,B] : x ∈ Rd ,B ∈ GLd (R)} = Rd oGLd (R).

Iso(Rd ) = {[x ,B] : x ∈ Rd ,B ∈ Od} = Rd oOd , where Od is the
group of orthogonal transformations of Rd .

Definition

A d-dimensional crystal group is a discrete subgroup Γ of Iso(Rd )
such that Rd/Γ is compact.

A 2-dimensional crystal group is also called a wallpaper group.
There are 17 of them.
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Crystal groups II

Let Tran(Rd ) = {[x , id] : x ∈ Rd}, the normal subgroup of
Aff(Rd ) consisting of pure translations.

Let q : Aff(Rd )→ GLd (R) be defined by q[x ,B] = B, for
[x ,B] ∈ Aff(Rd ). We view q as the quotient homomorphism
identifying Aff(Rd )/Tran(Rd ) with GLd (R).

If Γ is a d-dimensional crystal group, then N = Γ ∩ Tran(Rd ) is a
normal abelian subgroup of Γ.

There exists a basis {v i : 1 ≤ i ≤ d} of Rd such that
N = {

∑d
i=1 kiv i : (k1, · · · , kd ) ∈ Zd}.

Let D = q(Γ) = {L ∈ Od : [x , L] ∈ Γ, for some x ∈ Rd}, the point
group of Γ.

{1} → Zd → Γ→ D → {1}.
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Compatible Transformations

Let Γ be a d-dimensional crystal group and A ∈ GLd (R).

We say
A is compatible with Γ if

[0,A]Γ[0,A]−1 ( Γ and Γ/[0,A]Γ[0,A]−1 is finite.

In two dimensions, A = 3 · id is compatible with all wallpaper
groups.

We will shift functions by members of Γ and dilate functions by
powers of A.

For [x , L] ∈ Γ, f ∈ L2(Rd ), y ∈ Rd ,

T[x,L]f (y) = f
(

[x , L]−1y
)

= f
(

L−1y − x
)
.

As before DAf (y) = | det(A)|1/2f (Ay).
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AΓ-wavelet group

Let Γ be a d-dimensional crystal group and A a compatible matrix.
Recall that [0,A]Γ[0,A−1] ( Γ.

So Γ ⊆ [0,A−1]Γ[0,A].

Let Γ[A] = ∪j∈Z[0,A−j ]Γ[0,Aj ] = ∪∞j=M [0,A−j ]Γ[0,Aj ], for any M.

Γ[A] is a countable subgroup of Iso(Rd ) and q(Γ[A]) = D.

N [A] = Trans(Rd ) ∩ Γ[A] is a dense subgroup of Trans(Rd ).

For j ∈ Z, the automorphism ϑj of Γ[A] is given by

ϑj [β, L] = [0,A−j ][β, L][0,Aj ].

Let GAΓ = Γ[A]oϑ Z, the AΓ-wavelet group.
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AΓ-wavelet representation

GAΓ = Γ[A]oϑ Z = {
(
[β, L], j

)
: [β, L] ∈ Γ[A], j ∈ Z}.

The AΓ-wavelet representation is the map ρ : GAΓ → U
(
L2(Rd )

)
given by

ρ
(
[β, L], j

)
f (x) = T[β,L]D

j
A f (x) = | det(A)|j/2f

(
AjL−1x − Ajβ

)
.

The AΓ-wavelet representation is an object we want to fully
understand.

But, let’s digress again!
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AΓ-wavelets

Definition: MacArthur and T, 2009
Let Γ be a d-dimensional crystal group and A a compatible matrix.
An AΓ-multiwavelet is a finite set {w1, · · · ,w`} ∈ L2(Rd ) such that

{D j
AT[x,L]wi : 1 ≤ i ≤ `, [x , L] ∈ Γ, j ∈ Z}

is an orthonormal basis of L2(Rd ).

If ` = 1, we call w = w1 an
AΓ-wavelet.

Definition
Let Γ be a d-dimensional crystal group and A a compatible matrix.
An AΓ-wavelet set is a Borel subset Ω of Rd such that 1Ω = ŵ and
w is an AΓ-wavelet in L2(Rd ).

Definition
A simple AΓ-wavelet set is an AΓ-wavelet that is a finite union of
convex sets.
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w is an AΓ-wavelet in L2(Rd ).

Definition
A simple AΓ-wavelet set is an AΓ-wavelet that is a finite union of
convex sets.



AΓ-wavelets

Definition: MacArthur and T, 2009
Let Γ be a d-dimensional crystal group and A a compatible matrix.
An AΓ-multiwavelet is a finite set {w1, · · · ,w`} ∈ L2(Rd ) such that

{D j
AT[x,L]wi : 1 ≤ i ≤ `, [x , L] ∈ Γ, j ∈ Z}

is an orthonormal basis of L2(Rd ). If ` = 1, we call w = w1 an
AΓ-wavelet.

Definition
Let Γ be a d-dimensional crystal group and A a compatible matrix.
An AΓ-wavelet set is a Borel subset Ω of Rd such that 1Ω = ŵ and
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Constructions in two dimensions

Josh MacArthur has identified all compatible matrices for each
wallpaper group.

He has also constructed Haar-like AΓ-multiwavelets for each
wallpaper group Γ and each compatible matrix A.

Our goals: Baggett, Merrill, Packer and T

1. On the frequency side, construct simple AΓ-wavelet sets, for all
wallpaper groups and compatible matrices.

2. Decompose the AΓ-wavelet representation as a direct integral of
irreducible representations over a simple AΓ-wavelet set.

I believe we have accomplished 2. for all Γ and A = 3 · id, which is
compatible with all wallpaper groups, as long as we can do 1.
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Construction of simple AΓ-wavelet sets

Fix A = 3 · id since it is compatible with all wallpaper groups. Let Γ
be a wallpaper group with point group D and u, v as basic
spanning vectors.

Proposition

Let Ω be a Borel subset of R2. Then Ω is an AΓ-wavelet set iff (1),
(2) and (3) hold.

(1) ∪(j,k)∈Z2(Ω + ju + kv) is co-null in R2 and (j ′, k ′) 6= (k , j)
implies (Ω + ju + kv) ∩ (Ω + j ′u + k ′v) is a null set.

(2) For L,M ∈ D, L 6= M, LΩ ∩MΩ is a null set.

(3) ∪`∈ZA`
(
∪L∈D LΩ

)
is co-null in R2 and ` 6= m implies

A`
(
∪L∈D LΩ

)
∩ Am

(
∪L∈D LΩ

)
is a null set.
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Start with Γ = p2

u

v

p2 =
{

[ku + `v , L] : (k , `) ∈ Z2, L ∈ {id,Rπ}
}

, where Rπ is
rotation through π.



A simple AΓ-wavelet set for Γ = p2

Surprisingly, the introduction of the rotation makes it easier to find
a simple AΓ-wavelet set.

The blue set below is our candidate Ω.
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-0.5

0.5

The red set is RπΩ. The plane is tiled by {3`(Ω ∪ RπΩ) : ` ∈ Z}.
We need to show that the blue set tiles the plane by Z2

translations.
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Thus, the set interior to the blue line tiles the plane by Z2

translations.
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Γ = p6m

Let R
π/3 denote rotation through π/3.

Let S denote the reflection that leaves u fixed.

Then, the point group is D =
{

(R
π/3)i ,S(R

π/3)i : 0 ≤ i ≤ 5
}

Γ = p6m =
{

[ju + kv , L] : (j, k) ∈ Z2, L ∈ D
}
.

With A = 3 · id, a simple AΓ-wavelet set Ω satisfies:

(1) Ω tiles the plane under translations by ju + kv , j, k ∈ Z, and

(2) ∪L∈DLΩ tiles the plane under dilations by powers of A.

Here is an example.
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An AΓ-wavelet set, Γ = p6m
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Tiling by integer translations
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Tiling the plane with dilations by powers of 3
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Concluding remarks

So far, we have found a simple AΓ-wavelet set Ω for 14 of the 17
wallpaper groups.

There is a Shannon-type AΓ-wavelet whose Fourier transform is
the characteristic function of Ω.

Conjecture: The natural representation of the AΓ-wavelet group on
L2(R2) can be decomposed as a direct integral of irreducible
representations over Ω. We are nearly there.
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The End

Thank you!


